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Abstract. Windstorms are a major natural hazard in many countries. Windstorms during the last four decades in 

the U.S. Northeast are identified and characterized using the spatial extent of locally extreme wind speeds at 100 

m height from the ERA5 reanalysis database. During all of the top 10 windstorms, wind speeds in excess of their 

local 99.9th percentile extend over at least one-third of land-based ERA5 grid cells in this high population density 10 

region of the U.S. Maximum sustained wind speeds during these windstorms range from 26 to over 43 ms-1, with 

wind speed return periods exceeding 6.5 to 106 years (considering the top 5% of grid cells during each storm). 

The property damage associated with these storms (inflation adjusted to January 2020) is $24 million to over $29 

billion. Two of these windstorms are linked to decaying tropical cyclones, three are Alberta Clippers and the 

remaining storms are Colorado Lows. Two of the ten re-intensified off the east coast leading to development of 15 

Nor’easters. These windstorms followed frequently observed cyclone tracks, but exhibit maximum intensities as 

measured using 700 hPa relative vorticity and mean sea level pressure that are five to ten times mean values for 

cyclones that followed similar tracks over this 40-year period. The time-evolution of wind speeds and concurrent 

precipitation for those windstorms that occurred after the year 2000 exhibit good agreement with in situ ground-

based and remote sensing observations, plus storm damage reports, indicating that the ERA5 reanalysis data have 20 

a high degree of fidelity for large, damaging windstorms such as these. A larger pool of the top 50 largest 

windstorms exhibits evidence of serial clustering, but to a degree that is lower than comparable statistics from 

Europe. 

1 Introduction 

1.1 Hazardous wind phenomena 25 

Hazardous wind phenomena span a range of scales from extra-tropical cyclones down to downburst and gust 

fronts associated with deep convection (Golden and Snow, 1991). Herein we focus on large-scale, long duration 

‘windstorms’ associated with extratropical cyclones since they are likely to have the most profound societal 

impacts. These large-scale windstorms are a feature of the climate of North America and Europe and a major 

contributor to weather-related social vulnerability and insurance losses (Della-Marta et al., 2009;Feser et al., 30 

2015;Hirsch et al., 2001;Changnon, 2009;Ulbrich et al., 2001;Haylock, 2011;Lukens et al., 2018;Marchigiani et 

al., 2013).  

This analysis focusses on windstorms in the Northeastern region of the United States (U.S.) as defined in the 

National Climate Assessment (USGCRP, 2018) (Table 1). This region exhibits a very high prevalence of mid-

latitude cyclone passages (Hodges et al., 2011;Ulbrich et al., 2009) and the associated extreme weather events 35 

(Bentley et al., 2019). It lies under a convergence zone of two prominent Northern Hemisphere cyclone tracks 
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associated with cyclones that form or redevelop as a result of lee-cyclogenesis east of the Rocky Mountains 

(Lareau and Horel, 2012). The first is associated with extra-tropical cyclones that have their genesis in the lee of 

Rocky Mountains within/close to the U.S. state of Colorado and typically track towards the northeast (Colorado 

Lows, CL) (Bierly and Harrington, 1995;Hobbs et al., 1996). The second is characterized by cyclones that have 40 

their genesis in the lee of Rocky Mountains in/close to the Canadian province of Alberta and track eastwards 

across the Great Lakes (Alberta Clippers, AC). Previous research has found that these cyclones generally move 

southeastward from the lee of the Canadian Rockies toward or just north of Lake Superior (Fig. 1a) before 

progressing eastward into southeastern Canada or the northeastern United States, with less than 10% of the cases 

in the climatology tracking south of the Great Lakes (Thomas and Martin, 2007). The northeastern states are also 45 

impacted by decaying tropical cyclones (TC) that track north from the Gulf of Mexico or along the Atlantic 

coastline (Baldini et al., 2016;Varlas et al., 2019;Halverson and Rabenhorst, 2013). Consistent with recent 

research on the windstorm risk in Europe that found that although less than 1% of cyclones that impact Northern 

Europe are post tropical cyclones, these systems tend to be associated with higher 10-m wind speeds (Sainsbury 

et al., 2020). Tropical cyclones, such as Hurricane Sandy have been associated with large geophysical hazards in 50 

the Northeast (Halverson and Rabenhorst, 2013;Lackmann, 2015). This region also experiences episodic 

Nor’easters, extra-tropical cyclones that form or intensify off/along the U.S. east coast and exhibit either 

retrograde or northerly track resulting in a strong northeasterly flow over the Northeastern states (Hirsch et al., 

2001;Zielinski, 2002).  

Table 1. Summary of the states that comprise the Northeastern region as defined by the National Climate 55 
Assessment.(USGCRP, 2018). State abbreviations and population from the 2010 U.S. Census are also given (Census, 

2019). 

Name Abbreviation 2010 Population 

United States US 308,745,538 

Northeastern Region NE 64,443,443 

Connecticut CT 3,574,097 

Delaware DE 897,934 

District of Columbia DC 601,723 

Maine ME 1,328,361 

Maryland MD 5,773,552 

Massachusetts MA 6,547,629 

New Hampshire NH 1,316,470 

New Jersey NJ 8,791,894 

New York NY 19,378,102 

Pennsylvania PA 12,702,379 

Rhode Island RI 1,052,567 

Vermont VT 625,741 

West Virginia WV 1,852,994 

There is evidence that intense winter wind speeds in the mid-latitudes have increased since 1950, due in part to 

increased frequency of intense extra-tropical cyclones (Ma and Chang, 2017;Vose et al., 2014). While long-term 

trends such as this from reanalysis products are subject to the effects of changing data assimilation (Bloomfield 60 

et al., 2018;Befort et al., 2016;Bengtsson et al., 2004), the 56 member twentieth century reanalysis exhibits a 

positive trend in the 98th percentile wind speed over parts of the U.S. including the Northeastern states that are the 

focus of the current research (Brönnimann et al., 2012) (Fig. 1, Table 1). 
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Figure 1. (a) 99.9th percentile wind speed (U999) from ERA5 for each grid cell in the Northeastern U.S. derived using 65 
hourly wind speeds at 100 m a.g.l. during 1979-2018. Borders of the 12 Northeastern states are shown in red. The Great 

Lakes are each labelled in white, with the first three letters of their names: Superior (SUP), Michigan (MIC), Huron 

(HUR), Erie (ERI) and Ontario (ONT). (b) Time series of the number of ERA5 grid cells over the Northeastern states 

that exceed their local U999 value (out of 924 cells). The 50 largest-magnitude events are circled in black, and the top 

ten events are marked in red. (c) Locations of the 24 ASOS stations and 7 RADAR stations used for validation of ERA5 70 
wind speed and precipitation values. The dotted circles show the area with 200-km radius from each RADAR station 

(d) Population density of the Northeast at a spatial resolution of 30 arc-seconds (~1 km; data from the 2010 U.S. 

Census). 

1.2 Socioeconomic consequences of windstorms 

Economic losses associated with atmospheric hazards are substantial. Data from Munich Re indicate that annual 75 

‘weather related’ losses at the global scale in 1997-2006 were US $45.1 billion (inflation adjusted to 2006 $) 

(Bouwer et al., 2007). In 2013, globally aggregated losses due to natural hazards were estimated at US$125 billion 

(Kreibich et al., 2014). Data from the contiguous U.S. indicate 168 “billion-dollar disaster events” linked to 

atmospheric phenomena during 1980-2013 (Smith and Matthews, 2015). In the U.S., three-quarters of total 

damages from natural hazards derive from hurricanes, flooding, and severe winter storms (including windstorms) 80 

(Gall et al., 2011). There is also evidence of a trend towards increasing economic impact from natural hazards 

within the U.S. even after adjusting for inflation. According to one report; ‘Nationwide, annual losses rose from 

$4.7 billion in the 1960s to $6.7 billion in the 1970s, $7.6 billion in the 1980s, $14.8 billion in the 1990s, and 

$23.6 billion in the 2000s’ due to a combination of more frequent disasters, disasters of larger scale and changes 

in societal resilience (Gall et al., 2011).  85 

Here we focus on the Northeastern U.S. states (Fig. 1a, Table 1) because this region experiences a relatively high 

frequency of damaging storms, in particular during the cold season (Hirsch et al., 2001), and exhibits relatively 

high exposure due to both the large number of (i) highly populated, high-density urban areas (Fig. 1d (SEDAC, 

2020;Census, 2019)) and (ii) high-value (insured) assets. For example, New York state ranks tenth of fifty U.S. 
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states in total direct economic losses related to natural hazards, with estimated losses of $12.54 billion in 2009$ 90 

between 1960 to 2009 (Gall et al., 2011).  

Windstorms present a hazard to the built environment, transportation, especially to aviation (Young and 

Kristensen, 1992), and multi-energy systems including the electric grid (Bao et al., 2020;Wanik et al., 2015). In 

2016 the annual cost of grid disruptions within the U.S. were estimated to range from approximately $28 billion 

to $209 billion (Mills and Jones, 2016). Composite events characterized by the co-occurrence of ice accumulation 95 

and wind are particularly hazardous to the built environment, aviation and energy infrastructure (Sinh et al., 

2016;Jeong et al., 2019). For example, in the 1998 Northeastern ice storm ice deposition combined with high 

winds led to the toppling of 1,000 transmission towers, loss of power to 5 million people, and 840,000 insurance 

claims valued at $1.2 billion (Mills and Jones, 2016).  

1.3 Objectives of this research 100 

This research is inspired by and is conceptually analogous to development of the XWS (eXtreme WindStorms) 

catalogue of storm tracks and wind-gust footprints for 50 of the most extreme European winter windstorms 

(Roberts et al., 2014). Specific goals of the research reported herein are to:  

1) Present a new method for identifying and physically characterizing severe windstorms. This method is applied 

to forty-years of hourly output from the ERA5 reanalysis to extract the 10 most intense windstorms over the 105 

U.S. Northeastern states and describe them in terms of their location, spatial extent, duration, and severity. 

We further evaluate the degree to which these windstorms are composite extreme events, wherein high wind 

speeds co-occur with extreme or hazardous precipitation. 

2) Verify aspects of the windstorms as characterized based on ERA5 reanalysis output using wind speed 

observations from sonic anemometers and precipitation characteristics from RADAR and in situ rain gauges, 110 

plus storm damage reports.  

3) Contextualize these windstorms in the long-term cyclone climatology. Specifically, we track each windstorm 

over time and space using two indices of intensity derived from mean-surface pressure and relative vorticity 

and contextualize these events in the cyclone climatology for 1979-2018.  

4) Evaluate these windstorms in terms of the return periods of extreme wind speeds derived using the Gumbel 115 

distribution applied using annual maximum wind speeds for 1979-2018. 

This research is a part of the HyperFACETS project which uses a storyline-based analysis framework. Storylines 

are “physically self-consistent unfolding of past events, or of plausible future events or pathways” (Shepherd et 

al., 2018) and provide a method of framing a research inquiry in terms of three elements: A geographic region, an 

event, and a set of process drivers for that event. 120 

2 Data and Methods 

2.1 ERA5 reanalysis 

Attempts to identify and characterize windstorms from a geophysical perspective have historically been hampered 

by limited data availability and/or quality from geospatially inhomogeneous observing networks. Further, time 

series from in situ wind measurement networks exhibit substantial inhomogeneities due to factors such as station 125 

relocations, instrumentation changes, changes in conditions around individual measurement stations, changes in 
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measurement frequencies and/or integration periods (Pryor et al., 2009;Wan et al., 2010). Thus, herein we employ 

once hourly wind speeds from the ERA5 reanalysis. The wind speeds are for a height of 100-m a.g.l. at the model 

time step of 20 minutes and a spatial resolution of 0.250.25. This study focuses on windstorms within a study 

domain that extends from 35 to 50N and 65 to 90W (Fig. 1a). The events are defined using data from the 924 130 

ERA5 land-dominated grid cells over the twelve Northeastern states (two-letter abbreviations given in Table 1).  

The ERA5 reanalysis is derived using an unprecedented suite of assimilated in situ and remote sensing 

observations (Hersbach et al., 2020) and exhibits relatively high fidelity for wind speeds (Kalverla et al., 

2020;Olauson, 2018;Kalverla et al., 2019;Pryor et al., 2020;Jourdier, 2020;Ramon et al., 2019). However, it is 

important to acknowledge that wind parameters from any model do not fully reflect all scales of flow variability 135 

(Skamarock, 2004) and underestimate extreme wind speeds (Larsén et al., 2012), particularly in areas with high 

orographic complexity and or varying surface roughness length. Here we use wind speeds at 100-m because flow 

at this height is less likely to be impacted by sub-grid scale heterogeneity in surface roughness length and 

uncertainties induced by unresolved sub-grid scale variability. Near-surface wind speeds are strongly coupled to 

wind speeds at 100-m (i.e. within the PBL) but wind speeds at 100-m are less strongly impacted by inaccuracies 140 

and/or uncertainty in surface roughness length (z0) (Minola et al., 2020;Nelli et al., 2020). Applying an uncertainty 

of a factor of two to z0 can lead to mean differences of up to 0.75 ms-1 for near-surface (40 to 150 m a.g.l.) wind 

speeds (Dörenkämper et al., 2020). Further, the scale of events we seek to characterize are regional rather than 

local scale, and are necessarily driven by winds aloft. 

Cyclone tracking and intensity estimates presented herein employ three-hourly mean sea level pressure (MSLP) 145 

and relative vorticity at 700 hPa (RV) fields from ERA5. Previous research has indicated relatively good 

consistency between cyclone climatologies derived using ERA5 and other recent reanalyses (Gramcianinov et al., 

2020;Sainsbury et al., 2020). RV values at 700 hPa are used rather than 850 hPa as in the XWS European analysis 

due to the presence of high elevation areas in U.S. cyclone source regions. Further, the three-hourly fields from 

ERA5 used herein are direct products of the reanalysis, whereas the 3-hourly values used in XWS were based on 150 

6-hourly ERA Interim reanalyses combined with ERA Interim forecast values for the intervening time steps 

(Roberts et al., 2014).  

Compound events, windstorms which exhibit a co-occurrence of extreme precipitation and/or freezing rain with 

high winds, are associated with amplified risk (Zscheischler et al., 2018;Sadegh et al., 2018). Precipitation 

intensity and hydrometeor class from ERA5 are used to identify to what degree each of the ten storms are 155 

compound events. The hydrometeor classes reported by ERA5 are; rain, mixed rain and snow, wet snow, dry 

snow, freezing rain, and ice pellets and are differentiated based largely on the temperature structure in the 

reanalysis model (https://confluence.ecmwf.int/display/FUG/9.7+Precipitation+Types). Prior analyses of ERA5 

precipitation values have indicated skill relative to in situ observations and gridded data sets over the U.S. (Tarek 

et al., 2020;Sun and Liang, 2020).  160 

2.2 Observational data 

Wind speeds and precipitation characteristics during the windstorms are identified using ERA5 and are validated 

using in situ measurements from 24 National Weather Service (NWS) Automated Surface Observation System 

(ASOS) stations and seven NWS RADARs (Fig. 1c). Since major upgrades to the NWS systems were conducted 

in 2000, this evaluation is focused on windstorms that occurred after that year. Five minute measurements of in 165 
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situ wind speeds at 10-m a.g.l. used in this evaluation derive from ice-free two-dimensional sonic anemometers 

(Schmitt IV, 2009), while the in situ observations of precipitation intensity reported from the ASOS network 

derive from heated tipping-bucket rain gauges (Tokay et al., 2010). In the absence of widespread in-situ wind 

speed observations from tall towers (which would be more comparable to the 100-m wind speeds from ERA5), 

these 10-m wind speed observations represent the best available validation data set for the occurrence of high 170 

winds throughout the Northeast states. NWS protocols document accumulated precipitation since the last hour, 

sampled every minute and reported every five minutes (Nadolski, 1998). For the current comparison to ERA5, 

these are averaged to generate hourly rainfall rates. 

Precipitation rates from seven NWS dual polarization RADAR (Kitzmiller et al., 2013) are used to provide an 

areally-averaged comparison of ERA5 (Fig. 1c). NWS RADAR precipitation products are the product of extensive 175 

development efforts (Cunha et al., 2015;Villarini and Krajewski, 2010;Straka et al., 2000) and have been 

employed in a wide array of applications (Letson et al., 2020;Seo et al., 2015;Krajewski and Smith, 2002). 

Precipitation intensity rates derived from RADAR reflectivity are reported in 41,400 cells using 1° azimuth angle 

and a range resolution of 2 km. In the current work, precipitation rates within 200 km of each RADAR are 

averaged in time to match the hourly resolution of ERA5 precipitation and interpolated in space to the 0.250.25 180 

ERA5 grid. For comparison with ERA5, mean precipitation rates in each hour of the windstorm are computed 

from ERA5, ASOS and RADAR over the land areas of Northeastern states that are within 200 km of the 7 RADAR 

stations used herein (Fig. 1c). 

2.3 NOAA Storm Events Database 

The U.S. National Oceanic and Atmospheric Administration (NOAA) provides detailed information on “the 185 

occurrence of storms and other significant weather phenomena having sufficient intensity to cause loss of life, 

injuries, significant property damage, and/or disruption to commerce” at the county level in the NOAA Storm 

Events Database (https://www.ncdc.noaa.gov/stormevents/). These records are subject to some inhomogeneities 

associated with digitization of transcripts prior to 1993, and standardized into 48 event types in 2013 

(https://www.ncdc.noaa.gov/stormevents/details.jsp?type=collection) but are compiled from a range of county, 190 

state and federal agencies in addition to the NWS. Like all hazard loss datasets they are subject to reporting 

inaccuracies and inconsistencies (Gall et al., 2009), but they represent a long and relatively consistent record, and 

are widely used (Young et al., 2017;Konisky et al., 2016). Damage and mortality estimates from this dataset to 

provide an estimate of the impact of each windstorm, with the caveat that population density and hence the 

potential for loss of life and damage vary markedly between U.S. counties (Fig. 1d). 195 

2.4 Method used to characterize windstorms 

A range of different techniques have been developed and applied to identify and characterize atmospheric hazards 

including extreme windstorms. Some rely on an assessment of the severity of the events such as insured losses or 

human mortality/morbidity, others prescribe a level of rarity (i.e. are probabilistic), while others prescribe a level 

of intensity (i.e. the occurrence of extreme values of some physical phenomena) (Stephenson, 2008). Here we 200 

employ a methodology based on the intensity and spatial extent of extreme wind speeds. This approach is 

conceptually similar to storm severity indices derived from European work based on the maximum 925 hPa wind 

speed within a 3 radius of the vorticity maximum and the area over which wind speeds at that height exceed 25 
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ms-1 (Roberts et al., 2014;Della-Marta et al., 2009). It also draws from earlier work that used an index defined as 

the product of the cube of the maximum observed wind speed over land, the areas impacted by damaging winds 205 

(> 25.7 ms-1) and the duration of damaging winds (Lamb, 1991).  

This analysis employs hourly wind speeds at 100-m a.g.l. for 1979-2018 in all 924 land-dominated grid cells over 

the Northeastern states. The methodology applied to identify and characterize the ten largest windstorms does not 

employ an absolute threshold of wind speed, but rather exceedance of locally determined thresholds defined by 

the 99.9th percentile wind speed value (U999). A local U999 threshold is used, rather than an absolute wind speed 210 

threshold in ms-1, in part because storms affecting urban areas, which may not be prone to high wind speeds, are 

especially damaging to infrastructure. While lower percentile thresholds have been used in previous work (Walz 

et al., 2017;Klawa and Ulbrich, 2003), use of the 99.9th percentile wind speed value is appropriate for identifying 

the truly extraordinary conditions we seek to characterize and is robust when applied to very long datasets with 

very large sample sizes. Use of locally determined thresholds also enables direct comparison of the spatial scale 215 

and intensity of windstorms derived using the ERA5 data at 100 m a.g.l. and near-surface wind speed observations 

from 10 m a.g.l.. Exceedance of the local 99.9th percentile wind speed value (U999) value is considered in both 

cases based on the ~20 year record from each ASOS station and the 40 years of ERA5 data, and comparisons are 

made at an hourly resolution by averaging all ASOS wind speeds within a given hour. 

As shown in Fig. 1a, there is marked spatial variability in the 99.9th percentile wind speed (i.e. the wind speed 220 

exceeded on slightly over 3500 hours during the forty-year period). U999 ranges from over 28 ms-1 over the Atlantic 

Ocean down to 12 ms-1 over some land grid cells due to the higher surface roughness and topographic drag. 

Windstorms are identified as periods when the largest number of ERA5 grid cells exceed their local (ERA5 grid 

cell specific) 99.9th percentile wind speed value (U>U999). A further restriction is applied in that no event may be 

within 14 days of any other, to avoid double-counting of any individual storm (Fig. 1b, Table 2).  225 

The peak hour of U>U999 coverage within the Northeast states for each of the ten most intense storms is referred 

to herein as the peak windstorm time (tp), and the 97 hours (±48 hours) surrounding that time are referred to as 

the storm period. For each hour of each storm period a high-wind centroid is identified using the mean latitude 

and longitude of all grid cells where U>U999.  

Precipitation associated with each of the ten most intense windstorms is also evaluated using ERA5 precipitation 230 

totals and types. The analysis of precipitation centers on a 24-hour period centered on the peak windstorm time 

(tp). Precipitation statistics including 24-hour total precipitation, hourly precipitation rates, and the frequency of 

each precipitation type is characterized for all land grid cells in Northeastern states that exceed their local U999 

value at any point in this 24-hour period. 

Research from Europe indicate evidence of serial clustering of windstorms (Walz et al., 2018). Although our focus 235 

is primarily on the ten most intense and extensive windstorms, a larger sample of 50 events is extracted using the 

methodology described above but relaxing the temporal separation from 14 to 2 days, to examine the degree to 

which spatially extensive windstorms as manifest in ERA5 are serially clustered (Fig. 1b). This analysis employs 

a Poisson distribution fit to these 50 events and the dispersion index (D) of (Mailier et al., 2006): 

𝐷 =
𝜎2

𝜇
− 1           (1) 240 

Where 2 and  are the variance and mean of the distribution, which for a Poisson distributed random variable 

are equal (Wilks, 2011). D > 0 indicates the presence of temporal clustering. The significance of D is evaluated 

using a bootstrapping analysis in which 10,000 samples are drawn with replacement and the dispersion index is 
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calculated for each, similar to a method used in (Pinto et al., 2016). 

2.5 Development of a cyclone climatology 245 

A cyclone detection and tracking algorithm (Hodges et al., 2011) is applied to 3-hourly ERA5 MSLP and 700hPa 

RV global fields that have been subjected to T42 spectral filtering for RV (corresponding to a 310-km resolution 

at the equator) and T63 filtering for MSLP (210 km at the equator) with the large scale background removed for 

total wavenumbers  5. These spectral filters are designed to restrict detection to tropical and mid-latitude cyclones 

(Hoskins and Hodges, 2002). The location and intensity of the cyclones are identified using the local maxima in 250 

RV and the minima (i.e. negative deviations) in MSLP. These are anomalies identified in the filtered fields, 

obtained from the spectral filtering which has the large-scale background removed for the tracking. RV cyclone 

intensities are shown in units of 10-5 s-1, and MSLP intensity estimates are given in hPa. The cyclones are tracked 

by first initializing a set of tracks based on a nearest-neighbor method which are then refined by minimizing a 

cost function for track smoothness as in the XWS European analysis (Roberts et al., 2014). Cyclones only 255 

contribute to the climatology if they persist for ≥ eight time steps (24 hours). The cyclone detection algorithm is 

applied separately to MSLP and RV with the results being used to provide a qualitative assessment of the 

uncertainty in the cyclone tracks.  

Tracks associated with each windstorm are identified by identifying the geographic centroid of ERA5 grid cells 

where U > U999 and secondly if the local maximum of MSLP (scaled by -1) and RV anomalies tracked into the 260 

Northeast study domain during the storm period. The date and location on which the cyclone associated with each 

windstorm are first identified by the tracking algorithm are used to identify the source area of each windstorm and 

the location and time at which the detection algorithm ceases to identify a cyclone are used to describe the end of 

the cyclone track. Subjective evaluation of the cyclone tracks associated with each windstorm are used to identify 

the type of cyclone associated with each windstorms; Alberta Clippers (AC), deep Colorado lows (CL), decaying 265 

tropical cyclones (TC) and nor’easters (NE). 

Consistent with past research (Hirsch et al., 2001) all of the top-10 windstorms identified using the largest spatial 

extent of locally extreme wind speeds in the ERA5 data occur during cold season months (October to April). Thus, 

the cyclone track density used to contextualize the windstorms is restricted to only those months. This analysis 

further focusses solely on cyclones that track into the Northeastern domain. These restrictions allow direct 270 

evaluation of the degree to which the windstorms are typical of the prevailing cyclone climatology. 

 2.6 Calculation of long-term period wind speeds 

Peak wind speeds (Upeak) during each of the windstorms are expressed in terms of their return period (RP in years) 

to provide a metric of the degree to which these events are exceptional. These statistics are computed for each 

ERA5 grid cell by fitting a double exponential (Gumbel) distribution to annual maximum wind speeds (Umax) 275 

(Mann et al., 1998): 

𝑃(𝑈𝑚𝑎𝑥; 𝛼, 𝛽) = 𝑒−𝑒
(𝑈𝑚𝑎𝑥−𝛼)/𝛽

         (2) 

Where the distribution parameters  and  are derived using maximum likelihood estimation. The Upeak estimates 

for each ERA5 grid cell are then evaluated in terms of their return period (RP in years) using (Wilks, 2011;Pryor 

et al., 2012): 280 
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𝑅𝑃 =
1

1−𝑃(𝑈𝑝𝑒𝑎𝑘)
           (3) 

This method is similar to that used for grid-point-based wind speed return period calculations in previous work 

(Della-Marta et al., 2009), which resulted in return periods of 0.1 to 500 years when considering 200 prominent 

windstorms in Europe. 

3 Results 285 

3.1 Windstorm identification and characterization 

The top-10 windstorms during 1979-2018 over the Northeastern states identified using the method described 

above are summarized in Table 2. During the peak hour (tp) of each of these windstorms, 309 to 524 (33 to 56%) 

of the 924 ERA5 land-dominated grid cells exhibit U>U999 (Table 2). For context, 10% of ERA5 grid cells co-

exhibit U>U999 in <1% of hours. The windstorms are not concentrated in any sub-period of the 40 years under 290 

consideration (1979-2018) and no individual year contained two of the top ten windstorms (Fig. 1b). Hence, in 

the following the windstorms are referred to below by their (unique) year of occurrence, and in all figures and 

tables results are displayed in decreasing order of windstorm magnitude as defined using spatial extent (Table 2). 

The maximum wind speed at 100 m a.g.l. in any ERA5 grid cell at the peak hour range from 25 to 41 ms-1, while 

the maximum during the storm period range from 26 to 44 ms-1 (Table 2). These maximum wind speeds do not 295 

scale with the storm intensity as measured by the number of grid cells that exceed their local 99.9 th percentile 

wind speeds (Table 2). For example, the windstorm during March 1993 was associated with the highest absolute 

wind speeds but was manifest in a relatively small number of ERA5 grid cells (Table 2).  

Table 2. Summary of the top 10 windstorm events. The time of max coverage (tp) shows the time and date with the 

greatest geographic extent of high wind speeds. # cells indicates the count of ERA5 grid cells with U > U999 at tp. The 300 
maximum precipitation accumulated in any Northeastern state land grid cell is given for in the 24 hours surrounding 

the storm peak. Property damage for the Northeastern states is the accumulation of information from the NOAA Storm 

Data accumulated over the duration of the period for which the associated cyclone (defined using RV) is evident. 

Inflation adjusted property damage are derived using inflation estimates from the U.S. Bureau of Statistics 

(bls.gov/data/inflation_calculator.htm) 305 

Time of max 

coverage (tp) 

# cells 

U>U999 

Max U at tp 

[ms-1] 

Max U during 

storm period 

[ms-1] 

Max 24-hour 

precip. [mm] 

Property 

Damage 

[M$] 

Property Damage 

[M$] 

Inflation adjusted 

to January 2020 

10/30/2012 00:00 524 34.27 41.80 146.03 25,304 29,100 

11/13/2003 20:00 481 26.04 29.95 39.02 1,119 1,600 

4/6/1979 20:00 479 28.53 31.88 34.19 586 2,233 

1/27/1996 15:00 414 25.76 30.81 60.64 1,298 2,181 

4/16/2007 16:00 372 29.56 32.44 79.06 392 502 

11/13/1992 3:00 363 25.53 28.34 54.01 42 79 

2/11/1981 04:00 339 24.81 29.08 93.02 8 24 

3/13/1993 21:00 339 40.95 43.15 84.33 34 62 

3/2/2018 19:00 331 31.66 33.10 84.71 164 172 

4/5/1995 20:00 309 24.21 26.29 19.19 225 389 

All ten windstorms are associated with substantial damage reports within the Northeast states (Table 2, Fig. 2) 

and nine of the ten storms were responsible for deaths in the Northeast states (Fig. 2). There is not direct 

correspondence between the ranking of the windstorms in terms of the number of ERA5 grid cells with U>U999, 

and the amount of damage and human mortality as reported in the NOAA Storm Data, but the four highest-

magnitude windstorms (2012, 2003, 1979, and 1996) all have property damage totals above any of the other six 310 

windstorms (Table 2). Further, although NOAA Storm Data indicate only modest total economic costs associated 
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with property damage during the 1992 windstorm, there are reports of widespread damage in counties across much 

of the Northeast (Fig. 2). The lack of complete correspondence between the centroid of windstorms, as identified 

using the methodology presented here, and property damage in the NOAA dataset is likely due to: (i) Occurrence 

of localized extreme (damaging) winds that are manifest at scales below those represented in the ERA5 reanalysis 315 

(e.g. downbursts from embedded thunderstorms, sting jets and other mechanisms (Li et al., 2020;Clark and Gray, 

2018)). (Hewson and Neu, 2015) suggest a grid resolution of 20 km or higher is required to fully capture damaging 

winds. (ii) Spatial variability in insured assets (e.g. (Nyce et al., 2015) and (Brown et al., 2015) ). (iii) Possible 

inconsistences in storm-reporting practices across counties (See NOAA storm data publications for details: 

https://www.ncdc.noaa.gov/IPS/sd/sd.html). Nevertheless, although many factors dictate economic losses from 320 

windstorms, the Pearson correlation coefficient (r) between the number of grid cells with U > U999 at tp and 

inflation adjusted property damage exceeds 0.66, and r between the maximum wind speed and inflation adjusted 

property damage is 0.56. For a sample size of 10, using a t-test to evaluate significance (Wilks, 2011), these 

correlation coefficients differ from 0 at confidence levels of 95% and 90%, respectively. Thus, this geophysical 

intensity metric captures aspects of relevance to storm damage. 325 

Several of the windstorms have been previously identified in independent analyses further confirming the 

reliability of the detection method. For example, Hurricane Sandy, the most intense windstorm in this analysis 

(Table 2), is a historic storm that moved parallel to the coast before making landfall in southern New Jersey on 

29 October and caused $50 billion of damage (Lackmann, 2015). According to the ERA5 output at its peak, over 

300,000 km2 of the Northeastern states exhibited wind speeds at 100 m a.g.l. that exceeded the locally determined 330 

U999 (Fig. 3). The 8th most intense windstorm (Table 2) is the “Storm of the Century” of 12-14 March 1993 that 

formed in the Gulf of Mexico and caused widespread damage in Florida and along the Atlantic coast before 

entering the Northeast (Huo et al., 1995).  

The synoptic-scale structure of extra-tropical cyclones is complicated (Hoskins, 1990). Generally, but not 

uniformly, maximum wind speeds are associated with low-level jets that occur along the cold fronts of extra-335 

tropical cyclones (Hoskins, 1990;Browning, 2004). Consistent with that expectation, the centroid of ERA5 grid 

cells with U>U999 tends to move in parallel with the cyclone track locations but are generally displaced to the 

south/southeast (Fig. 2).  
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Figure 2. Windstorm centers as the geographic center of all ERA5 grid cells for U > U999 (blue). Markers are filled 340 
when there are >100 cells over this threshold. Timing and location of the cyclone centers as diagnosed from MSLP and 

relative vorticity at 700 hPa are shown in black and red, respectively. Markers every 3 hours along each track have a 

diameter corresponding to track intensity. The underlying shading shows the county-level damage and deaths in the 

Northeastern states associated with each event as diagnosed from the NOAA storm reports. 
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 345 
Figure 2 (cont).  

Previous research has reported that reinsurance contracts commonly employ a 72 hour window to describe a 

‘single event’ (Haylock, 2011). All of the windstorms identified in this work transited the Northeastern study 

domain in < 72 hours. Intense wind coverage (U>U999) is generally concentrated in the ±10 hours around the storm 

peak time, tp (Fig. 3), although some windstorms had longer duration and a slower decay in widespread intense 350 

wind speeds with significant coverage remaining >10 hours after tp (Fig. 3).  

 
Figure 3. Spatial extent of the windstorms measured in km2 over the Northeastern states relative to tp. The spatial 

extent is described as the area of ERA5 grid cells wherein the U > U999. Values are shown for 48 hours preceding and 

following each windstorm peak. 355 
Twenty-four-hour precipitation totals, used as an indicator of flooding potential, and maximum precipitation rates, 

used as an indicator of transportation hazards, vary substantially among the ten windstorms, but virtually all of 360 

the windstorms were associated with some form of extreme or hazardous precipitation (Fig. 4). Consistent with 
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observational evidence (Munsell and Zhang, 2014), Hurricane Sandy (windstorm during 2012) is associated with 

total 24-hour precipitation accumulation in several ERA5 grid cells of up to 100 mm, and accumulations exceeded 

20 mm in multiple ERA5 grid cells. Very heavy precipitation, both in terms of maximum precipitation intensity 

and total accumulated precipitation is also associated with the 1993 windstorm resulting from a decaying TC that 365 

formed a NE (Fig. 4). The windstorms with lowest precipitation totals occurred in 2003, 1979 and 1995 and are 

associated with AC. Freezing rain, which in conjunction with high winds is a particular hazard to electrical 

infrastructure and transportation, is present during the windstorms in 1992, 1981 and 1993 (Fig. 4). There is also 

snow indicated in at least one location in the domain in every storm, except for 2012 (Hurricane Sandy). 

 370 
Figure 4. Histograms of precipitation totals and maximum precipitation rates and precipitation types for the 24 hours 

centered on each storm peak across ERA5 land-based grid cells in the Northeastern states. The frequencies are the 

fraction of grid cells in each class (out of 924). Precipitation types are as follows: No precipitation (0), rain (1), freezing 

rain (3), snow (5), wet snow (6), mixture of rain and snow (7) and ice pellets (8).  
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Four of the top-10 windstorms occurred after 2000 (2012, 2003, 2007 and 2018, Table 2), and thus high quality 375 

ASOS and RADAR data are available for comparison with estimates from ERA5 for these events. For the 2012, 

2003 and 2018 windstorms there is good agreement between the spatial extent of locally extreme wind speeds 

from ERA5 and ASOS, and the duration of intense wind speeds (Fig. 5). The agreement is less good for the 2007 

windstorm possibly due to the low density of ASOS stations in the U.S. state of Maine where the ERA5 output 

indicate the wind maximum was manifest for a substantial fraction of the storm period (Fig. 2). For the other three 380 

windstorms the fraction of ERA5 grid cells in the Northeastern states with U>U999 closely matches the fraction of 

ASOS stations in the same area that exceed their local U999 threshold during each hour of the storm period (Fig. 

5). The timing of storm precipitation in the ERA5 data is also in good agreement with observational estimates 

from RADAR and ASOS stations, consistent with assimilation of RADAR precipitation and weather station data 

(Lopez, 2011;Hersbach et al., 2019). The period with most intense precipitation occurred concurrently with the 385 

high wind speeds during Hurricane Sandy, but largely well before tp in the 2007 and 2018 windstorms (Fig. 5), 

consistent with previous work characterizing extra-tropical cyclones (Bengtsson et al., 2009). Mean ERA5 

precipitation rates in Northeast states during these ten storms are consistently somewhat higher than estimates 

from RADAR, but below ASOS point measurements, reflecting spatial variability in rainfall intensity at scales 

below those manifest in a network of point measurements (Villarini et al., 2008).  390 

 
Figure 5. Time series of high wind coverage and mean precipitation rate during the four windstorms that occurred 

after the year 2000. Each subplot includes the fraction of ERA5 grid cells with over-threshold wind speeds (U > U999), 

the number of ASOS stations with over-threshold wind speeds, the mean precipitation rate (in land areas of Northeast 

states within 200 km of a RADAR station) from ERA5, NWS RADAR and ASOS point observations. 395 
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A larger sample of 50 windstorms was also drawn from the 40-year time series to examine the serial dependence. 

These top-50 windstorms are relatively well described by a Poisson distribution in terms of counts per calendar 

year. The resulting dispersion value (D) is 0.18 indicating evidence for serial dependence or alternatively stated 

that these windstorms are clustered in fewer years than would be expected for independent events. Of 10,000 

bootstrapped samples, 99.97% had dispersion indices above zero. While this D value is symptomatic of serial 400 

clustering for windstorms that impact the Northern USA, it is lower than those computed for regions of European 

in earlier research using the 20th century ERA reanalysis and a 98th percentile wind speed threshold (Walz et al., 

2018). While the top ten windstorms considered in detail herein all have spatial extent of between 309 and 524 

grid cells, the 11th- through 50th-ranked storms in the set used to characterize seriality have a mean extent of 216 

grid cells, and range in extent from 176 to 309 cells, further indicating that the top ten storms are distinct in the 405 

40-year time series (Fig. 1). 

3.2 Cyclone detection and tracking  

Consistent with past research employing other reanalysis data sets (Ulbrich et al., 2009), results from application 

of the cyclone detection and tracking algorithm to ERA5 output also indicate the U.S. Northeast exhibits a high 

frequency of transitory cyclones (Fig. 6). Also in accord with expectations, the tracks followed by the windstorms 410 

are generally characteristic of those dominant cyclone tracks, and derive from a mixture of intense nor’easters 

(NE), Alberta Clippers (AC), deep Colorado lows (CL), and decaying tropical cyclones (TC) (Table 3, Fig. 6).  

Cyclone intensities for the 10 windstorms are an order of magnitude above the mean intensities for cold-weather 

cyclones at the same locations over the U.S. for both RV and MSLP (Fig. 7, Table 3). Windstorms with the highest 

intensities tend to pass over the ocean (2012, 1993 and the 2018 storm). Both the 2012 and the 1993 windstorms 415 

are the result of decaying tropical cyclones, with the 1993 system transitioning to become a NE (Fig. 2 and 6, 

Table 3). The 2012 windstorm (Hurricane Sandy) exhibited extremely high intensity and is also associated with 

the largest area (number of grid cells) with U>U999. It was also associated with by far the largest amount of 

property damage and deaths (Fig. 2, Table 2). The 2018 windstorm is associated with a CL that stalled over the 

Atlantic coast and re-intensified to form a NE. Although this event was not the most geographically expansive, 420 

its track over very high-density population areas and high value assets led to high associated storm damage (Fig. 

2). Five of the 10 storms are associated with Colorado Lows, consistent with the high prevalence of such cyclones 

(Booth et al., 2015) (Fig. 6). These storms generally impacted the smallest areas and tend to be associated with 

substantial but lower amounts of property damage than TC or AC (Table 2).  

The Great Lakes are known to have a profound effect on passing cyclones during ice-free and generally unstable 425 

conditions that prevail during September to November (Angel and Isard, 1997). Particularly during the early part 

of the cold-season, cyclones that cross the Great Lakes are frequently subject to acceleration and intensification 

via enhanced vertical heat flux and low-level moisture convergence due to the lake-land roughness contrast (Xiao 

et al. 2018). Cyclones that transit the Great Lakes during periods with substantial ice cover are subject to less 

alteration (Angel and Isard, 1997). The 2003, 1979 and 1995 storms are associated with Alberta Clippers (Table 430 

3) that exhibit initially low intensities, but rapidly intensify as they pass across the Great Lakes region (~80°W 

and 45°N). Cyclone intensities for these three storms increased by an average of 16% for RV and 33% for MSLP 

during their crossing of the Great-Lakes longitudes (92°W to 76°W). These windstorms occurred when Great 

Lakes ice cover was minimal (https://www.glerl.noaa.gov/data/ice/atlas/ice_duration/duration.html). Both 2003 
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and 1979 storms events exhibit large spatial scales (Fig. 3) and resulted in substantial property damage (Table 2).  435 

Tracking of windstorms is a key determinant of societal impacts. The 2012 and 2017 windstorms had high-wind 

speed centroids that are closely aligned from the cyclone centers. They passed over highly populated areas 

including New York, and are associated with recorded damage in the hundreds of millions of dollars (Fig. 2, Table 

2). The 1993 windstorm high wind speed centroid is out over the Atlantic Ocean which may partly explain the 

lower loss of life and property damage associated with this event (Fig. 2). The AC associated windstorms (2003, 440 

1979, 1995) tracked west-east have maximum intensity centers across the north of the region and thus were also 

associated with lower damages over the US than other the other windstorms. Cyclones associated with the 

windstorms in 1992, 1996, 1981 tracked from the southeast to the northwest but their centers diagnosed from 

MSLP remain east of the region as do those from RV in 1992 and 1996. The geographic centroids of high wind 

speeds track through Virginia, Pennsylvania, and New York in all three years. Inflation-adjusted damage amounts 445 

are very different for these storms and range from $24 million for the 1981 windstorm to $2181 million for the 

1996 windstorm (Fig. 2 and 7). 

 
Figure 6. Cyclone tracks associated with each of the top 10 windstorms (individual colors) plotted over a heat map of 

cyclone densities. Cyclone frequencies are computed at the ERA5 grid resolution and then averaged to a 1°×1° grid to 450 
aid legibility. These densities include only cyclones that track within the Northeast rectangle (shown in grey) during 

cold months (October-April 1979-2018) for (a) relative vorticity and (b) MSLP. Color coding of the cyclone tracks 

associated with each windstorm is as in Fig. 3. 

 
Figure 7. Cyclone intensities for analyses of (a) 700 hPa relative vorticity and (b) mean sea level pressure (shown as an 455 
absolute value) for each of the top 10 windstorms (where the symbol diameter scales with intensity) plotted over a heat 

map of mean cyclone intensities. Cyclone intensities are computed at the ERA5 grid resolution and then averaged to a 

1°×1° grid to aid legibility. These intensities include only cyclones that track within the Northeast rectangle (shown in 

grey) during cold months (October-April 1979-2018) and are anomalies identified in the filtered fields, obtained from 

the spectral filtering which has the large scale background removed for the tracking. Symbol sizes shown in the figure 460 
legends represent the 10th, 50th and 90th percentile cyclone intensities from among the top 10 windstorms, and color 

coding of the cyclone tracks associated with each windstorm is as in Fig. 3 and Fig. 6. 
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3.3 Windstorm Return Periods 

All ten windstorms are associated with long return-period (RP > 50 years) wind speeds in at least some ERA5 

grid cells, with return periods exceeding 100 years for the 2012 windstorm. Defining a single return period for 465 

each windstorm is difficult due to the multiple degrees of freedoms, but the median (50th percentile) and highest 

5 percent (95th percentile) of ERA5 grid cell estimates provide some qualitative assessment of probability. The 

median RP computed for all 924 grid cells ranges from 1 to 5 years across the ten windstorms (Table 3), while at 

least 5% of grid cells are characterized by wind speeds during each of the ten windstorms with RP of 6.5 to 106 

years (Table 3, Fig. 8). The number of ERA5 grid cells that exhibit the annual maximum during the storm period 470 

are positively correlated with the three metrics of return periods; (i) median RP, (ii) 95th percentile RP and (iii) 

median RP for grid cells that exhibited U>U999 (r: 0.45 to 0.64), consistent with the longest-RP wind speeds being 

associated with the largest windstorms (Fig. 8, Table 3). For the two windstorms that entered the Northeastern 

states from the Atlantic (2012 and 1993), high-RP wind speeds are concentrated along the coast. The 2003 and 

1979 windstorms, the highest-magnitude Alberta Clippers, are associated with extreme high return-period wind 475 

speeds in the Great Lakes region. Wind speeds over a large number of grid cells over and around the Great Lakes 

exhibited their 50-year RP estimates during the 1979 windstorm. Indeed, this windstorm, while not the most 

spatially expansive (Table 2), is the event with the largest number of ERA5 grid cells in excess of 50-year RP 

wind speeds in the Northeast domain. The Colorado Low associated windstorms (1996, 2007 and 1981) have their 

highest-RP winds in the mountainous regions of West Virginia, New York, Vermont, and Maine (WV, NY, VT, 480 

and ME).  

Table 3. Windstorm details (windstorms are ordered as in Table 2). Cyclone type is based on subjective evaluation of 

results from the cyclone detection and tracking algorithm: AC = Alberta Clipper. TC = Tropical Cyclone. CL = 

Colorado Low. NE = Nor’easter. Max intensity is the maximum cyclone intensity along the storm-associated cyclone 

tracks for RV (x10-5 s-1) and MSLP (scaled by -1, hPa). # cells with Umax indicates the number of grid cells for which 485 
the maximum wind speed for the storm year occurred within the storm period. Median RP is the 50th percentile return 

period for maximum wind speed in each Northeastern grid cells during each storm period, while p95 is the 95th 

percentile RP. Also shown is the median RP for grid cells that exhibited U>U999 at the storm peak.  

 

Cyclone 

type 

Cyclone track start Cyclone track end  

# 

cells 
with 

Umax 

Median 

RP 

[years] 

p95 RP 
[years] 

Median 

RP of 

cells 
exceeding 

U999 

[years] 

Time 
Lat 

[°N] 

Lon 

[°W] 
Time 

Lat 

[°N] 

Lon 

[°W] 

Max 
intensity: 

RV [10-5 

s-1] / 
MSLP [-1 

hPa] 

TC 
10/18/2012 

09:00 
11.61 61.10 

11/2/2012 

00:00 
46.92 74.95 14.3/49.1 530 4.56 105.78 12.22 

AC 
11/11/2003 

00:00 
52.97 129.82 

11/23/2003 

06:00 
50.39 68.5 10.5/36.9 494 2.30 34.88 5.47 

AC 
4/4/1979 

00:00 
50.61 105.62 

4/8/1979 

21:00 
46.98 63.88 10.0/32.1 412 1.55 43.57 6.38 

CL 
1/26/1996 

00:00 
37.91 105.01 

2/1/1996 

06:00 
57.08 41.55 10.5/45.4 488 3.54 19.35 5.08 

CL/NE 
4/11/2007 

21:00 
36.44 118.73 

4/17/2007 

18:00 
39.56 69.32 12.4/39.6 462 1.58 18.14 3.73 

CL 
11/12/1992 

21:00 
42.71 86.00 

11/15/1992 

12:00 
57.06 45.63 11.2/50.1 343 1.45 6.51 3.01 

CL 
2/11/1981 

00:00 
37.44 94.50 

2/16/1981 

06:00 
63.41 37.65 8.9/56.3 523 2.23 22.19 6.57 

TC/NE 
3/12/1993 

06:00 
27.37 101.40 

3/15/1993 

18:00 
51.88 52.39 15.3/49.2 536 2.12 36.77 5.42 

CL 
3/1/2018 

03:00 
38.14 93.72 

3/6/2018 
06:00 

42.13 53.31 13.3/40.9 310 1.03 14.05 4.92 

AC 
4/4/1995 

15:00 
45.88 80.74 

4/10/1995 

06:00 
62.63 58.16 9.5/24.2 94 1.00 14.38 2.30 
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 490 
Figure 8. Return period (in years) of storm-maximum wind speed (Upeak) in each ERA5 grid cell associated with each 

windstorm. The color scale is truncated at 50 years but, for example, the maximum return period value during 

Hurricane Sandy exceeds 100 years for multiple grid cells. Northeastern state borders are shown in red and coastlines 

(Atlantic Ocean and Great Lakes) are shown in white. 

4 Concluding Remarks 495 

The U.S. Northeast exhibits high socio-economic exposure to atmospheric hazards due to the presence of major 

urban centers with high population density and high density of insured, high-value assets (Table 1, Fig. 1), and 

windstorms present a substantial fraction of historically important climate hazards in this region. The Northeastern 

states are also experiencing population increases that are projected to continue into the future (Zoraghein and 

O’Neill, 2020). This increase in population may result in increased exposure to this hazard even in the absence of 500 

any change in windstorm frequency or intensity. Thus, there is great value in improved characterization of these 

events.  

The ten largest windstorms in the Northeast U.S. during 1979-2018 covered 33 to 57% of ERA5 land cells in the 

Northeastern states with wind speeds exceeding the locally determined 99.9th percentile threshold (Table 2). 

Although all ten events occurred during the cool season months of October through April, they are distributed 505 

throughout the forty-years, and no individual year exhibits more than one of these events (Fig. 1b). However, 
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when a larger pool of the top 50 largest windstorms is considered, clear evidence of serial clustering emerges. 

Return periods for wind speeds in the upper 5% of ERA5 grid cells during these 10 windstorms range from 6.5 to 

106 years (Table 3, Fig. 8). Many of these windstorms exhibit co-occurrence of extreme and/or hazardous 

precipitation and thus may be considered composite events.  510 

Any windstorm catalogue is, to some degree, a product of the dataset on which it is predicated, and the windstorms 

identified herein are derived using a methodology that preferences intense but large-scale events. Their 

characteristics will naturally differ from severe local storms. The windstorms identified independently and 

objectively in this work are consistent with historically notable events. Further, precipitation and wind speeds 

from ERA5 for windstorms that occurred after 2000 exhibit good agreement with in-situ observations from the 515 

NWS ASOS network and NWS dual-polarization RADAR, consistent with assimilation RADAR precipitation 

and weather station data streams by the ECMWF data assimilation protocols and past evaluations of the ERA5 

reanalysis (Fig. 5). The accord between the geophysical data streams and the ERA5 windstorm intensity estimates 

and independent damage estimates provide further confidence in the fidelity of the windstorm catalogue presented 

herein. 520 

The cyclone tracks associated with the ten windstorms are consistent with the climatology of cold-season cyclones 

and thus the associated extra-tropical cyclones are a mixture of; Alberta Clippers, Colorado Lows, decaying 

Tropical Cyclones and Nor’ easters (Fig. 6). These cyclones, however, exhibit considerably higher intensities 

(from both RV and MSLP perturbations) that are an order of magnitude higher than mean values sampled on those 

same tracks (Fig. 7). With the possible exception of Hurricane Sandy, these windstorms are largely differentiable 525 

from the cyclone climatology in terms of their intensification rather than the associated cyclone storm track. It is 

also notable that the most intense AC events occurred during periods of low ice cover in the Great Lakes, which 

may imply windstorms associated with AC events are likely to intensify under climate change as results of reduced 

icing of these water bodies (Smith, 1991). 

Inflation-adjusted (to January 2020) property damage totals for each of the windstorms range from $24 million to 530 

$29 billion (Table 2). While there is not perfect agreement in the ranking of these storms between high wind 

coverage and property damage, the top four storms in terms of extent do all have higher damage totals than the 

next six.  

This windstorm catalogue is intended to characterize extreme windstorms in the Northeastern U.S. and may have 

value in efforts to evaluate the validate climate and natural hazard catastrophe models. Planned extension of the 535 

ERA5 reanalysis to 1950 may provide an opportunity to further extend this analysis to include elements related 

to non-stationarity in windstorm probability, with the caveat that such detection will be challenging due to changes 

in the assimilated data. Research is underway to dynamically downscale these windstorms using the Weather 

Research and Forecasting model to examine sub-grid scale variability in extreme wind speeds and the sensitivity 

of these events to global climate non-stationarity. 540 
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