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Abstract.  

Droughts are causing severe damages to water abundant tropical countries worldwide. Their resilience to 

water shortages tends to be low, often due to a lack of water infrastructure. Moreover, drought characteristics 

and risk in tropical catchments are poorly understood, which makes it difficult to select adequate adaptation 

measures. Thus, reliable methodologies to evaluate spatially distributed drought risk in data scarce tropical 20 

catchments are urgently needed.  

We combined drought hazard and vulnerability related information to assess drought risk in four rural tropical 

study regions, the Muriaé, subcatchment of the Paraíba do Sul in Southeast Brazil, the Tempisque-Bebedero 

basin in North Costa Rica, the upper part of the Magdalena basin, Colombia and the Srepok, a Mekong 

tributary shared by Cambodia and Vietnam. Drought hazard was defined based on three variables, daily river 25 

discharge and precipitation and vegetation condition. Conditions below defined thresholds were transformed 

into a cumulative drought index. To assess vulnerability, we reclassified and weighted globally and regionally 

available gridded socioeconomic data to represent the potential of a drought to cause damages in selected 

socioeconomic sectors of rural tropical regions. Besides illustrating the relative severity of each indicator 

value, we developed drought risk maps combining hazard and vulnerability severity for each grid cell. 30 

While for the Muriaé our results clearly identified the downstream area as being exposed to severe drought 

risk, the Tempisque showed highest risk along the major streams and related irrigation systems. Risk 

hotspots in the Upper Magdalena were found in the central valley and the dryer Southeast and in the Srepok 
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in the agricultural areas of Vietnam and downstream in Cambodia. Plausibility of results was confirmed by 

local scientists and stakeholders, who evaluated the results for each indicator and risk hotspot. The 35 

presented risk assessment methodology for data scarce and rural tropical areas offers a holistic, science 

based and innovative solution to provide relevant drought related information. Being applied to individual 

catchments, the findings described in this article will enable the selection of data sets, indices and their 

classification - depending on basin size, spatial resolution and seasonality. At its current stage, the outcomes 

of this study provide relevant information for regional planners and water managers dealing with the control 40 

of future drought disasters in tropical regions. 

1 Introduction 

Droughts are a recurrent phenomenon in tropical regions worldwide (Adamson and Bird, 2010; Erfanian et 

al., 2017) and are expected to become more severe in the future (Sheffield et al., 2018). Recent drought 

disasters occurred in South-East Brazil, January 2014 to December 2015 (Nauditt et al., 2019b; Ribbe et al., 45 

2018), followed by an El Niño triggered drought in 2015-2016 affecting Costa Rica (Herrera and Ault, 2017), 

Colombia (FAO, 2017) and Southeast Asia (Thirumalai et al., 2017), with devastating implications for 

domestic water supply, agricultural and hydropower production, navigation, fire occurrence and public health 

(Hoyos et al., 2017). Rural areas that rely on rain-fed agriculture, livestock and milk production, were 

extremely impacted due to the lack of water storage or distribution infrastructure (Nauditt et al., 2019a). To 50 

avoid such economic losses during future drought events, the respective governments have been seeking 

for more effective adaptation strategies (IDEAM et al., 2014; Emater-RIO et al. 2016; FAO, 2017; UNGRD 

et al., 2018). Decisions related to drought adaptation, though, need to rely on a profound knowledge about 

drought hazard, vulnerability and exposure; spatially varying risk information that is rarely available in data 

scarce tropical regions.  55 

 

Many concepts have been developed to evaluate drought risk (Carrão et al., 2016; Stahl et al., 2016; Vogt 

et al., 2018; Naumann et al., 2019; Meza et al., 2019), varying in their definition and interpretation of the 

terms “risk”, “hazard”, “vulnerability” and “exposure” (González-Tánago et al., 2015). Nonetheless, although 

varying in terminology, there is a wide agreement that risk cannot be understood by looking only at either 60 

climate anomalies or only at socioeconomic vulnerability factors (UN-ISDR, 2009; Bachmair et al., 2017). 

Understanding risk requires a more holistic evaluation of different conditions leading to drought disasters: 

What extent and duration of a hydro-climatic deficiency caused drought impacts at which location? How did 

the catchment, vegetation and discharge respond to this extreme event? Which environmental and economic 
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sectors were affected? Since such characteristics are climate, region- and sector specific, there is a demand 65 

to design locally suitable drought risk assessment approaches and related data sets (Naumann et al., 2019). 

 

The scale of analysis matters. Widely applied monthly scale standardized indices (eg. SPI 12) are useful for 

large scale drought risk assessment (Naumann et al., 2018; Vogt et al., 2018). Tropical climates are often 

dominated by a strong seasonality and a topography-influenced spatial rainfall variability. Few days without 70 

rainfall might lead to a severe precipitation deficit that can affect cattle grazing and rain-fed agricultural 

production. Indices based on monthly hydro-meteorological values might not detect short-term deficits in 

quickly responding catchments. For tropical regions, it has therefore been proven useful to assess 

meteorological and hydrological drought hazard at a daily timescale (Nauditt et al., 2017; Firoz et al., 2018). 

Also the spatial distribution and coverage of hydro-climatic observations used to detect drought anomalies 75 

are of key importance for hazard assessment. During drought, topography, geology, soil and land-cover 

catchment characteristics as well as human water interventions influence hydrological processes, catchment 

storage and release and therefore play a major role in the evolution of low flows (Bruijnzeel, 2004; Calder et 

al., 2007; Birkel et al., 2012; Stoelzle et al., 2014; van Loon and Laaha, 2015; Van Loon et al., 2016). 

Altogether these influences cause a strong variability of climatic and hydrological drought hazard in tropical 80 

space (Nauditt et al., 2019b). 

 

Daily time step data, needed to effectively evaluate drought hazard in tropical catchments, are rarely 

available. Sheffield et al. (2018) highlight the potential of satellite remote sensing and reanalysis data 

products to improve water resources management in regions with sparse in-situ monitoring networks. Open 85 

access high resolution remote sensing data products are continuously increasing in quantity (AghaKouchak 

et al., 2015; Mariano et al., 2018). In this context, a variety of gridded datasets are available, including daily 

precipitation (Funk et al., 2015; Baez-Villanueva et al., 2018&2020), surface water (Beck et al., 2016), 

groundwater (Thomas et al., 2014), reservoirs (AghaKouchak et al., 2018), soil moisture (Samaniego et al., 

2018; Tijdeman and Menzel, 2020), and vegetation (Pinzón and Tucker, 2014; Nguyen et al., 2019). 90 

Especially vegetation condition indices like fAPAR, NDVI, EVI and VCI play an increasing role for drought 

monitoring and research in data scarce regions. They can provide spatially distributed information on soil 

and vegetation moisture anomalies on the ground (Heydari et al., 2018; Recuero et al., 2019) that is not 

dependent on sparsely monitored hydro-climatic data. 

 95 
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Exposure and vulnerability information are also sparse, especially in rural tropical regions. Vulnerability 

evaluation should be ideally based on historical drought impact data (Stahl et al., 2016; Bachmair et al., 

2016; Blauhut et al., 2016), but these are usually not systematically monitored and recorded; rare examples 

being the US Drought Impact Reporter (droughtreporter.unl.edu) , the European Drought Impact Database 

(Stahl et al., 2016) or observer-based systems such as the Czech INTERSUCHO (www.intersucho.cz).  100 

Alternatively, vulnerability data is often replaced by exposure related information (Carrão et al., 2016; 

Naumann et al., 2018; Vogt et al., 2018; Naumann et al., 2019), that is available as gridded socioeconomic 

data sets showing the spatial distribution of population-, livestock- and crop densities as well as socio-

economic, demographic and infrastructural characteristics. Such remote sensing and gridded data-based 

drought risk assessment approaches have often been carried out at global or regional scale (Carrão et al., 105 

2016; Hagenlocher et al., 2019), but have rarely been applied to local and catchment scale drought risk. This 

study evaluates the performance of gridded datasets related to hydro-climatic and socio-economic 

information to derive relevant drought risk information for catchments of different sizes (between 5 450 and 

49 382 km²) and differing tropical climates. 

 110 

In line with the above, the overall aim of this study is to identify and characterize drought risk hotspots in 

rural and data scarce tropical regions as a basis for drought management.  

 

Specific objectives: 

- to identify the spatially distributed cumulative duration of hydrological and meteorological drought hazard 115 

- to understand spatially varying and sector related drought vulnerability  

- to visualize spatial distribution of drought risk in four tropical catchments that vary in size, topography, 

climate and water infrastructure development 

- to attribute the relative spatial contribution of hazard and vulnerability related factors to drought risk  

  120 
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2  Data and Methods 

2.1 Study regions 

We selected four rural catchments in tropical regions that were affected by severe drought disasters during 

the last decade.  Figure 1 gives an overview on the characteristics of the four study regions, each differing 

in size, topography seasonality and level of human intervention. 125 

 

Figure 1. Study regions: river network, discharge stations, major land uses and urban areas of the (A) 
Muriaé, subbasin of the Paraíba do Sul in South Eastern Brazil, (B) the Tempisque basin in North 
Costa Rica, (C) the Upper Magdalena basin in Colombia and (D) the Srepok basin in the Lower 
Mekong shared by Cambodia and Vietnam. 

  130 
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Table 1: Catchment characteristics of the four study regions 

 The Muriaé 
catchment 
(Paraíba do Sul 
River Basin), 
South Eastern 
Brazil 

The Tempisque-
Bebedero 
catchment, Costa 
Rica 

The Upper 
Magdalena basin, 
Colombia 

The Srepok basin, 
Lower Mekong 
(Cambodia and 
Vietnam) 

Size: 7 220 km² 5 455 km² 49 382 km² 30 900 km² 

Elevation: 10 to 2 000 m.a.sl. 0 to 1 916 m.a.sl. 222 to 3 685 m.a.sl. 66 to 2 283 m.a.sl. 

Precipitation:   1 000–2 000 mm. 1 000-3 000 mm. 2 500-3 000 mm 1 569–2 800 mm  

Mean annual 
discharge: 

118 m³/s. 
Tempisque 27 m³/s;  
Bebedero 10 m³/s.  

1 330 m³/s. 
634.2 m3/s. 
(Constable, 2015) 

Total 
population: 

ca. 100 000 
inhabitants 

ca 382 900 
inhabitants.  

ca. 1.5 inhabitants 
ca. 2.9 million 

inhabitants 

Climate: 
(Peel et al., 
2007) 

Tropical savanna 
climate (Aw), dry-
winter humid 
subtropical climate 
(Cwa) and Dry-winter 
subtropical highland 
climate (Cwb).  

Tropical savanna 
climate (Aw).  

Tropical rainforest 
climate (Af), tropical 
monsoon climate 
(Am), oceanic climate 
(Cfb), and tropical 
savanna climate (Aw).  

Tropical savanna 
climate (Aw) and 
tropical monsoon 
climate (Am).  

Major land 
uses: (Arino et 

al., 2012) 

68.3 % pasture, 24.1 
% forest, 7 % 
agriculture and 0.6 % 
urban.  

17 % pasture, 5 % 
forest, 76 % 
agriculture and 2 % 
urban. 

38 % agricultural 
area, 51 % forest, 9 
% pasture and 1 % 
urban areas. 

40 % pasture, 34.5 % 
forest, 24.9 % 
agriculture and 1 % 
urban.  

 

2.2 Data  

Discharge data set: Hydrostreamer 

Available discharge observations data in the study regions (Figure 1) do not allow to display the spatial 135 

variability in hydrological behaviour. We applied a recently developed downscaling tool,  Hydrostreamer 

(Kallio, 2020) to the spatially coarse global discharge data product from the ISIMIP 2a (Gosling et al., 2017) 

experiment. Downscaling is carried out by areal interpolation, where the source runoff data are distributed to 

intersecting higher-resolution catchments, routed downstream, and optimized against observed streamflow 

(see detailed description in Kallio et al., 2019&2020. For the Muriaé catchment, SWAT2012 modelling 140 

(Neitsch et al., 2011) provided 93 simulated discharges used for optimization (Nauditt et al., 2019b). 

We requested available daily discharge observations for the optimization of the Hydrostreamer results. For 

the Muriaé, five daily discharge time series were obtained by the National Water Agency of Brazil (ANA, 
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2019; Nauditt et al., 2019a; Nauditt et al., 2019b). For the Tempisque, data from two discharge stations were 

acquired by the Hydrological Department of the Electricity Institute of Costa Rica ICE (2019) 1980-2003 and 145 

for the period 2003-2018 by the Institute for Aqueducts and Sanitation (AYA, 2019).  For the Upper 

Magdalena, we obtained daily time series from 46 discharge stations from IDEAM (2019) and for the Srepok, 

daily data from three discharge stations (Kallio et al., 2019; Kallio, 2020; MRC, 2018) were acquired. 

Precipitation  

Station data that were used to validate the satellite based precipitation estimates for the Magdalena and the 150 

Muriaé are described in Baez-Villanueva et al. (2018), for the Srepok in Dandridge et al. (2019) and for the 

Tempisque in Venegas-Cordero et al. (2020). We selected the gridded 0.05° x 0.05° resolution daily 

precipitation dataset CHIRPS v2.0 (Funk et al., 2015) for the period 1980-2018 after evaluating different 

satellite based precipitation data sets in a point to pixel analysis (Baez-Villanueva et al., 2018; Dandridge et 

al, 2019) and in hydrological modelling (Nauditt et al., 2019b).  155 

CHIRPS v2.0 showed good goodness-of-fit (GOF) performance in point to pixel evaluation and HBV rainfall 

runoff modelling (Baez-Villanueva et al., 2018; Nauditt et al., 2019b; Venegas-Cordero et al., 2020). 

Additionally, CHIRPS v2.0 covers the longest time period (1981 to date) and has a higher spatial resolution 

compared to other available satellite based precipitation estimates products.   

Vegetation Condition 160 

To understand the spatial variation of drought related vegetation condition, we used MODIS MOD13Q13 

(2000-2017) 16-day composite NDVI imagery at 250 m resolution. We identified the driest month in record 

using the Standardized Precipitation Index (SPI) (McKee et al., 1993) applied to the satellite based 

precipitation raster data set CHIRPS v2.0 (1980-2017) (Nauditt et al., 2019b).  

  165 
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Vulnerability 

We evaluated gridded data sets in terms of their suitability to represent vulnerability and selected the 

following data sets available for all our study regions: 

Table 2: Vulnerability (Exposure) data sets 

Data set Vulnerability Indicator Source 

Gridded Livestock of the World (GLW) livestock density (Robinson et al., 2014) 

Global Agricultural Lands 2000 cropland density (Ramankutty et al., 

2008) 

GHS Population Grid 2015 population density (CIESIN, 1997-2020) 

Major roads 2013 proximity to infrastructure (CIESIN, 1997-2020) 

Global GDP PPP/HDI 2011 GDP (Kummu et al., 2018) 

 170 
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2.3 Drought Risk Assessment 

Figure 2 illustrates the overall methodology applied in this study. We evaluate drought risk as a combination 

of hazard and vulnerability: 

𝒅𝒓𝒊 =  
𝑑ℎ𝑖 + 𝑑𝑣𝑖

2
 (1) 

 175 

Where 𝑑𝑟 represents drought risk, 𝑑ℎ drought hazard, 𝑑𝑣 drought vulnerability and 𝑖 grid cell. 

Hazard (𝑑ℎ𝑖)  is defined by drought in meteorological, hydrological and vegetation condition indices. 

Vulnerability (𝑑𝑣𝑖) is defined as the potential of a drought to cause damages in selected socioeconomic 

sectors using typical exposure information. 

We used two groups of variables (hydro-climatic and socio-economic) and calculated index values for each 180 

grid cell (i) for each variable. All layers were resampled to a spatial resolution of 30 m and equally weighted 

to obtain maps for each index, hazard, vulnerability and risk. Drought risk maps were then produced by 

equally weighting the hazard and vulnerability layers. More details about the methodological process are 

given in sections 2.3.1 and 2.3.2.   
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Figure 2. Overall methodology (for variable and index descriptions see sections 2.3.1 and 2.3.2)  185 

2.3.1 Drought Hazard 

To obtain daily scale hydrological drought signals, we applied the widely used threshold method (e.g. 

Tallaksen, 2000) using a daily varying Q95 threshold (Fleig et al., 2006; WMO, 2008). We selected the period 

1981-2018 that corresponds to the record length of CHIRPS v2.0 data. We defined more or equal than 12 

days below a daily varying Q95 threshold as a long hydrological tropical drought event (ℎℎ𝑙𝑜𝑛𝑔) and 5-11 190 

days below that threshold as a short hydrological tropical drought event (ℎℎ𝑠ℎ𝑜𝑟𝑡). We used pooling to 

remove single days when streamflow went above the threshold by less than 20 %. Resulting short and long 

hydrological drought indices (ℎℎ𝑖) were derived as the cumulative drought duration of events for each grid 

cell. So (ℎℎ𝑠ℎ𝑜𝑟𝑡𝑖
) is the sum of all short-duration (5-11 days) events and (ℎℎ𝑙𝑜𝑛𝑔𝑖

) is the sum of long-duration 

(>=12 days) events. The cumulative duration of detected events was classified into five severity categories 195 

(Sc). More than 75 short drought events during the period of 37 years were classified as the most severe 
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short drought hazard and more than 50 events with more or equal than 12 days below Q95 were considered 

the most severe long drought hazard (Sc 5) (Table 3). 

The meteorological drought index (𝑚ℎ𝑖) evaluates the cumulative drought duration of precipitation drought 

events. To represent long and short meteorological drought events in tropical regions, we defined two classes 200 

of drought intensity for precipitation deficits: >= 20 days with rainfall below 0.3 mm as a long meteorological 

drought: (𝑚ℎ𝑙𝑜𝑛𝑔) and 5-19 days as a short meteorological drought: (𝑚ℎ𝑠ℎ𝑜𝑟𝑡) with rainfall below 0.3 mm. 

The number of detected events were classified into 5 severity categories (Table 3) 

The vegetation condition related drought hazard vc is represented by the vegetation condition in the driest 

month in record. We identified the driest month in record using the SPI. To understand the spatial variation 205 

of vegetation condition, we used the Vegetation Condition Index (VCI) (Dutta et al., 2016; Kogan, 1995; 

Quiring and Ganesh, 2010)  applied to NDVI imagery. The vegetation related drought index (vci) was 

established by inversely rating VCI values for each pixel. In contrast to the hydrological and meteorological 

indices, vci has a negative correlation with drought severity. Values between 50 % and 100 % indicate 

moisture rich vegetation conditions, values between 50 % and 35 % short drought conditions and values 210 

below 35 % long drought conditions (Kogan, 1995). The detailed methodology is described in Nauditt et al., 

2019b. VCI percentage values were classified into five severity categories (Table 3).  

The overall drought hazard (dh) for each grid cell (i) is calculated by the equally weighted severity class (Sc) 

values (Table 3) of each hazard index as:  

 215 

𝒅𝒉𝑖 =
𝑆𝑐(ℎℎ𝑠ℎ𝑜𝑟𝑡𝑖

)+𝑆𝑐(ℎℎ𝑙𝑜𝑛𝑔𝑖
)+𝑆𝑐(𝑚ℎ𝑆ℎ𝑜𝑟𝑡𝑖

)+𝑆𝑐(𝑚ℎ𝑙𝑜𝑛𝑔 𝑖
)+𝑆𝑐(𝑣𝑐𝑖)

5
     (2) 

 

Where dh is the drought hazard, i the location (grid cell) and Sc the severity class. ℎℎ𝑠ℎ𝑜𝑟𝑡𝑖
 represents the 

cumulative duration of short hydrological drought events based on number of events, ℎℎ𝑙𝑜𝑛𝑔𝑖
 the cumulative 

duration of long hydrological drought events, 𝑚ℎ𝑠ℎ𝑜𝑟𝑡𝑖
 the cumulative duration of short meteorological drought 220 

events, 𝑚ℎ𝑙𝑜𝑛𝑔𝑖
the cumulative duration of long hydrological drought events and 𝑣𝑐𝑖 the vegetation condition 

related hazard (Table 3).  
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Table 3 Hazard indices, their severity classification and allocation to five severity classes (Sc): 

Drought 
Hazard Index 

 

𝒉𝒉𝒔𝒉𝒐𝒓𝒕𝒊
 𝒉𝒉𝒍𝒐𝒏𝒈𝒊

 𝒎𝒉𝒔𝒉𝒐𝒓𝒕𝒊
 𝒎𝒉𝒍𝒐𝒏𝒈𝒊

 𝒗𝒄𝒊 

Number of 
drought events 
with 5-11 days 
below Q95 daily 
variable 
threshold 

Number of 
drought events 
with >=12 days 
below Q95 daily 
variable 
threshold 

Number of 
drought events 
with   
5-19 days below 
0.3 mm of 
precipitation 

Number of 
drought events 
with   
>=20 days below 
0.3 mm of 
precipitation 

Vegetation 
Condition Index 
(VCI) value (%) 
for the driest 
month in records 
(SPI12) 

Severity class 
(Sc) 

Classification 

1 0-30 0-25 0-30 0-25 > 50 

2 30–45 25–32 30–45 25–32 40-50 

3 45–60 32–40 45–60 32–40 30-40 

4 60–75 40–50 60-75 40–50 20-30 

5 > 75 > 50 > 75 > 50 0-20 

      

 225 

2.3.2 Drought Vulnerability 

We used open access gridded datasets for five socioeconomic exposure related variables to represent 

spatial drought vulnerability in the four study regions. All datasets were resampled using the nearest neighbor 

method to account for differences in grid cell resolution. Each data set was reclassified and given a rating 

based on positive or negative correlation to vulnerability. The overall drought vulnerability dv for each grid 230 

cell i is calculated by the equally weighted severity class Sc values (Table 4) of each vulnerability index as:  

 

𝒅𝒗𝑖 =
𝑆𝑐(𝑙𝑖) + 𝑆𝑐(𝑐𝑖) + 𝑆𝑐(𝑝𝑖) + 𝑆𝑐(𝑖𝑖) + 𝑆𝑐(𝐺𝐷𝑃𝑖)

5
 (3) 

 

Where 𝒅𝒗𝑖 is overall drought vulnerability per grid cell, Sc the severity class, li the livestock density index, ci 

the crop density index, pi the population density index, ii the index for proximity to infrastructure and GDPi 235 

the GDP index per grid cell. Table 4 gives an overview on the severity classification for each index.  
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Table 4 Vulnerability indices, classification and severity classes 

Vulnerability 
index 

 
 

li 
Livestock 

density (head 
per km2) 

ci 

Cropland (% 
area) 

pi 

Population 
Density 

(persons/grid 
cell) 

ii 
Proximity to 

Infrastructure (m) 

GDPi 

(Million USD 
PPP  

per km²) for 
reference year 

2011 

Severity class Classification 

1 0-15 0-0.1 0-50 0-100 >20 

2 15-30 0.1-0.2 50-100 100-250 5-20 

3 30-40 0.2-0.3 100-250 250-500 2-5 

4 40-50 0.3-0.4 250-500 500-1000 1-2 

5 >50 >0.4 >500 > 1000 0-1 

Correlation positive positive positive positive negative 

3 Results  

3.1 Drought hazard (dhi), vulnerability (dvi) and risk (dri) in the four study regions 240 

Figure 3 gives an overview on spatial coverage (% of grid cells) of drought hazard, vulnerability and risk in 

the four study regions. Due to the equal weighting of the individual hazard and vulnerability severity values, 

the percentages of basin area in the severity classes 1 and 5 are small. Therefore, Sc 4 can be considered 

as most severe and Sc 2 as least severe.  

For the Muriaé, results suggest severe vulnerability (dvi) in most of the area with 73.1 % in Sc 4 and 26.2 % 245 

in Sc 3. Hazard (dh) was found in Sc 3 with 57.4 % and Sc 2 with 24.4 % of the Muriaé basin. The Tempisque 

showed hazard (dh) with 25.7 % of the area in Sc 4, 0.7 % in Sc 5 and 56.5 % in Sc 3, while percentage of 

area exposed to drought vulnerability (dv) is largest in Sc 3 with 81.8 % and 14.2 % in Sc 2. Upper 

Magdalena shows vulnerability (dv) with 43.1 % in Sc 4 and 55 % in Sc 3. Results identify hazard (dh) with 

most values in Sc 2 with 52 % and 41.3 % in Sc 3.  Finally, for the Srepok, higher hazard (dh) was found 250 

compared to dv, with 38.5 % in Sc 4 and 54 % in Sc 3 of its basin area, while vulnerability is highest in Sc 3 

with 87.4 % and 8.9 % in Sc 2 (Figure 3). 
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Figure 3 Severity class (Sc) distribution per percentage of area for drought hazard (dh), 255 

vulnerability (dv) and risk (dr) in the four study regions  
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Figure 4 shows balloon plots indicating the percentage of the basin area covered by the severity classes 1-

5 for each drought index. All study regions show a high vulnerability related to low GDP (Sc 5) and a low 

vulnerability (Sc 1) related to population density (pi).  

For the Muriaé, highest severity was found for livestock (li) (with 78 % in Sc 5) and crop density (ci) (33.2 % 260 

in Sc 5 and 31.1 % in Sc 4) as well as for proximity to infrastructure (ii) (43.5 % in Sc 5 and 25.7 % in Sc 4). 

The remaining indices showed a nearly homogenous distribution across the severity classes.  

For the Tempisque, results show highest values for short hydrological drought hazard (𝒉𝒉𝒔𝒉𝒐𝒓𝒕𝒊
) with 42 % 

of its area in Sc 4 and 10,5 % in Sc 5, for 𝒎𝒉𝒔𝒉𝒐𝒓𝒕𝒊
 with 33 % of its area in Sc 4 and 26 % in Sc 5 and for 

𝒉𝒉𝒍𝒐𝒏𝒈𝒊
 with 23 % of its area in Sc 5. Lower values were shown for the vulnerability indices li with 25.1 % of 265 

area in Sc 4 and 19.1 % in Sc 5 and ci (44.2 % of area in Sc 4 and 17 % in Sc 5) (Figure 4). 
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Figure 4 Index values distributed to percentage of catchment area in the four study regions  
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For the Upper Magdalena, highest severity was found for vulnerability indices crop density (ci) (55.6 % in 

Sc 5 and 18.1 in Sc 4), livestock density (li) (21.4% in Sc 5 and 16.7 % in Sc 4) and proximity to infrastructure 270 

(36.2 % in Sc 5 and 24.8 % in Sc 4). Lower values for hazard were found for 𝑚ℎ𝑠ℎ𝑜𝑟𝑡𝑖
 with 37 % in Sc 3 and 

35.8 % in Sc 4, for 𝑚ℎ𝑙𝑜𝑛𝑔𝑖
  (11. 6 % in Sc 5 and 39.2 % in Sc 4) and very low values for ℎℎ𝑙𝑜𝑛𝑔𝑖

  (73.9 % in 

Sc 1 and 15.4 % in Sc 2) and ℎℎ𝑠ℎ𝑜𝑟𝑡𝑖
 (71.8 % in Sc 1 and 17.2 % in Sc 2).  

For the Srepok, results show highest values for vegetation condition related condition hazard 𝑣𝑐𝑖 (46.4 % in 

Sc 5 and 15.9 % in Sc 4), followed by 𝑚ℎ𝑙𝑜𝑛𝑔𝑖
  (50.1 % in Sc 4 and 5.8 % in Sc 4). The other hazard indices 275 

resulted in values distributed across the Scs. Highest vulnerability was found for proximity to infrastructure 

(ii) with 51.5 % in Sc 5 and 20.6 % in Sc 4. The remaining vulnerability indices showed low values as for 

livestock density (li) 88.2 % in Sc 1 and for crop density (ci) 75.4 % in Sc 3.  

3.2 Spatial distribution of drought hazard (dhi) in the four study regions  

Figure 5 illustrates the weighted drought hazard based on the meteorological, hydrological and vegetation 280 

condition-based indices for each grid cell in the four study regions. Red corresponds to Sc 5 and green to Sc 

1. For the Muriaé, drought hazard was found to be highest in the Southwestern downstream part due to the 

larger share of Sc values for ℎℎ𝑠ℎ𝑜𝑟𝑡𝑖, 𝑚ℎ𝑙𝑜𝑛𝑔 𝑖
and 𝑣𝑐𝑖 (see individual maps in the supplementary material). 

For the Tempisque basin, drought hazard was found to be highest in the downstream part in the North over 

the river estuary and for the Eastern part along the main Tempisque River stretches and the Bebedero 285 

tributary upstream (Figure 5). Duration of periods without rainfall and resulting vegetation moisture loss were 

stronger in the Eastern part of the basin.  

For the Southwestern upstream area of the Upper Magdalena basin in Colombia, the results show strongest 

hazard values in the Southeastern upstream part where most meteorological drought periods and also 

vegetation related anomalies were detected and along the main Magdalena river due to hydrological 290 

droughts. For the Srepok basin, the strongest hazard values were observed in the Southeastern upstream 

region over the Vietnamese highlands and the Cambodian North and Northwestern downstream region due 

to high vegetation condition hazard vi and hh long (Figure 5). Detailed results for each layer are given in the 

supplementary materials. 

 295 
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Figure 5 Spatially distributed drought hazard (dh) severity classes found in the four study regions  
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3.3 Spatial distribution of drought vulnerability  

Figure 6 shows the spatial distribution of drought vulnerability in the four study regions. For the Muriaé, the 

data evaluation suggests a strong vulnerability all over the region due to high cropland and livestock density, 

low GDP of the rural population and long distances to infrastructure - except along the major roads where 300 

the indicators for crop density and proximity to infrastructure show low values. Results for the Tempisque 

show a high vulnerability almost all over the place as cropland and livestock pasture is strongly developed. 

Only the protected areas in the forested Northwestern and Central regions show lower vulnerability values. 

Similarly, for the Upper Magdalena drought vulnerability was found almost everywhere, despite the 

Southwest, where protected areas are located. In the Srepok, less vulnerability seveirity was found, with 305 

main regions located in the Vietnamese Southeastern upstream part, the Northeaster Cam bodian part and 

the Northwestern downstream area (Figure 6). Detailed results for each layer are presented in the 

supplementary materials. 
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Figure 6 Spatial distribution of drought vulnerability (dv) severity classes in the four study regions 310 
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3.4 Drought risk 

Figure 7 illustrates the spatial distribution of drought risk (dr) in the four study regions based on equally 
weighted hazard and vulnerability severity values.

 

Figure 7 Spatial distribution of drought risk (dr) severity classes in the four study regions 
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In all study regions, results show a considerable share of area with drought risk hotspots (with colours from 

orange to red). While in the Muriaé, highest risk was observed in the meteorologically drier downstream part; 

the Tempisque showed the strongest risk in the central-eastern and estuary region, where both hazard and 315 

vulnerability values were found to be severe (see individual maps in supplementary materials). For the Upper 

Magdalena, severe drought risk was found in the central Magdalena valley from up- to downstream 

(Northeast) and in the meteorologically dry Southeastern upstream part.  

The Srepok showed severe risk in the Southeastern Vietnamese upstream region and in the Northern and 

Eastern central region of Cambodia.   320 

4  Discussion 

4.1 Hazard (dh), vulnerability (dv) and drought risk (dr) in the four study regions - plausibility of 
identified drought risk hotspots  

For the Muriaé, plausible results were obtained for the location of drought risk hotspots as well as for the 

spatial distribution of severe drought hazard and vulnerability. Risk hotspots were found in the downstream 325 

area where most economic activities take place and precipitation rates are lower compared to those at higher 

elevations (CEIVAP, 2015; Nauditt et al., 2019b), along with a higher hydrological hazard also due to 

fractured geological and alluvial characteristics. Vulnerability is high all over the basin due to intensive 

livestock grazing and agricultural production as well as low GDP and large distances to road infrastructure. 

These spatial characteristics for drought hazard, vulnerability and risk were confirmed by collaborating 330 

stakeholders of the river basin committee CEIVAP (Comitê de Integração da Bacia Hidrográfica do Rio 

Paraíba do Sul) and the executive river basin agency AGEVAP (Agência da Bacia do Rio Paraíba do Sul). 

Additionally, results coincide with field research, modelling and data analysis related to spatial variability of 

drought occurrence and impacts of involved and affiliated scientists (Nauditt et al., 2019a).  

 335 

Also the locations of drought risk hotspots in the Tempisque were well defined by the analysis. Hotspots 

were found in the Northwestern downstream part in the river estuary and in the Southeastern part along the 

main river stretches and the Bebedero tributary upstream. These regions show high values for both, hazard 

and vulnerability. Hazard is high due to human abstractions along the streams and irrigated areas and due 

to longer periods without rainfall and resulting vegetation moisture loss in the Eastern part of the basin. Risk 340 

hotspots (Figure 7) are found where this hazard is combined with highest vulnerability due to highest crop 

and livestock density.  Lower dr values were found in the Northeast, where vulnerability is low in larger 
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National Parks. The results are in agreement with information of the Water Agency of Costa Rica DA 

(Dirección de Agua de Costa Rica) and the team of the PIAAG Program (Programa Integral de 

Abastecimiento de Agua para Guanacaste – Pacífico Norte) that aims at securing the water supply to the 345 

Tempisque Bebedero region (Dirección de Agua, 2018). These findings are supported by comprehensive 

(field) research in the drought prone study region on topics related to meteorological and hydrological 

droughts, water scarcity and vegetation susceptibility to droughts (Muñoz Jiménez et al., 2019).  

For the Upper Magdalena Basin in Colombia, drought risk hotspots were found in the Northeastern 

downstream part, all over the Magdalena valley and in the Southwestern upstream area (Figure 7). While 350 

agricultural activities and related water abstractions increase both vulnerability and hydrological hazard in 

the central valley, the risk hotspots in the upstream can be explained by strong meteorological hazard in the 

Southwest, which is drier and where most meteorological drought periods and vegetation related anomalies 

were detected. Hydrological droughts in the main stream are most probably aggravated by hydropower 

operation and abstractions for rice irrigation (Vega-Viviescas and Rodriguez, 2019). However, in total terms, 355 

the Upper Magdalena shows low total hazard per percentage of area with most values in Severity Class 2 

(52 %). This can be explained mainly by the few grid cells affected by strong hydrological hazard along the 

major streams of the Magdalena. Vulnerability in the Magdalena was found to be more relevant compared 

to hazard with 43.1 % in Sc 4 and 55 % in Sc 3. This coincides with the spatial distribution of main areas of 

crop, livestock and population density in the Magdalena valleys and lower lying areas, as confirmed by 360 

scientists at Universidad Nacional de Colombia with vast research experience in the study region as well as 

by stakeholders as the Colombian Agency for Hydrology and Meteorology IDEAM and the Magdalena Basin 

Agency Cormagdalena. 

 

Drought risk hotspots were also well detected in the Srepok basin, with main locations observed in the 365 

Southeastern upstream region over the Vietnamese highlands and the Cambodian North and Northwestern 

downstream region. High risk values depended mainly on high vegetation condition hazard (vi) and 

hydrological hazard hhshort and hhlong that is dominating in the upstream area where reservoirs are located 

and along the downstream rivers, from where abstractions are used for irrigated rice in Cambodia (Bui Du, 

2018; Constable, 2015). Vulnerability is lower compared to the other study regions, as approximately 50 % 370 

of the basin is covered with forest and due to the absence of livestock. Higher values for dv are only found 

in the Northwestern region, where agricultural land in Vietnam is cultivated with cash crops, mainly coffee 

(DaLat), rubber, cashew, black pepper and fruit trees for domestic and export markets (CCAFS-SEA). 

Results were confirmed by scientist of Aalto University with years of research experience in the region, as 
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well as by collaborating institutions (Ministry of Environment of Vietnam, MONRE and Water Management 375 

Institute NAWAPI).   

4.2 Drought hazard assessment 

In the Muriaé, severe hydrological hazard ℎℎ𝑠ℎ𝑜𝑟𝑡𝑖
 was found in the Northeastern agricultural upstream area, 

along the streams and at the river basin outlet with 20 % in Sc 5 and another 20% in Sc 4.  During the long-

term drought in 2014-2015, the river stretch near the catchment outlet station fell dry (Nauditt et al., 2019b; 380 

Ribbe et al., 2018), with impacts on aquatic and riparian ecosystems and water users. This event was 

aggravated due to the fractured geological and alluvial characteristics of the downstream river bed (Nauditt 

et al., 2019b). Cumulative duration of ℎℎ𝑙𝑜𝑛𝑔𝑖
 with 12 or more days however, was only present in 14.1 % of 

area in Sc 4 and 1.8 % in Sc 5 at the aforementioned basin outlet.  The Northeastern agricultural upstream 

area in Minas Gerais State is prone to ℎℎ𝑠ℎ𝑜𝑟𝑡𝑖
, most probably due to smaller catchment areas and fast 385 

response to rainfall deficits.  

Hydrostreamer provided excellent spatially distributed discharge simulations for the Muriaé catchment, as 

validated by station data and SWAT2012 modelling results for 93 stations; very valuable for drought and 

water resources management and planning. In the Southwestern downstream part severe meteorlogical 

hazard (Sc 5) was found for 𝑚ℎ𝑠ℎ𝑜𝑟𝑡𝑖
, 𝑚ℎ𝑙𝑜𝑛𝑔 𝑖

 for most grid cells. Low values were found for the upstream 390 

region (Sc1 for most grid cells). 𝑣𝑐𝑖 is following this spatial pattern with low hazard in the upstream and 

hazardous vegetation condition in the downstream area.  This shows that not only the magnitude of rainfall 

in the mountainous upstream region (2000 m maximum elevation) was greater (Künne et al., 2018) compared 

to the drier downstream catchment, but also many less events with consecutive days without rainfall 

(𝑚ℎ𝑠ℎ𝑜𝑟𝑡𝑖
 and 𝑚ℎ𝑙𝑜𝑛𝑔𝑖

) occurred in the period between 1981 and 2018 (see individual index maps in the 395 

supplementary materials). Both regions are extremely vulnerable to meteorological droughts: while in the 

upstream part in Minas Gerais rainfed horticulture is dominating, downstream, in Italva, Rio de Janeiro State, 

livestock and milk production is the main economic activity (Fischer et al., 2018).   

 

Hydrological drought hazard was found to be most severe along the upper streams of the Tempisque from 400 

which irrigation water is abstracted. This shows that our approach to assess hydrological hazard with a daily 

varying threshold is also suitable for anthropogenically intervened catchments, where human abstractions 

are leading to discharge anomalies – most probably increasing as a response to a meteorological drought. 

23.1 % of the basin area experienced more than 40 long drought events that lasted longer than 12 days (Q95 
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of daily varying discharge and below) and 10.5 % of its area was affected by 60 moderate drought events in 405 

the time period between 1918 and 2018. This shows the extreme low flows (down to 2.6 m³/s at Guardia 

station) the drought prone region is facing. A drought threshold of Q95 can therefore be considered as too 

low for a stream with a mean annual discharge of 27 m³/s in the case of the Guardia Station. 

Strong spatial variation in meteorological drought hazard was found for 𝑚ℎ𝑠ℎ𝑜𝑟𝑡𝑖
 and 𝑚ℎ𝑙𝑜𝑛𝑔 𝑖

, with high values 

(Sc 5) covering the Eastern part of the basin (Bebedero subcatchment) and values of Sc 1-2 dominating the 410 

Western region (Tempisque). 𝑣𝑐𝑖, in contrast, is homogenously distributed all over the basin, probably as the 

NDVI image was taken during a dry anomaly (SPI 12) of a dry season. Although both total annual and dry 

season rainfall (December-May) accounts for similar monthly precipitation values in both regions 

(Bocanegra, 2017), results of our study show a much larger number of both short and long meteorological 

drought events in the Eastern Bebedero subcatchment compared to the Tempisque (see individual index 415 

maps in the supplementary materials). 

In the Upper Magdalena only few grid-cell values for long and short hydrological hazard were identified 

along the major streams of the Magdalena. Hydrological droughts in the main streams are most probably 

aggravated by hydropower operation and abstractions for rice irrigation (Vega-Viviescas and Rodriguez, 

2019). However, in total terms, the Upper Magdalena shows low hydrological hazard per percentage of area 420 

with most values in Severity Class 2 (52%). This might be due to data uncertainties in the hydrostreamer 

dataset and the underlying observed discharge data (Rodríguez et al., 2020). Hydrostreamer yielded in 

poorer performance compared to the other three study regions. 

The Southwestern upstream region showed strongest meteorlogical hazard (Sc 5) for 𝑚ℎ𝑠ℎ𝑜𝑟𝑡𝑖
 and 𝑚ℎ𝑙𝑜𝑛𝑔𝑖

 

followed by the Northeastern downstream part and similar spatial patterns for vci. The Southwestern 425 

upstream region is exposed to a more marked tropical seasonality with two wet periods (April and May and 

October and November) and two long dry periods (June to October and November to April) (Rodríguez et 

al., 2020) while the lower part of the Magdalena receives more precipitation and is not exposed to such a 

marked seasonality.  

 430 

For the Srepok basin, hydrological drought hazard for both hhlong and hhshort was found to be most severe in 

the Vietnamese Southern upstream region in the Vietnamese highlands due to discharge alterations through 

hydropower operation, as well as in the Cambodian North-Central and Northwestern downstream region due 

to abstractions from agricultural activities.  
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Good results for Hydrostreamer downscaling results were obtained for the Srepok, being a study region of 435 

Kallio et al. (2019 & 2020), providing a valuable discharge data set for water resources modelling, 

management and planning in the transboundary basin and the Mekong region.  

Meteorological hazard was strong with 55.9 % in Scs 4 and 5 for 𝑚ℎ𝑙𝑜𝑛𝑔 𝑖
, with all grid cells located in the 

Vietnamese Southeastern upstream part. 𝑚ℎ𝑠ℎ𝑜𝑟𝑡𝑖
 was only detected in Scs 1-3,  indicating that periods 

without rainfall of shorter duration during the wet period were less frequent.  𝑣𝑐𝑖, in contrast, is homogenously 440 

distributed all over the basin.  

4.3 Vulnerability assessment 

We applied open access gridded data sets to evaluate their suitability to provide drought vulnerability or 

exposure information for all of the four study regions. For all study regions, our indicator population density 

(pi) showed few grid cells with severity values higher then Sc 1 (classified as less than 50 persons per 1 km² 445 

grid cell). This suggests that the classification we chose (Table 4), assuming that >50 persons would 

represent small settlements and agricultural communities in rural regions, might not be adequate. The 

number of persons per km² classified as vulnerable could be lower to also detect remote farmers. In contrast, 

low GDP in rural areas showed strongest severity (Sc 5 = < 1 million USD PPP per km² for the reference 

year 2011) for almost all grid cells in all study regions, outweighing the low pi values. We used this 450 

classification assuming a low GDP for rural agricultural regions; however, our results suggest that higher 

classification values for Sc 1 and Sc 2 in order to display differences in GDP. In most risk studies, several 

exposure and vulnerability indicators are aggregated, regionally masked  (Naumann et al., 2014, Carrão et 

al., 2016; Hagenlocher et al., 2019) to show overall vulnerability. Reference values for indicator classification 

– at least to our knowledge -- are not available in literature. Generally speaking, a more detailed evaluation 455 

of gridded socioeconomic data in terms of risk indicator classification, e.g. for tropical agricultural regions 

resulting in reference values would be a valuable contribution to future comparative risk studies.    

To evaluate drought exposure and vulnerability of agricultural activities, we tested the data set “Global 

Agricultural Lands in the Year 2000”. The resulting crop density evaluation, similarly as population density, 

is mostly distinguishing between grid cells with agriculture and no agricultural use, therefore a low 460 

classification values were used (Table 4) resulting in a good representation of agricultural exposure in the 

four study regions, as confirmed by affiliated scientists and stakeholders.  More detailed local information on 

crop types, eg. distinguishing between perennial crash crops and annuals, irrigated or non-irrigated 

agriculture, could further detail such site-specific exposure information. Similarly for Livestock density related 

vulnerability, we used a low number of animals grazing per grid cell to determine the low Scs (Table 4). 465 
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Proximity to Infrastructure served as a good proxy for the stage of development of a location. Although 

drought vulnerability and exposure largely depends on storage infrastructure or irrigation systems, there are 

no available data sets for the regions addressed in this study. FAO AQUASTAT, for example, provides such 

data for Africa but not for Latin America and South East Asia. Despite these shortcomings, our overall drought 

vulnerability index dvi showed good results for aggregated vulnerability. The Muriaé had most grid cells in 470 

high severity classes (73.1 % in Sc 4) due to its prevailing sectors milk production and agriculture as well as 

its sparse road infrastructure. For the Tempisque, we found fewer – but well distinguished and located -- grid 

cells in Sc 4 (81.8 % in Sc 3); because of the existence of large National Parks in the Northeastern part, less 

cattle grazing and its well-developed road network. The Upper Magdalena, (with 43.1 % in Sc4) showed high 

dvi values in the downstream part mainly due to crop density and infrastructure. Only for the Srepok, less dvi 475 

was found. This can be attributed to little livestock and crop density and larger forested areas compared to 

the other study regions. dvi was mainly found for the cultivated areas along the streams as in Vietnam 

(upstream Southeast), irrigated rice areas in the Cambodian Northeast, and in the downstream Northwest.  

5 Conclusion  

Droughts are causing severe damages to water abundant tropical countries worldwide. The implementation 480 

of drought adaptation measures at the local scale need to be based on reliable information about spatially 

distributed drought risk -- that is rarely available in data scarce tropical catchments. We propose a 

methodology for evaluating and mapping the distribution of drought risk for rural tropical regions, based on 

the combination of independent indicators of daily data based drought hazard and drought vulnerability.  

We evaluated freely available gridded datasets regarding their suitability to assess drought hazard, 485 

vulnerability and risk in four differing rural tropical study regions, the Muriaé river basin in South East Brazil, 

the Tempisque basin in Costa Rica, the upper catchment of the Magdalena river Basin, Colombia and the 

Srepok basin in Cambodia/Vietnam. We used daily scale meteorological and hydrological gridded data 

products and indices to evaluate tropical drought hazard, next to vegetation response to long term droughts, 

as well as vulnerability data related to the major sectors population, agriculture, livestock, infrastructure and 490 

GDP that were available for Latin America and South East Asia. Results showed plausible spatial distribution 

of hazard, vulnerability and risk in the four study regions, as confirmed by local stakeholders, field surveys 

as well as through research of the authors. The following outcomes can be highlighted:  

- The hydrological drought index hhi, based on daily time series and a daily varying threshold Q95, was 

able to detect hydrological drought hazard in both, pristine and regulated streams, representing both 495 

climate and human induced hydrological drought. 
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- The meteorological drought index mhi, based on daily precipitation data and periods of zero rainfall 

turned out to be suitable for tropical regions as shown by local impacts especially on livestock and rainfed 

agricultural production;  

- The subindices 𝑚ℎ𝑠ℎ𝑜𝑟𝑡𝑖
 and 𝑚ℎ𝑙𝑜𝑛𝑔𝑖

 and ℎℎ𝑠ℎ𝑜𝑟𝑡𝑖
 and ℎℎ𝑙𝑜𝑛𝑔𝑖

 give insights in the historical frequency of 500 

long and short drought events, independent of general seasonal patterns. 

- In combination with the above-described findings, the vegetation anomaly response (NDVI/VCI) to long 

term drought periods (SPI 12) reveals further vegetation, soil and groundwater related hazard, relevant 

for eg. forest fire related hazard.  

- In light of the data scarcity in many tropical regions, the vulnerability related data sets and indicators 505 

related to crop and livestock density as well proximity to infrastructure have an adequate spatial 

resolution to provide vulnerability information at the local scale.   

- The individual hazard and vulnerability indicator results give insights on how the classifications can be 

further adapted to individual study regions, depending on climate, topography, seasonality and human 

influence.  510 

- Drought hazard, vulnerability and risk maps and individual indicator maps provide decision support when 

selecting and designing drought adaptation measures to avoid future drought impacts.   

These findings were discussed with representatives of local universities and public institutions working in the 

study regions, by looking at each indicator and combined hazard, vulnerability and risk. We recommend the 

replication of the approach in other tropical regions by using the developed R scripts. A further step will be 515 

to make the Tropical Drought Risk Assessment R-Package available on CRAN.  

Potential modifications to adapt or further develop our approaches are described below. These depend on 

the location of the study region, basin size, data availability, hydro-climatic seasonality and major 

socioeconomic uses. Individual indices can be adapted by changing the severity classification (e.g. by 

increasing or reducing the duration of short and long droughts) or by introducing data sets that are not (yet) 520 

available for the regions addressed in this study. Furthermore, locally defined ecological flow and water 

demand thresholds could feed into a re-definition of local hydrological drought hazard indices. In addition, 

drought risk scenarios can be developed, helpful to detect potential changes in future drought risk. These 

could be based on hydro-climatic projections, indicating longer drought periods, or a changing vulnerability 

based on socioeconomic projections.  525 

However, in its current composition and design, our approach delivers a plausible representation of spatially 

distributed drought hazard, vulnerability and risk hotspots in data scarce and rural tropical regions. It offers 

a holistic, science based and novel solution to generate local drought risk knowledge that can feed into future 
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drought related research. The outcomes produced are a valuable source of information for regional planners 

and water managers that take decisions on infrastructural and drought adaptation measures.  530 

6 Code availability  

R package is under preparation to be published on GitHub and possibly in Cran, in the meanwhile please 

contact the corresponding author. 
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