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Abstract. The City of Venice and the surrounding lagoonal ecosystem are highly vulnerable to variations in relative sea level. 

In the past ~150 years, this was characterized by a secular linear trend of about 2.5 mm/year resulting from the combined 

contributions of vertical land movement and sea-level rise. This literature review reassesses and synthesizes the progress 

achieved in understanding, estimating and predicting the individual contributions to local relative sea level, with focus on the 

most recent publications. The current best estimate of historical sea-level rise in Venice, based on tide-gauge data after removal 35 

of subsidence effects, is 1.23±0.13 mm/year (period from 1872 to 2019). Subsidence thus contributed to about half of the 

observed relative sea-level rise over the same period. A higher - yet more uncertain - rate of sea-level rise is observed during 

recent decades, estimated from tide-gauge data to be about 2.76 ±1.75 mm/year in the period 1993-2019 for the climatic 

component alone. An unresolved issue is the contrast between the observational capacity of tide gauges and satellite altimetry, 

with the latter tool not covering the Venice Lagoon. Water mass exchanges through the Gibraltar Strait currently constitute a 40 

source of substantial uncertainty for estimating future deviations of the Mediterranean mean sea-level trend from the global-

mean value. Subsidence and regional atmospheric and oceanic circulation mechanisms can deviate Venetian relative sea-level 

trends from the global mean values for several decades. Regional processes will likely continue to determine significant 

interannual and interdecadal variability of Venetian sea level with magnitude comparable to that observed in the past, as well 

as non-negligible differential trends. Our estimate of the likely range of mean sea-level rise in Venice by 2100 due to climate 45 

changes is presently estimated between 11 and 110 centimetres. An improbable yet possible high-end scenario linked to strong 

ice-sheet melting yields about 170 centimetres of mean sea-level rise in Venice by 2100. Projections of natural and human 

induced vertical land motions are currently not available, but historical evidence demonstrates that they can produce a 

significant contribution to the relative sea-level rise in Venice, further increasing the hazard posed by climatically-induced 

sea-level changes. 50 

1 Introduction 

This paper critically reviews the current knowledge about mean Relative Sea Level (RSL) changes in the Venice Lagoon on 

time scales from interannual to centennial and the associated contribution from oceanic, land and atmospheric processes. The 

assessment includes a paleo perspective, considering the Quaternary period. It encompasses an overview of available observed 

estimates of historical RSL changes in Venice (Sect. 2) and quantification of the individual contributions by the major 55 

underlying processes, including vertical land motions (Sect. 3) and climatic changes (Sect. 4). Estimates are supported by a 

review of downscaling mechanisms of global and large-scale oceanic and atmospheric signals to the Venice Lagoon (Sect. 5), 

with special focus on processes in the Atlantic and Euro-Mediterranean regions. Estimates of projected long-term future RSL 

changes based on state-of-the-art models of vertical land motions and of sea-level rise under different scenarios of 

anthropogenic greenhouse gas emission are discussed, with emphasis on the associated major sources of uncertainty (Sect. 6). 60 

The review primarily focuses on papers published in the past decade and also aims at defining the overarching open research 

questions and possible approaches for progress (Sect. 7). 
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Given the multidisciplinarity of this review, it is useful to specify the meaning of terms and concepts associated with sea-level 

changes that are recurrent in this paper and often used inconsistently by different scientific communities (see also Gregory et 

al., 2019, for a broader discussion). Unless otherwise specified in the text, the following definitions apply: 65 

● Mean Seal Level (MSL): time-mean state whose precise definition should be specified when the term is used, and 

which is understood to refer to a period long enough to eliminate the effect of meteorological variations at least 

(Gregory et al., 2019). More precise definitions exist of MSL, e.g., the average value of levels observed each hour 

over a period of at least a year, and preferably over about 19 years, to average out cycles of 18.6 years in the tidal 

amplitudes and phases, and to average out effects on the sea levels due to weather (Pugh, 1987), that however are not 70 

strictly and consistently applied in the literature reviewed here; 

● Relative Sea Level (RSL) change: change in local MSL relative to the local solid surface (Gregory et al., 2019); 

● Absolute/geocentric sea-level change: change in local MSL with respect to a geocentric reference, namely a 

Terrestrial Reference Frame or, equivalently, a reference ellipsoid (Gregory et al., 2019); 

● Subsidence: land surface sinking (UNESCO, 2020; see also: Gregory et al., 2019). 75 

A list of acronyms recurrently used in the paper is provided in Table 1. 

The Reader is referred to Lionello et al. (2020a) and Umgiesser et al. (2020) in this special issue for details about the 

geographical and historical setting of the Venice Lagoon, the linkage between RSL changes and the phenomenology of surges 

and extreme water levels affecting the lagoon, about their prediction and about broader implications for the ecosystems and 

the historical city. 80 

2 Monitoring sea-level changes 

The monitoring of sea-level changes in Venice relies on both in-situ data acquired by tide gauges (sect 2.1) and remote sensing 

observations provided by satellite radar altimetry (sect. 2.2). Tide gauges record sea-level heights with reference to a permanent 

benchmark on land. As a consequence, they provide measurements of RSL embedding the effects of vertical land motion (Sect. 

3). Tide gauge data sets consist of local, long-term measurements acquired at high frequency and accuracy (Zerbini et al., 85 

2017). Satellite radar altimetry measures geocentric sea-level changes (Fu and Cazenave, 2001; Stammer and Cazenave, 2017) 

that are therefore independent of variations of the local land level changes (Gregory et al., 2019), hence missing a potentially 

key component of RSL (Wöppelmann and Marcos, 2016). These measurements have a lower sampling rate (several days) and 

a lower accuracy than those provided by tide gauges, but they are representative of wider oceanic areas and have the potential 

to characterize the evolution of sea-level variability from the open ocean to the coastal zone. 90 

2.1 Tide Gauges 

Tide gauges have been providing sea-level data in Venice for about 150 years. Historically, the establishment of tide gauges 

was primarily dictated by navigational needs and tidal measurements, with an operational accuracy of a few centimeters. The 
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first self-recording tide gauge in Venice was installed at Palazzo Loredan, Campo Santo Stefano, in Rio San Vidal at a distance 

of about 100 m from the Grand Canal (Fig. 1). Systematic measurements began on 27 th November 1871. The observations 95 

were performed under the responsibility of the Civil Engineering Office (Ufficio del Genio Civile) until 27 July 1896, when 

the management was taken over by the Italian Military Geographic Institute (Istituto Geografico Militare), which was also in 

charge of land levelling. Two additional tide gauges became operational in 1888 and 1906. The first one, owned and managed 

by the Royal Italian Navy, was installed in the Venice Arsenal; the second one was installed in the Grand Canal, near Punta 

della Salute. The tide gauges at Santo Stefano and in the Arsenal were decommissioned in 1911 and 1917, respectively. In 100 

1923, the gauge on the Grand Canal was moved to the Giudecca Canal side of Punta della Salute. This gauge is still active 

under the management of the “Istituto Superiore per la Protezione e la Ricerca Ambientale” (ISPRA, Venice branch, 

www.venezia.isprambiente.it). Since 2002, a gauge on the Grand Canal side is again operational on the site of the previous 

installation, thanks to the Venice municipality (“Centro Previsione e Segnalazione Maree”, 

www.comune.venezia.it/content/centro-previsione-e-segnalazione.maree). 105 

Further details on the tide gauges installed in the Venice Lagoon up to the early 20 th century are reported by Magrini et al. 

(1908). Dorigo (1961) reviews the sea-level observations in Venice and summarizes the main development stages of the 

observational network in the Venice Lagoon, including lists of active and decommissioned tide-gauge stations. Battistin and 

Canestrelli (2006) provide the most recent review of tide-gauge data for Venice and collect quality-checked published and 

unpublished records of high and low waters since 1872. 110 

Linking the data from the various tide gauges to provide one continuous dataset of long-term sea-level change requires an 

accurate knowledge of the corresponding reference levels (or datums) on land. Before the 1910s, the most common vertical 

reference level in Venice was the so-called ‘comune alta marea’ or ‘comune marino’ (CM). The CM represents the upper edge 

of the green belt formed by algae on quays and walls and corresponds to mean high water. It was often indicated by an engraved 

horizontal segment and/or a ‘C’ (Rusconi, 1983; Camuffo and Sturaro, 2004). According to Dorigo (1961), Mati established 115 

the tide gauge datum at Santo Stefano at 1.50 m below the CM of 1825. In 1910, the reference for sea-level data was changed 

to the mean tide level (MTL) of 1884-1909 (central year 1897), computed from the high and low waters measured at Santo 

Stefano. The new reference, that corresponds to the “Zero Mareografico Punta Salute” (ZMPS), was 1.2754 m above the tide 

gauge datum and 0.2246 m below the CM of the year 1825. Since 1910, the ZMPS has been the standard reference for RSL 

observations in Venice. The benchmarks of the two tide gauges at Punta della Salute were also connected to the levelling 120 

network in 1910 and 1923, respectively. The heights of the various benchmarks and vertical reference levels are shown in the 

inset of Figure 2. The record of high and low waters since 1872 allowed a composite 148-year MTL time series to be developed 

from 1872 to 2019, with very few gaps (Fig. 2). Note that, whereas MTL and MSL are different because MTL does not consider 

shallow water tidal effects, this difference is negligible in Venice. From observations covering the period 1940-2012, Zerbini 

et al. (2017) obtained MTL-MSL = -0.1±0.1 cm. The Permanent Service for Mean Sea Level provides a value of 0.0 cm, 125 

estimated according to Woodworth (2017) (www.psmsl.org/data/obtaining/stations/168.php). 

Estimates of secular trends of Venetian RSL and MSL based on tide gauge data are summarized in Sect. 4.1. 
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2.2 Altimetric data 

Reliable altimetric data are available since the early 1990s when the launch of the TOPEX/Poseidon mission marked the 

beginning of the so-called 'satellite altimetry era'. Since then, satellite radar altimeters have been providing an operational 130 

global monitoring of the geocentric sea level (Cazenave et al., 2019). The spatial resolution of these data is controlled by the 

orbital parameters selected for each mission, as the radar altimeters acquire narrow threads of measurements along those 

portions of the ocean surface that are directly overflown by the satellite (along-track data). Depending on the orbital period, 

these tracks can be separated by hundreds of km, limiting the actual spatial coverage provided. For example, the Jason-3 

mission that continues the climatic sea-level record started in 1993 with TOPEX/Poseidon has only four tracks crossing the 135 

Adriatic Sea and does not cover the Venice area. In order to improve the monitoring, it is possible to take advantage of the 

data collected by various radar altimeters flying at the same time. However, this requires a characterization of the inter-mission 

biases and the development of suitable interpolation schemes of the independent ground tracks. Multimission datasets are 

typically distributed over regular grids.  

An additional potential limiting factor for the Venice area is the degradation of the technique performance towards the coast 140 

resulting from the contaminating presence of land in the satellite footprint and from the enhanced inhomogeneity of the local 

ocean surface. Limitations and possible perspectives of coastal altimetry in the Adriatic Sea have been discussed in several 

studies since the late 1990s (Cipollini et al., 2008; Fenoglio-Marc et al., 2012; Vignudelli, 1997; Vignudelli et al., 2011, 2019a). 

This has motivated further investigations (Cipollini et al., 2013; Passaro et al., 2014) based on the latest coastal altimetry 

datasets (e.g., CTOH, see Birol et al., 2017) and/or reprocessing initiatives (e.g., ALES, see Passaro et al., 2014). In the 145 

Northern Adriatic, these studies analyzed data around Venice and Trieste, including their validation against tide-gauge 

measurements. The results show that a reasonable increase in quantity and quality of data can be achieved compared to standard 

products up to a few kilometers from the coastline. The comparative assessments with tide gauges confirm that correlation of 

coastal altimetry products is always higher than standard products and that the difference in sea-level estimates provided by 

the two techniques is typically below 10 cm in proximity of the point of closest approach to the tide gauge. Among the most 150 

relevant reprocessing efforts of the last years, we should mention the Sea Level Climate Change Initiative (SLCCI) of the 

European Space Agency, that encompassed nine satellite radar-altimetry missions over the period 1993-2015 (Legeais et al., 

2018). The SLCCI product, distributed over a homogenous grid of 0.25°, contains data close to the coast, e.g., 10 km near 

Trieste, and was used for the assessment of coastal sea-level trends (Rocco, 2015; Vignudelli et al., 2019b). 

The sufficient maturity of the algorithms and processing in coastal altimetry offered the opportunity to extend the SLCCI 155 

product to the coastal zone. During the bridging phase in 2018 a new product with an along-track spacing of about 350 m for 

estimating sea-level trends has been developed in selected regions, including the Adriatic Sea. The experimental dataset only 

covered the period from July 2002 to June 2016 and the Jason-1 and Jason-2 missions. It combines the post-processing strategy 

of X-TRACK (Birol et al., 2017) and the advantage of the ALES re-tracker (Passaro et al., 2014). The product was tested along 
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track 196 in the Gulf of Trieste. The improvement is particularly good in the entire Gulf of Trieste (ESA CCI, 2019), confirming 160 

what was found by Passaro et al. (2014). 

Altimetry-based assessments of multidecadal trends of Venetian MSL are summarized in Sect. 4.2. 

3 Vertical land movement 

The characterization of the RSL cannot be separated from an understanding of the phenomena that control the vertical land 

movement. Therefore, these are presented in the following together with their relevant time scales and estimated trends. This 165 

section includes a paleo perspective on vertical land movements and considers processes whose characteristic time scales 

extend in some cases largely beyond the observational RSL period. We consider information on such time scales essential in 

the context of this review to understand ongoing processes and frame them within the correct time scale. The aim is therefore 

to provide the reader with an overview of the main characteristics of the local vertical land movement, of the methods that 

allow quantifying it over different time intervals and of the resulting uncertainties. The joint consideration of all these elements 170 

determine the constraints on our current ability to make predictions on the future evolution of the local vertical land movement. 

The vertical velocity of a given area results from the sum of different velocity components due to tectonics, sediment loading, 

sediment compaction, Glacial Isostatic Adjustment (GIA), and anthropic activities (Carminati and Di Donato, 1999; Pirazzoli, 

1996). 

In the Venice area, all the components listed above induce non-negligible displacements, even though their magnitude and 175 

relative importance have changed over time. The net result is a time-dependent land lowering (subsidence) that enhances RSL. 

Natural and anthropogenic components are assumed to act on different time scales: millions to thousands of years and hundreds 

to tens of years, respectively. This assumption allows a separation of the factors controlling sea-level changes, if the estimates 

of vertical land movements over different time spans are available (Carminati and Di Donato, 1999). 

3.1 Natural land movements 180 

The Venice area is naturally subsiding. This process is characterized by a long-term component controlled by 

tectonics/geodynamics and sedimentation, active on time spans of about 106-104 yr, and a short-term component controlled by 

glaciation cycles and due to GIA processes acting on periods of 103-104 yr (Antonioli et al., 2017; Cuffaro et al., 2010; Stocchi 

et al., 2005). 

Depending on the time interval considered, different datasets are available for investigating the rate of vertical land movement. 185 

Subsidence rates up to 2 Myr ago can be inferred from the thickness of the different layers of Quaternary sediments. Over this 

time frame, sedimentation rates are equivalent to subsidence rates, since the entire sedimentary sequence was deposited in 

shallow marine to continental environments (Massari et al., 2004). Investigation further in the past is made through seismic 

lines, which indicate buried interfaces between materials of different acoustic impedances, and drilled cores. Deposition rates 

can be computed using sedimentological indicators (Antonioli et al., 2009 and references therein; Carminati and Di Donato, 190 
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1999; Favero et al., 1973), nannofossil biostratigraphy, paleomagnetic polarity and magnetic susceptivity (Kent et al., 2002). 

Additional techniques are available for more recent epochs. Radiocarbon dating allows investigating organic sediments, mainly 

peats, up to ~50,000 years ago (Bortolami et al., 1985), while the depth of archaeological remains and historical data provide 

information for the last few thousand years (Flemming, 1992). Finally, information on the natural component of the 

contemporary land subsidence is provided by tide-gauge and leveling measurements made before the 1930s, when human 195 

activities impacting land subsidence started to develop (Gatto and Carbognin, 1981). The following sections illustrate the 

evolution of the natural component of subsidence using the Marine Isotope Stage (MIS) 5.5 event as a reference to separate 

geologically older and newer RSL changes. Due to its relevance within geophysical studies on sea-level variations, a dedicated 

section on GIA is also provided. 

3.1.1 Pleistocene up to MIS 5.5 200 

The natural subsidence of Venice on timescales from tens of millennia to millions of years is controlled by sedimentary and 

tectonic/geodynamic processes. Venice is located at the northeastern border of the Po plain (Figs. 1 and 4), which is the foreland 

basin of two fold-and-thrust belts: the N-NE vergent Northern Apennines and the S vergent Southern Alps (Carminati et al., 

2003). Figure 4 shows the geometry of the foreland regional monocline related to the subduction of the Adriatic plate (that 

includes the Po plain) below the Northern Apennines from the southern Po plain to the Friuli Region, as reconstructed from 205 

seismic reflection profiles. The dip of the regional monocline gradually decreases from about 22° to close to 0°. This geometry 

is consistent with the southward increasing thickness of Quaternary sediments, found in borehole stratigraphies (Carminati and 

Di Donato, 1999). These data imply that the long-term component of subsidence in the Po Plain and in Venice is almost entirely 

controlled by the retreat and flexure of the Adriatic plate subducting underneath the Apennines (Carminati et al., 2003; Cuffaro 

et al., 2010). 210 

Kent et al. (2002) derive a more complex evolution for the Venice area from integrated magneto-bio-cyclo-stratigraphy and 

palynofloral analyses on the VENEZIA-1 borehole, drilled in 1971 by the Consiglio Nazionale delle Ricerche (CNR, 1971) 

down to a total depth of 950 m. They concluded that the region collapsed at about 1.8 Myr ago and was characterized by slow 

marine sediment accumulation until around 0.8 Myr ago, shoaling rapidly in subsequent times. The initial transition to 

continental sediments occurred during a glacioeustatic low-stand dated at 0.43 Myr or 0.25 Myr. From the VENEZIA-1 record, 215 

Kent et al. (2002) calculated a total long-term subsidence rate of less than 0.5 mm/year, about half of that proposed earlier on 

less refined data, and a mean subsidence rate of 0.36 mm/year for the last 600 kyr. The latter value is considerably lower when 

compared with rates obtained for the Holocene and the upper MIS 5.5. The most reasonable interpretation is that the mid-

Pleistocene rates are unavoidably averaged over many cycles of quiescence and rapid motion, thus they cannot be readily 

compared to shorter periods, which could experience phases of rapid change induced by both natural and anthropogenic factors. 220 

Concerning natural variations acting on shorter time scales (103-104 yr), several transgressive/regressive Pleistocene cycles are 

recorded in well-core stratigraphies consisting of alternating shallow marine and continental deposits. In the Late Quaternary, 

the evolution of the Venetian–Friulian plain was strongly influenced by glacial cycles and a general regressive trend is apparent 
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(Massari et al., 2004). The coastal to shallow-marine deposits assigned to MIS 5.5 can be tracked in borehole logs up to 30 km 

west of the present shoreline. South of the Po Delta, the base of the Tyrrhenian coastal deposits lies at about 125 m b.s.l.,  but 225 

its depth rapidly increases toward the south along the Romagna coastal plain (Amorosi et al., 2004; Bondesan et al., 2006). 

This pattern may reflect the northeasterly retreat of the Adriatic slab (Cuffaro et al., 2010; Ferranti et al., 2006). 

The MIS 5.5 markers allow calculating reliable rates because compaction is negligible, the basal MIS 5.5 unconformity is 

widely distributed and the overlying lagoonal paralic sediments in cores are fairly easy to recognize. Several sites related to 

sea-level position during MIS 5.5 are considered in Antonioli et al. (2009) and Lambeck et al. (2011). These have a fairly good 230 

W–E distribution along the distal sector of the Venetian plain. The stratigraphic data were obtained from boreholes mainly 

drilled for the Geological Map of Italy (CARG-Veneto Region) and for the mobile barriers-based protective system (so called 

MOSE, see Lionello et al., 2020a) project by the Venice Water Authority. An error bar of ±2 m was assigned because the 

sediments are lagoonal. The northwestern Adriatic coast (Friulian and Venetian plain) shows homogeneous subsidence, with 

rates ranging between 0.58 and 0.69 mm/yr. The MIS 5.5 data from the VENEZIA-1 core provides a rate of 0.69 mm/year 235 

(Ferranti et al., 2006). 

3.1.2 Late Pleistocene and Holocene 

After the Last Glacial Maximum several lagoons developed along the Adriatic Sea, formed by the rivers flowing into the sea. 

Only two of them, the Grado and Venice lagoons, still exist today, while the rest have been infilled by sedimentation (Tambroni 

and Seminara, 2006). Recent stratigraphic information about Holocene sea levels (2-6 kyr Cal BP) were obtained from lagoonal 240 

deposits found in boreholes between the Tagliamento River and the city of Venice. Other data were derived from 

archaeological markers reported in the abundant literature available for the Venice Lagoon and its mainland (Antonioli et al., 

2009; Fontana et al., 2017; Lambeck et al., 2011). The shell base of the lagoon indicates a subsidence rate over the last 7.3 kyr 

of 1.6±0.3 mm/year (Antonioli et al., 2009, their Tab. 1 average of H/G values for sites 26 and 28). The higher Holocene 

subsidence with respect to the MIS 5.5 is possibly due to sediment compaction, which does not contribute to the long-term 245 

rate (Gatto and Carbognin, 1981; Tosi et al., 2009). 

Subsidence rates up to 1.2-1.3 mm/year were calculated by radiocarbon dating on late Pleistocene and Holocene deposits of 

the Venice Lagoon (e.g., Bortolami et al., 1985; Gatto and Carbognin, 1981). This estimate is interpreted as the average of a 

time-varying trend related to periods of excess sedimentation alternating with periods without deposition or even with erosion 

(Bortolami et al., 1985). Indeed, over relatively short periods, different rates can be observed. For instance, the largest rate, ~5 250 

mm/year, occurred during the Last Glacial Maximum which induced the maximum effect of isostatic lowering. 

Finally, it is generally assumed that natural subsidence of Venice is continuous in time. However, abrupt catastrophic pulses 

of subsidence cannot be ruled out as suggested by the sudden disappearance of the island of Malamocco at the beginning of 

the XII century. Carminati et al. (2007) investigated the potential effects of earthquakes on the subsidence of Venice by means 

of numerical models. The authors concluded that, while the coseismic effects of a single event are unlikely to be detectable, a 255 

priori they cannot be considered as negligible given the number of seismogenic sources within a 100 km distance from the 
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town. These authors, however, suggest that earthquake-induced liquefaction may cause or have caused local acceleration of 

subsidence in Venice. For example, the destruction and sinking of ancient Malamocco is roughly coincident with a strong 

earthquake cycle that was associated with phenomena possibly explained by liquefaction of sandy layers. 

A summary of the rates of natural subsidence discussed in this and in the previous sections is presented in Table 2. The values 260 

reported in the literature are often presented without indicating the corresponding uncertainty level. In some cases, it is even 

explicitly stated that the data available to the study did not allow for a quantification of uncertainty (e.g., Carminati and Di 

Donato, 1999). Uncertainty estimation is further complicated by the fact that subsidence does not only vary with time, but also 

in space, depending on the local conditions of the subsoil (Brambati et al., 2003). For what concerns uncertainties of 

geomorphological and historical markers, Antonioli et al. (2009, 2017) proposed a strategy based on archaeological metadata 265 

and on standard bathymetric corrections for the Holocene and late Pleistocene (Ferranti et al., 2006; Lambeck et al., 2004). 

The resulting median uncertainty for the Venice area is 0.2 mm/year (markers 24-30 in Antonioli et al., 2009, their Table 1). 

3.1.3 Glacial Isostatic Adjustment 

GIA describes the response of the Earth System to the growth and decay of continental ice sheets as a consequence of past, 

present or future climate variations (for recent reviews, see: Spada, 2017; Whitehouse, 2018). GIA stems from interactions 270 

between the cryosphere, the solid Earth and the oceans, involving sluggish deformations of the crust driven by surface mass 

redistribution, mutual gravitational attraction and rotational variations (Melini and Spada, 2019; Spada and Melini, 2019). The 

GIA-induced RSL variations are characterized by a strong regional imprint reflecting such interactions. They can be modeled 

by means of the Sea Level Equation first introduced by Farrell and Clark (1976), which is an implicit equation that accounts 

for variations of the Earth’s topography in response to sea-level change, consistently with changes in the gravity field (Peltier, 275 

2004). Among the processes contributing to present-day RSL change (e.g., Milne et al., 2009), GIA is the only one that is 

sensitive to the solid Earth rheology. Because changes in the Earth system observed by geodetic methods would be unfeasible 

without taking GIA properly into account (e.g., King et al., 2010), GIA modeling plays an important role in the study of the 

impacts of contemporary and future climate change. 

Due to the widespread evidence of past RSL variations since the late Holocene across the Mediterranean Sea, much work has 280 

been done to reconcile field observations of past RSL variations with GIA modeling predictions (Antonioli et al., 2009, 2017 

and references therein). In two recent contributions, attention has been paid to the history of sea level in the Northern Adriatic, 

also providing GIA modeling predictions for the city of Venice. The first one (Lambeck et al., 2011) is based on the ice-sheets 

history “K33_j1b_WS9_6”; it assumes a 65-km thick elastic lithosphere and one order of magnitude viscosity increase across 

the 670 km depth seismic discontinuity. The second one, proposed by Roy and Peltier (2018) and named “ICE-7G_NA(VM7)”, 285 

is characterized by a 90-km thick lithosphere and by a comparatively milder viscosity increase (by a factor of ~3). The two 

models predict distinctly different histories for the GIA-induced RSL variations during the Holocene: the first shows ~2.2 m 

of RSL rise in the last 5,000 years, whereas the second indicates essentially unvaried RSL during the same period. Note that 

in previous work (Lambeck et al., 2004), the GIA predictions for the Northern Adriatic had a larger uncertainty, with a range 
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of RSL rise between ~5 and ~2 m in the last 5,000 years. This shows that GIA models are constantly being updated due to 290 

improvements in the constraining RSL datasets and of modeling techniques. 

Based on the work quoted above, the rate of long-term RSL change in Venice due to the melting of the late-Pleistocene ice 

sheets does not appear to be tightly constrained (Tosi et al., 2013). Further uncertainties arise from the effects of the melting 

of the Würm Alpine ice sheet, whose chronology remains uncertain regarding several aspects (Spada et al., 2009). Nonetheless, 

the long-term rate of Venetian RSL change due to GIA can be assessed in the range between -0.2 and +0.5 mm/year based on 295 

the published works cited above. Estimates by Carminati and Di Donato, (1999) and Stocchi and Spada, (2009) broadly fall 

within this range, although these works are more pertinent to the Po Plain scale. Note that since the GIA acts on timescales of 

millennia, these natural contributions to total RSL change will remain constant over the 21st century. 

3.2 Anthropogenic subsidence 

Anthropogenic land subsidence mainly occurs due to extraction of subsurface fluids causing compaction of unconsolidated 300 

sediments. This is a process that is widespread in susceptible areas (e.g., Gambolati et al., 2006; Galloway and Riley, 1999; 

Erkens et al., 2015; Galloway et al., 2016). Measurements of piezometric level and of vertical land movements are fundamental 

to constrain quantitatively these processes. Numerical modeling is often used to link the flow of subsurface fluids to the 

corresponding geomechanical response of the porous medium, although caution is needed. In fact, the paucity of geological 

data, the imperfect knowledge of forcing processes and the geomechanical and hydraulic properties generally require 305 

significant modeling assumptions and approximations. These techniques have been used to analyze and control the effects of 

human activities on subsidence in the Venice area. 

Prior to 1930, subsidence rates in the Venice region were similar to Holocene rates, suggesting limited anthropogenic 

contribution. This is confirmed by both leveling measurements (Dorigo, 1961; ISPRA, 2012; Wöppelmann et al., 2006) and 

differences in RSL trends between Venice and Trieste. The post-1930 period is now considered in more detail. 310 

3.2.1 The 1930-1970 period 

In the Po and Veneto Plains, anthropogenic activities affecting natural land subsidence mainly began in the 1930s due to the 

overpumping of groundwater and natural gas to support intense civil and industrial development, as shown by geodetic data 

and reproduced by numerical models (Gambolati et al., 1974; Gambolati and Gatto, 1975; Carbognin et al., 1976). Between 

World War II and 1970, anthropogenic subsidence was a problem common to the whole Northern Adriatic coastline (Tosi et 315 

al., 2010). However, the nature of the withdrawn fluids varied: artesian water in the Venice area, gas-bearing water in the Po 

Delta and both groundwater and gas in the Ravenna region. Anthropogenically driven subsidence rates of 10 to 20 mm/year 

and even higher occurred in certain locations (Carminati and Di Donato, 1999; Teatini et al., 2005), dominating there the RSL 

change. 

In the Venice area, large quantities of groundwater were pumped to develop the industrial zone of Marghera after 1930. 320 

Groundwater pumping was most intensive after World War II during the period of greatest industrial growth. The six aquifers 
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found in the upper 350 m were progressively exploited (Fig. 5a); the most intensively used aquifer was between 200 and 250 

m depth due to its productive character (Carbognin et al., 1976). 

Between 1950 and 1970, human-induced subsidence reached 14 cm at Marghera and averaged 10 cm at Venice (Fig. 5d). The 

dramatic effects of this loss of elevation became apparent in the exceptional flood (“acqua alta”) of November 1966. The 325 

ground beneath Venice is more sensitive to changes in the hydraulic head because of the occurrence of a larger amount of clay 

in the subsurface (Zezza, 2010): the ratio between subsidence and piezometric decline was 1/100 at Marghera and 1/50 at 

Venice (Gatto and Carbognin, 1981). 

3.2.2 The post-1970 period 

After the 1966 flood, the problem of subsidence in Venice received more attention and drastic measures were taken after 1970 330 

to reduce both industrial and other groundwater extraction. Groundwater consumption in the Marghera area decreased from 

500 l/s in 1969 to 170 l/s in 1975 (Gatto and Carbognin, 1981). A corresponding rapid piezometric rise occurred (Fig. 5a): in 

1978 the hydraulic head rose to ground level, re-establishing the levels existing in 1950 (Gatto and Carbognin, 1981). Land 

subsidence slowed concurrently and stopped; by 1975, a surface rebound of about 2 cm was recorded (Fig. 5d), equal to 15% 

of the total anthropogenic subsidence experienced. This result is consistent with mathematical model results and was 335 

interpreted as the elastic response of cohesive soils after recovery. 

In recent years, Global Navigation Satellite System (GNSS) and Synthetic Aperture Radar (SAR) measurements confirm that 

the city of Venice is no longer sinking due to groundwater pumping (Tosi et al., 2013). However, at the local scale, ground 

movements are still impacted by anthropogenic activities such as new construction and conservation works dedicated to 

preserve the Venetian architectural heritage. Tosi et al. (2018) estimated that about 25% of the city experienced movements 340 

attributable to anthropogenic causes. In most cases (15%) these displacements induced an increase in local subsidence, but in 

some areas (10%) the short-term sinking rate was found to be smaller than the natural one. The measured displacement rates 

range between -10 and 2 mm/year. 

3.3 Monitoring land subsidence 

Over the 20th Century, high-accuracy geodetic techniques became available for monitoring land subsidence with unprecedented 345 

temporal and spatial resolution. These new data were key to reveal the increasing impact of human activities on the subsidence 

rate. 

The first direct measurements of changes in land elevation were obtained through leveling campaigns based on both local and 

national networks (Salvioni, 1957; Gambolati et al., 1974; Gatto and Carbognin, 1981; Arca and Beretta, 1985; Carbognin et 

al., 1995a, 1995b). Additional information was derived by comparing the tide-gauge records acquired in Venice with those 350 

available in neighboring areas subjected to the same absolute sea-level changes (Carbognin et al., 2004; Zerbini et al., 2017). 

These techniques allowed an unambiguous detection of the impact of anthropic activities on land lowering. It was possible to 

identify the increase in subsidence between the 1950s and the 1970s caused by severe groundwater extraction (Gambolati et 
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al., 1974). The maximum rate was observed in Mestre in 1968-69 when the local subsidence reached 17 mm/year (Brambati 

et al., 2003). Leveling lines also provided information on the spatial variability of subsidence over a few tens of kilometers. 355 

The cone of land depression was found to spread from Marghera, where most of the pumping occurred, towards the Venice 

area (Fig. 3). 

During the following decades, leveling measurements performed in 1973 and 1993 recorded the slowdown in subsidence rates, 

and even a small uplift, which followed the dismissal of artesian wells and the diversification of water supply (Carbognin et 

al., 1995b, 1995a). 360 

The monitoring capabilities further improved during the 1990s with the development of space techniques such as GNSS and 

SAR (Teatini et al., 2012; Tosi et al., 2013, 2018; Zerbini et al., 2017). The latest measurements provided by the integrated 

use of these techniques confirmed that, in Venice, the anthropogenic subsidence due to activities characterized by large-scale 

and long-term effects ended a few decades ago. However, relevant trends are still observed locally. Subsidence up to 70 and 

20 mm/year is found around the inlets where the MOSE is being constructed and in artificial salt marshes, respectively (Tosi 365 

et al., 2018). In addition, spatial patterns in subsidence have been identified at different scales. The average ranges of 

subsidence rates observed over the lagoon are 3-4, 1-2 and 2-3 mm/year for the northern, central and southern parts respectively 

(Tosi et al., 2018). This reflects both the increase in the thickness of Holocene deposits from the Venice mainland to the lagoon 

extremes and residual groundwater pumping in the northeastern sector (Tosi et al., 2013). In the historic center of Venice, the 

ancient areas are more stable than those urbanized over the last centuries. This is consistent with the older settlements being 370 

developed on well-consolidated sand layers, while recent land claims occurred over areas where consolidation processes are 

still ongoing. Thanks to the high spatial resolution of SAR images, Tosi et al. (2018) were able to detect the impact of 

restoration work and new construction down to the single-building scale. This variability in displacement correlates with the 

nature of the shallow subsoil, the different phases of growth of the city, and the load and foundation depth of the buildings. 

Table 3 presents the evolution of subsidence rates in the historical center of Venice, as measured by geodetic instruments over 375 

the last century. Assessments of uncertainty associated with the estimates of each technique are available in the literature. 

Precise leveling allows measuring height differences with a mean error ranging from 0.3 to 1 mm in a line of 1 km (Torge and 

Müller, 1980). The average uncertainty for the vertical component of the GNSS trends is in the order of 0.3 mm/year for time 

series spanning a decade or more (Santamaría-Gómez et al., 2017). This estimate increases to 0.4 mm/year when reference 

frame uncertainties are considered in the error budget (Santamaría-Gómez et al., 2017). Finally, Tosi et al. (2013) propose to 380 

present the results of the SAR technique over a selected area in terms of average rate and standard deviation of the spatial 

variability. By doing so, the technique provides insights on the representativeness of the estimated trend at the investigated 

spatial scale. 

https://doi.org/10.5194/nhess-2020-351
Preprint. Discussion started: 12 November 2020
c© Author(s) 2020. CC BY 4.0 License.



13 

 

4 Estimation of sea-level changes 

This section reviews the estimates of secular and recent multidecadal trends, and interannual-to-interdecadal variations 385 

identified in historical sea-level records for the Venice lagoon and its surroundings and puts them in the context of observed 

sea-level changes in the Mediterranean Sea and the global ocean. 

4.1 Secular trend 

One of the first estimates of the long-term relative MSL trend at Venice Punta della Salute was made by Polli (1953), who 

obtained 2.3±0.2 mm/year performing a least-square fit of the annual means from 1872 to 1941. Since then, several authors 390 

have proposed updated estimates by progressively considering newly acquired data and different approaches. A summary of 

the long-term RSL trends from tide-gauge data proposed during the last 15 years is presented in Table 4; analogous MSL 

estimates are presented in Table 5. The available estimates can be distinguished depending on whether the analyzed period 

starts before or in 1993, when satellite altimetry became available. Marcos and Tsimplis (2008), Wöppelmann and Marcos, 

(2012) and Vecchio et al. (2019) used a linear fit to analyze the RSL data from about 1910 to 2000, obtaining trends between 395 

2.4 and 2.5 mm/year. Vecchio et al. (2019) also modelled the time series by means of the superposition of a straight line and 

three Empirical Mode Decomposition components, suggesting a slightly larger trend of 2.78 mm/year. Zerbini et al. (2017) 

isolated the effect of subsidence on the Venetian RSL time series by deriving an empirical curve from levelling data of 

benchmarks close to the tide gauge, GPS and InSAR heights (Fig. 5c). After removing the estimated subsidence from the tide-

gauge data, the secular trend of the corrected time series was 1.23±0.15 mm/year for the period 1872-2012 (see Table 5). It 400 

should be stressed that the trend analysis has little meaning without the correction of subsidence effects because the linear 

model is otherwise inadequate to represent the Venice time series. The application of the same procedure to the neighboring 

tide gauge of Marina di Ravenna, also located in a rapidly subsiding area, provided a consistent estimate of 1.22±0.32 mm/year 

(period 1896-2012). 

These corrections allow for a proper comparison with other secular tide-gauge records in the Mediterranean Sea that are not 405 

affected by significant vertical land motions, namely Trieste in the Adriatic and Marseille and Genoa in the northwestern 

Mediterranean (Carbognin et al., 2009; Wöppelmann et al., 2014; Zerbini et al., 2017; Sánchez et al., 2018) (Fig. 1). The RSL 

time series of Trieste, Marseille and Genoa exhibit centennial trends between 1.2 and 1.3 mm/year (Marcos and Tsimplis, 

2008; Wöppelmann and Marcos, 2012; Zerbini et al., 2017). The estimates agree with the 20th century trend of sea-level rise 

of 1.2±0.1 mm/year reported for the same stations by Marcos et al. (2016). The 1-sigma errors are around 0.1 mm/year 410 

according to Marcos and Tsimplis, (2008) and Wöppelmann and Marcos, (2012), and between 0.10 and 0.24 mm/year (90% 

confidence) in Vecchio et al. (2019). Zerbini et al. (2017) obtained uncertainty values between 0.13 and 0.22 mm/year at 95% 

confidence level considering a reduced number of degrees of freedom due to time autocorrelation. Therefore, the 20 th century 

secular trends in Venice are consistent within uncertainty with those of Marseille, Genoa and Trieste. Accordingly, EOF 

analysis on annual means from 1901 to 2012 of the corrected time series of Venice and Marina di Ravenna, and those of 415 
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Marseille, Genoa and Trieste yields a leading mode explaining 62% of variance and corresponding to coherent sea-level 

variability of the long time series from Mediterranean tide gauges (Zerbini et al., 2017). Scarascia and Lionello (2013) 

estimated a trend of 1.3 mm/year for the period 1905-2005 for the Adriatic Sea using a combination of Adriatic tide gauges 

and manually removing the land subsidence in Venice. 

Tables 4 and 5 include an update on the RSL trend calculation to the period 1872-2019 including a comparison between 420 

estimates with and without the subsidence contribution following Zerbini et al. (2017). The subsidence curve by Zerbini et al. 

(2017) was updated to 2019 by applying a 1 mm/year trend since 2013 based on the SAR estimate by Tosi et al. (2013) and 

on the trend exhibited by the PSAL GPS from 2014 onward (Table 3). Our estimates confirm previous results concerning the 

magnitude of the full-period trends in both, RSL (2.53 ± 0.14 mm/year) and MSL (1.23 ± 0.13 mm/year). Subsidence therefore 

contributed to about half of the total RSL rise in the period 1872-2019 and explains discrepancies between published Venetian 425 

RSL trends. 

These regionally coherent estimates are lower than those for the global-mean sea-level (GMSL) rise during the 20th Century 

reported in the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC-AR5), quantified as 1.7 [1.5 

to 1.9] mm/year (likelihood >90%, period from 1901 to 2010, see: Church et al., 2013). They are, however, consistent with 

revisited estimates of historical GMSL rise that include significantly slower rates than reported by the IPCC-AR5 for the pre-430 

altimetry period, e.g., 1.2±0.2 mm/year (90% confidence interval, Hay et al., 2015), 1.1 ± 0.3 mm/year (99% confidence 

interval, Dangendorf et al., 2017) and 1.56 ± 0.33 mm/year (90% confidence interval, Frederikse et al., 2020). 

Figure 6 revisits the connection between Venetian and GMSL trends on time scales ranging from interannual to centennial. 

Clearly, the significant difference between secular trends in Venetian RSL and GMSL is strongly damped when the Venetian 

MSL is considered, confirming the critical role of subsidence in determining local RSL variations. Nonetheless, the Venetian 435 

MSL appears to rise at a lower rate than the GMSL, in particular over the second half of the 20 th century (Fig. 6a). This is 

consistent with the lesser contributions of glaciers and Greenland ice-sheet melting in the Subpolar North Atlantic basin - to 

which the Mediterranean Sea is connected – as reported in Frederikse et al. (2020). Note that the GMSL-Venetian MSL 

discrepancy observed in the first portion of the record is resolved when uncertainty in GMSL estimate is taken into account 

(not shown). 440 

4.2 Recent multidecadal trends 

Sea level measurements acquired with satellite radar altimetry are available since 1993, allowing, together with tide gauges, 

to estimate recent multidecadal trends from two independent sources. While an overall GMSL trend of about 3 mm/year during 

the satellite altimetry period is consistently reported by several studies (Hay et al., 2015; Chen et al., 2016; Dangendorf et al., 

2017; Quartly et al., 2017), the regional departures from this GMSL are more poorly described and explained (Scharroo et al., 445 

2013; Legeais et al., 2018; Cazenave et al., 2019). This is also the case of the Mediterranean Sea that is subject to pronounced 

spatial and temporal variability (Figure 7a), with the entire area of the Adriatic Sea exhibiting positive MSL trends that peak 

in the northern part of the basin. 
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Several altimetric datasets have been used to estimate sea-level trends in the Venice area. Fenoglio-Marc et al. (2012a) 

estimated a trend of 5.9±1.4 mm/year over the period 1993-2008 for an along-track point about 80 km away from Venice (see 450 

their Table 2). Rocco (2015) obtained trends of 4.18±0.92 mm/year (period 1993-2014) and 3.40±0.99 mm/year (period 1993-

2013) for the closest grid point to the Venice tide gauge in the AVISO and SLCCI V1 products, respectively, with both 

estimates consistent with each other within errors. A reprocessing of the SLCCI V2 data set over the period 1993-2015 yielded 

a trend of 4.25±1.25 mm/year (Vignudelli et al., 2019b), further reduced to 4.03±1.27 mm/year after removing the seasonal 

signal (ESA CCI 2019). Explanations for the differences between trend estimates in these studies include the different time 455 

spans, especially for Fenoglio-Marc et al. (2012), different methodological aspects in the spatial characterization of the study 

area (e.g., closest point vs. area with a certain radius), and the recurrent reprocessing and continuous improvement of the 

satellite radar altimetry products. 

The altimetric trends derived for Venice are typically consistent with those estimated around Trieste over corresponding time 

spans (Fenoglio-Marc et al., 2012). This evidence is supportive of a rather uniform sea-level trend in the Northern Adriatic 460 

(Fig. 7a, see also Bonaduce et al., 2016). 

A thorough comparison between tide-gauge and altimetric data in Venice is made possible by the availability of independent 

information on the evolution of the vertical land motion (Fenoglio-Marc et al., 2012; Wöppelmann and Marcos, 2016). For 

consistency with altimetry, the tide-gauge time series need to be corrected for seasonality and atmospheric forcing (see Sect. 

5.1.1). The most recent trend estimates by Vignudelli et al. (2019b) provide values of  6.17±1.50 mm/year from in situ data at 465 

the Acqua Alta Platform (AAPTF), 14 km offshore the Venice coast, and +5.81±1.47 mm/year at Punta della Salute (inside 

the city center) during the overlapping altimetry period. After subtracting altimetry and AAPTF tide-gauge time series, the 

residual time series shows a trend of -2.14±0.65 mm/year. This estimate agrees with the trend of 2.17 mm/year extrapolated 

from Figure 3 in Zerbini et al. (2017) that represents a best fitting of the benchmarks, GPS and PS InSAR normalized heights. 

Table 4 and Figure 6 also provide updated RSL trend estimates for the period 1993-2019 based on the Punta della Salute tide-470 

gauge data. Our estimates confirm that for the satellite altimetry period the total RSL trend from the tide gauge (5.01 ±1.75 

mm/year, including subsidence) is consistent with uncertainties with some satellite estimates and the tide-gauge estimate by 

Vignudelli et al. (2019b) over similar periods. Our estimate for the MSL trend for the same period is 2.76±1.75 mm/year, again 

confirming the results by Vignudelli et al. (2019b). 

4.3 Interannual-to-interdecadal variability 475 

In addition to the long-term trend, the tide-gauge time series of Venetian RSL is characterized by a number of significant 

interannual-to-interdecadal periodicities. Hereafter, we indicate periodicities as OXXyears, where O means order of magnitude 

and the pedix indicates the period in years. Based on detrended seasonal Venetian RSL for the period 1872-2003, Zanchettin 

et al. (2009) report spectral peaks in the autumn time series at O22years and at larger multidecadal periodicities, at around O2.4years 

and at around O3.4years, with secondary peaks at around O5years and O8years. In the winter time series, they report significant 480 

multidecadal periodicities at O50years and larger, at O3.4years, O8years and, less apparent, O5years. Carbognin et al. (2010) also identify 
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an O8years component in Venetian RSL variability. An updated spectral analysis based on the Fourier transform applied on 

autumn (OND) and winter (JFM) raw detrended (second order polynomial fit) Venetian RSL indicates that the dominant 

periodicities contained in the Venetian RSL time series over the time interval 1872-2019 are the interannual components at 

O2.4years and O5years, for both autumn and winter series (95% confidence level) and they account for about 20% of the total 485 

variance of the records. Moreover, the winter time series features the O8years (~6% of the total variance) and O50years (~9% of 

the total variance) periodicities as highly significant. A secondary peak at O16years is detected at 90% confidence level in the 

autumn series (~7% of the total variance). Removal of subsidence does not change the spectral features of the series, except 

for the O50years component in the winter series, whose significance then only reaches the 90% confidence level. 

Focusing on autumn Venetian surge events for the period 1948-2008, Lionello (2005), Barriopedro et al. (2010), Troccoli et 490 

al. (2012) and Martínez-Asensio et al. (2016) consistently identify significant decadal variability, in good correspondence with 

the 11-year sunspot cycle of solar activity. However, an updated analysis (see Lionello et al., 2020b, in this special issue) 

suggests that this correlation is not stable in time. Continuous wavelet transform analysis on updated and detrended seasonal 

time series of the Punta della Salute tide-gauge record confirms the presence of statistically significant interdecadal fluctuations 

in autumn (O20years, period 1960-2000) and interannual (O5years and O8years, periods 1930-1950 and 1970-1990, respectively) 495 

and multidecadal (O50years, since 1950) fluctuations in winter (Figure 8). Such fluctuations, however, appear only over limited 

periods, typically for a few decades or even less. This intermittent recurrent interdecadal variability can significantly impact 

on sub-centennial trend estimates and contribute to explaining associated spatial features. For instance, in the period between 

the mid-1960s and the early 1990s, the RSL time series of Venice and Trieste appear almost stationary (Figs. 2 and 6). Marcos 

and Tsimplis (2008) estimated RSL trends to be zero (within the errors) in the 1960-2000 period at the tide-gauge stations of 500 

Trieste, Genoa and Marseille. So, stationary sea level characterized the whole Mediterranean Sea during this period but not 

the Atlantic Ocean, and proposed explanations include an atmospheric contribution mainly consisting of persistent high 

pressure and an oceanic contribution due to steric changes in deep water masses (Tsimplis and Baker, 2000; Tsimplis et al., 

2005; Gomis et al., 2008). Figure 6c confirms that often bidecadal trends, but occasionally also longer ones, in annual-mean 

Venetian MSL are negative and can differ in sign from the GMSL trend. Accordingly, the integral of the absolute trend 505 

differences for bidecadal and shorter periods often yields values of about 10 cm (but up to about 20 cm occasionally), and 

rather small (generally <5 cm) for interdecadal and longer periods (not shown). 

5 Climate forcing of Venetian sea-level variations 

5.1 Mechanisms of Venetian RSL variability 

Variations of Venetian RSL closely depend on sea-level variations in the Adriatic Sea, which in turn closely depend on sea 510 

level variations in the Mediterranean Sea. The latter can be summarized as being driven by three major processes: steric effects, 

which can affect both basin-average and local variability; water-mass exchange with the Atlantic, whose sea-level signal 
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propagates from the midlatitude eastern North Atlantic into the Mediterranean as a basin-scale barotropic signal, and other 

ocean circulation processes; atmospheric forcing, which provides spatial heterogeneity to Mediterranean sea-level variations 

and is therefore critical to determine Venetian RSL variability. Attribution of Mediterranean sea-level variability is often 515 

separated  on the basis of the timescale: intraseasonal and interannual variability is associated to atmospheric mechanical 

forcing (e.g., Jordà et al., 2012a, 2012b), whereas multidecadal and longer time-scale variability is associated with oceanic 

lateral forcing from the eastern North Atlantic (e.g., Marcos et al., 2016). 

5.1.1 Atmospheric forcing 

The paradigm of modes of large-scale atmospheric and oceanic variability is widely used to characterize internal climate 520 

variability, to describe responses to natural forcing and to assess the skills of decadal forecast systems Zanchettin (2017). Han 

et al. (2019) provide a recent review on the connection between variability of dominant climate modes and coastal sea level in 

the three major ocean basins. Statistical analysis of atmospheric pressure demonstrates coherent large-scale patterns covering 

the North Atlantic, Europe and the Mediterranean Sea, which explain significant parts of the atmospheric signal variability at 

interannual and interdecadal scales, particularly during winter. The large-scale coherency of the atmospheric pressure fields 525 

means that several of the local atmospheric parameters as well as the oceanic circulation driven by this forcing becomes 

correlated. Such linkage drives coherent sea-level changes within the whole Mediterranean basin and, ultimately, in the Venice 

Lagoon. Despite being studied so far mainly within the framework of interannual to multidecadal climate variability, the same 

connections can be relevant for longer-term trends as well, and we therefore include them in this review. 

The most important local atmospheric parameters are pressure anomalies, associated with the so-called Inverse Barometer 530 

Effect (IBE), and the geostrophic wind, a descriptor for large-scale surface wind forcing. Accordingly, numerous studies 

consistently attribute to the climate mode known as North Atlantic Oscillation, or NAO, the IBE and the large-scale wind 

forcing determining winter variability of coastal RSL in the Mediterranean Sea (e.g., Tsimplis et al., 2006; Gomis et al., 2008; 

Tsimplis and Shaw, 2008; Calafat et al., 2012; Tsimplis et al., 2013; Martínez-Asensio et al., 2014; Ezer et al., 2016). Mass 

exchange with the Atlantic Ocean can occasionally dominate the above-mentioned atmospheric forcing factors during some 535 

years such as 2010 (e.g. Fukumori et al., 2007; Menemenlis et al., 2007; Gomis et al., 2008; Calafat et al., 2012; Landerer and 

Volkov, 2013; Tsimplis et al., 2013; Volkov et al., 2019). Nonetheless, the imprint of the NAO on Mediterranean coastal sea-

level variability in 2010 remains clear from tide-gauge data (Rubino et al., 2018).  

Zanchettin et al. (2009) estimate that about half of the variability of detrended winter Venetian RSL can be explained linearly 

by the NAO. They identify significant spectral components in the autumn series of the Scandinavian (SCA) and East Atlantic 540 

Western Russia (EAWR) patterns at the relevant O8year periodicity, the former accounting for 20% of the total variance of 

autumn detrended Venetian RSL in the period 1872-2003, and a significant O5year component in winter EAWR. An updated 

analysis between seasonal time series of NAO (Jones et al., 1997) and detrended (second order polynomial fit) raw Venetian 

RSL for the period 1872-2019 confirms large values of the correlation statistics (rJFM=-0.68, p~0 accounting for autocorrelation 
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in the series; rOND=-0.50, p<0.0001). Results on MSL, i.e., after removal of subsidence, confirm the strong connection between 545 

NAO and detrended Venetian RSL during the cold semester. 

Barriopedro et al. (2010) link changes in the frequency of fall Venetian storm surges with variations in solar activity during 

the period 1948-2008 and associate them with two anomalous spatial patterns of the large-scale atmospheric circulation: a 

large‐scale wave train pattern linked to storm track paths over northern Europe (not directly linked to the classical NAO 

pattern) under solar maxima, and a meridionally oriented dipole with a preferential southward shift of storm track activity 550 

under solar minima. We update previous results about the statistical connection between NAO and Venetian RSL by 

performing a wavelet analysis on the 1872-2019 autumn and winter time series of the NAO index and Venetian RSL. The 

wavelet coherence spectra (Grinsted et al., 2004) in Figure 8 confirm the strong link between NAO and Venetian RSL 

fluctuations in autumn and winter, robustly in rough antiphase over a broad range of timescales, from interannual to 

multidecadal. In autumn the connection becomes more significant in the recent portion of the series after removal of subsidence 555 

from the RSL data, confirming the importance to account for it in studies on MSL, i.e., the climatic component of RSL 

variability. 

Contribution of IBE to Northern Adriatic sea-level variability has been quantified by Zanchettin et al. (2009) and Calafat et al. 

(2012). The former study reports a contribution of IBE to the total variance of detrended Venetian RSL for the period 1872-

2003 of 32% in autumn (with a strong link with NAO(-), EAWR and SCA) and about 41.5% in winter (with a strong link with 560 

NAO(-)).The latter study quantifies in 25% the IBE contribution to detrended and smoothed (4-year running mean) winter sea-

level variability in Trieste for the period 1950-2009. 

Zanchettin et al. (2009) indicate three dominant factors that concur to strengthen the impact of large-scale atmospheric forcing 

along the northern coast of the Adriatic Sea and especially in the Venice Lagoon: (i) the peculiar morphology of the basin 

displaying a NW–SE elongation and a shallow northern portion; (ii) the remarkable strength and frequency of the meridional 565 

Sirocco wind; (iii) the conspicuous and noticeably time-varying inflow of freshwaters from the Italian Po River, whose delta 

is located only 90 km south of the Venice Lagoon (Fig. 1). Note that, at the basin scale, riverine input to the Mediterranean 

Sea and other freshwater fluxes resulting in net loss of freshwater are regarded as negligible for sea-level variability, as they 

are quickly compensated by changes in the mass transport through the Strait of Gibraltar (Adloff et al., 2018). A strengthened 

northeastward flow in the Central Mediterranean (i.e., prevailing Scirocco-favorable conditions) favors the piling of Ionian 570 

surface waters toward the northern Adriatic, resulting in an increase of Venetian RSL. Such meteorological conditions are 

strongly linked with NAO(-) in winter, and with SCA and EAWR in autumn, when these modes are identified as among the 

primary large-scale precursors of the interannual-to-decadal variability of meridional atmospheric flow over the Adriatic Sea 

(Zanchettin et al., 2009). Calafat et al. (2012) used ocean models to separate the barotropic and baroclinic components to 

decadal sea-level variability in the Mediterranean Sea, and identified the main mechanism of decadal sea-level variability 575 

along the northern coast of the Adriatic Sea. The mechanism primarily entails longshore wind and wave propagation forcing 

a coherent sea-level signal on the western boundary of the basin that narrows and strengthens northward. Minor contributions 

are from the barotropic response to local wind forcing, quantified in only 15% for (detrended and smoothed) winter sea level 
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variability in Trieste. Calafat et al. (2014) reported that the barotropic model employed in Calafat et al. (2012) tends to 

underestimate positive extreme events of Mediterranean sea-level variability, but can also significantly overestimate them in 580 

the Northern Adriatic. 

Sea-level pressure variability in the Euro-Mediterranean region is known to be modulated by the so-called Atlantic 

Multidecadal Oscillation or AMO (Mariotti and Dell’Aquila, 2012) describing multidecadal fluctuations in North Atlantic sea-

surface temperature. Accordingly, an atmospheric bridge may also constitute a potential precursor to multidecadal (O50-60years) 

Venetian RSL variability. During warm AMO phases the frequency of cyclones increases over the Tyrrhenian and Ionic Seas 585 

between November to March (Maslova et al., 2017). This could contribute to explaining the statistical connection between 

bidecadal variability of Venetian RSL and the Atlantic Multidecadal Oscillation identified by Scafetta (2014) via multi-scale 

acceleration analysis. 

Scarascia and Lionello (2013) have shown that interannual MSL variability in the period 1940-2005 is very well explained by 

the mechanical action of the atmosphere, changes of upper ocean (uppermost 500 m) temperature and surface layer salinity. 590 

However, these drivers have no trend that can explain the sea-level trend observed in the same period (the authors estimated 

an absolute sea-level rise of 1.3 mm/year). Their conclusion is that the mean sea-level rise in the Adriatic since 1940 has been 

caused by a remote effect, namely ice cap melting. 

5.1.2 Ocean processes 

The Mediterranean basin circulation is driven by an excess evaporation which is balanced by net inflow of Atlantic Water 595 

through the Strait of Gibraltar. Thus, water mass exchange through the Strait of Gibraltar critically contributes to determining 

how sea-level changes in the World Ocean propagate within the Mediterranean basin (Brandt et al., 2004). 

The exchange at Gibraltar consists of a strong surface current of relatively fresh and warm water from the ocean and a deep-

water current of salt and cold Mediterranean water, outflowing into the ocean and sinking in the North Atlantic in the form of 

gravity current. The two-way water exchange regime within the Strait critically depends on the number and location of its 600 

hydraulic controls, being sub-maximal if subject to only one control in the western part, or maximal if the flow is also controlled 

in the eastern part, with different implications for the characteristics of the circulation. Local dynamics are strongly influenced 

by tides, which are responsible for the amplitude modulation of water transport and for the substantial vertical mixing that has 

been observed (Garcìa-Lafuente et al., 2013), as well as for the migration of the eastern hydraulic control (Armi and Farmer, 

1988). 605 

Sea-level variability in the eastern North Atlantic is among the dominant drivers of interannual-to-interdecadal Mediterranean 

variability (e.g., Adloff et al., 2018). Fluctuations of surface fluxes linked to the large-scale atmospheric forcing drive 

variations in thermal and haline oceanic properties, ultimately affect processes such as the intermediate or deep water formation 

and transformation (e.g., Calafat et al., 2012; Cusinato et al., 2018). Hence the large-scale atmospheric forcing has a 

pronounced effect on sea-level variability. Associated ocean circulation changes lead to the negative MSL trends observed in 610 

the Ionian Sea and south-east of Crete shown in Fig. 7a (Bonaduce et al., 2016). 
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5.2 Numerical modelling of Mediterranean and coastal sea level changes 

Over recent years, considerable efforts have been invested into developing and applying regional climate and ocean circulation 

models approaching the issue of dynamical downscaling from different perspectives (e.g., Somot et al., 2008; Sannino et al., 

2009; Artale et al., 2010; Naranjo et al., 2014; Sein et al., 2015; Turuncoglu and Sannino, 2017; Androsov et al., 2019; Palma 615 

et al., 2020). 

Sannino et al. (2015) demonstrated that the inclusion of explicit tidal forcing in an eddy resolving Mediterranean model has 

important effects on the simulated circulation, in addition to the expected intensification of local mixing processes. The signal 

induced in the Atlantic water crossing the Strait in fact propagates into the basin interior and concurs to determine the dispersal 

paths of the main water masses, with consequences on critical processes such as deep water formation in the Gulf of Lion and 620 

Levantine intermediate water recirculation. Since the Mediterranean ocean state and variability critically depend on the lateral 

boundary forcing from the eastern North Atlantic, recent progress on the simulation of water mass exchange through the Strait 

of Gibraltar led to a major improvement in the simulation of Mediterranean circulation. Marcos et al. (2016) decompose the 

Mediterranean sea-level signal into two components: first, variations in the eastern North Atlantic sea level, estimated through 

global coupled climate models, second, relative variations in the Mediterranean sea level with respect to the eastern North 625 

Atlantic, estimated through regional climate models. More recently, Adloff et al. (2018) provide an overview of current 

methods to implement Atlantic sea-level forcing at the lateral boundary of state-of-the-art regional ocean models for the 

Mediterranean Sea, concluding that the quality of such forcing is essential for appropriate modelling of Mediterranean sea 

level. 

6 Prediction and projection 630 

Projections of RSL change at Venice require that all the different components described in the previous sections are considered 

over the coming decades and combined (Nicholls et al., 2020). It is useful to distinguish GMSL changes which can be derived 

from the SROCC (“Special Report on Ocean and Cryosphere in a changing climate”, Oppenheimer et al., 2019), regional sea-

level changes in the Mediterranean and Northern Adriatic, and local vertical land movement contributions. 

6.1 Vertical land movements 635 

Projections of future contribution of vertical land motion are available only for the GIA component, which, in the 

Mediterranean Sea, is expected to provide a small (order of 5-10 cm/century) and spatially rather uniform positive contribution 

to RSL (Galassi and Spada, 2014). For the other components of vertical land movements, it is only possible to consider their 

historical variations in order to contemplate their potential to affect future RSL changes. 

Estimates of subsidence at sub-regional scale can be constrained on the basis of observations of past evolution. The sum of 640 

sediment compaction, tectonics and GIA is estimated about 0.6 and 1.0 mm/year (Antonioli et al., 2017; Tosi et al., 2013) with 

a constant rate on centennial time scale. At local scale, trends of a few cm/year are still observed in restricted areas such as at 
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the lagoon inlets interested in the construction of mobile barriers against high-tides (Tosi et al., 2018). Controls on groundwater 

extraction should prevent returning to the large subsidence rate that occurred between 1930 and 1970, but shallow natural 

processes, notably consolidation, and anthropogenic activities are observed to continue contributing at rates spatially varying 645 

from 10 to -2 mm/year (Tosi et al., 2013). Hence, human activities can contribute significantly to RSL rise, but relevant 

scenarios are currently not available in the literature and this is a generic problem (Nicholls et al., 2014). All these natural and 

anthropogenic contributions have the potential to increase RSL in Venice, further worsening the negative impact of MSL rise, 

with contribution of order of 10 centimeters at sub-regional scale, and potentially much larger locally. 

Melting of ice sheets and glaciers induced can affect vertical land motions. Adopting the “mid range” and “high end” climate 650 

change scenarios defined by Spada et al. (2013), Galassi and Spada (2014) have evaluated the effect of terrestrial ice melting 

on future regional RSL evolution across the Mediterranean Sea by solving the Sea Level Equation including the contribution 

of glaciers, ice caps and of the Greenland and Antarctic ice sheets. They found that GIA from the terrestrial ice melting will 

be responsible for a sea-level rise in the Northern Adriatic of ~8 and ~17 cm to 2040–2050 relative to 1990–2000, in the two 

considered scenarios, respectively. Since the sources of terrestrial ice melting are mostly located in the far-field of the 655 

Mediterranean Sea, these contributions shall be largely uniform across the whole Adriatic Sea. 

6.2 Sea level projections for the Northern Adriatic 

Sea-level anomalies linked to GMSL rise propagate from the mid-latitudes of the eastern North Atlantic to the Venice Lagoon 

through the Gibraltar and Otranto straits. MSL variations along this path is further determined by the mechanical action of the 

atmosphere and by steric effects associated with changes of temperature and salinity of the water masses. Therefore, beyond 660 

local effects on RSL, the projection of sea-level evolution in the Venice Lagoon depends crucially on processes acting on 

GMSL, sea-level variations across the World Ocean and regional patterns of MSL change inside the Mediterranean basin. 

The recent SROCC report summarizes projected GMSL rise estimates suggesting a likely range from +29 cm to +110 cm for 

the year 2100 with respect the 1986-2005 average depending on the future climate scenario, with the low RCP2.6 and the high 

RCP8.5 providing the lower and the upper limit, respectively. Here “likely” corresponds to the IPCC uncertainty language, 665 

meaning that the probability of future sea-level change within this range is estimated from ≥66% to 100%, and therefore not 

actually excluding values outside this range. The contribution of ice sheets, in particular the Antarctic one, and the underlying 

dynamical processes that have been intensively discussed lately (e.g., DeConto and Pollard, 2016; Edwards et al., 2019), 

provide the main source of uncertainty - or deep uncertainty - in future sea-level change projections (Bakker et al., 2017; 

Oppenheimer et al., 2019). Therefore, although high-end GMSL rises (up to 2 m at the end of the 21st century) are unlikely, 670 

they cannot be ruled out (e.g., Nicholls et al., 2014; Kopp et al., 2017) and are particularly useful for decision-making 

applications and adaptation planning, especially in decision contexts with low tolerance to uncertainty (Hinkel et al., 2019). 

Results in Slangen et al. (2017) suggest that sea-level rise at the subtropical and mid-latitudes of the eastern North Atlantic 

(and the Mediterranean Sea itself) will only have small deviations (less than 10%) from the global-mean value. 

https://doi.org/10.5194/nhess-2020-351
Preprint. Discussion started: 12 November 2020
c© Author(s) 2020. CC BY 4.0 License.



22 

 

Analysis of the possible deviations of future mean sea level in the Mediterranean basin from the GMSL has been attempted 675 

using dynamical and statistical models. Dynamical models of the circulation inside the Mediterranean Sea allow to estimate 

directly the mechanical effect of the atmosphere on the circulation (wind stress and IBE). There is a general consensus that 

this is a small contribution with changes generally less than 10 cm (Tsimplis and Shaw, 2008; Tsimplis et al., 2008; Jordà et 

al., 2012b; Jordà, 2014; Adloff et al., 2018). The steric effects are computed from temperature and salinity changes using a 

diagnostic offline computation. This computation obviously depends on the water depth and vanishes at the coastline. In fact, 680 

the spatial variations of the resulting sea-level change follow the bathymetry of the Mediterranean Sea and are rather small (< 

5 cm) over shallow water areas such as the northern Adriatic Sea (e.g., Tsimplis et al., 2008). The overall steric sea-level 

change is the consequence of two contrasting effects: thermosteric expansion (associated to warming of water masses) and 

halosteric contraction (associated to increasing salinity of the water masses). Most studies agree that the former is larger, also 

because of the freshening effect of the Atlantic inflow across the Gibraltar strait, whose magnitude is poorly constrained. 685 

Several studies contributed to an assessment of the overall steric effects at Mediterranean scale, with differences depending on 

periods, models, scenarios and the representation of water exchange between Mediterranean Sea and Atlantic Ocean (Adloff 

et al., 2018). Various basin-wide Mediterranean steric MSL projections are found in the literature. For instance, a range of 2 

to 7 cm for the mid-century sea-level anomaly (2050 with respect to 2001) under the SRES-A1B scenario was reported (Carillo 

et al., 2012). By the end of the 21st century (i.e. 2070-2099), Tsimplis et al. (2008) found a  13 cm sea-level anomaly (with 690 

respect to 1960-1990) under the A2 scenario, while Adloff et al. (2015) reported sea-level anomalies over the same periods 

that range between 34 cm and 49 cm considering a 6-member ensemble and the A1, A1B and B1 scenarios (see Fig. 7b).  

Estimates of future sea-level rise in the Northern Adriatic Sea from a statistical model are provided by Scarascia and Lionello 

(2013). The computation is based on a linear regression linking the deviation of the sub-regional sea level to changes of MSL 

pressure, water temperature and salinity, meant to represent the mechanical atmospheric forcing, steric effects and also the 695 

redistribution of mass inside the basin (Jordà and Gomis, 2013), which is ignored in computation of pure steric effect. Scarascia 

and Lionello (2013) concluded that regional effects, at the end of the 21st century for the A1B scenario, result in a deviation 

in the range from 2 to 14 cm from the sea level of the Eastern Atlantic outside the Strait of Gibraltar and concluded that the 

main contribution to local sea-level rise is caused by remote effects, such as mass inflow across the Gibraltar strait caused by 

polar ice melting. The melting was conservatively estimated without accounting for a likely future acceleration and information 700 

from climate projections. 

Northern Adriatic RSL projections informed by climate projections can be obtained by summing up the future regional 

contributions of sterodynamic effects - which corresponds to changes in ocean density and circulation corrected from the IBE 

-, melting of mountain glaciers and ice sheets, land water and vertical land motions (Slangen et al., 2014; Gregory et al., 2019). 

Figure 7c shows probabilistic projections of Northern Adriatic RSL for two climate scenarios (RCP2.6 and RCP8.5) and one 705 

high-end scenario (Thiéblemont et al., 2019). The sterodynamic component is derived from the outputs of the coupled climate-

model simulations performed within the 5th phase of the Coupled Model Intercomparison Project. The rather coarse resolution 

of coupled climate models prevents an accurate representation of small-scale processes (e.g., water exchange at Gibraltar), 
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which in turn affects regional sea-level estimates (Marcos and Tsimplis, 2008; Slangen et al., 2017). The Mediterranean 

sterodynamic sea-level projections are therefore estimated by relying on those of the Atlantic area near Gibraltar. Other mass 710 

contributions to sea level (i.e., glaciers, ice sheets, land water) have a global effect due to the addition of water mass to the 

ocean (barystatic sea-level rise) and a regional effect through instantaneous changes in the geoid (GRD-induced RSL change). 

Both contributions are combined into a geographical pattern called barystatic-GRD fingerprint (Mitrovica et al., 2009; Gregory 

et al., 2019) and are proportional to the land water mass change. Considering an annual subsidence rate of 1 mm/year, Northern 

Adriatic RSL is projected to rise by 47 cm (likely range 32-62 cm) for the RCP2.6 scenario and by 81 cm (likely range 58 cm-715 

110 cm) for the RCP8.5 scenario by the end of the 21st century with respect to the reference period 1986-2005. These 

projections start to diverge after 2050 and yield a range of MSL rise by 2100 between 21 and 100 centimeters, i.e., ~10% lower 

than GMSL rise. The high-end scenario – obtained by selecting, for each sea-level component, the highest physical-based 

estimate found in the literature (see Thiéblemont et al., 2019 for details) – shows that, by 2100, Northern Adriatic MSL could 

unlikely but possibly rise by more than 1.8 m. Note that for this high-end scenario, the Antarctic component contributes to 720 

nearly half of the MSL change in 2100. This estimate agrees with the value by Scarascia and Lionello (2013). 

In conclusion, while our understanding of past RSL change in Venice has improved, the large uncertainty in the magnitude of 

future GMSL rise remains a major scientific challenge (Oppenheimer et al., 2019). Hence, science and public policy need to 

recognize this uncertainty and monitor sea-level change as part of the management of this uncertainty, including drawing on 

relevant experience from elsewhere (e.g., Ranger et al., 2013). Regional effects can determine differences in the order of 10 725 

cm between the mean Mediterranean sea level and the GMSL and within different parts of the Mediterranean basin itself. 

Changes over interdecadal periods can also distort the detection of forced trends over rather long periods of time (e.g., Jordà, 

2014). However, no regional mechanism has been identified that can sustain a deviation from the GMSL rise of the future, 

atmospherically corrected MSL at the Venetian coastline that is larger than the abovementioned order of magnitude. RSL can 

differ by more as land movements and regional atmospheric patterns could provide additional and important contributions. 730 

7 Gaps of knowledge and opportunities for progress 

This literature review brings several outstanding issues into light, including improving and integrating satellite observations 

of sea-level change with tide-gauge measurements, improving monitoring and prediction of vertical land motions, determining 

the shape of the historical RSL trend, i.e., best statistical model to estimate it, improving the simulation of Mediterranean 

oceanic circulation, and reducing uncertainty on estimates of regional effects on future climate-induced sea-level rise. 735 

Concerning observations, satellite data refer to the open sea and therefore do not capture coastal variations, especially the 

vertical land-movement component of RSL. Altimeter data are nonetheless fundamental for providing a regional perspective 

and reaching robust conclusions on observed MSL and RSL rise, as they provide an independent source of information from 

the local tide-gauge data. The contribution of coastal altimetry is considered essential to within 0–10 km to link the sea-level 
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changes derived from satellites with those measured at tide-gauge locations (Ponte et al., 2019). The extension of the satellite-740 

based sea-level record toward the coast with measurement quality comparable to the open ocean is also important to assess the 

coastal impacts due to hazards (Ablain et al., 2016; Benveniste et al., 2019). It has been shown that by improving processing, 

it is possible to make more accurate sea-level measurements in coastal zones (Cipollini et al., 2017). Progress has been made 

in fitting the radar signal (the so-called re-tracking) in order to extract a robust estimate of the distance between satellite and 

sea surface. The ALES retracker, with a proper threshold on error, recovers significantly more data in the 10 km near the coast 745 

(Passaro et al., 2014). A number of satellite radar altimetry operational products (along-track and gridded) dedicated to the 

monitoring of open-ocean sea level exists, whose quality is constantly improved. Various experimental coastal altimetry 

products are also now available and validated in some regions, thus being used for sea-level research in the coastal zone 

(Gómez-Enri et al., 2019). An updated table is accessible at www.coastalt.eu/datasets. Importantly, merging altimeter data 

from different missions requires homogenous re-processing and minimization of drifts and systematic biases between missions. 750 

For the Northern Adriatic, an opportunity for progress is provided by the ESA SLCCI extension (CCI+), which will process 

along-track data from additional satellite missions using re-tracked data, dedicated coastal geophysical corrections and 

improved editing that will then be combined in a global grid with higher resolution near the coast (Anny Cazenave, personal 

communication). Also, the novel GNSS-derived Path Delay Plus (GPD+) correction now provides accurate wet tropospheric 

delays (Fernandes and Lázaro, 2016). The Wide-swath interferometry will be boarded for the first time on the Surface Water 755 

Ocean Topography mission to provide for the first time sea-level imaging (Vignudelli et al., 2019a). 

Concerning the monitoring of vertical land motions, integrated systems have been shown to offer the best approach to the 

study of subsidence (Wöppelmann and Marcos, 2016; Zerbini et al., 2017; Tosi et al., 2009): GNSS provides point-wise 

continuous positioning with respect to a global reference frame; SAR offers spatially dense measurements of surface 

displacements relative to a ground target selected as reference point. However, if these techniques can support the investigation 760 

of present subsidence patterns with unprecedented detail (i.e., at the single building scale), future scenarios are still difficult to 

construct, with the anthropogenic component of vertical land movements being the most difficult to assess. Historical 

observations showing the potential of anthropogenic subsidence to be in the order of tens of cm per decade demonstrate the 

need of continued careful regulation of land and groundwater use, and monitoring of local subsidence. This might be used to 

develop high and low subsidence scenarios, respectively. 765 

Concerning the simulation of Mediterranean oceanic circulation, despite recent progress in the representation of lateral 

boundary forcing at the Strait of Gibraltar, there are several aspects that remain poorly understood or worth deeper 

investigation. For example, small changes in the salinity difference between Mediterranean and Atlantic waters around a 

threshold of 2 psu can determine shifts in the simulated hydraulic regime within the Gibraltar Strait, from sub-maximal to 

maximal (e.g., Artale et al., 2006). Accordingly, a climate change scenario involving a positive trend in the salinity difference 770 

can result in a partial isolation of the Mediterranean Sea from the rest of the World Ocean (Tsimplis and Baker, 2000). How 

non-linear interaction between large-scale ocean variations and local strait phenomena may sustain an abrupt change in the 

salt/freshwater transport between the Mediterranean and the Atlantic, and a shift in the Mediterranean mean circulation, 
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remains to be investigated in a comprehensive modelling framework. Other Mediterranean Straits are also relevant: for 

instance, water-mass exchanges through Turkish Straits remain idealized in current simulations, and their effect 775 

underrepresented in future projections. Water mass exchange between shelf and ocean is performed through cascading 

processes, which are hardly reproduced by both regional and global solutions (e.g., Polyakov et al., 2012; Holt et al., 2017). 

In this context, promising is the unstructured approach adopted by Ferrarin et al. (2018), in which the system of inter-connected 

basins formed by the Mediterranean, the Marmara, the Black and the Azov seas was numerically investigated through the use 

of a unique computational mesh allowing for a seamless transition between different spatial scales, from narrow straits to open 780 

sea (see also Umgiesser et al., 2020, in this special issue). 

Poorly simulated internal ocean variability also provides potential weakness to projected circulation changes in the 

Mediterranean Sea, which calls for a stronger focus on the validation of regional ocean models regarding interior and abyssal 

dynamics linked to fundamental oceanographic processes. In fact, the Adriatic Sea is the only Mediterranean sub-basin in 

which the evaporation-precipitation-runoff budget is negative: the buoyancy flow at the Otranto Strait is either positive or 785 

negative depending from the predominance of production of dense water within the Adriatic or of the inflow of the Levantine 

Intermediate Water, respectively. Numerical simulations indicate that a nonlinear convection-mixing feedback can favor 

hysteresis in the Adriatic Sea with multiple equilibria encompassing estuarine and anti-estuarine circulation (Pisacane et al., 

2006; Amitai et al., 2017). Such behavior could have important implications for future sea-level variability in the Venice 

Lagoon. Overall, even under accurate representation of global steric and mass addition from the Atlantic, projections of 790 

Mediterranean sea-level change from current regional ocean models would be reliable only in the basin mean tendencies. 

Further, comparison of the regional simulations with satellite-derived data highlights local biases in the historical sea-surface 

height patterns and trends, as well as large inter-model heterogeneity in projected changes at the local scale driven by 

differences in simulated circulation changes. Improved assessment and progress is hoped in this direction as well. 

The higher rate of RSL rise observed in recent decades compared to the longer-term estimate (Table 4) brings the practical 795 

question of the most appropriate statistical model to extract the trend for time series analysis. We have evaluated the 

performance of a linear and a quadratic regression model on the RSL times series, including the raw series and the climatic 

component alone, and for the periods 1872-2019 and 1993-2019. According to a number of skill metrics including R2, AIC 

and FPE (Alessio, 2015 and references therein) (Table 6) the quadratic model only slightly outperforms the linear model for 

both periods and both series. Further research is therefore needed to determine the shape of the local RSL rise in Venice and 800 

to capture the higher RSL trends observed in recent decades, as the simple acceleration expressed statistically in terms of 

quadratic fitting seems to be insufficient. 

Concerning the exploration of future evolution of Venetian RSL, we identify two critical gaps of knowledge. First, the energetic 

variability observed in Venetian MSL on timescales from interannual to multidecadal requires studies (presently missing) 

addressing the viability of its near- and mid-term prediction. Then, on the long term, there has been no exploration of the 805 

implications of high-end GMSL rise for RSL in Venice, which has been only outlined here for the first time. Research on both 
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aspects could contribute to improved understanding of forcing mechanisms of Venetian sea-level changes, risk assessment and 

management, and to more effective scientific communication. 

Finally, this literature review represents a first attempt to combine uncertainty ranges of future projections for the individual 

processes contributing to Venetian RSL change.  Further approaches to objectively combine such uncertain estimates are hoped 810 

to be tested, based on qualitative criteria (e.g., considered process, statistical and numerical framework) or quantitative metrics, 

such as relative or absolute model skills in representing relevant physical features (e.g., boundary forcing at the Gibraltar 

Strait). 

8 Conclusions 

The City of Venice and the surrounding lagoon ecosystem are critically affected by variations in RSL height driven by a host 815 

of diverse processes. These encompass oceanic processes driving RSL variations from diurnal astronomical oscillations to 

climatic interannual-to-multi-centennial fluctuations, and vertical land movements causing RSL variations on time scales 

ranging from a few decades due to, e.g., anthropic activities, to multi-millennial trends due to tectonic activity. This review 

has summarized and reassessed recent progress in the estimation, understanding and prediction of the individual contributions 

to RSL by exploiting new observational datasets, improved statistical methods and more realistic numerical simulations of 820 

ocean and Earth system components achieved in the past decade. Our estimate of the historical long-term linear trend of 

Venetian MSL is 1.23±0.13 mm/year (from 1872 to 2019, with subsidence removed). Looking to the future, the effects of both 

subsidence and climate-induced sea-level rise will have profound implications for Venice, making this scientific evidence even 

more relevant. By the end of the 21st century natural local subsidence is expected to result in a RSL rise from 6 to 10 cm 

relative to the present. Projected climatically-induced Venetian MSL rise from estimates for the GMSL corrected for further 825 

uncertainty associated with the regional redistribution of different mass contribution components such as glacier, ice-sheet and 

groundwater is in the range from 21 to 100 centimeters by 2100. This estimate neglects the effect of atmospheric forcing of 

local MSL, which potentially contributes to uncertainty estimated here in the range of about 10 centimeters. The total 

uncertainty range of the RSL rise in Venice obtained by combining the estimates above is thus very large: from +17 to +120 

centimeters by 2100. An additional contribution could be produced by anthropogenically-driven subsidence. While, in general, 830 

the resulting effect of regional climatic processes could either attenuate or increase regional RSL with respect to GMSL, local 

subsidence will necessarily aggravate it. Further, because of the differential rates of subsidence observed in the Venice area, 

the land movement estimates at the tide gauges may underestimate the risk for other parts of the city. Ice-sheet melting provides 

a highly uncertain contribution: no mechanism has been identified capable of contrasting the impact on Venetian MSL of a 

large GMSL rise caused by the melting of Greenland and Antarctica; therefore, a high-end change, with RSL rise possibly 835 

exceeding 180 cm by 2100 is an unlikely but potential high-end change. 
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Among the important advances highlighted in the review are: Centennial RSL variations are now known to be spatially 

heterogeneous within the lagoon and the city due to different vertical ground movements, hence local trend estimates are not 

expected to be representative for the city or lagoon as a whole; due to the non-linear variations caused by ground subsidence, 

a linear detrending of Venetian RSL time series is unsuitable unless data are preliminarily corrected for the effect of vertical 840 

land motion; remote climate forcing from the Atlantic sector via atmospheric and oceanic processes critically contributes to 

interannual-to-multidecadal Venetian RSL variability; Atlantic hydrographic boundary conditions are a major source of 

uncertainty for future projection of Mediterranean Sea sea-level rise: uncertainty in water mass flows at the Strait of Gibraltar 

yields an ensemble spread between simulations comparable to that determined by uncertainty in greenhouse gas emissions. 

We confirm the existence of a strong link between interannual and interdecadal variability observed in Venetian sea levels and 845 

in the large-scale atmospheric circulation over the North Atlantic during the winter semester, particularly with the North 

Atlantic Oscillation (about 46% of shared variability for January-March average time series in the period 1872-2019). 

The review has highlighted a number of major gaps of knowledge as well. Among these: altimetry data are recorded rather far 

from Venice and may not represent the lagoon RSL variability; uncertainties in geologic trends remain difficult to assess; a 

reliable framework is lacking to combine uncertain future estimates of RSL change due to individual contributions, which 850 

provides for a major opportunity for progress to better constrained ranges of future projections; historical evidence 

demonstrates that subsidence can be temporarily dominated by the anthropic component. This shows the importance of 

sustaining the management regime that brought this anthropogenic component under control across the lagoon, and possibly 

strengthen it to bring the small-scale ongoing anthropic subsidence under control. Finally, whereas several studies explored 

scenarios of RSL changes in Venice at the end of the 21st century under global climate change, near-term predictions have not 855 

been attempted yet and high-end scenarios have not been subject of explicit focus. 
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Figure 1: Maps of the study area and major locations and geographical features mentioned in the paper. Top: the Mediterranean 

Sea (main panel) and satellite altimetry tracks over the northern Adriatic Sea (blue: Envisat 416; red: Jason1-151; green: Jason2-

196) (inset); bottom left: the Venice Lagoon; bottom right: the historical city of Venice. Tide gauge stations are indicated with yellow 1345 
dots (1-Trieste, 2-Marina di Ravenna, 3-Genoa, 4-Marseille). Map for bottom right panel extracted from Google Earth; ©2018 

Landsat/Copernicus, ©2018 CNES/Airbus, ©2018 Digital Globe, ©2018 TerraMetric.  
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Figure 2: Time series of annual-mean RSL measured by tide gauges in Venice and Trieste. Venice data are referred to ZMPS, Trieste 1350 
data are offset for illustrative purposes. The top-left inset defines the reference planes of the tide gauges at Santo Stefano and Punta 

della Salute (redrawn from Battistin and Canestrelli, 2006). 
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Figure 3: Percentage of outliers along track for Envisat track 416 (top right panel), Jason-1 track 161 (mid right panel) and Jason-

2 track 196 (bottom right panel) from SGDR (blue line) and ALES (red line) products. Land is shaded in grey. The green line 1355 
represents the distance from the closest coast (adapted from Passaro et al., 2014). 
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Figure 4: Geological setting of the Po plain area with dominant tectonic features (adapted from Cuffaro et al., 2010).  
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Figure 5: (a) Comparison of the piezometric level in the Marghera industrial area and in Venice from 1910 to 1980. Redrawn after 1360 
Gatto and Carbognin (1981); (b) Average piezometric level between 1952 and 1975 along a levelling line from the mainland to 

Venice: recovery and rebound (redrawn after Carbognin et al., 1976). (c) Empirical curve (red line) accounting for subsidence in 

Venice (updated from Zerbini et al., 2017; from 2013 onward, the subsidence trend shown in the figure is the one derived from the 

GPS data of the station PSAL, see Table 3). Black dots represent the annual sea level difference between Genoa and Venice. Other 

symbols represent the height of various benchmarks; (d) same as (b) but for land subsidence.  1365 
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Figure 6: Comparison between trend estimates of GMSL and Venetian sea levels (RSL and MSL). (a) Temporal evolution of annual-

mean sea levels, including GMSL (from Frederikse et al., 2020; dashed lines are upper and lower estimates) and Venetian RSL and 

MSL (i.e., RSL with subsidence removed). All anomalies with respect to the 1900-1910 mean. (b-d) Maps illustrating linear sea-level 

trends, estimated via linear regression, for running windows of variable width along the observation period. In panels b and c Black 1370 
contours illustrate where the GMSL and Venetian RSL/MSL trend estimates do not overlap within 95% confidence intervals, while 

green contours indicate where they differ in the sign.  

https://doi.org/10.5194/nhess-2020-351
Preprint. Discussion started: 12 November 2020
c© Author(s) 2020. CC BY 4.0 License.



48 

 

 

Figure 7: Observed and projected trends of Mediterranean sea level variations. (a) Sea-level trends in the Mediterranean Sea 

obtained using the ESA SLCCI V2 product over the period 1993-2015. Dots indicate grid points where the trend is not different 1375 
from zero within the associated error range. (b) Projected thermosteric basin-average sea-level anomalies for the Mediterranean 

Sea and associated uncertainties related to the Atlantic hydrographic boundary conditions (blue) and to the socio-economic scenarios 

based on the Special Report on Emissions Scenarios (red) with the regional ocean model NEMOMED8, for the 2000-2100 period 

(vs. 1961-1990). Adapted from (Slangen et al., 2016). (c) Projected Northern Adriatic RSL anomalies and associated uncertainties 

related to socio-economic scenarios (shading: 5-95 percentile range, line: median). Adapted from Thiéblemont et al. (2019). 1380 
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Figure 8: Interannual to interdecadal winter (left) and autumn (right) Venetian relative sea level variability since 1872 and its link 

with the NAO. Top: detrended (second order polynomial fit) time series of Punta della Salute gauge record, after removal of 

subsidence (estimated from Zerbini et al. (2017); Mid: Continuous Wavelet Spectrum (shading: 90% confidence; black contour 95% 1385 
confidence; black lines: cone of influence where edge effects occur); Bottom: wavelet coherence spectrum between Punta della Salute 

data and the Jones NAO index (arrows indicate the phase, with co-phase pointing to the right; thick black contour: 95% confidence, 

in red for Punta della Salute data without removal of subsidence, detrended as in the main analysis, black lines: cone of influence). 

 

 1390 

 

 

 

 

 1395 

 

https://doi.org/10.5194/nhess-2020-351
Preprint. Discussion started: 12 November 2020
c© Author(s) 2020. CC BY 4.0 License.



50 

 

Table 1 - List of acronyms used in the paper. 

BP Before Present 

O Order of 

NAO North Atlantic Oscillation 

RSL/MSL Relative/Mean Sea Level 

EAWR East Atlantic Western Russia pattern 

SCA Scandinavian pattern 

GIA Glacial Isostatic Adjustment 

CM Comune Marino/Comune Alta Marea 

MTL Mean Tide Level 

ZMPS Zero Mareografico Punta Salute 

ALES Adaptive Leading Edge Subwaveform 

RMS Root Mean Square 

RADS Radar Altimeter Database System 

ESA - SLCCI European Space Agency - Sea Level Climate Change Initiative 

CTOH Centre of Topography of the Oceans and the Hydrosphere 

SHYFEM  Shallow water HYdrodynamic Finite Element Model 

AIC  Akaike Information Criterion 

FPE Final Prediction Error 
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Table 2 Time evolution of the natural component of land subsidence in the Venetian region over geological time scales 

Period Subsidence 

rate 

[mm/yr] 

Data source Reference(s) 

   

Last 2 Myr  ~0.5  Nannofossil biostratigraphy, 

paleomagnetic polarity, 

magnetic susceptivity and 

sedimentologic facies of a 

drilled core 

Kent et al., 2002 

Last 1.43 Myr 0.7-1.0 Thickness of Pleistocene 

sediments from seismic lines 

and boreholes 

Carminati et al., 2003 

Last 125 kyr 0.58-0.69 MIS 5.5 paralic deposits in 

drilled cores  

Antonioli et al., 2009 

   

Last 40 kyr 1.2-1.3  Radiocarbon dating on organic 

remains, mainly peats and 

shells 

Bortolami et al., 1985 

4-5 kyr 1 Same as previous line  Bortolami et al., 1985 

1.1±0.3 

 

Geomorphological and 

archaeological markers  

Antonioli et al., 2009 (From their Table 1: 

average of H/G values for sites 17, 27 and 

30 ). Original data from Antonioli et al. 

(2009); Lezziero (2002); Serandrei 

Barbero et al. (2001);  
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Table 3 - Recent evolution of land subsidence in the historical city center of Venice as measured using geodetic techniques. Tosi et 

al. (2013) point out that the uncertainties associated with their SAR estimates represent the ground motion variability at the city 

scale and are not related to the measurement accuracy. 1410 

Period Subsidence 

rate [mm/yr] 

Data source 

   

Reference(s) 

   

At the turn of the 19th and 

20th Century 

   

0.9 Long-term interpolation 

of height benchmarks 

Zerbini et al., 2017 

1931-1970 2.3 Difference of tide gauge 

records (with reference 

to Trieste) 

Carbognin et al., 2004 

2.3  Long-term interpolation 

of height benchmarks

  

Zerbini et al., 2017 

1953-1973 5 leveling  Gatto and Carbognin, 1981 

1973-1993 -0.02 (uplift)

  

leveling Carbognin et al., 1995a, 1995b 

 1992-2002 0.8±0.7  SAR  Tosi et al., 2013 

2003-2010  1.0±0.7 SAR  Tosi et al., 2013 

2008-2020 1.7±0.5 GPS station VEN1 

(Riva dei Sette Mari) 

daily solutions provided by NGL 

(Blewitt et al., 2018); velocity 

estimated assuming a white + power-

law noise model of a priori unknown 

spectral index 

 (CATS Software, Williams, 2008) 

(consistent with Santamaría-Gómez 

et al., 2017) 
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2014-2020 

   

0.9±0.6  GPS station PSAL 

(Punta della Salute) 

   

daily solutions provided by NGL 

(Blewitt et al., 2018); velocity 

estimated assuming a white + power-

law noise model of a priori unknown 

spectral index 

 (CATS Software, Williams, 2008)  
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Table 4 - Linear trends of Venice RSL from tide gauge measurements estimated by various authors in the last 15 years. Errors are 

STD (68% confidence) except where noted in the Confidence column. The linear fit of observed sea level is used except where 

annotated. Estimates are grouped based on the period of analysis: long-term and satellite altimetry period.  

Period Source Trend (mm 

yr-1) 

Confid

ence 

Notes 

Long-term 

1909-2000 

Marcos and Tsimplis, (2008) 2.5±0.1   

Wöppelmann and Marcos, (2012)  2.45±0.09   

1914-2000 Vecchio et al., 2019 

2.43±0.23 90%   

2.78±0.04   

trend derived from fit 

using straight line plus 

Empirical Mode 

Decomposition 

components  

1872-2019 this study 2.53 ± 0.14 95% deseasoned data 

Altimetry period 

1993-2015 Vignudelli et al. (2019b) 

6.29±1.53 99% 
Punta della Salute tide 

gauge data 

5.29±1.27 99% 

Punta della Salute tide 

gauge data with IBE 

correction 

1993-2019 this study 5.01±1.75 95% deseasoned data 

 1415 
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Table 5 - Linear trends of Venice MSL from tide gauge data after removal of subsidence and from satellite altimetry estimated by 

various authors in the last 15 years. Errors are STD (68% confidence) except where noted in the Confidence column. The linear fit 1420 
of observed sea level is used except. 

 

Period Source Trend (mm/yr) 
Confid

ence 
Notes 

Long-term 

1890-2007 Carbognin et al. (2010) 1.20 ± 0.01  deseasoned data 

1872-2012 

Zerbini et al. (2017) 

1.23±0.15 95% deseasoned data 

1934-2012 1.20±0.35 95% deseasoned data 

1905-2005  Scarascia and Lionello (2013) 1.3 N.A. 
comparison among adriatic 

tide gauges 

1872-2019 

this study:  (raw data, subsidence 

removed - Zerbini estimate 

updated) 

1.23 ± 0.13 95% deseasoned data 

Altimetry period 

1993-2008 Fenoglio-Marc et al., 2012a 

5.9±1.4 
95%

  

altimetry data with dynamic 

atmospheric correction  

5.6±1.6 95% 

tide gauge data with 

dynamic atmospheric 

correction 

1993-2015 Vignudelli et al. (2019b) 4.25±1.25  99% 
altimetry point near Venice, 

IBE removal 

1993-2019 this study 2.76 ±1.75 95% deseasoned data 
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Table 6 - Performance of the linear and quadratic regression models applied on the raw annual time series of Venetian RSL and the 1425 
corresponding climatic component alone (i.e., subsidence removed) for the periods 1872-2019 and 1993-2019. R2 is the coefficient of 

determination, AIC is the Akaike Information Criterion, and FPE is the Final Prediction Error. 

 Raw series Climatic component 

 Linear Quadratic  Linear  Quadratic 

1872-2019 

R2 0.89 0.89 0.67 0.69 

AIC 400 398 570 570 

FPE 15 15 48 47 

1993-2019 

R2 0.58 0.59 0.30 0.30 

AIC 70 69 76 76 

FPE 14 14 18 18 
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