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Abstract. Continental–global scale flood hazard models simulate design floods: theoretical flood events of a given probability. 

Since they output phenomena unobservable in reality, large-scale models are typically compared to more localised engineering 10 

models to evidence their accuracy. However, both types of model may share the same biases and so not validly illustrate 

predictive skill. Here, we adapt an existing continental-scale design flood framework of the contiguous US to simulate 

historical flood events. 35 discrete events are modelled and compared to observations of flood extent, water level, and 

inundated buildings. Model performance was highly variable depending on the flood event chosen and validation data used. 

While all events were accurately replicated in terms of flood extent, some modelled water levels deviated substantially from 15 

those measured in the field. In spite of this, the model generally replicated the observed flood events in the context of terrain 

data vertical accuracy, extreme discharge measurement uncertainties, and observational field data errors. This analysis 

highlights the continually improving fidelity of large-scale flood hazard models, yet also evidences the need for considerable 

advances in the accuracy of routinely collected field and high river flow data in order to interrogate flood inundation models 

more comprehensively. 20 

1 Introduction 

The severity of riverine flood hazards is principally understood through inundation modelling. Few stretches of river contain 

enough observations of their flood behaviour to adequately characterise the hazard they pose alone. Instead, these limited 

observations are used to drive physical models to produce synthetic realisations of flooding. The output of these models is 

typically a flood map with a defined probability of occurrence which, when intersected with socio-economic data, can be used 25 

to estimate the frequency at which people and property may be exposed to flood hazards. Such models form the cornerstone 

of national flood risk management frameworks, which guide planning decisions and investment in mitigatory actions. 

 

The gold-standard approach to building accurate flood models locally is from the ground-up by hydraulic engineers, principally 

using in situ river flow measurements, surveyed channel bathymetry, high-resolution terrain data, and the incorporation of 30 
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local drainage and protection features. Scaling this local modelling approach up to obtain nationwide views of flood hazard 

therefore requires the building of many thousands of hydraulic models covering every river basin in the country. Even for the 

world’s wealthiest countries, this poses a formidable modelling challenge. The flood mapping programme of the US Federal 

Emergency Management Agency (FEMA), for instance, has required over $10bn of public funding over ~50 years, yet has 

only modelled one-third of US river reaches to date (Association of State Floodplain Managers, 2020). 35 

 

In response to this dearth of flood hazard information at large spatial scales, geographers have built hydraulic models with 

domains covering vast regions or even the globe (Alfieri et al., 2014; Dottori et al., 2016; Hattermann et al., 2018; Sampson 

et al., 2015; Wing et al., 2017; Winsemius et al., 2013; Yamazaki et al., 2011). These models sacrifice some local accuracy 

compared to the traditional engineering approach but benefit from complete spatial coverage and the ability to be re-run as 40 

climatic and landscape conditions change, all within reasonable timescale and resource limits. One of the remaining questions 

in this field of enquiry is: how much local accuracy is lost? 

 

To answer it, these large-scale inundation models must be validated, but two critical barriers prevent this taking place routinely 

and rigorously. Firstly, design flood maps of this nature do not represent something observable in reality. The 100-year flood, 45 

for instance, is not a tangible phenomenon since real flood events do not have spatially static return periods. In producing 

something theoretical, it is impossible to validate it against something real. Model-to-model comparisons – where one model 

is deemed to be suitably accurate so as to be the benchmark, while the other is the one to be tested – are therefore necessitated. 

The second barrier, then, is the low availability of suitable model benchmarks. Global flood models have been compared to 

local engineering flood maps in Europe and the US, but only for a small handful of river basins, inhibiting wide-area testing 50 

(Dottori et al., 2016; Sampson et al., 2015; Ward et al., 2017; Winsemius et al., 2016). Wing et al. (2017) presented a model 

of the contiguous US, adopting the higher quality hydrographic, hydrometric, terrain, and protection data available in the US 

compared to available data globally. They compared their model to FEMA’s large, yet incomplete, database of 100-year flood 

maps, charting a convergence of skill between the large-scale model and the engineering approach espoused by FEMA. Wing 

et al. (2019) furthered this examination with statewide engineering models from the Iowa Flood Center, coming to similar 55 

conclusions. While these studies provide useful indications of large-scale model accuracy, they are fundamentally limited in 

their characterisation of skill through model intercomparisons. The benchmark data in these analyses may share many of the 

same biases (e.g., friction parameterisation, channel schematisation, structural error, terrain data precision, boundary condition 

characterisation) as the model being tested, and so not usefully describe the extent to which it is behavioural. 

 60 

Model validation, rather than model intercomparison, can only be executed through benchmarking against observations. To 

do so, the hydraulic models must replicate real-world events rather than frequency-based flood maps. This would, by proxy, 

enable typical applications of design flood maps (such as planning or regulatory decisions, insurance pricing, or emergency 

response) generated by such a model to be carried out with a richer understanding of its biases. This is common practice in 
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event-replicating, local-scale, engineering-grade inundation modelling studies. However, their limited spatial scale, laborious 65 

manual set-up, and the scarce availability of validation data results in observational benchmarking against only a handful of 

real-world flood events at most – indeed, a single test case is typical (e.g. Hall et al., 2005; Hunter et al., 2008; Mason et al., 

2003; Matgen et al., 2007; Neal et al., 2009; Pappenberger et al., 2006; Schumann et al., 2011; Stephens et al., 2012; Wood et 

al., 2016). An analysis of simulation performance across a wider variety of temporal and spatial settings would provide a more 

reliable evidence case of model validity. To practicably achieve this, it is necessary to replace the onerous manual construction 70 

and parameterisation of local-scale models with a consistent regional- to global-scale model-building framework capable of 

deployment for any model domain within its realm. 

 

Furthermore, the replication of historical flood events has value beyond scientific validation. While design flood maps are 

useful for skilled practitioners who (mostly) understand what the models purport to represent, the maps can seem abstract and 75 

unconvincing to members of the public since they simulate something intangible and theoretical – requiring knowledge of the 

statistical meaning and uncertain derivation of a design flood to correctly comprehend (Bell and Tobin, 2007; Luke et al., 

2018; Sanders et al., 2020). Producing flood maps of historical events – providing an explicit understanding of where has 

flooded in the past – can aid in motivating private mitigation efforts where the risk perception formed via a design flood map 

often fails to do so (Bubeck et al., 2012; Kousky, 2017; Luke et al., 2018; Poussin et al., 2014). As such, en masse replication 80 

of historical flood events at high-resolution may have value in enhancing risk awareness and the willingness of individuals to 

take mitigatory action. 

 

In this paper, we adapt the existing continental-scale design flood model framework of Bates et al. (2020) to replicate historical 

flood events across the contiguous US. Flood events are isolated from US Geological Survey (USGS) river gauge data, which 85 

form inflow boundary conditions to a ~30 m resolution 2D hydrodynamic model. High water mark surveys from the USGS 

were sourced for nine of the simulated events which, alongside derived flood extents, were used to validate the model. 

Insurance and assistance claims were obtained for 35 flood events to further analyse model skill in the context of exposure. 

By validating against an order of magnitude greater number of historical flood event observations than exist in academic 

literature to date, the analysis provides robust evidence of large-scale model skill for the first time. To aid in enhancing risk 90 

awareness amongst the US public, these flood event footprints have been released on https://floodfactor.com/, a free and 

accessible tool for Americans to understand their flood risk. Section 2 describes the methods behind the event replication 

model and the validation procedures undertaken. In Sect. 3, the results of the model validation are presented and discussed. 

Conclusions are drawn in Sect. 4. 
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2 Methods 95 

2.1 USGS Gauge Input 

USGS river gauge data were initially filtered into those representing catchments which have an upstream area of >10,000 km2 

and a record length of >50 years. Of these, one gauge was selected for each level 8 USGS Hydrologic Unit and the largest 

event in the record was extracted. This filtering ensured large loss-driving events were captured, for which validation data 

were more likely to be available and whose return periods could be more robustly estimated. This yielded roughly 200 river 100 

gauge events, 50 of which had suitable validation data (see Sect. 2.3). Model domains of a 50 x 50 km area were constructed 

around these 50 ‘seed’ gauges and, within each domain, all USGS river gauges within it were selected (regardless of drainage 

area or record length) to ensure all gauged event flows were captured. 7-day hydrographs were then extracted from each gauge 

for each event, with the seed gauge peak at its temporal centre. To account for uncertainty due to stage measurement error and 

rating curve configuration in the generation of the gauged discharges (Coxon et al., 2015; Di Baldassarre and Montanari, 2009; 105 

McMillan et al., 2012), we simulate each event three times: the reported discharges as well as ±20%, producing a 0.8*Q, 

1.0*Q, and 1.2*Q model for each event. Some of these 50 gauge events were of the same (particularly widespread) flood event. 

Once simultaneous events were merged post-simulation, 35 discrete flood events remained. Figure 1 illustrates the location of 

the events, with additional information provided in Table A1. 

 110 
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Figure 1. Geographic distribution of 35 simulated events across the contiguous US. Coloured points represent the seed gauges and 

the available validation data; black outlines show the discrete event boundaries and associated IDs. 

2.2 Hydraulic Model 

The USGS river flows form the input to the First Street Foundation National Flood Model (FSF-NFM) built in collaboration 115 

with Fathom. The model was first presented by Wing et al. (2017) with updates specified in Bates et al. (2020), based on the 

original global modelling framework of Sampson et al. (2015). Terrain data are based on the USGS National Elevation Dataset 

(NED), with hydraulic simulations run at the native resolution of 1 arc second (~30 m). Other local sources of more accurate 

terrain data were also compiled into the dataset where available, with ~30 m water surfaces downscaled to ~3 m in locations 

where such fine-resolution data are present. Gesch et al. (2014) report relative vertical errors (point-to-point accuracy; 120 

measuring random errors exclusive of systematic errors), a more relevant control on inland flood inundation modelling 

accuracy than absolute vertical errors, in the NED of 1.19 m. Most, but not all, events were located in areas where the NED 

consists of lidar, with an associated point-to-point accuracy of ~0.66 m (Gesch et al., 2014). The computational hydraulic 

engine is based on LISFLOOD-FP, which solves a local inertial formulation of the shallow water equations in two dimensions 

(Bates et al., 2010). River flows are routed through channels defined by the USGS National Hydrography Dataset. Channels 125 
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are retained as one-dimensional sub-grid features, permitting river widths narrower than the grid resolution (Neal et al., 2012). 

Channel bathymetry is estimated based on the assumption that they can convey the 2-year discharge, as estimated by a 

regionalised flood frequency analysis (RFFA) based on Smith et al. (2015) but using USGS river gauges (Bates et al., 2020). 

Ungauged river channels within each model domain propagated the RFFA-derived mean annual flow instead. Flood protection 

measures are implemented directly into the model using a database of adaptations compiled from the US Army Corps of 130 

Engineers National Levee Database and hundreds of other sub-national databases. For further information, including details 

on the aforementioned model-to-model validation, the reader is referred to Wing et al. (2017) and Bates et al. (2020). 

2.3 Event Validation 

High water marks (HWMs) were obtained for nine of the simulated events from the USGS Flood Event Viewer 

(https://stn.wim.usgs.gov/FEV/). HWMs were filtered based on: (i) the presence of a nearby upstream river gauge, ensuring 135 

the model was only tested on floodplains it simulated; (ii) a designation of being high quality; and (iii) having a vertical datum 

of NAVD88, consistent with the model terrain data. The number of HWMs retained for each event is shown in Table A1. The 

surveyed water surface elevation (WSE) from each flood event was compared to that of the nearest inundated pixel of the 

modelled maximum inundation extent. Performance was summarised using the following simple equations: 

𝐸𝑟𝑟𝑜𝑟 =  
∑ |𝑊𝑆𝐸𝑚𝑜𝑑−𝑊𝑆𝐸𝑜𝑏𝑠|𝑁

1

𝑁
,          (1) 140 

𝐵𝑖𝑎𝑠 =  
∑ (𝑊𝑆𝐸𝑚𝑜𝑑−𝑊𝑆𝐸𝑜𝑏𝑠)𝑁

`

𝑁
,          (2) 

where N is the number of HWMs and the subscripts mod and obs represent modelled and observed WSEs respectively. Error 

indicates the absolute deviation of the modelled WSE from the observed WSE: “on average, what is the magnitude of model 

prediction error?” Bias illustrates whether the modelled WSEs are generally higher or lower than the observed WSE: “on 

average, does the model over or underpredict WSEs?” 145 

 

To examine model skill in the context of flood extent prediction, HWMs are converted to maps of flood inundation in line 

with the methods of Watson et al. (2018). Firstly, the HWMs are interpolated to produce a 2D surface of WSEs across the 

model domain. These are then subtracted from terrain data, resulting in a grid of water depths. Values greater than 0 m therefore 

fall within the flood extent. Areas of flooding disconnected from the river channel are removed. To prevent the generation of 150 

flood extents in areas for which there are no relevant HWMs, inundation maps are only produced in river basins (based on 

level 12 USGS Hydrologic Units) which contain at least one HWM. These observation-based flood extents are then compared 

with the extents simulated by the model using the Critical Success Index (CSI): 

𝐶𝑆𝐼 =  
𝑀1𝑂1

𝑀1𝑂1+𝑀1𝑂0+𝑀0𝑂1
,           (3) 
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where M and O refer to modelled and observed pixels respectively and the subscripts 1 and 0 indicate whether these pixels are 155 

wet or dry respectively. This metric divides the number of correctly wet pixels by the number of pixels which are wet in either 

modelled or observed data. This general fit score, falling between 0 and 1, accounts for both over- and under-prediction errors. 

 

Beyond purely flood hazard based validation, we sourced counts of buildings which were inundated during the simulated 

events. Individual Assistance (IA) and National Flood Insurance Program (NFIP) claims data were gathered from the 160 

OpenFEMA database (https://www.fema.gov/openfema). For each event, the zipcodes that intersected the event inundation 

layer were selected, and the IA and NFIP claims data for those zipcodes were extracted from the claims datasets for the year 

of the simulated event. The total number of claims (IA + NFIP) were then computed for each of those zipcodes. Meanwhile, 

the number of building centroids inundated was computed for each zipcode using Microsoft building footprint data. Simple 

statistical summaries of the errors are reported, including the coefficient of determination (R2): 165 

𝑅2 =
∑ (𝐶𝑜𝑏𝑠−𝐶𝑚𝑜𝑑)2𝑁

1

∑ (𝐶𝑜𝑏𝑠−𝐶𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2𝑁
1

,           (4) 

where C is the count of inundated buildings observed (obs) in OpenFEMA data or simulated by the model (mod) across N = 35 

events. This metric, bounded between -∞ and 1, indicates the predictive capabilities of the model through comparing the 

residual variance with the data variance. A perfect model would obtain an R2 of 1, while (subjectively) acceptable models 

would obtain R2 > 0.5. 170 

3 Results and Discussion 

The results of the HWM validation are shown in Table 1 and visualised in Fig. 2. Biases (Eq. (2)) consistently indicate a 

tendency toward underprediction for most events, even when simulated using 120% of the gauged discharge. Taking the least 

biased of each event’s three simulations, the mean bias comes to -0.17 m, ranging from -2.95 m for event 3 in Missouri (2015) 

to 0.89 m for event 6 in South Carolina (2015) – including a simulation of event 4 in Indiana (2008) with -0.08 m. Computing 175 

errors in line with Eq. (1), which averages the absolute deviation from the observed water surface elevation, the most accurate 

of each event’s simulations ranges from 0.31 m (event 4) to 2.95 m (event 3) with a mean of 0.96 m. Most of the events obtain 

errors in line with the relative vertical accuracy of the NED, which is accurate to between 0.66 and 1.19 m depending on the 

terrain data source (Gesch et al., 2014). 

 180 
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ID 

Bias (m) Error (m) 

0.8*Q 1.0*Q 1.2*Q 0.8*Q 1.0*Q 1.2*Q 

1 -0.87 -0.55 -0.17 1.31 1.13 0.96 

2 -0.61 -0.39 -0.10 0.71 0.53 0.39 

3 -4.27 -3.75 -2.95 4.27 3.75 2.95 

4 -0.65 -0.42 -0.08 0.65 0.45 0.31 

5 -1.53 -1.11 -0.70 1.53 1.12 0.74 

6 0.89 1.44 2.07 1.50 1.84 2.35 

7 -1.31 -0.94 -0.60 1.96 1.85 1.85 

8 -1.28 -0.93 -0.59 1.28 0.97 0.66 

9 0.29 1.05 1.58 1.08 1.22 1.70 

MEAN -0.17 0.96 

Table 1. Results of the benchmarking of nine events against surveyed high water marks. 185 
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Figure 2. Boxplots of water surface elevation errors for each of the nine simulations. 25th and 75th percentiles bound the shaded 

boxes with medians within. Whiskers are set to a maximum length of 1.5x the interquartile range beyond the upper or lower 
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quartiles, with outliers shown as black dots. Box shading refers to the model discharge input: 80% (violet), 100% (green), and 120% 

(orange) of the gauged discharge. 190 

Surveyed water marks are an excellent tool for validating inundation models, though are not themselves error-free. Numerous 

past studies sought to quantify uncertainties in these observational data, finding average vertical errors in the region of 0.3–

0.5 m, though in some cases can be much higher and systematically biased for particular sites (Fewtrell et al., 2011; Horritt et 

al., 2010; Neal et al., 2009; Schumann et al., 2007). Given these constraints, typical reach-scale hydrodynamic models of 

inundation events are calibrated to <0.4 m deviation from observations of water surface elevation (Adams et al., 2018; Apel et 195 

al., 2009; Bermúdez et al., 2017; Fleischmann et al., 2019; Matgen et al., 2007; Mignot et al., 2006; Pappenberger et al., 2006; 

Stephens and Bates, 2015; Rudorff et al., 2014). Commonly, calibration of such models is executed via maximising some 

measure of fit to benchmark data by varying the friction parameters (e.g. Pappenberger et al., 2005). Equally, studies have 

calibrated models by varying other uncertain model features, including: channel geometry (e.g. Schumann et al., 2013), terrain 

data (e.g. Hawker et al., 2018), model structure (e.g. Neal et al., 2011), or boundary conditions (e.g. Bermúdez et al., 2017). 200 

The model in this study is essentially calibrated by varying the uncertain boundary conditions – though with a sparser 

exploration of parameter space (only three simulations per event) than is typical – to within similar errors found in the literature 

for some events, though most events have significantly higher errors. The impact of discharge uncertainty is evident in the 

errors of each simulation per event. Assuming ±20% error in the observation of flood peak stage and its translation to discharge 

(a modest assessment of their uncertainties), hydraulic model errors can increase by between 6 and 107% (median of 57%). 205 

While this illustrates considerable sensitivity, different input discharge configurations within these uncertainty bounds failed 

to induce inundation model replication of the HWM elevations for most events. 

 

To further contextualise the results obtained here, we analyse the hydraulic plausibility of the surveyed HWMs along select 

river reaches. Figure 3a shows the profile of water surface elevation experienced during the 2008 event on the Cedar River. 210 

Figure 3c shows the same but for the Platte River event in 2019. It is clear that the HWMs produce some local water surfaces 

which qualitatively appear inconsistent and implausible at the reach scale. No hydraulic model obeying mass and momentum 

conservation laws could feasibly reproduce such water surfaces. For these events, local USGS river gauges are obtained (Cedar 

River: 05453520, 05464000; Platte River: 06796000, 06801000, 06805500) and a water surface for the considered reaches is 

linearly interpolated between these. While being an unreliable estimate of WSE far from gauged locations, this interpolated 215 

surface provides a useful indicator of how HWM WSEs vary across the river reaches in Fig. 3b and 3d. Altenau et al. (2017a) 

measured water surface elevations at ~100 m intervals along a 90 m reach of the Tanana River, AK using airborne radar. The 

radar data, shown to be highly accurate (±0.1 m) when compared to field measurements, illustrated a smooth and approximately 

linear slope, even for a complex braided river. While this campaign did not take place during a flood event, it does lead one to 

question whether the slopes purported by the HWMs in Fig. 3 are physically realistic. When data points in Fig. 3 are restricted 220 

to within 1 km of gauge locations, the HWMs deviate from the interpolated surface by 0.79 m (Cedar) and 0.94 m (Platte) on 
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average. These observational data, then, may have higher errors than similar data reported in the wider literature, which 

provides useful context for the 0.96 m mean error obtained by the model here. 
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Figure 3. Water surface profiles based on gauge and high water mark data for (a)(b) Cedar River between Cedar Falls and Waterloo, 225 
Iowa (event 1) and (c)(d) Platte River near Omaha, Nebraska (event 5). Profiles in (a) and (c) are referenced to mean sea level, while 

those in (b) and (d) adopt the interpolated gauged water surface as the vertical datum. 

When examining the differences between the simulated maximum flood extents and those produced from interpolating the 

HWMs over relevant river basins in the terrain data, the model obtains a CSI of 0.87 on average (see Table 2). Event 3 in 

Missouri obtains the lowest maximum CSI of 0.82, while the highest of 0.94 is held by event 1 in Iowa. Optimum simulations 230 

and their comparison to the observation-based extents are shown in Fig. 4. 

 

ID 

Critical Success Index 

0.8*Q 1.0*Q 1.2*Q 

1 0.90 0.92 0.94 

2 0.84 0.88 0.91 

3 0.59 0.70 0.82 

4 0.78 0.82 0.86 

5 0.73 0.80 0.85 

6 0.85 0.86 0.87 

7 0.81 0.82 0.83 

8 0.81 0.85 0.88 

9 0.59 0.88 0.85 

MEAN 0.87 

Table 2. Results of the benchmarking of nine events against HWM-derived flood extents. 
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Figure 4. Maps illustrating the similarity between modelled flood events and HWM-derived extents in relevant HUC 12 zones. 235 
Interior tick marks are spaced 0.25° (~27 km) apart. (Imagery © 2020 Microsoft) 

Typical reach-scale 2D inundation models generally obtain CSIs of 0.7–0.8 when calibrated to air- or space-borne imagery of 

flood extents (Aronica et al., 2002; Di Baldassarre et al., 2009; Horritt and Bates, 2002; Pappenberger et al., 2007; Stephens 

and Bates, 2015; Wood et al., 2016). Where observations and their classification methods are high quality, CSIs of up to 0.9 

can be obtained (Altenau et al., 2017b; Bermúdez et al., 2017; Bates et al., 2006; Stephens et al., 2012). The model here 240 

obtained CSIs of 0.8–0.9, though when benchmarked against interpolated HWMs rather than actual two-dimensional 

observations of flood extent. While it is likely that the model has replicated the uncertain benchmark flood extents within error, 

setting precedent for CSIs in the wider literature can often be misinformative. In Fig. 5, the relationship between minimum 

WSE error and maximum CSI for each of the nine events is compared. While a generally intuitive negative relationship 

between CSI and water level error is exhibited (Pearson’s r = -0.6), CSIs do not drastically reduce as water level errors increase. 245 

Reasons for this seeming CSI insensitivity relate to specific characteristics of each event. Events on the Congaree and 

Connecticut Rivers (events 6 & 9) have fairly large water level errors in spite of excellent CSIs. This is because, in both 

modelled and observed floods, the floodplain was filled up, meaning extent comparisons were less sensitive to model 

overprediction. These events were simulated with an overprediction bias: there was too much water on the floodplain (in three 

dimensions), but this made little difference to flood extent (in two dimensions). In contrast, the event on Flatrock River (event 250 

4), which is characterised by low WSE errors, obtained a comparable CSI to events 6 & 9. While vertical errors were small, 

the model did not completely replicate the larger flood inundation across low-gradient terrain represented by the benchmark 

flood extent for event 4. Even the event on Meramec River (event 3) obtained a CSI illustrative of high performance, in spite 

of very high water level errors. This particular flood was large in magnitude, meaning the reward for capturing the numerous 

inundated areas overshadowed the penalisation for underestimating the flood edge. In the vertical plane, however, the Meramec 255 

River event simulation is shown to significantly underpredict water surface elevation. Meanwhile, the model was rightly 

rewarded by both metrics for correctly simulating the Iowa 2008 floods (events 1 & 2) – large floods on large rivers – by filling 

up the floodplains with reasonably low water level errors. These examinations build on the evidence provided by Stephens et 

al. (2014), who note that similar water level errors can result in different CSIs depending on the size of the flood, the valley 

gradient, and the sign of model bias. Mason et al. (2007, 2009) similarly posit that an analysis of water heights offers a way of 260 

discriminating between the equifinal model structures extent comparisons tend to result in. For this analysis of a larger sample 

of flood events, we reaffirm their conclusions that CSIs cannot be easily compared for events of different natures and that 

comparison against water levels is a more discriminatory metric. 
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Figure 5. The relationship between WSE error and flood extent CSI for the nine events. Numbered crosses refer to the ID of the 265 
flood event. 

The extremely large underprediction errors for the Meramec River flood event simulation (event 3) may be explained by its 

nature as a tributary of the Mississippi River and the arbitrary nature of the geographic domains the automated model builder 

produces. Even adding 20% to the reported USGS discharges resulted in an underprediction of water surface elevations by 

roughly 3 m. It is likely that this flood event was primarily driven by Meramec River flows backing up against the Mississippi 270 

River. With no Mississippi River gauge within the 50 km radius of the Meramec River seed gauge, the Mississippi River was 

not also in flood during the simulation. In the absence of a correct downstream boundary inducing a backwatering effect, the 

Meramec River flood freely flowed down the Mississippi River in the simulation rather than onto the Meramec River 

floodplain. The general underprediction bias across most flood events is likely explained by river gauge density. Boundary 

conditions are only available in the presence of a USGS gauging station, meaning ungauged tributaries and other lateral inflows 275 

within the model domain were not properly accounted for. Failing to simulate the aggregation of these flows, the volume of 

water within and exiting the model was likely much lower than reality for many of the flood events, resulting in a 

correspondingly underpredicting inundation model. 
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Figure 6. Scatter plots illustrating the observed (NFIP + IA) versus the modelled count of inundated buildings for each of the 35 280 
events. Blue crosses represent the simulated count in the 1.0*Q model, with error bars representing the range of counts between the 

0.8*Q and 1.2*Q simulations. The trendline represents a linear polynomial fitted to the optimum of each event’s three simulations. 

Descending panels are sequentially more zoomed in to the origin. 

The results using FEMA claims data to validate the full set of 35 events are shown in Fig. 6. Only 9 events simulate the correct 

number of claims within the discharge uncertainty bounds. When considering the closest match simulation (of the three) in 285 

terms of inundated buildings for each event, the mean error in simulated counts of building inundation is 26% of the observed 

count. The standard deviation of this quantity is 132%, reflecting the substantial scatter evident in Fig. 6. The modelled building 

inundation obtains an R2 (Eq. (4)) of 0.63. In general, it appears that more catastrophic events (in terms of inundated buildings) 

are more frequently underpredicted by the model: 9 events underpredict building inundation compared to 3 which overpredict 

for events with >500 inundated buildings. Meanwhile, less catastrophic events are seemingly systematically overestimated: 10 290 

events overpredict and 4 events underpredict for events with <500 inundated buildings. This is perhaps explained by the nature 

of the validation data. The sum of NFIP and IA claims may not account for all inundated buildings during an event. Impacted 

households may obtain assistance from local governments (with or without aid from the federal Public Assistance Program), 

low-interest disaster loans from the Small Business Administration, have private insurance, or simply require no external aid 

– none of which are captured by the sum of NFIP and IA claims. The validation data in this instance are almost certainly 295 

underestimates of the true count of affected buildings; the magnitude of this underestimation is unknown, though is likely non-

negligible. 10 of the 18 events with <500 observed inundated buildings consist entirely of NFIP claims, while only 1 of the 17 

events with >500 observed inundated buildings share this characteristic. This is because IA can only be claimed when the 

associated event is declared as a disaster by the President. Typically these are larger disasters which exceed the state or local 

government’s capacity to respond. As such, uninsured (via the NFIP) households impacted by these smaller events (in a risk 300 

context) who are unable to claim IA will be uncounted in this analysis, as they likely received assistance from other sources. 

Hence, the overprediction bias for these less catastrophic events appears intuitive. Potential causes of the underprediction 

biases in Fig. 6 have been highlighted previously in this section: Difficulties in defining a downstream boundary may have 

induced a more confined flood to be modelled than reality, and low river gauge density may have resulted in some damage-

causing tributary floods to remain unmodelled. As for some of the more extreme cases of underprediction, such as the flood 305 

events in South Carolina (event 6; ~10,000 observed versus ~1000 modelled inundated buildings) and Kansas (event 30; ~2000 

observed versus ~400 modelled inundated buildings), these may be explained by much of the risk being pluvial driven: since 

the rainfall component of the Bates et al. (2020) model was not utilised here, urban, rainfall-driven, flash flooding – which 

contributed to many of the inundated buildings for these events – was not captured. 

 310 

Furthermore, in Fig. 7 we can see that the model skill purported by the inundated building analysis bears little relation to the 

flood elevation and extent errors for the nine events with this information. A positive (negative) relationship would be expected 

in Fig. 7a (7b), yet there is no clear trend. Event 7 in Pennsylvania is one of the least skilful events in the hazard-based analysis 

(WSE error of 1.85 m, CSI of 0.83), yet is within discharge error of the observed inundated building count. Of course, the 
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inundated building analysis does not measure whether the correct buildings are inundated. Instead, it tests whether the same 315 

number of buildings are inundated in aggregate, which could be a fortuitous balance of type I and II errors. In spite of this, and 

incorporating Fig. 5 into this discussion, it is clear that the choice of model test and the spatio-temporal setting of the test holds 

enormous sway over how one interprets the model’s efficacy. High water level errors may have little impact on a model’s 

ability to replicate impacted buildings; equally, inundated building counts may be highly sensitive to small water level errors. 

Coupled with the inconsistency of skill scores – of any metric – between flood events of different magnitudes, locations, data 320 

richness, and other characteristics, it makes obtaining an objective and generalised assessment of the US flood model employed 

here challenging. Layered on top of this are the likely considerable uncertainties in the data used to interrogate the model’s 

skill: (i) errors against HWMs are often high, but from Fig. 3 we can see that these field data sometimes make little hydraulic 

sense – containing errors themselves perhaps approaching those obtained by the model in many instances; (ii) the resultant 

extents derived from these will share their biases and, particularly in areas unconstrained by HWMs, the interpolated surface 325 

may not well represent reality; and (iii) no reliable and integrated data exist on exact counts of buildings impacted by flood 

events, meaning the assimilation of NFIP and IA claims used here likely underpredicts the true value of this quantity. Whether 

a model is deemed ‘good’ therefore depends on what it is simulating and for what purpose, amidst consideration of an unknown 

upper limit on the desired closeness of the match between the model and uncertain validation data. 

 330 

Figure 7. The relationship between inundated building count errors and (a) WSE error and (b) flood extent CSI for the nine events. 

Numbered crosses refer to the ID of the flood event. 
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4 Conclusions 

In this analysis, we devised a framework to construct and deploy hydrodynamic models for any recorded historical flood event 

in the US with minimal manual intervention using the continental-scale design flood model described by Wing et al. (2017) 335 

and Bates et al. (2020). We obtained hydrologic field observations for nine events simulated by this framework and recordings 

of inundated buildings for 35 such events in order to examine the skill of the model. Not unexpectedly we find model skill 

varies considerably between events, suggesting that the testing of flood inundation models across a spatial scale imbalance 

(i.e., benchmarking continental–global scale models against a handful of localised test cases) is prone to a misleading 

evaluation of its usefulness. Previous studies suggest that the continental model employed here can replicate the extent of high-340 

quality, local-scale models of large flood events within error (Wing et al., 2017, 2019; Bates et al., 2020). Similarly, this 

analysis illustrates the very close match between flood extents derived from field data collected during the flood events and 

the maximum flood extent simulated by the continental model. However, we also highlight that tests of flood extent similarity 

can mask large deviations between observed and simulated water surface elevation. While all events were well-replicated in 

terms of flood extent, water surface elevation errors were roughly 1 m on average. Some events adequately replicated the 345 

WSEs recorded in HWM data, while others were considerable underestimates. However, most event water level errors are 

within the relative vertical errors of the terrain data employed. The impact of plausible (and perhaps conservative) errors in 

the high flow measurements used to drive the model is shown to affect its skill substantially, yet it is also clear that other errors 

remain. The insensitivity of extent comparison scores to changing water level errors suggests that CSIs are not readily 

comparable for different types of flood events: a model obtaining a CSI of 0.8 for event A may be no more skilful (in terms of 350 

water level error) than one which obtains a CSI of 0.6 for event B. We reiterate here conclusions from other bodies of work 

(e.g. Mason et al., 2009; Stephens et al., 2014) which suggest that an analysis of water surface elevations provides a more 

rigorous and discriminatory test of a flood inundation model. In the analysis of buildings inundated by the larger set of flood 

events, some perfectly replicated the observed count of buildings while others starkly deviated from this. 26% mean error and 

R2 of 0.63 still indicates reasonably strong predictive skill of these quantities by the model. 355 

 

Consideration of the error in the observational validation data themselves is often overlooked when interpreting the efficacy 

of a flood inundation model. If the deviation between the true maximum water surface elevation achieved during a flood event 

and that recorded from a high water mark is upwards of 0.5 m, obtaining model-to-observation errors of less than 0.5 m would 

be the result of rewarding the replication of noise. In this analysis the magnitude of observational uncertainties is not formally 360 

examined, yet for many of the tests the value of the validation data was close to exhaustion: that is, a given benchmark was 

often replicated within its likely error. The HWMs did not always produce consistent water surfaces, interpolating between 

these may produce unrealistic flood extents at some locations, and the source of inundated building data may have 

undercounted the true number of impacted households. 

 365 
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In spite of this, useful interpretations of model performance can still be drawn from this analysis. The automated large-scale 

model is capable of skilfully replicating historical flood events, though in some circumstances events are poorly replicated and 

are generally done so with an underprediction bias. This can be addressed by further developments to the event replication 

framework, which include the addition of a pluvial model component and restricting event domains to those which contain 

downstream (and not just upstream) river gauges to better represent backwatering. While these will be explored in future 370 

research, it is also clear from this analysis that flood inundation models can rarely be comprehensively validated using historical 

data. Routinely collected terrain, boundary condition, and validation data must improve drastically for the science in this field 

to meaningfully advance. To do this, dedicated and specialist field campaigns are required, though it should be recognised that 

mobilising such a resource in time to capture transient events safely during extreme floods will be challenging. 

Appendix A 375 

Location Date ID 
Seed 

gauges 

Return Period 

(years) 

Inundated 

buildings 

High water 

marks 

Iowa & Cedar Rivers, eastern 

Iowa 
June, 2008 1 4 500 12,108 576 

Des Moines & Skunk Rivers, 

central Iowa 

June/July, 

2008 
2 2 50 3964 166 

Meramec River, eastern Missouri 
December, 

2015 
3 1 100 454 143 

Flatrock River, southern Indiana June, 2008 4 1 75 3167 298 

Missouri & Platte Rivers, eastern 

Nebraska 
March, 2019 5 8 100 5755 1023 

Congaree River, central South 

Carolina 
October, 2015 6 1 20 9768 230 

Susquehanna River, northern 

Pennsylvania 

September, 

2011 
7 3 150 14,123 273 
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Sabine River, Texas/Louisiana 

border 
March, 2016 8 2 1000 5236 22 

Connecticut River, New England August, 2011 9 2 300 2145 482 

Killbuck Creek, eastern Ohio January, 2005 10 1 25 393 - 

Scioto River, southern Ohio January, 2005 11 1 5 351 - 

Maumee River, northwestern 

Ohio 
June, 2015 12 1 25 38 - 

Potomac River, Maryland/West 

Virginia border 

December, 

2018 
13 1 5 33 - 

Kentucky River, central 

Kentucky 
May, 2004 14 1 25 172 - 

Grand River, central Michigan May, 2004 15 1 5 192 - 

Grand River, western Michigan April, 2013 16 1 15 97 - 

Mississippi River, eastern 

Minnesota 
April, 2001 17 1 50 87 - 

Mississippi River, southern 

Minnesota 
April, 2001 18 1 75 113 - 

Wisconsin River, central 

Wisconsin 
June, 2008 19 1 5 871 - 

Mississippi River, Iowa/Illinois 

border 
April, 2001 20 1 100 543 - 

Illinois River, central Illinois April, 2013 21 1 75 150 - 

White River, northern Arkansas May, 2011 22 1 25 1231 - 
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Boulder Creek, northern 

Colorado 

September, 

2012 
23 1 1000 3212 - 

South Platte River, northeastern 

Colorado 

September, 

2013 
24 1 75 349 - 

Eagle Creek, southern New 

Mexico 
July, 2008 25 1 100 50 - 

Virgin River, southwestern Utah January, 2005 26 1 150 4 - 

Souris River, northern North 

Dakota 
June, 2011 27 1 100 99 - 

Missouri river, central North 

Dakota 
June, 2011 28 1 100 2119 - 

Big Sioux River, South 

Dakota/Iowa border 
June, 2014 29 1 400 33 - 

Verdigris River, southeastern 

Kansas 
July, 2007 30 1 500 2061 - 

Fishing Creek, northeastern 

North Carolina 
October, 2016 31 1 35 323 - 

Ohio River, western 

Pennsylvania 

September, 

2004 
32 1 10 10,975 - 

Trinity River, northeastern Texas May, 2015 33 1 50 143 - 

Hudson River, eastern New York April, 2011 34 1 10 1290 - 

Susquehanna River, central 

Pennsylvania 

September, 

2004 
35 1 25 1469 - 

Table A1. The flood events simulated in this analysis. Return periods were obtained from USGS StreamStats data. 
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Data availability 

Historical flood events were simulated on behalf of the First Street Foundation (https://firststreet.org/) and form part of their 

Flood Factor platform (https://floodfactor.com/). Hydrodynamic modelling output is available for non-commercial, academic 

research purposes only upon reasonable request from the corresponding author. USGS terrain data is available from 380 

https://ned.usgs.gov/. USGS river gauge data is available from https://waterdata.usgs.gov/nwis. USGS high water mark data 

are available from https://stn.wim.usgs.gov/FEV/. Insurance and assistance claims are available from 

https://www.fema.gov/openfema. Microsoft building footprints are available from 

https://github.com/microsoft/USBuildingFootprints. USGS StreamStats are available from https://streamstats.usgs.gov/. 

USGS HUC zones are available from https://water.usgs.gov/GIS/huc.html. The USACE National Levee Database is available 385 

from https://levees.sec.usace.army.mil/. The USGS National Hydrography Dataset is available from 

https://www.usgs.gov/core-science-systems/ngp/national-hydrography. 
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