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Reply to Reviewer 1 

We thank the reviewer for the positive comments and the time and effort taken to review this paper. 

We apologise for our delayed response as we were awaiting a second review to ensure that our 

response and corrections are aligned, and thank both the reviewer and editor for their patience. The 

following are our response to the reviewer’s specific comments. 

L167: Although the structures are categorised based on industries, it is relevant to mention the 
structure/building characteristics (steel, concrete, reinforced, components, heights, shapes, etc) 
specific to each industry in this study. The reviewer feels that the structure/building type in each 
industry is not clearly described, especially the structural components and physical features that 
help to sustain the tsunami impact. The common structural/physical features of structures in a 
specific industry should be assessed as in lines 374-387. 
 
Thank you for the highly relevant comment. We recognise and agree with the reviewer that the 
structural components and physical features determine the vulnerability of the industry to tsunami 
impacts. We have included in Table 2, some of the common infrastructure that can be found in each 
of these industries, as well as a brief description of common physical assets and construction types 
as per Lines 168-175 in the corrected manuscript. We hope our revision is satisfactory for the 
reviewer. 
 
Corrected manuscript: 
[Line 168-175] Buildings in port industries commonly include administrative offices, control and 
maintenance buildings, warehouses and cold storage. Industrial buildings are typically of steel or 
concrete construction. On the other hand, the types of port infrastructure are diverse - ranging from 
small transformers to large loading cranes. Some common infrastructure found in each industry are 
listed in Table 2, adapted from the descriptions provided by the AIR Construction and Occupancy 
Class Codes (AIR Worldwide, 2019). Because of their diversity, port infrastructure vary widely in 
their construction and unlike buildings, it is extremely challenging to classify them according to their 
construction nature. It is interesting to note, however, that several industrial infrastructure are 
installed in support structures or housed in buildings. In the petrochemical industry, for example, 
oil and gas are commonly stored in steel or concrete silos and tanks.  
 
Refer to Table 2 in Line 178. 
  

L175: Since this study uses the maximum inundation depth as the intensity measure, is there any 
evidence in the literature showing the link between damage to structures and the maximum 
inundation depth? 
 
We thank you for the opportunity to consider this question. There has not been a consensus on 
which parameters or rather tsunami intensity measure (TIM) provides the best explanation for 
damage. There are a number of papers in literature that have evaluated the relative influence of 
different parameters on building damage (e.g. Macabuag et al., 2016; Song et al., 2017). We are 
aware that damage to structures are attributed to a combination of many factors and not just 
inundation depth alone. 
 
Maximum inundation depths are one of the common measures of tsunami damage in literature 
(e.g. Leone et al., 2011; Suppasri et al., 2013) as they are more easily estimated from field survey 
after tsunami events as compared to simulated flow values, as pointed out in Line 175-177 [Lines 
184 – 186 in corrected manuscript]. For those reasons, we have therefore chosen to work with 
maximum inundation depths. In this manuscript, our main intention is to create a damage database 
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with primary data. We welcome future users of the damage database to expand beyond using 
inundation depth as a measure of damage. 
 
Should the reviewer’s main concern be on using maximum values, we acknowledge the possibility 
of damage occurring before inundation reaches maximum depth. This was also addressed in 
Suppasri et al. (2019), where they found that the critical value for damage may not be at maximum 
inundation depths or velocities. We are currently working on a second paper which follows up on 
the present work, where we evaluate the use of non-maximum inundation values of depth and 
velocity to explain the damage observed. 
 

L279: The distribution skewed towards the left or right? 
 
Thank you for the question. We have clarified this in the text [Line 288 in the corrected manuscript]: 
distribution skewed towards the right (i.e. with a long right tail and a mean to the right of the mode).  
 

L286: Possible reasons for the outliers? 
 
The outliers here refer to the inundation depths. The damage data (and hence inundation depths) 
were collected across different ports in the Tohoku region and therefore, the most plausible 
explanation for the outliers is that the areas covered in our dataset did not cover the missing depth 
range. We have removed the description on outliers in Fig.5 caption to avoid the confusion for 
readers (also pointed out by Reviewer 2), because it has little relevance to the rest of the 
manuscript.  
 
Corrected manuscript: 
[Line 293] Fig. 5. Histograms of each damage state. Distribution of damage data indicates non-
normality and DS 1 accounts for the majority of the dataset. Outliers exist in DS 3 and 4, with no 
damage states recorded for inundation values between 6 to 7.4 metres. Outliers are not removed 
from the model, as they are legitimate observations and possible outcomes. 
 

 

We hope that our responses clarify your concerns. We thank you again for your suggestions and for 

taking the time to review this manuscript. We are happy to address any other questions that you 

might have. 
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Reply to Reviewer 2 

We thank the reviewer for the very encouraging comments, and we appreciate the time and effort 

spent on providing us with a rigorous review. The insights provided were highly beneficial for 

improving the quality of this manuscript. Please find our responses and corrections to your 

suggestions below. 

It is not mentioned whether tsunami damage by debris or others has been filtered or identified. 
This issue is particularly present at port facilities, where ships, containers, trucks and other 
materials relevant to port industries can impact structures. I have heard of work related that has 
attempted to quantify its impact (by Kentaro Kumagai, for instance). 
 
The reason I mention this is that it could explain some of the features present in data. For 
instance, in Fig. 5 it is remarkable that DS4 levels can be attained by very small water depths, 
whilst no DS3 or DS2 states are present. This defies the "ordered" notion of damage that is the 
basis for the analysis. 
 
Its clarification can also help in explaining some of the later results. The authors point in the 
paragraph L397-L409 to two main causes for the results: A design oriented to higher standards, 
that could help in explaining low damage at larger depths; and/or that there is a decorrelation 
with inundation depth. This is understood that damage is less dependent on water depth alone 
(at least it is implied in the text. The closing sentence leaves many doors opened and it is 
inconclusive), though it can be as well interpreted in the opposite way. 
 
Interestingly, incorporating debris can also help in clarifying some of the other features in the 
data. For example: the authors analyze the variability or accuracy of their results. Typically, they 
observe that some industries have less data and that is the reason for the low accuracy (smaller 
data size, which is mentioned once or twice in the text). However, in reviewing the data, it looks 
to me that the industries with less accuracy are characterized by a narrow range of depths (for 
instance, Warehousing does not exceed 6.0m) whilst having a somewhat uniform distribution of 
damages. That is, the frequency count of DS1 to DS4 is relatively uniform. So, more damage can 
be found for a narrow range of small depths. The authors note this explicitly in Line 466, but they 
chose to use other explanation routes. To me, this also points to the decoupling of damage and 
flow depth, and could point to other sources of damage that have not been accounted for. 
 
I would recommend the authors to expand a little bit on this regard, and explore its potential 
effect on their analysis. I think it is a relevant caveat of these studies, because what we see is the 
end result, and the chain of events that lead to the damage is often absent. It is quite the leap of 
faith to assume that this is only due to the tsunami hydrodynamics alone, and even from them, 
just to the water depth. 
 
We thank the reviewer for bringing up an important point and providing insightful comments. 
Unfortunately, through our visual interpretation of spatial sources (such as Google StreetView), we 
did not assess and found it challenging to identify debris impact at a building level. However, we do 
agree with the reviewer and acknowledge that debris impact is a potential (and alternative) cause 
of some of the damage observed. We have looked into available work on the topic and included 
some of our interpretation in this regard in our revised manuscript. 
 
Corrected manuscript: 
[Lines 397 –411] Other factors such as debris impact and proximity of the structure to the shoreline 
should not be discounted when considering differences in the response of each industry to tsunami 
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impacts. Tsunami-borne debris can contribute significantly to structural damage. This issue is 
particularly present in port facilities, where ships, containers, mobile equipment, construction 
materials such as wood logs and concrete objects can impact on structures. Port structures are 
typically of more robust construction and therefore, they act as barriers in the path of debris motion 
for as long as inundation depth is lower than the structure height (Reese et al., 2007; Naito et al., 
2014). As a result, they are more likely to be subjected to damage from debris impact (Charvet et 
al., 2015). While debris impact is location-specific and does not affect all areas in the same ways, 
some industries may be more susceptible to debris impact than others. For example, in cargo 
handling and construction materials industries, where mobile large objects such as containers and 
wood logs are stored in open yards, there is a higher concentration of potential debris and 
therefore, a higher debris delivery potential (Naito et al., 2014). Kumagai (2013) surveyed the post-
mortem dispersal of containers after the 2011 Tohoku event and found that containers, which were 
not washed out to sea, were mostly dispersed within the terminals where they were located in. 
Many of these containers were also found to be concentrated around buildings surrounding the 
container yards without travelling further inland (Kumagai, 2013; Naito et al., 2014), which suggests 
that damage sustained to structures within these facilities are more likely a consequence of the 
combined effect of debris impact and tsunami flow than hydrodynamic force alone. 
 
[Lines 445 – 455] These findings can alternatively be justified by the effects of debris impact. A 
couple of studies (e.g. Charvet et al., 2015; Macabuag et al., 2015) have found the 
inclusion/omission of debris impact to have an effect on fragility models. Macabuag et al. (2015) 
demonstrated that models that include regression parameters considering debris impact have a 
better fit (statistically more significant) than models that do not. The authors also argued that the 
omission of debris information will likely introduce systematic bias to the fragility models. In this 
study, debris impact has not been explicitly considered in the development of fragility models, 
though it could be a source of uncertainty in our fragility models. Intuitively, structures that were 
damaged by debris would fall into higher damage states and likely experienced higher tsunami 
intensity values (i.e. depth and velocity). By neglecting debris impact, it is unsurprising that 
confidence intervals tend to widen towards higher depth values for DS 3 and DS 4 (Fig. 8). Similarly, 
by neglecting debris information, fragility functions derived for industries, such as cargo handling 
and construction materials industries, that are more heavily impacted by the debris-related damage 
are expected to have greater uncertainties. 
 
[Lines 514 – 515] Second-order factors beyond flow regime such as debris impact and proximity to 
the shoreline could also have an effect on model accuracies. 
 

Fig 5: The caption is a bit confusing, because it mentions outliers associated with damage first, 
but then they are related with water depths. At this point the relation is not established. 
 
Thank you for pointing this out. We have removed the description on outliers in Fig.5 caption to 
avoid the confusion for readers, as it has little to no relevance to the rest of the manuscript. 
 
Corrected manuscript: 
[Line 294-295] Fig. 5. Histograms of each damage state. Distribution of damage data indicates non-
normality and DS 1 accounts for the majority of the dataset. Outliers exist in DS 3 and 4, with no 
damage states recorded for inundation values between 6 to 7.4 metres. Outliers are not removed 
from the model, as they are legitimate observations and possible outcomes. 
 

Figure 7: Perhaps in addition to the frequency count, use percentages. That would allow to 
compare more clearly among industries. 
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Thank you for the suggestion. The changes have been incorporated in Fig. 7 [Line 373 in corrected 
manuscript].  

Line 411 mentions "mean value" but then L418 refers to the median. I tend to think we are 
referring to median. Please check for consistency throughout the text. 
 
Thank you for pointing this out, changes have been made in Line 436 in the corrected manuscript. 
 
Corrected manuscript: 
[Line 436] … confidence intervals around the mean median of the resulting probabilities. 
 

Fig 8: Perhaps gridlines would help to compare among subplots. 
 
Thank you for the suggestion. Gridlines have been incorporated into our subplots in Fig. 8, and 
accordingly in Fig. 11 [Lines 459 and 580 in the corrected manuscript]. 
 

 

We hope that our responses and corrections satisfy and address your concerns. We thank you again 

for your time and believe that your suggestions have helped improve the quality of this manuscript. 

We are happy to address any other questions that you might have. 
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Abstract. Modern tsunami events have highlighted the vulnerability of port structures to these high-impact but infrequent 17 

occurrences. However, port planning rarely includes adaptation measures to address tsunami hazards. The 2011 Tohoku 18 

tsunami presented us with an opportunity to characterise the vulnerability of port industries to tsunami impacts.  Here, we 19 

provide a spatial assessment and photographic interpretation of freely available data sources.  Approximately 5,000 port 20 

structures were assessed for damage and stored in a database. Using the newly developed damage database, tsunami damage 21 

is quantified statistically for the first time, through the development of damage fragility functions for eight common port 22 

industries. In contrast to tsunami damage fragility functions produced for buildings from existing damage database, our 23 

fragility functions showed higher prediction accuracies (up to 75% accuracy). Pre-tsunami earthquake damage was also 24 

assessed in this study, and was found to influence overall damage assessment. The damage database and fragility functions for 25 

port industries can inform structural improvements and mitigation plans for ports against future events. 26 

  27 
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1. Introduction 28 

Port assets are vulnerable to the physical damage caused by tsunamis and cascading effects such as extensive supply chain 29 

disruption. For example, transoceanic waves from the 2004 Indian Ocean tsunami resulted in heavy damage to maritime 30 

facilities across the Indian Ocean. On the west coast of Banda Aceh, Indonesia, all harbours and landing piers between Lhok 31 

Nga and Meulaboh were destroyed and unusable (Janssen, 2005) and across the Indian Ocean, heavy damage to maritime 32 

facilities reportedly resulted in the closure of Nagappattinam Port, India for weeks (Mahshwari et al., 2005). On the same note, 33 

the 2011 Tohoku (Great East Japan) tsunami caused damage to many ports along the Pacific coast in the Tohoku region. The 34 

affected ports suffered from a contraction in export and import values following the tsunami (March – May 2011) of 57.5% 35 

and 61.6% respectively, relative to the preceding 5-year average for the same period (Japan Maritime Centre, 2011). Total 36 

economic losses for tsunami damage to Japan’s marine vessels, ports and maritime facilities were approximated at US$ 12 37 

billion (Muhari et al., 2015). A recent study speculated that earthquakes greater than Mw 8.5 from the Manila-trench could 38 

result in the loss of functions in up to five major ports including Kaohsiung and Hong Kong (Otake et al., 2019). Additionally, 39 

threats from future tsunami events are expected to be exacerbated by rising sea levels (Li et al., 2018), which imply greater 40 

risks for port assets located near tsunami sources. 41 

With about 80% of global trade volume carried by sea, ports are critical nodes in international trade. Ports are also home to 42 

industrial clusters and critical facilities such as manufacturing firms and power plants due to the convenience they provide. 43 

With increased seaborne trade, globalisation of complex industrial processes and dependence on ports for economic 44 

development, port areas are only expected to develop further. However, port planning rarely accounts for adaptation to natural 45 

hazards and coastal protection structures are usually built to mitigate short-term hazard scenarios such as coastal flooding and 46 

wave damage (Lam and Lassa, 2017). 47 

Tsunamis are high-impact events but infrequent occurrences, which makes their potential impacts to ports difficult to quantify. 48 

The expected increase in the exposure of port assets to coastal hazards, combined with our limited experience with tsunamis 49 

in modern ports, demonstrates a clear need to better understand how port structures might respond to tsunami impacts. 50 

Structural damage resulting from tsunami impacts has generated considerable interest since the 2004 Indian Ocean tsunami 51 

(e.g. Nistor et al., 2010, Leelawat et al., 2016; Song et al., 2017; Suppasri et al., 2019). Structural damage is most commonly 52 

quantified in the form of tsunami damage fragility functions. First developed for tsunami events by Koshimura et al. (2009), 53 

tsunami fragility functions express the probability that a structure exceeds a prescribed damage threshold for a given tsunami 54 

flow characteristic or intensity measure. Pioneering work in the development of tsunami fragility functions has been largely 55 

focused on damage to residential and commercial buildings (e.g. Leone et al., 2011, Reese et al., 2011; Mas et al., 2012; Gokon 56 

et al., 2014). In recent years, the study of tsunami structural fragility has been extended to critical infrastructure such as roads 57 

and bridges (Akiyama et al., 2014; Shoji and Nakamura, 2017; Williams et al., 2020). 58 

Despite recent efforts, our understanding of tsunami impacts on ports still falls short. The coverage of tsunami-induced damage 59 

on port structures in existing literature is by and large limited to qualitative assessments. To date most studies on tsunami 60 
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structural damage to ports are in the form of post-tsunami surveys, which document damage observations and describe the 61 

failure mechanisms of harbour elements such as breakwaters, quay walls and wharves (e.g. Meneses and Arduino, 2011; Fraser 62 

et al., 2012; Hazarika et al., 2013; Paulik et al., 2019; Benzair et al., 2020) and port facilities such as oil tanks, cranes and 63 

equipment (e.g. Scawthorn et al., 2016; Percher et al., 2013; Sugano et al., 2014). Some studies have attempted to reconstruct 64 

structural impacts to port facilities by evaluating design specifications of structures or examining specific tsunami behaviour 65 

such as bore impact linked to structural damage (e.g. Nayak et al., 2014; Kihara et al., 2015; Chen et al., 2016; Huang and 66 

Chen, 2020). Though recent studies attempted to quantify tsunami damage to port facilities, the focus of these standalone 67 

studies are specific to certain port industries, namely warehousing (Karafagka et al., 2018) and fishery industries (Imai et al., 68 

2019), and therefore do not provide a comprehensive view of the damage sustained by different port industries. While 69 

necessary for the improvement of structural design, efforts so far are not adequate in quantifying tsunami damage statistically. 70 

This study serves as a starting point in characterising the vulnerability of port industries to tsunami impacts, through the 71 

assessment and quantification of structural response to tsunami inundation depths. The objective of this study is two-fold – (i) 72 

to develop a tsunami damage database for port structures impacted during the 2011 Tohoku tsunami, and based on the damage 73 

database, (ii) to construct tsunami damage fragility functions for port industries. The 2011 Tohoku tsunami presents a unique 74 

opportunity to study tsunami damage to port structures due to the extent and severity of damage, and the large ensemble of 75 

data collected post-tsunami (Table 1). The combination of densely recorded tsunami flow measurements, well-documented 76 

surveyed damage data and high-quality photographic evidence available offers an unparalleled resource for this research. 77 

In this paper, we develop the first tsunami damage database for port industries and their related structures. We also present the 78 

first sets of tsunami damage fragility models for common industries found in the port hinterland. We describe the data sources 79 

and methods to develop this damage database, and demonstrate in detail how the damage database addresses limitations found 80 

in past studies. Fragility functions are constructed by reviewing and employing best practices in the field. Unique to this work, 81 

we also evaluated the robustness of tsunami fragility functions against the influence of pre-tsunami earthquake effects. We 82 

conclude by highlighting some key application opportunities of this dataset and providing recommendations for overcoming 83 

current limitations found in this study. This study provides a blueprint for translating post-event damage surveys into fragility 84 

functions, which can be used to forecast future tsunami-induced damage to ports. 85 

2. Study site 86 

The northeast coast of Japan, also known as the Tohoku region, was severely impacted by the Tohoku tsunami on 11 March 87 

2011 (Fig. 1). Port operations along the Pacific Coast in Tohoku and eastern Kanto regions were disrupted due to debris and 88 

severe damage to buildings, loading facilities, wharfs, fuel facilities and seawalls (Takano et al., 2012). Damage patterns varied 89 

along the Tohoku coastline. The Tohoku coastline is mainly coastal plains and ria coasts. Coastal plains are extensive areas of 90 

low-lying flat terrain, while ria coasts, formed by submergence of former river valleys, typically have limited flat terrain. Ria 91 

coasts are characterised by narrow funnel-shaped coastal inlets bounded by steep slopes such as mountains. In coastal plains, 92 
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damage severity transitioned gradually with distance inland, decreasing as inundation depths decrease with distance inland 93 

(De Risi et al., 2017). In ria coasts, the spatial distribution of damage was uneven because flow characteristics i.e. velocity and 94 

hydrodynamic force, which influence damage severity, varied significantly for different points at the same distance inland or 95 

with similar inundation depths (Suppasri et al., 2013; De Risi et al., 2017). This was due to the differences in local topography 96 

(Tsuji et al., 2014). Coastal topography influences tsunami behaviour on land, and therefore influences tsunami flow dynamics 97 

and inundation characteristics (Suppasri et al., 2015). Previous studies have highlighted the importance of separating the two 98 

types of coastlines when assessing tsunami damage (Suppasri et al., 2013; Tsuji et al., 2014; De Risi et al., 2017). This study 99 

focuses on ports located in coastal plains, due to the (i) difficulty of accounting for complexity of flow processes in ria coasts 100 

as well as (ii) significantly less port activity found in the narrow strips of ria coasts. Affected ports, namely Hachinohe, Kuji, 101 

Ishinomaki, Sendai, Soma and Onahama, located in coastal plains were selected as study sites for our damage assessment (Fig. 102 

1). 103 

 104 

 105 

Fig. 1. Six of the affected ports (circled dots) were selected in this study due to similarities in their coastal morphologies – 106 

they are located in coastal plains. Tsunami inundation heights were measured and collected by the Tohoku Tsunami Joint 107 

Survey (TTJS, 2011) team. Inundation heights refer to the maximum height of tsunami inundation above the mean sea level 108 

in Tokyo Bay (the Tokyo Peil datum). The generalized 2011 fault-rupture area (in light blue) was inferred from GPS data 109 

adapted from Ozawa et al. (2011). 110 
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3. Workflow and data sources 111 

A goal of this study was to produce tsunami damage fragility functions for industries commonly found in ports and their 112 

hinterlands, such as chemical and energy-related industries. The components required to derive fragility functions include the 113 

explanatory variable (hazard intensity measure), response variable (damage data) and a statistical linking model (Charvet et 114 

al., 2017). At present, a consolidated data source for tsunami damage to port structures has yet to exist. This data gap presents 115 

us with an opportunity to develop a damage database for port structures, and to use the damage data for the construction of 116 

fragility functions. We developed a framework (Fig. 2) for collecting and processing damage data within a database and using 117 

a machine learning workflow to evaluate those data and provide robust fragility functions; more details on our approaches are 118 

provided over the following subsections. We used freely available data where possible to illustrate how our methods can also 119 

be reproduced in other locations. A synopsis of the data used in this study and their sources are presented in Table 1. 120 

 121 

 122 

Fig. 2. The framework of this study follows the approach of a machine learning workflow. A damage database for port 123 

structures is constructed through data collection and processing. The consolidated data is then randomly split into training and 124 

test sets for model building and evaluation. This process is usually iterated until a satisfactory model is selected for the 125 

development of fragility functions. This is usually the case where are more than one model or parameter to choose from, 126 

whereas in our case, only inundation depth was considered as an explanatory variable. 127 

  128 
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Table 1. Data used in this study, their sources and the reference period from which data are taken. 129 

Data Source 
Data observation/ 

acquisition period 
Citation 

Tsunami inundation 

depths 

 

Ministry of Land, Infrastructure, 

Transportation and Tourism (MLIT)  

Mar 2011 – Dec 2012 Ministry of Land, 

Infrastructure, Transportation 

and Tourism (2014) 

Building database Ministry of Land, Infrastructure, 

Transportation and Tourism (MLIT) 

 

Mar 2011 – Dec 2012 Ministry of Land, 

Infrastructure, Transportation 

and Tourism (2014) 

Port structure footprint 

for digitisation 

GSI Interactive Web: Map/Aerial 

Photo Browsing Service; 

 

- Geospatial Information 

Authority of Japan (2013) 

 Google Earth engine 

 

Mar 2009 – Sep 2010 © Google Earth 2020 

 

Aerial images for 

damage assessment 

Google Earth engine; Mar 2009 – Sep 2010 + 

Mar 2011 – May 2011 ++ 

Feb 2012 +++ 

 

© Google Earth 2020 

 GSI Map: Aerial Photo of  

Affected Area 

 

 

Mar 2011 – May 2011 ++ 

Apr 2012 +++ 

Geospatial Information 

Authority of Japan (2012a) 

Oblique images for 

damage assessment 

GSI Map: Oblique Photo of  

Affected Area 

 

May 2011 ++ Geospatial Information 

Authority of Japan (2012b) 

Street view images for 

damage assessment 

 

Google Street View  Jul 2011 – Aug 2011 ++

Aug 2013 +++ 

© Google Street View 2020 

Landuse (industry) 

classification 

 

Google Maps - © Google Maps 2020 

+Pre-tsunami, ++Immediate phase after tsunami and  +++One to two years after tsunami (Intermediate phase) for damage assessment

130 
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4. Data collection 131 

4.1 Establishing a damage database 132 

The port structures referred to in this study collectively consist of a mixture of buildings and industry-related non-building 133 

structures (henceforth referred to as port infrastructure). Detailed building damage data have been collected by Ministry of 134 

Land, Infrastructure, Transportation and Tourism (MLIT, 2014) post-tsunami. However, the MLIT database predominantly 135 

consists of residential, commercial and some industrial buildings. Buildings within the port area are mostly missing from the 136 

database, and infrastructure such as silos, cranes and towers were not identified in the MLIT database. 137 

To develop our own database of port structures, we extended the MLIT database, which already consisted of outlines of 3,057 138 

buildings. To build the new database, port structure outlines (n = 2,173) were digitised into a Geographic Information System 139 

(ArcMap 10.5) using building footprints from the Geospatial Information Authority of Japan Interactive Map platform (GSI, 140 

2013) as well as pre-tsunami aerial images from Google Earth Engine (Table 1). We identified 3,343 buildings and 1,887 141 

infrastructure (5,230 total). The database is stored in the form of a Geographic Information System (GIS) attribute table. For 142 

each structure, we collected information on  143 

(1) the type of industry 144 

(2) the name of port 145 

(3) the name of company at the time of tsunami (where available) 146 

(4) maximum inundation depth values 147 

(5) assigned damage state and, 148 

(6) structure type (building or infrastructure) 149 

4.2 Attributes of port structures and industry 150 

Unique to this work, damaged structures were classified according to their industry type (Table 2). As with the construction 151 

of any fragility function, a key assumption is that structures under the same taxonomy are likely to perform similarly when 152 

exposed to a given hazard intensity (Pitilakis et al., 2014). For that reason, the classification of structures determines the 153 

robustness of the fragility functions developed. It was therefore important to create a suitable taxonomy for the types of 154 

structures being studied. Conventionally, building damage has been assessed by separating the buildings into their various 155 

construction types (e.g. masonry, wood, steel, unreinforced and reinforced concrete). Charvet et al. (2014) noted differences 156 

in the performance of buildings with different construction types to tsunami impacts following the Tohoku event. However, 157 

port structures consist of both buildings and infrastructure, with the infrastructure of a highly specialised nature where the 158 

design and construction criteria are industry-specific. A more suitable approach then would be to classify port structures 159 

according to their industry. 160 
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Different types of port activities occupy the port area. Aside from the core business of terminal operations, the port is also host 161 

to distribution centres and non-maritime activities. To the best of our knowledge, there is no standard industrial classification 162 

for port activities. We therefore proposed a broad classification for the port activities found in Tohoku ports, according to the 163 

general industry that they fall into (Table 2). Classification for non-maritime port industries was adapted from the terminologies 164 

used by European Sea Ports Organisation (ESPO, 2016) for the various industrial sectors found in European ports. We used 165 

Google Maps and Google Street View to identify the business nature of each company (industry type), commonly through the 166 

name of the company at the time of the tsunami. We identified eight main port industries based on our proposed taxonomy.  167 

Buildings in port industries commonly include administrative offices, control and maintenance buildings, warehouses and cold 168 

storage. Industrial buildings are typically of steel or concrete construction. On the other hand, the types of port infrastructure 169 

are diverse - ranging from small transformers to large loading cranes. Some common infrastructure found in each industry are 170 

listed in Table 2, adapted from the descriptions provided by the AIR Construction and Occupancy Class Codes (AIR 171 

Worldwide, 2019). Because of their diversity, port infrastructure vary widely in their construction and unlike buildings, it is 172 

extremely challenging to classify them according to their construction nature. It is interesting to note, however, that several 173 

industrial infrastructure are installed in support structures or housed in buildings. In the petrochemical industry, for example, 174 

oil and gas are commonly stored in steel or concrete silos and tanks.  175 

  176 

 177 

Table 2. Proposed classification for port activities found in the Tohoku region. 178 

 Industry type Description of port activities 

Maritime industries Cargo handling industry Cargo handling services such as loading and unloading of 

ships (stevedoring) as well as the handling of cargo on shore. 

 

Typical infrastructure: Loading and gantry cranes, storage 

yards, storage sheds, silos, chillers and warehouses 

(buildings). 

Warehousing and distribution Cold storage, warehousing and logistics support. 

 

Typical infrastructure: Storage sheds, tanks and silos. 

Non-maritime port-

related industries 

Chemical industry Bulk chemical production e.g. alkane, propane and fertilisers. 

 

Typical infrastructure: Distillation towers, tanks, silos, 

conveyors, pipes, pumps, compressors, reactors, vessels, 
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wastewater treatment systems, chemical separation columns, 

substations and open frame structures. 

Construction materials industry Concrete and cement manufacturing. Asphalt and wood 

processing. 

 

Typical infrastructure: Rotary kiln/furnace, coal storage, 

grinders, mills, pre-heating towers, coolers, tanks, silos, 

conveyors, sorters and stackers. 

Energy-related industry Coal power generation. Electric power generation and 

distribution. 

 

Typical infrastructure: Mills, power plants, substations, 

transformers, chimneys, boilers, generators, cooling towers, 

turbines, condensers, pumps and electricity transmission 

towers. 

Food industry Seafood processing and food packaging. Feed manufacturing. 

 

Typical infrastructure: Ovens, cold storage (buildings), 

freeze dryers, tanks, mixers, conveyors, boilers and vessels. 

Manufacturing industry Metal and alloy products. Plywood and paper products. 

 

Typical infrastructure: Grinders/refiners, chimneys, 

furnaces, silos, tanks, screens, conveyors, cranes, mills and 

rollers. 

Petrochemical industry Oil depots, reserves and refineries. 

 

Typical infrastructure: Furnaces, distillation towers, 

crackers, compressors, condensers, vessels, tanks, silos and 

pipelines.  

 179 
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4.3 Maximum inundation depths 180 

Various tsunami hazard intensity measures (e.g. inundation depth, flow velocity and force) have been used in literature to 181 

estimate structural fragility to tsunami impacts. Past studies (Macabaug Macabuag et al., 2016; Park et al., 2017; Attary et al., 182 

2019) have shown that no single measure can fully characterise structural fragility to tsunami impacts as it is impossible to 183 

explain a complex phenomenon through a sole parameter. For the purpose of this study, observed maximum inundation depth 184 

was chosen as the representative intensity measure manifesting damage since depth is more easily estimated from field survey 185 

after tsunami events as compared to other flow values, which typically have to be simulated. Using observational data also 186 

minimises the uncertainty in intensity measure as compared to using simulated data (e.g. velocity and force). 187 

Inundation characteristics were recorded and collected from a number of sources, namely tsunami trace heights by the Tohoku 188 

Tsunami Joint Survey Group (TTJS, 2011), MLIT survey, photographs, videos, eyewitness accounts and other reports 189 

(Leelawatt et al., 2014). The MLIT (2014) compiled all the maximum inundation depth values and building data into a single 190 

database. Inundation depth refers to the depth of floodwater above ground. Each building surveyed in the MLIT database is 191 

pegged with maximum inundation depth values, and where values were not available for some buildings (e.g. those that were 192 

washed away), they were interpolated from nearby buildings with inundation depth values (De Risi et al., 2017). Similarly, for 193 

buildings and infrastructure that were identified in this study, we interpolated inundation depth values from neighbouring 194 

surveyed buildings. 195 

4.4 Proposed damage classification scheme 196 

For the first time, a damage classification scheme for tsunami damage to port structures is being proposed (Fig. 3). The MLIT 197 

adopted a damage classification scheme for building damage assessment following the 2011 Tohoku tsunami (see Leelawatt 198 

et al., 2014). Naturally, subsequent studies that used the MLIT damage database to analyse damage and derive fragility 199 

functions followed the same classification scheme. The pitfalls of adopting the MLIT damage classification have been 200 

highlighted in several studies (Leelawat et al., 2014; Charvet et al., 2015; Charvet et al., 2017). Firstly, the MLIT classification 201 

consists of six damage states, which were found to have overlaps in their definitions (Leelawat et al., 2014; Charvet et al., 202 

2015). The overlapping definitions might have resulted in buildings being wrongly classified when performing damage 203 

assessment. Ideally, damage states should be presented in a mutually exclusive and consecutive order (Charvet et al., 2015). 204 

Secondly, descriptions in the MLIT classification scheme do not distinguish between structural and non-structural damage. 205 

Therefore, the structural response of the buildings assessed is not being explicitly assessed. Additionally, by specifying the 206 

range of inundation depths associated with each damage state, such definitions allude to inundation depths being a condition 207 

of damage. This contradicts the objective of developing fragility functions as predictive models of damage. Over and above 208 

the limitations outlined, the MLIT damage classification solely describes damage to buildings, which is otherwise unsuitable 209 

for port structures. 210 
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To address the limitations of the existing damage classification of MLIT, we proposed a new damage classification for port 211 

structures. This new classification scheme provides damage descriptions for both buildings and infrastructure. Degrees of 212 

damage are classified into four levels (with damage state DS 0 being no damage), ensuring that the descriptions for each 213 

damage state are mutually exclusive and in increasing order. Descriptions also include the expected serviceability of the 214 

structure at each damage state. Pitalakis et al. (2014) argued that physical damages would reflect the expected serviceability 215 

of the structure (condition for use) and its corresponding functionality (i.e. can its functions still be fulfilled?). The structural 216 

integrity of port structures is also being considered. For instance, between DS 2 and DS 3, damage is distinguished by whether 217 

it only affected non-structural components and/or roof (DS 2), or structural components such as columns and beams (DS 3). 218 

We assumed that when the structural integrity of a structure is compromised, the structure would be removed.  219 

 220 

 221 
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Fig. 3. Proposed new damage classification for port industries. Descriptions for damage to both buildings and non-building 222 

infrastructure are provided in the classification table. DS 1 and DS 2 are considered as non-structural damages, while DS 3 223 

and DS 4 are structural damages. 224 

4.5 Damage assessment through spatio-temporal analysis 225 

A combination of free-to-use sources were used to inform our classification decisions when assigning damage states to 226 

individual port structures (Table 1). Port structures were assessed through the analysis of satellite imagery, using pre- and post-227 

tsunami images from Google Earth engine and Geospatial Information Authority (2012a), as well as photographic 228 

interpretations of post-tsunami oblique images from Geospatial Information Authority (2012b). Pre- and post-tsunami images 229 

refer to observations made before 11 March 2011, and on and after 11 March 2011 respectively (Table 1). Apart from aerial 230 

and oblique images, we visually assessed the conditions of port structures through Google Street View images. Google Street 231 

View, a service available on Google Maps web, provides panoramic view of the landscape at a street level. An example of 232 

how a building or infrastructure was being assessed is illustrated in Fig. 4.  233 

The three types of images (aerial, oblique and street view) provided different, yet complimentary, types of information. Aerial 234 

images were particularly useful in assessing washed away and collapsed structures (DS 4). Street View images were used to 235 

identify damage from façade level, which supplemented as “ground truth surveys”. The high-resolution imagery provided by 236 

Google Street View allowed us to pick up finer details such as structural and non-structural damage to port structures, which 237 

would otherwise be missing from aerial imagery. However, because Street View imagery was captured through vehicle-238 

mounted cameras, the availability of these images are constrained by the accessibility of roads by the vehicle at the time of 239 

survey. Where imagery was not captured by Google Street View due to such constraints, we capitalised on the alternative 240 

views provided by GSI oblique images. 241 

Advances in mapping technologies mean that temporal changes are also being captured and documented in these mapping 242 

applications. The time-slider functions on Google Earth engine and Google Street View web, as well as the date stamps on 243 

GSI images, allowed us to review temporal changes in the built environment. For images in Google Earth and Google Street 244 

View, different phases of the tsunami, i.e. pre-tsunami (before March 2011), immediately after the tsunami (up to 6 months 245 

after the tsunami) and the intermediate recovery phase (1 – 2 years), were all captured in the same point locations. With 246 

coordinates being embedded in the aforementioned data sources, we were also able to reference GSI aerial and oblique post-247 

tsunami images to the same locations. The large amount of high-quality data provided by these image databases and mapping 248 

applications have been a large driver of our data collection in this study. 249 
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 250 

Fig. 4. A building (circled in red) in Ishinomaki Port has been selected to demonstrate how spatiotemporal damage assessment 251 

had been conducted in this study. For every port structure, we reviewed four main sources of data (©Google Earth 2020, 252 

©Google Street View 2020, GSI Aerial and Oblique images) to estimate the level of damage sustained during the tsunami. 253 

5. Model building 254 

Fragility functions describe the probabilities of damage exceedance for a given intensity measure or flow characteristic. The 255 

probability of damage exceedance can simply be expressed as: 256 

𝑃𝐷𝑆 ൌ  𝑃 ሺ𝑑𝑠   𝐷𝑆 | 𝐼𝑀ሻ 257 

, where ds is the observed damage state of a structure, DS the classification provided by the damage scale and IM the intensity 258 

measure (Charvet et al., 2017). In the case of this study, tsunami inundation depth was used as an explanatory variable in the 259 

prediction of structural damage probability. Typically, empirical tsunami fragility functions are constructed by fitting an 260 

appropriate statistical model to post-tsunami damage data.  261 
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5.1 Evaluation of statistical models available 262 

In recent years, a number of studies evaluated the suitability of various statistical models in representing tsunami damage to 263 

structures (Charvet et al., 2014; Macabaug Macabuag et al., 2016; Charvet et al., 2017). Parametric (e.g. Ordinary Least Square 264 

regression, Generalised Linear Model or ordinal logistic regression models), semi-parametric (e.g. Generalised Additive 265 

Model) and non-parametric (e.g. Kernel Smoother) statistical model types are amongst the most commonly used. These 266 

statistical models are extensively reviewed in Rosetto et al. (2014), Lallemant et al. (2015), Macabaug Macabuag et al. (2016) 267 

and Charvet at al. (2017), and readers are referred to these studies for a more comprehensive understanding of the advantages 268 

and disadvantages of using the various types of statistical models. 269 

Generalised Linear Models (GLM), an extension of classical linear regression models, have been recommended as more 270 

reliable forms of fragility functions for the following reasons: 271 

 Discrete probability distributions can be used to predict discrete responses (Charvet et al., 2017). This is especially 272 

important for categorical data (such as damage states), because it is statistically incorrect to assume that the difference 273 

between categories is linear/continuous, e.g. the difference between DS 1 and DS 2 holds the same meaning for the 274 

difference between DS 2 and DS 3 (Guisan and Harrell, 2000). 275 

 Unlike classical linear regression models (e.g. ordinary least square regression) which assume either a normal or 276 

lognormal distribution, the response variable need not be normally distributed and can take on any of the exponential 277 

family distributions. 278 

 It does not assume a linear relationship between the explanatory variable and response variable, but a linear 279 

relationship is assumed between the transformed response through a link function and the explanatory variables. 280 

 Maximum likelihood estimation (MLE) is used rather than ordinary least squares to estimate the parameters. MLE 281 

has the advantage of explicitly reflecting the probability distribution of the random variable of interest. 282 

 Overfitting of data can be avoided by using cross-validation analysis to determine optimal model parameter values. 283 

 Model uncertainty can be quantified by supplementing the median of the response with confidence or prediction 284 

intervals. 285 

5.2 Data exploratory analysis 286 

The response variable is ordinal (in the sense that DS 0 < DS 1 < DS 2 < DS 3 < DS 4). A visual inspection of the distribution 287 

of depth given damage data (Fig. 5) indicates non-normality, with the distribution skewed towards the right, indicating a 288 

lognormal transformation of inundation depth variable would be appropriate. Frequency counts of the damage data show that 289 

damage state (DS 1) makes up the majority of the dataset (n = 2710), and DS 3 and 4 a much smaller proportion (n = 576 and 290 

n = 605 respectively). 291 
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 292 

Fig. 5. Histograms of each damage state. Distribution of damage data indicates non-normality and DS 1 accounts for the 293 

majority of the dataset. Outliers exist in DS 3 and 4, with no damage states recorded for inundation values between 6 to 7.4 294 

metres. Outliers are not removed from the model, as they are legitimate observations and possible outcomes. 295 

5.3 Selection of a suitable statistical model 296 

An ordinal logistic regression model, an ordinal and logistic recourse of GLMs, is adopted. It has the additional advantage of 297 

accounting for and maintaining the ordered nature of damage-state data. As this model recognises the ordered nature of the 298 

damage states, overlapping pathways of the fragility functions can be avoided (Charvet et al., 2017). Overlapping fragility 299 

functions, as is common when fitting separate GLMs, may unwittingly imply that the probability of a higher damage state (e.g. 300 

DS 4) being exceeded is higher than that of a lower damage state (e.g. DS 3) as inundation depth increases. Ordinal models 301 

also make full use of the ranked data rather than simplifying it into binary exceedance and non-exceedance, and therefore 302 

preventing the loss of information (Ananth and Kleinbaum, 1997). 303 

The dependence of the response variable DS on predictor variable X can then be represented as follows 304 

𝑃ௌ ൌ  𝑃ሺ𝑑𝑠  𝐷𝑆|𝑋ሻ 305 

, where 𝐷𝑆 refers to the 𝑖௧ damage state, 𝑗 the specified predictor (IM) or combination of predictors. The model relates the 306 

probability of the outcome,  𝑃ௌ, to all explanatory variables (𝑋ଵ, 𝑋ଶ, . . ¸𝑋) through a linear predictor. There are three basic 307 

components to any GLM, and Table 3 describes the components in the context of the ordinal logistic model used in this study. 308 

  309 
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Table 3. Components of an ordinal logistic regression model 310 

Random Component The probability distribution of the response variable. 

 

A multinomial distribution is assumed for the cumulative probabilities in an ordinal logistic 

regression model. 

Systematic Component The explanatory variable ( 𝑋 ) or the linear combination of the explanatory variables 

(𝑋ଵ, 𝑋ଶ, . . ¸𝑋) in creating the linear predictor e.g. 𝛽  𝛽ଵ𝑋ଵ, 𝛽ଶ𝑋ଶ  ⋯  𝛽𝑋  , where 𝛽 

and 𝛽ଵ, are transformed constant and regression coefficients through maximum likelihood 

estimation. 

Link function The link between random and systematic components. 

 

Describes how the cumulative probability 𝑃ௌ
 of the expected outcome for any damage state 

𝐷𝑆 relates to the linear predictor of explanatory variables 𝑋. In this instance, the link function 

chosen takes on a logit form g where 

 

𝑔൫𝑃ௌ
൯ ൌ log ሺ

𝑃ௌ

1 െ 𝑃ௌ

ሻ 

, with  

𝑃ௌ
ൌ 𝑃൫𝑑𝑠  𝐷𝑆ห𝑋൯    ∀ 𝑖 ∈ ሺ1, … , 𝐼ሻ 

 

 

Therefore, the dependence of the response variable DS on the linear predictor can be re-

expressed as 

 

log ቆ
𝑃ௌ

1 െ 𝑃ௌ

ቇ ൌ  𝛽,  𝛽ଵ𝑋ଵ  𝛽ଶ𝑋ଶ  ⋯  𝛽𝑋 

 

log ቆ
𝑃ௌ

1 െ 𝑃ௌ

ቇ ൌ  𝛽,   𝛽𝑋



ୀଵ

 

 

The corresponding regression coefficients  𝛽ଵ,  in the link function are fixed across every 

damage state except for the intercept, so as  to maintain the order of the response categories. 

 311 
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The conditional probability 𝑃ሺ𝑑𝑠  𝐷𝑆|𝑋ሻ is a common vector of regression coefficients β, which connects probabilities for 312 

varying levels of damage.  When expressing the cumulative probabilities of each damage state as separate curves, the 313 

relationships between damage states in increasing order of severity are defined as follows: 314 

𝑃ௌ ൌ 𝑃ሺ𝑑𝑠 ൌ 𝐷𝑆 |𝐼𝑀 ൌ 𝑋ሻ ൌ ቐ

1 െ 𝑃ሺ𝑑𝑠  𝐷𝑆|𝑋ሻ

𝑃൫𝑑𝑠  𝐷𝑆ห𝑋൯ െ 𝑃൫𝑑𝑠  𝐷𝑆ାଵห𝑋൯
𝑃ሺ𝑑𝑠  𝐷𝑆|𝑋ሻ

𝑖 ൌ 0
             0  𝑖  𝑁ௌ 

     𝑖 ൌ 𝑁ௌ 
 315 

 316 

, where 𝑁ௌ refers to the number of damage states, including DS 0 (Macabaug Macabuag et al., 2016).  317 

6. Model evaluation 318 

6.1. 10-fold cross-validation 319 

Model accuracy was used as a quantitative indicator of the performance of our models. We wanted to assess the goodness-of-320 

fit of the models and determine its predictive ability. It was difficult to test the predictive ability of our models where there 321 

were no further samples to test with. In order to optimise model design while preventing overfitting, the cross-validation 322 

method was applied to evaluate the prediction accuracy of our models. Cross-validation techniques make use of the available 323 

dataset by dividing them into two subsamples – one to train the model and the other to predict the model on. 324 

One cross-validation technique is K-fold, where the dataset is divided into K number of approximately equal-sized subsets as 325 

illustrated in Fig. 6a. One subset is taken out as a test set for validation, and the remaining K – 1 subsets are then used to train 326 

a model. This hold-out method is then repeated for K number of times, with a new subset being used as a test set in each 327 

iteration. Only after all K models are fitted, statistics of the model performance are tabulated. For the purpose of this study, a 328 

10-fold cross-validation approach was taken. 329 

The accuracy of a model is determined by the proportion of correctly classified responses. When applied to the k-fold 330 

technique, the fitted model is used to predict response on the held-out kth subset in each iteration. The recorded response is 331 

tabulated against actual observations in the kth subset and a confusion matrix is constructed as demonstrated in Fig. 6b. The 332 

diagonal of the confusion matrix represents the sum of correctly predicted response, the proportion of correctly classified 333 

response is then calculated by 334 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ  
𝑆𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

𝑆𝑢𝑚 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 335 

 336 

Accuracies are recorded in each iteration of the K-fold, and the mean and standard-deviation of the tabulated accuracies are 337 

taken to assess the predictive ability of the model. All statistical analyses and modelling in this study were carried out using 338 

the statistical software R (R Core Team, 2020). 339 
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 340 

Fig. 6. (a) An example of a 5-fold cross-validation technique for the purpose of illustration. The same dataset can be folded 341 

into 5 equal sizes, and one fold is held-out for testing and the remaining 4 folds are used to develop a training model to predict 342 

the accuracy of the training model. This is repeated 5 times, with accuracies being tabulated in each iteration. (b) Accuracy 343 

table (confusion matrix) is produced in each iteration of the k-folds. The sum of the diagonal in the table is divided by the sum 344 

of observations to get the percentage of accuracy in the kth fold. 345 

6.2 Quantification of uncertainty 346 

The fragility functions, when presented as curves or plots, represent the expected value of the response variable. Therefore, 347 

they represent only a sample estimate of the population values. Statistical variations of the fragility functions can be accounted 348 

for by estimating the confidence intervals. In this study, we adopted bootstrap-based confidence intervals to estimate the 349 

uncertainty in estimation or prediction. The bootstrap method treats the original dataset of values as a realised sample from the 350 

true population and does not make any assumptions about the underlying distribution of the population parameters (Yung and 351 

Bentler, 1996). Values from the original dataset are resampled repeatedly, with replacement. This was done for 1000 iterations, 352 

with the predicted logit computed in each iteration. To derive a 95% confidence band, the 2.5th and 97.5th quantiles of the 1000 353 

estimates were drawn at each inundation depth interval (0.01m). 354 

7. Results 355 

7.1. Damage database for port structures 356 

To characterise the vulnerability of assets in various port industries, damage assessment was performed for buildings and 357 

infrastructure in the Tohoku region. We compiled damage information on port structures into a database, which is available 358 

online through an unrestricted data repository (DR-NTU) hosted by Nanyang Technological University 359 

(https://doi.org/10.21979/N9/OTZMT1) (Chua et al., 2020).  360 

The port damage database consists of 5,230 port structures, of which 3,343 are buildings and 1887 are infrastructure. The port 361 

structures were identified in six case study ports, across eight port industries. The damage dataset show that most port structures 362 
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sustained minimal structural damage classified as damage state DS 1 (Table 4). Consistently for all port industries, the majority 363 

of the observed damage corresponds to DS 1 (Fig. 7.) Notably, many industries such as chemical, petrochemical and energy-364 

related industries sustained minimal structural damage mainly due to flooding at DS 1, which only required some clean up and 365 

interior restoration and remained mostly operational after restoration. On the other hand, cargo handling and food industries 366 

sustained a wide range of damage from minimal damage (DS 1) to total damage (DS 4), corresponding to nearly all damage 367 

states. Tsunami floodwaters at depths of less than 5 metres inundated most port structures. In extreme cases, inundation depths 368 

affecting port structures reached as high as 7.5 metres. The minimum recorded inundation depth was 0.1 m. 369 

 370 

Table 4. Summary of port structures identified in the various ports, sorted according to their industries. 371 

 North Tohoku South Tohoku  

 Hachinohe Kuji Ishinomaki Sendai Soma Onahama Total 

Cargo Handling Industry 31 9 31 32 25 62 190 

Warehousing and 

Distribution 
111 16 175 105 39 17 463 

Chemical Industry 236 - 208 27 85 - 556 

Construction Materials 

Industry 
29 20 20 99 9 37 214 

Energy-related Industry 125 - - 104 134 50 413 

Food Industry 12 37 430 151 - - 630 

Manufacturing Industry 1010 60 587 279 144 - 2080 

Petrochemical Industry 202 41 38 324 - 79 684 

Total       5230 
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 372 

Fig. 7. Data attributes of the port industries affected by the 2011 Great East Japan tsunami.  373 
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7.2 Damage fragility functions for port industries 374 

Damage fragility functions were produced for eight major port industries as depicted in Fig. 8. Individual fragility curves were 375 

plotted for each damage state and the solid lines represent the probabilities of a structure exceeding each damage state given a 376 

range of inundation depths and the shaded regions their corresponding 95% confidence intervals. 377 

The fragility functions (Fig. 8) suggest that chemical, cargo handling, and construction materials industries are more 378 

vulnerable. Higher probabilities of damage exceedance are reached at a more rapid rate as compared to other industries. In 379 

contrast, energy-related industry and warehousing and distribution are showing a gentler incline in damage probability for 380 

higher levels of damage (DS 3 and DS 4), indicating a greater resistance to tsunami impacts. A key assumption of fragility 381 

studies and of this study is that damage is directly related to the properties of the elements at risk. Thus, aside from tsunami 382 

intensity measures, the composition and structural design of each industry could determine the differences in vulnerabilities. 383 

For example, power plants (energy-related industries) and warehouses are structurally robust by design. Most heavy equipment 384 

found in power plants is normally supported in large reinforced concrete foundations or housed in large steel structure buildings 385 

(Cruz and Valdivia, 2011) and is therefore more resistant to tsunami loads. Likewise, many warehouses in the studied ports 386 

were reinforced concrete buildings with their warehouse floor raised above road levels, which increased the height of non-387 

structural elements (e.g. docks and doors) relative to tsunami inundation. Comparatively, chemical facilities typically consist 388 

of more fragile components which are not part of the primary load resisting systems such as pipelines, pumps, compressors 389 

and tanks, and they are extremely vulnerable to damage from tsunami inundation and forces. As observed in the 2011 event, 390 

hydrodynamic and hydrostatic forces from the tsunami resulted in the breaking of pipe connections, floating tanks and 391 

overturning of unanchored infrastructure (Krausmann and Cruz, 2013). Meanwhile in cargo handling facilities, loading and 392 

unloading infrastructure wereas mostly anchored, but instances of cracked pavements and damaged crane rail foundations by 393 

the earthquake and tsunami were reported to result in the derailment and collapse of cranes (Technical Council on Lifeline 394 

Earthquake Engineering, 2017). Nonetheless, other factors such as debris impact and proximity to shoreline should not be 395 

discounted when considering the differences in the response of each industry to tsunami impacts.  396 

Other factors such as debris impact and proximity of the structure to the shoreline should not be discounted when considering 397 

differences in the response of each industry to tsunami impacts. Tsunami-borne debris can contribute significantly to structural 398 

damage. This issue is particularly present in port facilities, where ships, containers, mobile equipment, construction materials 399 

such as wood logs and concrete objects can impact on structures. Port structures are typically of more robust construction and 400 

therefore, they act as barriers in the path of debris motion for as long as inundation depth is lower than the structure height 401 

(Reese et al., 2007; Naito et al., 2014). As a result, they are more likely to be subjected to damage from debris impact (Charvet 402 

et. al., 2015). While debris impact is location-specific and does not affect all areas in the same ways, some industries may be 403 

more susceptible to debris impact than others. For example, in cargo handling and construction materials industries, where 404 

mobile large objects such as containers and wood logs are stored in open yards, there is a higher concentration of potential 405 

debris and therefore, a higher debris delivery potential (Naito et al., 2014). Kumagai (2013) surveyed the post-mortem dispersal 406 
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of containers after the 2011 Tohoku event and found that containers, which were not washed out to sea, were mostly dispersed 407 

within the terminals where they were located in. Many of these containers were also found to be concentrated around buildings 408 

surrounding the container yards without travelling further inland (Kumagai, 2013; Naito et al., 2014), which suggests that 409 

damage sustained to structures within these facilities are more likely a consequence of the combined effect of debris impact 410 

and tsunami flow than hydrodynamic force alone. 411 

 412 

For each damage state, we considered the minimum depths where damage exceedance probability reaches near 1 or becomes 413 

nearly certain. Minimum damage (DS 1) is almost certain at 2.5 m consistently for all industries except energy-related industry. 414 

DS 1 occurs when there is water penetration into the building and interior restoration is required (Fig. 3). Logically, water 415 

penetration into buildings would be expected from 0.45 m since buildings are required to be constructed 0.45 m above road 416 

level as specified by the Building Standard Law of Japan (Building Centre of Japan, 2013). Threshold depths for DS 1 might 417 

have occurred at 2.5 m because of the aggregation of data for both infrastructure and buildings. We observed that there were 418 

many buildings (especially warehouse) and infrastructure such as storage tanks and silos that were elevated above ground and 419 

therefore, the number of exposed assets at lower inundation depths were reduced. The trend for other damage states is however 420 

not obvious and it is difficult to pinpoint minimum depth values where damage becomes certain. 421 

A threshold value is said to be reached when damage curves from all states of damage converge at the probability of near 422 

100%. Key threshold value can be defined as the parameter (in this case, inundation depth) criteria at which DS 4 (collapse) 423 

becomes certain. Earlier studies of the 2011 Great East Japan tsunami (Suppasri et al., 2013; Charvet et al., 2014) examined 424 

the key threshold values for buildings, using damage data provided by MLIT. Suppasri et al. (2013) identified 2 m to be the 425 

key threshold value for all building types. More recent analysis found inundation depth thresholds to differ between 426 

construction types: from 2 m for wooden buildings (Charvet et al., 2014) to more than 10 m (Charvet et al., 2015) for steel and 427 

reinforced concrete construction types. Similar patterns have emerged in the present analysis. The near 100% probability of 428 

collapse occur at inundation depth exceeding 10 m for all industries. As such we were unable to quantify the key threshold 429 

values for collapse for port industries. There are several possible reasons for this observation.  Two likely explanations stand 430 

out. The first being port structures are structurally much more resistant to tsunami loads than regular low-rise buildings because 431 

industrial buildings and structures are designed to withstand greater loads, including but not limited to dead loads, live loads, 432 

wind and earthquake loads. Therefore, greater tsunami inundation depths are required to overcome the resistance of port 433 

structures. A second possible explanation is that inundation depth alone is insufficient to explain damage, although it provides 434 

a first indication. 435 

The effects of uncertainty were quantified through the construction of confidence intervals around the mean median of the 436 

resulting probabilities. Confidence intervals around DS 1 are consistently narrow in width for all industries (Fig. 8), which 437 

could be associated with its large sample size. Contrastingly, for higher levels of damage (DS 3 and DS 4), confidence intervals 438 

tend to widen towards higher inundation depths. An observation made in the process of damage data collection through 439 

photographic interpretations was that many structures sustained very little damage despite high inundation depth values, which 440 
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explains the smaller sample sizes and therefore wider confidence intervals for DS 3 and DS 4 at higher depth values. In the 441 

same way, industries with the widest confidence intervals such as cargo handling industry and construction materials industry 442 

tend to have smaller sample sizes. By contrast, variabilities around the median curves tend to be smaller for the manufacturing 443 

industry, food industry, warehousing and distribution and petrochemical industry due to their larger sample sizes.  444 

These findings can alternatively be justified by the effects of debris impact. A couple of studies (e.g. Charvet et al., 2015; 445 

Macabuag et al., 2015) have found the inclusion/omission of debris impact to have an effect on fragility models. Macabuag et 446 

al. (2015) demonstrated that models that include regression parameters considering debris impact have a better fit (statistically 447 

more significant) than models that do not. The authors also argued that the omission of debris information will likely introduce 448 

systematic bias to the fragility models. In this study, debris impact has not been explicitly considered in the development of 449 

fragility models, though it could be a source of uncertainty in our fragility models. Intuitively, structures that were damaged 450 

by debris would fall into higher damage states and likely experienced higher tsunami intensity values (i.e. depth and velocity). 451 

By neglecting debris impact, it is unsurprising that confidence intervals tend to widen towards higher depth values for DS 3 452 

and DS 4 (Fig. 8). Similarly, by neglecting debris information, fragility functions derived for industries, such as cargo handling 453 

and construction materials industries, that are more heavily impacted by the debris-related damage are expected to have greater 454 

uncertainties. 455 

 456 

 457 
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 458 

Fig. 8. Fragility curves with 95% confidence bands for port industries identified in this study. Chemical, cargo handling and 459 

construction materials industries appear to be more vulnerable to tsunami inundation depths, while petrochemical and 460 

warehousing and distribution industries have lower damage probabilities for the same inundation depths. Wider confidence 461 

bands imply greater variability in uncertainty and could be results of smaller sample sizes. 462 
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8. Discussion 463 

8.1 Comparison of damage dataset with functionality of port industries post-tsunami 464 

We compared the damage database with existing literature to validate our observations. Most of the existing literature are 465 

either limited to descriptive analysis of damage to port facilities or are not available in English. We found only one study to 466 

be comparable with this study, in terms of the quantification of damage to port industries. A post-2011 tsunami survey was 467 

carried out by the Tohoku Regional Development Bureau (MLIT, 2011) between October and November, 2011. We considered 468 

the survey period as the intermediate period for reconstruction after the tsunami. The survey is a questionnaire survey on the 469 

recovery status of companies in tsunami-affected ports, including ports outside of our study sites. 226 of the 233 companies 470 

found in the affected ports responded to the survey. Findings from the survey were adapted from MLIT (2011) and we have 471 

translated them into English (Fig. 9). 472 

We drew comparisons between the recovery status of the companies affected (MLIT survey) and the serviceability of port 473 

structures at each damage state (this study). It is difficult to make a direct comparison between the two. While port structures 474 

are the physical components of these companies, port structures and companies are inherently different entities. Therefore, an 475 

assumption made here is that the serviceability of port industries is indicative of the recovery status of the companies surveyed 476 

in the MLIT survey. 477 

13% of the companies were found to be unaffected by the tsunami (Fig. 9), which marks a good agreement with our study 478 

where port structures sustaining no damage (DS 0) makes up 9% of the dataset (Fig. 4). In addition, approximately 12% of the 479 

companies found to be unrecoverable, which we assume to correspond to damage state DS 4 (11%) in our study. The MLIT 480 

survey found 72% of the companies to be in various stages of recovery during the survey and a majority (46.8%) of the 481 

companies were almost fully recovered (> 80% recovery) in the intermediate phase. Similarly, a large proportion (52%) of our 482 

damage data falls into DS 1 where port structures can be operational almost immediately after tsunami (Fig. 3). It is 483 

challenging, however, to draw parallel between the degrees of recovery with the damage states presented in this study. We 484 

stress that this approach is a relative measure of the validity of our dataset and damage assessment. Nonetheless, we can infer 485 

that damage observations made from photographic interpretations in this study are rather similar to actual observations. 486 

 487 
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 488 

Fig. 9. Damage conditions and degrees of recovery of companies in the tsunami-affected ports of Hachinohe, Kuji, Miyako, 489 

Kaimaishi, Ofunato, Ishinomaki, Sendai-Shiogama, Soma and Onahama. 65% of the recovering companies were almost close 490 

to full recovery (>80%) at the time of the survey. Adapted and translated from MLIT (2011).  491 

8.2 Fragility models and their classification accuracies 492 

Using the 10-fold cross validation technique, we evaluated the prediction accuracies of our models. Mean accuracies and their 493 

standard deviations for each industry are illustrated in Table 5. Port structures have an overall accuracy of 59%. The 494 

petrochemical industry, energy-related industry, chemical industry and manufacturing industry display higher accuracies – 495 

75%, 70%, 69% and 64% respectively. In contrast, warehousing and distribution industry, cargo handling industry and food 496 

industry display lower prediction accuracies – 40%, 38% and 28% respectively.  497 

We looked at the underlying nature of our datasets to better understand the differences in accuracies. The petrochemical 498 

industry, energy-related industry, chemical industry and manufacturing industry display higher accuracies and are represented 499 

by large sample sizes (Fig. 7). On the contrary, the cargo handling industry is represented by only 190 data points. However, 500 

because the food industry is represented by a large sample size but seemingly displays very low accuracy, we were unable to 501 

conclude that sample size has an influence on the accuracies of the fragility models. In addition, the three industries 502 

(warehousing and distribution, cargo handling and food industries) which display low accuracies are well represented across 503 

all damage states.  504 

The intrinsic differences between industries could have an effect on reducing accuracies. The composition of buildings and 505 

infrastructure differ from industries to industries. For instance, cargo handling industry, which displays lower accuracy, 506 

typically consists of mobile equipment such as cranes and conveyors as well as temporary transitional storage and components 507 

such as chillers and tanks. Damage to transient port structures as such may be reflected in the damage data as part of the overall 508 
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assessment and introduce noise to the damage data, thus reducing model accuracy. In addition, the structural design of port 509 

structures may vary between facilities of the same industry. For example, warehouses in the studied ports were mostly 510 

reinforced concrete buildings, but some were made of mixed materials such as reinforced concrete foundations with light metal 511 

or masonry walls. Whereas power plants (energy-related industry) and petrochemical industry are consistent in construction 512 

material and more robust by design, which perhaps explain their higher accuracies. Thus, variability between port structures 513 

of the same industries can also impact accuracy if those variables are not accounted for in the models. Second-order factors 514 

beyond flow regime such as debris impact and proximity to the shoreline could also have an effect on model accuracies. 515 

 516 

Another possible explanation is that many assets might have sustained extensive damage from earthquake activities such as 517 

ground motion and liquefaction prior to the tsunami, as was observed by Kazama and Noda (2012). A preliminary inspection 518 

of the damage dataset indicated a greater representation of data from ports that have experienced stronger ground motion for 519 

the following industries – food, cargo handling and warehousing and distribution (Table 4). On the other hand, industries that 520 

display higher accuracies have a greater data representation from ports that were not as severely affected by ground motion. 521 

The significance of this relationship between the effects of the preceding earthquake and the damage observed is further 522 

investigated in the proceeding section. 523 

For most industries, our models performed better in terms of their classification accuracies as compared to fragility models 524 

developed for buildings using the MLIT damage classification, which were found to have an accuracy of 52% (Leelawat et 525 

al., 2014). As this is the first time tsunami damage is being quantified as a response of inundation depth for port industries, we 526 

have no other models that we could use for comparison. 527 

 528 

Table 5. Mean accuracies and standard deviations of accuracies of the various port industries. 529 

Industry Type Mean Accuracy SD Accuracy 

Cargo Handling Industry 0.374 0.221 

Warehousing and Distribution 0.397 0.198 

Chemical Industry 0.687 0.300 

Construction Materials Industry 0.502 0.285 

Energy-related Industry 0.707 0.245 

Food Industry 0.283 0.204 

Manufacturing Industry 0.638 0.249 

Petrochemical Industry 0.746 0.218 

All Industries (Whole Tohoku) 0.587 0.203 

 530 
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8.3 Effects of pre-tsunami earthquake activities on observed damage to port structures 531 

 532 

Fig. 10. Mercalli intensities (MI) recorded by United States Geological Survey (USGS, 2020) for the Great East Japan 533 

earthquake and tsunami. Earthquake intensities differ between the northern (MI VI) and southern (MI VII - VIII) regions of 534 

Tohoku. North Tohoku experience less effects from ground shaking than in the South. 535 

 536 

One of the concerns raised in the process of this research was the effect of ground motion, which preceded the arrival of the 537 

tsunami, on asset damage. The effect of ground motion on damage to coastal structures was studied by Sugano et al. (2014). 538 

The authors noted that in the northern Tohoku region, only little damage was sustained due to ground motion and the damage 539 

observed was to a greater effect due to tsunami inundation. On the other hand, damage due to ground motion was substantially 540 

greater in southern Tohoku region, more specifically coastal areas south of Miyagi Prefecture. Similar observations were made 541 

by Okazaki et al. (2013), whom conducted surveys in Ishinomaki and Sendai ports and found that the two sites were exposed 542 

to both severe ground motions and great tsunami wave heights. Kazama and Noda (2012) have also highlighted the possibilities 543 

of liquefaction prior to the arrival of the tsunami but noted the impossibility of identifying locations of which liquefaction had 544 

occurred after the tsunami. 545 
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To assess if ground motion-induced damage affects the accuracies of our models, we separated the damage data according to 546 

the locations of ports (between northern Tohoku and southern Tohoku regions). The ports of Hachinohe and Kuji fall within 547 

the northern region, and the ports of Ishinomaki, Sendai, Soma and Onahama are located within the southern region (Fig. 10). 548 

We selected two industries to capture the effect of ground motion, instead of using the entire dataset since it has the effect of 549 

aggregating data from different industries and hence neglect differences in their physical characteristics. The manufacturing 550 

industry was considered because of its high prediction accuracy and its large sample size. The food industry was also 551 

considered due to its poor prediction accuracy – we wanted to examine if pre-earthquake activities might explain the poor 552 

prediction ability of the fitted model. 553 

Damage data for both industries was split into two sites (North and South Tohoku). For each dataset, an ordinal regression 554 

model was fitted and its response was captured in a 10-fold cross-validation. The resulting fragility models and their mean 555 

accuracies are shown in Fig. 11. We observe that port structures in South Tohoku tend to reach high probabilities of non-556 

structural (DS 1 and DS 2) damage at lower inundation depths than structures in North Tohoku. This suggests that earthquake 557 

damage might have weakened structures prior to the tsunami, leading to a steeper incline in damage probabilities as compared 558 

to structures in North Tohoku. However, at higher levels of damage (DS 3 and DS 4), ground shaking appears to have had less 559 

influence on damage. For both industries in the northern region, models depict a smaller initial increase in damage for higher 560 

levels of damage DS 3 and DS 4 but probabilities incline more rapidly at higher inundation depths. The opposite holds true for 561 

both industries in the southern region, i.e. damage probability for DS 3 and DS 4 incline at a slower rate at higher inundation 562 

depths implying that a larger depth is required to induce structural damage (DS 3) and collapse (DS 4). Ground shaking 563 

therefore only influenced lower levels of damage, tsunami inundation and flow characteristics still had a greater influence on 564 

higher levels of damage. 565 

The mean accuracies of using only datasets from North Tohoku are significantly higher than those of South Tohoku datasets. 566 

It appears that the aggregation of datasets from the two environments has the effect of averaging the mean accuracies for the 567 

whole region (Table 5, Fig. 11). It suggests that damage sustained by port structures in the Southern Tohoku region was 568 

influenced by the compound effects of earthquake and tsunami loads. Inundation depth alone is not sufficient to explain the 569 

damage observed. However, as Charvet et al. (2014) pointed out, it is difficult to distinguish the extent to which buildings had 570 

already been affected by earthquake damage prior to the arrival of the tsunami. Therefore, it was difficult to separate the effects 571 

of ground motion and liquefaction when we developed our fragility models. 572 

There are other factors such as debris impact, the effect of shielding and local characteristics of the built environment that may 573 

have influenced the results observed (Tarbotton et al., 2015). Regardless, we note that while the fragility model developed for 574 

food industry using only data from the North has an improved mean accuracy, there is a substantial increase in the uncertainty 575 

of the model (Fig. 11). It is not surprising as wider confidence intervals are a reflection of a limited sample size. An unbiased 576 

sample is not representative of the whole population, and therefore, it is prudent that all available samples are used to fit the 577 

fragility functions. 578 
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 579 

Fig. 11. Fragility functions developed for manufacturing industry in (a) North Tohoku, (b) South Tohoku as well as food 580 

industry in (c) North Tohoku and (d) South Tohoku. To evaluate the effects of preceding earthquake damage on overall damage 581 

assessment, datasets for each industry were divided into North and South regions. Mean accuracies for each dataset were 582 

derived using a 10-fold cross-validation to determine if the accuracies of the fragility models are affected by the compound 583 

effect of earthquake and tsunami. 584 

9. Conclusions 585 

9.1 Main findings and limitations 586 

We presented a first attempt to quantifying structural vulnerability of port industries to tsunami impacts by developing a 587 

damage database for port structures and constructing damage fragility functions for various port industries. We were able to 588 

collect damage data for more than 5000 port structures and produce damage fragility functions for eight main port industries. 589 

Through the interpretations of our damage assessment and statistical analyses of our fragility model, a number of significant 590 

findings have emerged from this study: 591 
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1. Energy-related and warehousing and distribution industries showed relatively higher resistance to tsunami loads, 592 

whereas chemical, cargo handling and construction materials industry appeared to be more vulnerable. 593 

2. Using our proposed damage classification scheme, our fragility models were able to reproduce damage with 594 

prediction accuracies of up to 75%, which outperforms models created using aggregated building damage data from 595 

MLIT (Leelawat et al., 2014). 596 

3. Pre-tsunami earthquake activities have an influence on port structural damage. It is unavoidable that the compound 597 

effects of ground shaking and liquefaction are captured in the damage data, and unaccounted for in the process of 598 

developing fragility functions. However, ground shaking appears to influence building damage at lower damage 599 

states. 600 

We are also aware of other limitations of this study. One of the limitations which has repeatedly surfaced in our findings is 601 

that inundation depth alone is not sufficient to explain the damage observed in port industries. Key threshold depths were 602 

difficult to capture for all industries which suggests that by only using inundation depth as a predictor, the fragility models 603 

may underestimate the levels of damage sustained by port structures. The models can be further refined by considering other 604 

measures of damage such as other tsunami flow characteristics (e.g. velocity, hydrodynamic force), debris impacts or the 605 

effects of shielding. 606 

9.2 Future use of damage database and recommendations  607 

This study presents an array of potential applications in future port damage studies. First and foremost, a new damage 608 

classification scheme was proposed to characterise damage to port structures. This scheme is transferable to other study sites 609 

for damage assessment and can be applied to damage assessments through ground survey, photographic interpretation, remote 610 

sensing and machine learning techniques. Secondly, we outlined a reproducible method for damage assessment in place of an 611 

actual ground survey, especially since this assessment was performed years after the event. The manual assessment allowed 612 

us to capture damage details from a side-profile, which otherwise would have been missing from automated techniques such 613 

as change detection in remote sensing imagery. In addition, the damage database can also be used in future work to investigate 614 

the influence of different parameters such as tsunami flow characteristics, construction characteristics and etcetera on the 615 

damage observed. Last but not least, our findings, quantified through the development of fragility functions, can be used to 616 

estimate damage to port structures in future tsunami events. They can also be used to motivate improvement in structural 617 

designs, tsunami mitigation measures as well as current methods of damage assessment. However, caution must be exercised 618 

when applying these models outside of Japan as structural integrity differs from place to place, though we expect that there 619 

would be less regional variability for port industries as compared to building codes in houses and commercial buildings. 620 

We invite and provide recommendations for potential users to expand the database and improve the predictive ability of the 621 

existing fragility models: 622 

1. Expand the database by collecting damage data from other events and improve the quality of the database by providing 623 

more details on the (i) origin of tsunami, (ii) coastal morphological setting, and (iii) method of data collection. 624 
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2. Perform tsunami simulation to collect other intensity measures such as velocity and hydrodynamic force. 625 

3. Study the performance of buildings and port infrastructure separately. This would, however, require a larger dataset 626 

than presented in this study because fragility models built on smaller sample sizes tend to have greater uncertainty. 627 

  628 
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Data availability 629 

The database provides a comprehensive inventory of port structures and their associated damage in the 2011 Great East Japan 630 

tsunami. The database is available through an unrestricted data repository (DR-NTU) hosted by Nanyang Technological 631 

University (https://doi.org/10.21979/N9/OTZMT1) (Chua et al., 2020). A database guide is provided in the supplementary. 632 
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