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The manuscript by Pons and Farada assesses the performance of several snowfall
separation methods to reproduce simulated snowfall in the ERA5 reanalysis on a Eu-
ropean scale by taking into account simulated near-surface air temperature and total
precipitation at daily resolution. The two best-performing methods are in a second
stage applied to bias-adjusted output of the IPSL-WRF regional climate model (histor-
ical period) to obtain a bias-adjusted estimate of simulated snowfall in the RCM. The

C1

evaluation reveals a satisfying representation of the PDF of the daily ERA5 reference
snowfall amount in the historical period by the bias-adjusted and separated IPSL-WRF
simulation. Overall, the paper fits well into the journal’s scope. Data and methods are
for most parts clearly introduced and explained. The presentation of the results has
some weaknesses but is still acceptable. The major drawback of the work, however, is
the unclear relevance of the work for a broader audience and for RCM snowfall bias-
adjustment. Essentially, the authors search for a method to emulate the ERA5 micro-
physics scheme that simulates the actual snowfall flux in the reanalysis model taking
into account simulated near-surface temperature and simulated total precipitation only.
The two best performing methods are then applied to a different model (IPSL-WRF) to
separate snowfall from total precipitation after bias-adjustment of simulated tempera-
ture and precipitation. Results look satisfying, but there is

Q: (1) no evaluation of the ERA5 snowfall flux (which is the basic reference in the
entire work, and the entire analysis is geared towards a reproduction of ERA5-
simulated snowfall flux; the paper frequently uses the term "observed" for ERA5 snow-
fall flux,although it is essentially a simulated flux probably subject to systematic biases)

A: We agree that the word “observation” is incorrectly used to describe ERA5. We
corrected all sentences containing such inaccuracy, and we will instead use the term
“reanalysis” or the expression “reference dataset”.

It is indeed possible that ERA5 presents some biases compared to observations, even
though it is not in the scope of our paper to evaluate the accuracy of ERA5 with respect
to direct measurement.

In general, the bias correction of climate projection models with respect to observations
or reanalysis is a well established practice. Reanalysis datasets such as ERA5, ERA-
interim or NCEP are often considered as reference datasets in this context, even if it is
known and accepted that they have limitations, as these are generally balanced by the
advantages.
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Q: (2) no analysis to what extent the satisfying results of the application of the method
to the RCM are specific for the chosen RCM and the bias-adjustment method of tem-
perature and precipitation that was carried out beforehand (a different RCM might,
even after bias-adjustment, have a completely different multivariate structure of daily
temperature and precipitation, at least a structure that is different to ERA5, and the
method might not hold in these cases

A: We agree about the fact that our results cannot be generalized to different types
of BC used to adjust the RCM. We remark that BC is a computationally expensive
and very time consuming operation, and very rarely one can try and compare several
different types of BC in a climate study. In our specific case, we considered a model
bias adjusted with univariate CDFt, as mentioned at lines 154-7. This method has been
widely applied and validated, and it has been used to prepare the datasets constituting
the CORDEX-Adjust project, from which we downloaded the already bias adjusted
output.

Our method requires the use of an effective BC method for temperature and precipi-
tation beforehand, in the same way it would require well calibrated measuring stations
if we were dealing with in-situ observations. Unfortunately, while official measuring
stations are regulated by WMO standards, there is not a BC method considered a
universal standard. Exploring several BC methods in this study, their multivariate per-
formance and its impact on catching the microphysics over the reference period would
be a very heavy task which goes beyond our objectives, and it would produce an ex-
tremely large amount of supplementary data.

As a further consideration, we remark that all of the methods representing snowfall
with the same philosophy require the knowledge of temperature and precipitation, so
the same objection should be true for all the empirical methods already existing in the
literature and cited or even put to the test in the present paper.

Overall, we consider it impossible to evaluate several BC methods and their multivariate
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impact as a part of our study, as this step alone would constitute a completely different
(and probably larger) paper. In a similar way, also testing a model ensemble would be
beyond the scopes of this paper, and would still not be exhaustive. For example, if we
considered the entire CORDEX ensemble, this would still not make the results directly
transferable to CMIP5 models.

We will add a “Limitations” paragraph to the Conclusions section concerning issues
with datasets and BC methodology:

“Limitations

We also clarify some of the limitations of our analysis. The nature of climate datasets
makes multiple comparisons among models and BC techniques very demanding in
terms of data storage and computational time. For this reason, we limited our analysis
to one reanalysis dataset (ERA5), one marginal bias correction technique (CDF-t), and
one climate projection model (IPSL$\_$WRF).

We do not consider the choice of ERA5 problematic with respect to other grid-
ded datasets that could be observational (e.g. E-OBSv20) or other reanalysis (e.g.
NCEP/NCAR): while the actual values could change between datasets, we do not fore-
see this affecting directly the performance of the methodology we presented in terms
of improvement of raw simulations respect the chosen reference dataset.

On the other hand, the choice of the BC may influence the outcome of our modelling
procedure. The CDF-t is applied marginally to each variable, so that there is no guar-
antee that the inter-variable correlations are correctly reproduced in the target climate
simulation. Indeed, \cite{meyer2019effects} showed that applying multivariate as op-
posed to univariate BC produces significant changes in estimated snow accumulation,
stressing the importance of modelling the interdependence between precipitation and
air temperature in hydrological studies focused on snowy areas. The choice of the
BC, in general, should be tuned on the trade-off between complexity and need for
controlling specific features, in this case inter-variable correlation. In our case, we con-
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sidered a climate dataset prepared in the context of the CORDEX-Adjust project, which
is made available already adjusted with respect to ERA5 using marginal CDF-t. Our
results show an improvement in snowfall representation even relying on marginal BC;
however,we stress that the methodology should be validated again if used on datasets
prepared with different BC techniques, to assess whether this difference affects the
predicting performance of the model.

On the same note, we remark that prediction accuracy may vary across different
climate models, due to the different physical approximations and parameterizations,
which are likely to affect the relationship between near-surface temperature and precip-
itation. Due to these differences, even other RGMs from the EURO-CORDEX project
may exhibit variability in the performance of the snowfall reconstruction. This holds
true for all statistical models cited in Section\ref{int1}, as it is rarely the case that snow-
fall reconstruction techniques are tested over an ensemble of different climate models.
Once more, we underlying the importance of assessing the performance of the cho-
sen methodology to approximate snow (or compare several of them) by validating it
on the historical period of the available models in reference to the available reanaly-
sis/observation dataset.”

Q: (3) no discussion of potential problems with inter-variable dependencies even after
bias-adjustment of an RCM (-> see, for instance, Meyer et al., HESS, 2019 Effects of
univariate and multivariate bias correction on hydrological impact projections in alpine
catchments)

A: We thank the reviewer for this suggestion, we included this in the Limitation section
mentioned above.

Q: (4) no indication if the identified methods will also produce robust snowfall estimates
in a future climate change scenario (which is, as far as I can guess, the basic motivation
of the entire work -> a possibility to investigate such an applicability would be to split
the ERA5 period into "cold" and "warm" years and to calibrate on the cold and validate
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on the warm sample)

A: We thank the reviewer for suggesting such an interesting and yet feasible addition
to our validation procedure. We performed the suggested experiment and summarized
the results in Fig_warmcold.pdf (see attachments). We will add the following paragraph
to the manuscript:

“\Subsection{Robustness to climate change}

As an additional element to evaluate the performance of the identified methods, we
assess if they can produce robust snowfall estimates in a climate change scenario. In
order to do so, we repeat the validation procedure described in Section \ref{design};
after ordering the ERA5 dataset based on the annual DJF average temperature, we
take the coldest $25\%$ as the train set and the warmest $25\%$ as the test set. We
run this procedure for the two best performing models, the segmented linear regression
and the cubic spline regression.

Fig. \ref{warmcold} shows the model performance metrics in analogy with Figures
\ref{boxplots} and \ref{boxcor}. Panel (a) and (b) display the map of the event-to-event
correlation coefficient, showing overall higher value than for the random train and test
sets. The two models also perform much more similarly in terms of correlation than in
the random sets case, as it can be seen from the boxplots in panel (c); the performance
in terms of RMSE and MAE is also comparable (panel (d)), as it was in the overall
validation presented before. Overall, assuming that separating cold and warm year
can be a proxy of climate change to assess model performance, the two technique
perform very similarly to the general case in terms of forecasting error, without any
visible improvement or accuracy decrease. However, we observe an improvement in
the correlation between predicted and true forecasting values: we argue that this effect
is likely due to precipitation patterns in years characterized by extreme temperatures
in the historical period, and it should not be expected to happen under future climate
change.”
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Q: (5) no reference to differences in spatial resolution of the models employed and
the fact the subgrid orography can actually have a considerable influence on simulated
snowfall (or, the other way round, neglecting subgrid scale orographic variability in
model bias-adjustment could results in false derived snowfall sums)

A: Concerning the difference in spatial resolution of the adopted models, all the dataset
we consider have the same lon-lat grid with 0.25◦ resolution, so there are no differences
in resolution to be considered in the data we used.

It is plausible that the performance of the algorithm could change if we considered
datasets with a resolution sensibly different from the one chosen here, for example 1 km
or 100 km. However, comparable methods, including the ones cited here, are applied
to anything from a single station time series to gridded datasets without necessarily
exploring all possible scales.

The reviewer also underlines that “subgrid orography can actually have a considerable
influence on simulated snowfall” and that “neglecting subgrid scale orographic variabil-
ity in model bias-adjustment could result in false derived snowfall sums”. We are aware
of the limitation of neglecting subgrid scales, but this is something we always have to
live with when dealing with climate simulation models. Considering the lack of scale
separation in the atmosphere, the correct description of any phenomenon would ben-
efit from including more fine scales, but sometimes this is not possible. Indeed, Frei et
al. 2018 underline that the choice of more complex functional form (which we replace
with segmented and spline regression) instead of the binary threshold separation is
made precisely to the purpose to approximate subgrid effects.

Q: (6) no analysis of a calibrated threshold within the "naive" STM method (which I
assume could yield even better results than the two best identified methods, as even
the performance with a fixed 2âŮęC threshold is very close to the two best-performing
methods)

A: Indeed, we chose not to try a finer calibration of the threshold for the STM model.
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This is because, dealing with a high number of grid points, such calibration would
still require an explorative technique such as a breakpoint search. However, the STM
model with threshold determined in such a way, would correspond to the case of our
spline regression, but constraining the number of thresholds at 1 and using 0th-order
splines. Since admitting up to two thresholds and cubic splines is not more complicated
or sensibly more time demanding, we did not think it is worth to add these constraints:
where the optimal model would be a binary threshold, our algorithm can still reproduce
that feature while being more versatile if more complex parameterizations are needed.

We do not agree that the STM result is “very close” to the best performing model: it
is somehow halfway in terms of average values (both for error measures and correla-
tion) but showing a high variability. This is likely due to the fixed threshold, but as we
explained above, it makes no sense from a practical point of view to test this method
with more complex thresholds. In fact, such a method is used (for example, in Frei
et al. 2018; Bai et al 2019) in the literature taking 2◦C as an accepted, overall well
working typical threshold. As we mentioned in the manuscript at lines 205 and follow-
ing, a sensitivity analysis over Europe has been conducted, for example, in Faranda
2020, finding that thresholds varying between 0 and 2.5◦C produce rather comparable
results.

Q: (7) no analysis of the importance of variations on the sub-daily scale which might
be important for daily snowfall sums.

A: We agree that including small scales in space and time would improve the represen-
tation of snow, but we stress again that it is not typical to deal with sub-daily datasets
of long term climate projections. Even gridded observations datasets, such as E-OBS,
are provided at the daily frequency, making such an evaluation de facto impossible (see
e.g. Bai et al. 2019).

Q: The main message of the manuscript is currently, that for this specific setup (this
specific RCM, this specific bias-adjustment method, this specific reference snowfall),
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the two identified methods if applied to bias-adjusted IPSL-WRF temperature and
precip-itation output can yield a representation of snowfall that well reproduces the
ERA5reference snowfall. These results are in my opinion not per se transferable to
different models or to a future climate scenario or to a different reference snowfall (es-
pecially not to a true observation-based snowfall estimate). As such, the value of the
work is limited for the time being in my opinion and not too informative for a broader
readership.I would hence recommend to return the manuscript to the authors for major
revisions. During these revisions, the mentioned points should be picked up in order
to increase the relevance of the work. A couple of further issues are mentioned below.
With kind regards.

A: As already mentioned in response to Reviewer’s point 2, these issues are now ex-
plicitly mentioned in the Limitations paragraph in the Discussion section. We stress
that we agree that all these limitations exist, but we find that it would be hardly feasible
to test one statistical method by varying: Time resolution Space resolution Reference
dataset Bias correction technique Physics and numerical climate model schemes

To our knowledge, such a broad validation does not exist even for simple and well es-
tablished models (e.g. single threshold binary separation). As far as we can tell, most
of the literature dealing with this type of statistical model for precipitation phase ap-
portionment are validated on datasets similar to the ones we considered in this paper.
We think that the Limitations section should make it clear that the results shown in the
paper should be considered specific to our setting, and that a validation of the model
should be performed, if this is applied to different datasets.

FURTHER ISSUES:

Q: Line 24: Very unclear what is meant.

A: We agree that this sentence was not clear. We replaced it with a simple example of
a case where the binary apportionment could produce a severe bias:
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“Even though such binary separation of snowfall using a temperature threshold seemed
a good option to retrieve snowfall data from E-OBSv20.0e, it has obvious limitations:
for example, in an event characterized by abundant precipitation but a temperature
associated to a roughly 50$\%$ snow fraction, snowfall would be either strongly under-
or overestimated.”

Q: Lines 35-36. Also rather unclear.

A: We agree about lack of clarity and we also realized this sentence was quite redun-
dant. We will remove lines 35-38 and change the next sentence to better match the
previous paragraph to:

“In order to mitigate the aforementioned biases, a BC step is usually performed. This
step usually consists of a methodology designed to adjust specific statistical properties
of the simulated climate variables towards a validated reference dataset in the historical
period. [...]”

Q: Lines 38-40: This is actually not true, the entire set of so-called "perfect progno-
sis" downscaling methods is ignored here. These do not adjust the simulated vari-
ables towards observations but exploit calibrated relationships between observed (or
reanalysis-simulated) large scales and observed local scales.

A: In agreement with the existing literature, we consider perfect prognosis downscaling
as a part of statistical downscaling (see, e.g. Soares et al., 2019)

Q: Lines 141-142: Very unclear.

A: We will change this sentence to:

“This quantity is relevant for hydrologists, being closely related to runoff and river dis-
charge, but also for climatologists, since it well represents the intensity of the phe-
nomenon while, however, we remind that snowfall is not a measure of accumulation of
snow on the ground.”
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Q: Line 145: Above (line 132) you mention that only daily data are used, here you
obviously employ hourly data. Please clarify.

A: We better clarify changing the sentence at line 145 to:

The initial ERA5 dataset is available at hourly frequency, while the IPSL$_$WRF is
available at daily frequency. Since the two time steps are different, and we have no
way to disentangle a daily quantity into the sub-daily cycle, we aggregate the hourly
ERA5 data into daily.

Q: Line 151: "grid step" unclear

A: We will change the sentence to: In particular, we consider DJF data from climate
simulations of the historical period 1979-2005 over the same domain and at the same
spatial resolution as the reanalysis dataset described in Section \ref{era5mod}.

Q: Line 181: Rather unclear what is meant by "standardized temperature anomalies"
and why these are used.

A: We now specify the standardization procedure as follows: “In all the regression
models discussed in the following, but not in the STM, we use as independent variable
the standardized temperature anomalies, obtained by subtracting the historical mean
and dividing by the historical standard deviation.”

Using standardized anomalies is quite a common practice in climate studies, where
different variables span over very different scales (e.g. precipitation is in average about
0.1 m/day, absolute temperature is of order 250-300 K, geopotential height 5000 m).
For transparency, we report to the reviewer that, in particular, we had standardized
the variables as we tried to add total precipitation as a covariate, to consider the pos-
sible influence of intense precipitation on the snow fraction. Given the very different
scale between the two covariates (temperature and precipitation) we standardized the
variables in the various model specifications. Improvement obtained by adding precip-
itation were so unremarkable (practically non existent) that we did not even mention
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them in the manuscript, and kept the results of the models based on temperature with
standardized variables.

We do not foresee affecting our results and it is quite a common practice in regression
modelling even outside climatology. As we already stressed at line 182, it is important
to do the standardization in the same way to reproduce the result.

Q: Chapter 3.1.2: This sub-chapter contains a large amount of rather technical informa-
tion, which is appreciated, but which should be moved to some technical appendix I
believe.

A: We agree and we will move this subsection to a technical appendix.

Q: Line 517: Do you have any explanation for these rather low calibrated thresholds?
Is there a relation to orographic height, for instance?

A: We do not have an explanation for this. We noticed that such low thresholds ap-
pear in areas where we would expect winter precipitation to be mainly snow regardless
of the specific daily temperature, given the cold continental or subarctic climate. The
search algorithm is not meant to necessarily find physically meaningful values, so it is
possible that it finds thresholds that improve the performance only very slightly, while
even a regression without any threshold or even a binary apportionment could per-
form relatively well. In this sense, the threshold recovered after the recomputation via
the segmented regression algorithm make more sense (temperature over continental
areas seem positive, but here please consider that we are looking at anomalies).

Q: Line 526: Should be "Fig. 2" instead of "Fig. 1".

A: Thank you, we will correct accordingly

Q: Lines 688-689: Very unclear.

A: We will change this sentence to:

Since comparing IPSL$_$WRF and its adjusted versions to ERA5 does not provide
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a one-on-one correspondence between snowfall events, it is not possible to compute
correlation coefficients between reanalysis and model snowfall time series at each grid
point as in Fig. \ref{boxcor}. Instead, we can study the correlation between the total
1979-2005 ERA5 snowfall and the total 1979-2005 snowfall simulated by IPSL$_$WRF
and approximated with segmented logit and cubic spline regression at each grid point.
Fig. \ref{alps_dist} (a) shows the scatterplots of total IPSL$_$WRF, logit segmented
regression and cubic spline regression snowfall against total ERA5 snowfall for the grid
points in the Alps region.

Q: Lines 707-708: Better representation of the tails is not really apparent from the
figure I’d say.

A: Even though we are aware that the definition of “tail” is somehow arbitrary, we remark
that when the ERA5 distribution hits the 0.95 mark, the IPSL-WRF distribution function
is barely above 0.85, and when ERA5 reaches 0.99 IPSL-WRF is around the 0.95.
On the other hand, the two statistical models are practically non distinguishable from
ERA5, considering that this holds true for values above the 95th percentile, we think
that the improvement in the tail is rather solid.

Q: Figure 1: Color scale is not very intuitive.

A: We changed the palettes to more traditional ones. The initial choice of a palette
alternating different color was due to the fact that the total snowfall spans several orders
of magnitude between the most and least snowy locations on the map, so that less
contrasting color scales tend to flatten the variability.

Q: Figures 2 and 3: Bad color scale: White color means threshold temperatures around
0âŮęC but also "not applicable". I’d suggest to modify the color scale.

A: We agree. We will change the color associated to 0◦C to gray, to make the figures
clearer.

Q: Figure 4: Legend too large. Also, the methods are named differently compared to
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Table1 and are sorted in a different order. Please harmonize. Also, it would be good to
use the same unit in the lower panel as in Table 1 (10ËĘ-3)

A: We proceeded to make these modifications to the figure.

Q: Figure 5: Upper panel: Please use the same sorting of methods as in Table 1.

A: We proceeded to make this modification to the figure.

Q: Figure 6: Very bad color scale, not at all intuitive. Also, the color scale should be
identical for all panels to enable a comparison (same color should mean the same
value in all panels). Is the unit actually m/27 years (1979-2005) or m/year? Please
clarify.

A: We proceeded to change the palette with one more traditionally used for anomalies.
Unfortunately, setting the colorscale in such a way that the same color has the same
value over the plot would completely flatten the aspect of panels b) and c), since values
in panel a) can be one order of magnitude larger.

Q: Figure 7: Legend of lower panel too small.

A: We proceeded to make this modification to the figure.

Q: Figure 8: What about the bad-performing grid cell in northern Italy in logit seq and
cubic spline? What is happening here?

A: We inspected the specific grid cell in detail to assess the extreme negative value.
Indeed, it seems to be one of the few points where the breakpoint search algorithm
failed to converge, so that a threshold is not available and the models were then not
estimated. When we took sums over time to compute snowfall totals, an ‘na.rm =
TRUE’ option was used in the R script so that instead of an NA the sum in that grid cell
resulted equal to 0, and the difference was then the negative ERA5 snowfall total in
that cell. We ran the scripts without the NA removal option and produced a new figure
with the concerned grid point correctly masked out as NA.
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Q: Figures 9 and 11, upper panels: Sorry, but even after reading the explanation several
times it is not really clear to me what is displayed here. Also, I’d suggest to use a white
background instead of a black background. Lower panels: Please specify the unit of
the x-axis

A: We proceeded to make this modification to the figure.
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(a) Single threshold T (°C)

30

40

50

60

−20 −10 0 10 20 30 40

−10

−5

0

5

(b) Lower threshold T (°C)

30

40

50

60

−20 −10 0 10 20 30 40

−15

−10

−5

0

5

(c) Upper threshold T (°C)

30

40

50

60

−20 −10 0 10 20 30 40

−6

−4

−2

0

2

4

6

8

Fig. 2.

C17

(a) Single threshold T (°C)

30

40

50

60

−20 −10 0 10 20 30 40

−4

−3

−2

−1

0

1

(b) Lower threshold T (°C)

30

40

50

60

−20 −10 0 10 20 30 40

−4

−3

−2

−1

0

1

(c) Upper threshold T (°C)

30

40

50

60

−20 −10 0 10 20 30 40

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Fig. 3.

C18



naive

logit−linear

beta linear

segmented

cubic spline

0.0 0.2 0.4 0.6 0.8

RMSE

MAE

(a) Snow fraction

naive

logit−linear

beta linear

segmented

cubic spline

0 0.25 0.5 0.75 1 (x 10−4 )

RMSE

MAE

(b) Snowfall

Fig. 4.

C19

naive

logit−linear

beta linear

segmented reg.

cubic spline

0.00 0.25 0.50 0.75 1.00

(a) correlation between observed and predicted snowfall

(b) Segmented regression

30

40

50

60

−20 −10 0 10 20 30 40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) Cubic splines

30

40

50

60

−20 −10 0 10 20 30 40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) Naive single threshold

30

40

50

60

−20 −10 0 10 20 30 40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 5.

C20



(a) IPSL_WRF − ERA5 snowfall diff. (m)
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(a) Cubic spline regression
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(a) IPSL_WRF − ERA5 snowfall diff (m)
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R = 0.99, p < 2.2e−16
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(a) IPSL_WRF − ERA5 snowfall diff (m)
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