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Abstract 46 

This study evaluates the impact of potential future climate change on flood regimes, 47 

floodplain protection, and electricity infrastructures across the Conasauga River 48 

Watershed in the southeastern United States through ensemble hydrodynamic inundation 49 

modeling. The ensemble streamflow scenarios were simulated by the Distributed 50 

Hydrology Soil Vegetation Model (DHSVM) driven by (1) 1981–2012 Daymet 51 

meteorological observations, and (2) eleven sets of downscaled global climate models 52 

(GCMs) during the 1966–2005 historical and 2011–2050 future periods. Surface 53 

inundation was simulated using a GPU-accelerated Two-dimensional Runoff Inundation 54 

Toolkit for Operational Needs (TRITON) hydrodynamic model. Nine out of the eleven 55 

GCMs exhibit an increase in the mean ensemble flood inundation areas. Moreover, at the 56 

1% annual exceedance probability level, the flood inundation frequency curves indicate a 57 

~16 km2 increase in floodplain area. The assessment also shows that even after flood-58 

proofing, four of the substations could still be affected in the projected future period. The 59 

increase in floodplain area and substation vulnerability highlights the need to account for 60 

climate change in floodplain management. Overall, this study provides a proof-of-61 

concept demonstration of how the computationally intensive hydrodynamic inundation 62 

modeling can be used to enhance flood frequency maps and vulnerability assessment 63 

under the changing climatic conditions. 64 

 65 

Keywords: Flood simulation; Climate change; Critical electricity infrastructure; 66 

Floodplain protection standards.  67 
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1. Introduction 68 

Floods are costly disasters that affect more people than any other natural hazard 69 

around the world (UNISDR, 2015). Major factors that can exacerbate flood damage 70 

include population growth, urbanization, and climate change (Birhanu et al., 2016; 71 

Winsemius et al., 2016; Alfieri et al., 2017; Alfieri et al., 2018; Kefi et al., 2018). Recent 72 

observations exhibit an increase in the frequency and the intensity of extreme 73 

precipitation events (Pachauri and Meyer, 2014), which have strengthened the magnitude 74 

and frequency of flooding (Milly et al., 2002; Langerwisch et al., 2013; Alfieri et al., 75 

2015a; Alfieri et al., 2018; Mora et al., 2018). As a result, the damage and cost of 76 

flooding have substantially increased across the United States (US) (Pielke Jr. and 77 

Downton, 2000; Pielke Jr. et al., 2002; Ntelekos et al., 2010; Wing et al., 2018) and the 78 

rest of the world (Hirabayashi et al., 2013; Arnell and Gosling, 2014; Alfieri et al., 79 

2015b; Alfieri et al., 2017; Kefi et al., 2018). 80 

Since 1968, the National Flood Insurance Program (NFIP), administered by the 81 

Federal Emergency Management Agency (FEMA), has implemented floodplain 82 

regulation standards in the US to mitigate the escalating flood losses (FEMA, 2002). For 83 

communities participating in the NFIP, flood insurance is required for structures located 84 

within the 1% annual exceedance probability (AEP) flood zone (i.e., areas with 85 

probability of flooding ≥ 1% in any given year; FEMA, 2002). However, existing 86 

floodplain protection standards have proven to be inadequate (Galloway et al., 2006; 87 

Ntelekos et al., 2010; Tan, 2013; Blessing et al., 2017; HCFCD, 2018), and climate 88 

change can likely exacerbate these issues (Olsen, 2006; Ntelekos et al., 2010; Kollat et 89 

al., 2012; AECOM, 2013; Wobus et al., 2017; Nyaupane et al., 2018; Pralle, 2019). For 90 
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instance, the streamflow AEP thresholds and synthetic hydrographs used to simulate the 91 

flood zones were derived purely based on historic observations that may underestimate 92 

the intensified hydrologic extremes in the projected future climatic conditions. Although 93 

the possible change of future streamflow AEP thresholds may be evaluated by an 94 

ensemble of hydrologic model outputs driven by multiple downscaled and bias-corrected 95 

climate models (e.g., Wobus et al., 2017), the extension from maximum streamflow to 96 

maximum flood zone is not trivial, and cannot be explicitly addressed through the 97 

conventional deterministic inundation modeling approach. 98 

The increases in the magnitude and frequency of flooding, in addition to the 99 

inadequacy of floodplain measures and the high costs of hardening (Wilbanks et al., 100 

2008; Farber-DeAnda et al., 2010; Gilstrap et al., 2015), have put electricity 101 

infrastructures at risk (Zamuda et al., 2015; Zamuda and Lippert, 2016; Cronin et al., 102 

2018; Forzieri et al., 2018; Mikellidou et al., 2018; Allen-Dumas et al., 2019). In 103 

particular, electricity infrastructures which lie in areas vulnerable to flooding can 104 

experience floodwater damages that may lead to changes in their energy production and 105 

consumption (Chandramowli and Felder, 2014; Ciscar and Dowling, 2014; Bollinger and 106 

Dijkema, 2016; Gangrade et al., 2019). For instance, flooding can rust metals, destroy 107 

insulation, and damage interruption capacity (Farber-DeAnda et al., 2010; Vale, 2014; 108 

NERC, 2018; Bragatto et al., 2019). It is estimated that nearly 300 energy facilities are 109 

located on low-lying lands vulnerable to sea-level rise and flooding in the lower 48 US 110 

states, (Strauss and Ziemlinski, 2012). 111 

Several studies have assessed the vulnerability of electricity infrastructures to 112 

flooding (Reed et al., 2009; Winkler et al., 2010; Bollinger and Dijkema, 2016; Fu et al., 113 
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2017; Pant et al., 2017; Bragatto et al., 2019; Gangrade et al., 2019). For highly sensitive 114 

water infrastructures such as dams (McCuen, 2005), Gangrade et al. (2019) showed that 115 

the surface inundation associated with probable maximum flood (PMF) is generally 116 

projected to increase in future climate conditions. However, given the extremely large 117 

magnitude of PMF (AEP < 10-4 %), the findings cannot be directly associated with more 118 

frequent and moderate flood events (i.e., AEP around 1–0.2%) that are the main focus of 119 

many engineering applications. Although some of these studies focused on evaluating the 120 

resilience of electricity infrastructures against flood hazard and/or climate change, only a 121 

few of them evaluated site-specific inundation risk and quantified impacts of climate 122 

change-induced flooding on electricity infrastructures under different future climate 123 

scenarios. Again, one main challenge is associated with the high computational costs to 124 

effectively transform ensemble streamflow projections into ensemble surface inundation 125 

projections through hydrodynamic models. With the enhanced inundation models and 126 

high-performance computing (HPC) capabilities (Morales-Hernández et al., 2020), this 127 

challenge can be gradually overcome for more spatially explicit flood vulnerability 128 

assessment. 129 

The objective of this study is to demonstrate the applicability of a computationally 130 

intensive ensemble inundation modeling approach to better understand how climate 131 

change may affect flood regimes, floodplain regulation standards, and the vulnerability of 132 

existing infrastructures. Extending from the framework developed by Gangrade et al. 133 

(2019) for PMF-scale events (AEP < 10-4 %) based on one selected climate model 134 

(CCSM4), we focus on more frequent extreme streamflow events (i.e., AEP around 1–135 

0.2%) which requires different modeling strategies based on multiple downscaled climate 136 
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models. The unique aspects of this study are the application of an integrated climate-137 

hydrologic-hydraulic modeling framework for: 138 

(1) Evaluating the changes in flood regime using high-resolution ensemble flood 139 

inundation maps. The ensemble-based approach is able to incorporate the large 140 

hydrologic interannual variability and model uncertainty that cannot be captured 141 

through the conventional deterministic flood map. 142 

(2) Enabling direct frequency analysis of ensemble flood inundation maps that 143 

correspond to historic and projected future climate conditions. This approach 144 

provides an alternative floodplain delineation technique to the conventional 145 

approach, in which a single deterministic design flood value is used to develop a 146 

flood map with a given exceedance probability. 147 

(3) Evaluating the vulnerability of electricity infrastructures to climate change-148 

induced flooding and assessing the adequacy of existing flood protection 149 

measures using ensemble flood inundation. This information will help floodplain 150 

managers to identify the most vulnerable infrastructures and recommend suitable 151 

adaptation measures. 152 

The following technique was adopted in this study. First, we generated streamflow 153 

projection by utilizing an ensemble of simulated streamflow hydrographs driven by both 154 

historical observations and downscaled climate projections (Gangrade et al., 2020) as 155 

inputs for hydrodynamic inundation modeling as presented in section 2.2. Then, we set 156 

up and calibrated a 2D hydrodynamic inundation model, Two-dimensional Runoff 157 

Inundation Toolkit for Operational Needs (TRITON; Morales-Hernández et al., 2021), in 158 

our study area which is presented in section 2.3. For inundation modeling, sensitivity 159 
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analyses were conducted on three selected parameters to quantify and compare their 160 

respective influences on modeled flood depths and extents. The performance of TRITON 161 

was then evaluated by comparing a simulated 1% AEP flood map with the reference 1% 162 

AEP flood map from the Federal Emergency Management Agency (FEMA). Finally, as 163 

presented in sections 2.4 and 2.5, ensemble inundation modeling was performed to 164 

develop flood inundation frequency curves and maps, and to assess the vulnerability of 165 

electricity infrastructures under a changing climate, respectively. 166 

The article is organized as follows: the data and methods are discussed in Section 2; 167 

Section 3 presents the result and discussion; and the summary is presented in Section 4. 168 

2. Data and Methods 169 

2.1. Study Area 170 

Our study area is the Conasauga River Watershed (CRW) located in southeastern 171 

Tennessee and northwestern Georgia (Figure 1). The CRW is an eight-digit Hydrologic 172 

Unit Code (HUC08) subbasin (03150101) with a total drainage area of ~1880 km2. The 173 

northeastern portions of the watershed are rugged, mountainous areas largely covered 174 

with forests (Ivey and Evans, 2000; Elliott and Vose, 2005). The CRW, which is one 175 

headwater basin of the Alabama-Coosa-Tallapoosa (ACT) River Basin, rises high on the 176 

Blue Ridge Mountains of Georgia and Tennessee and flows for 145 km before joining the 177 

Coosawattee River to form the Oostanaula River (Ivey and Evans, 2000; USACE, 2013). 178 

The CRW climate is characterized by warm, humid summers, and mild winters with 179 

mean annual temperature of 15 to 20 °C and average annual precipitation of 1300 to 1400 180 

mm (FIS, 2007; FIS, 2010; Baechler et al., 2015). The watershed encompasses four 181 
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counties: Bradley, Polk, Fannin, Murray, and Whitfield. It also includes the cities of 182 

Dalton and Chatsworth, Georgia. There is no major reservoir located in the CRW. 183 

 184 

Figure 1. Conasauga River Watershed study area location, model extent, electric 185 

substations, and inflow locations. Background layer source: © OpenStreetMap 186 

contributors 2020. Distributed under a Creative Commons BY-SA License. 187 

 188 

2.2. Streamflow Projections 189 

The ensemble streamflow projections were generated by a hierarchical modeling 190 

framework, which started with regional climate downscaling followed by hydrologic 191 

modeling (Gangrade et al., 2020). The climate projections were generated by dynamically 192 

downscaling of 11 GCMs from the Coupled Model Intercomparison Project Phase-5 193 

(CMIP5) data archive. Each GCM was used as lateral and lower boundary forcing in a 194 

regional climate model RegCM4 (Giorgi et al., 2012) at a horizontal grid spacing of 18 195 
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km over a domain that covered continental US and parts of Canada and Mexico (Ashfaq 196 

et al., 2016) (Table 1). Each RegCM4 integration covered 40 years in the historic period 197 

(1966–2005; hereafter baseline) and another 40 years in the future period (2011–2050) 198 

under Representative Concentration Pathway 8.5 (RCP 8.5) emission scenario, with a 199 

combined 880 years of data across all RegCM4 simulations. To capture the multi-decadal 200 

climate variability, a minimum of 30-year period has been used in many studies (e.g., 201 

Alfieri et al., 2015a, 2015b). Given the additional data available from Gangrade et al. 202 

(2020), we have adopted a longer 40-year period that may further enlarge the sample 203 

space to better support the statistical analyses in this study. 204 

 205 

Table 1. Summary of the 11 dynamically downscaled climate models (adopted from 206 
Ashfaq et al., 2016). 207 

S. No. 
Climate model 

name 

 

Number of flood 

events per 

climate model 

 

Time period 

1 ACCESS1-0  

 

 

 

 

40 

 

 

 

 

1966–2005 

(Baseline) 

 

 

 

 

 

 

 

2011-2050 

(Future/RCP 

8.5) 

2 BCC-CSM1-1 

3 CCSM4 

4 CMCC-CM 

5 FGOALS-g2 

6 GFDL-ESM2M 

7 MIROC5 

8 MPI-ESM-MR 

9 MRI-CGCM3 

10 NorESM1-M 

11 IPSL-CM5A-LR 

 208 



10 
 

The RegCM4 simulated daily precipitation and temperature were further statistically 209 

bias-corrected to a spatial resolution of 4 km following a quantile mapping technique, 210 

described in Ashfaq et al. (2010, 2013). The 4 km Parameter-elevation Regressions on 211 

Independent Slopes Model (PRISM; Daly et al., 2008) data was used as the historic 212 

observations to support bias-correction. In the baseline period, the simulated quantiles of 213 

precipitation and temperature were corrected by mapping them onto the observed 214 

quantiles. In the future period, the monthly quantile shifts were calculated based on the 215 

simulated baseline and future quantiles which were subsequently added to the bias 216 

corrected baseline quantiles to generate bias-corrected monthly future data. Finally, the 217 

monthly bias-corrections were distributed to the daily values while preserving in each 218 

time period. This approach substantially improves the biases in the modeled daily 219 

precipitation and temperature while preserving the simulated climate change signal. 220 

Further details of the bias-correction are provided in Ashfaq et al. (2010, 2013) while the 221 

information regarding the RegCM4 configuration, evaluation and future climate 222 

projections are detailed in Ashfaq et al. (2016). 223 

The hydrologic simulations were then conducted using the Distributed Hydrology 224 

Soil Vegetation Model (DHSVM; Wigmosta et al., 1994), which is a process-based high-225 

resolution hydrologic model that can capture heterogeneous watershed processes and 226 

meteorology at a fine resolution. DHSVM uses spatially distributed parameters, including 227 

topography, soil types, soil depths, and vegetation types. The input meteorological data 228 

includes precipitation, incoming shortwave and longwave radiation, relative humidity, air 229 

temperature and wind speed (Wigmosta et al., 1994; Storck et al., 1998; Wigmosta et al., 230 

2002). The DHSVM performance and applicability has been reported in various earlier 231 
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climate and flood related studies (Elsner et al., 2010; Hou et al., 2019; Gangrade et al., 232 

2018, 2019, 2020). A calibrated DHSVM implementation from Gangrade et al. (2018) at 233 

90 m grid spacing was used to produce 3-hourly streamflow projections using the 234 

RegCM4 meteorological forcings described in the previous section (Table 1). In addition, 235 

a control simulation driven by 1981–2012 Daymet meteorologic forcings (Thornton et 236 

al., 1997) was conducted for model evaluation and validation. The hydrologic simulations 237 

used in this study are a part of a larger hydroclimate assessment effort for the ACT River 238 

Basin, as detailed in Gangrade et al. (2020). Since there is no major reservoir in the 239 

CRW, the additional reservoir operation module (Zhao et al., 2016) was not needed in 240 

this study. 241 

Note that while the ensemble streamflow projections based on dynamical 242 

downscaling and high-resolution hydrologic modeling from Gangrade et al. (2020) are 243 

suitable to explore extreme hydrologic events in this study, they do not represent the full 244 

range of possible future scenarios. Additional factors such as other GCMs, RCP 245 

scenarios, downscaling approaches, and hydrologic models and parameterization may 246 

also affect future streamflow projections. In other words, although these ensemble 247 

streamflow projections can tell us how likely the future streamflow magnitude may 248 

change from the baseline level, they are not the absolute prediction into the future. In 249 

practice, these modeling choices will likely be study-specific based on the agreement 250 

among key stakeholders. It is also noted that the new Coupled Model Intercomparison 251 

Project Phase-6 (CMIP6) data have also become available to update the ensemble 252 

streamflow projections, but is not pursued in this study. 253 

2.3. Inundation Modeling 254 
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The ensemble inundation modeling was performed using TRITON, which is a 255 

computationally enhanced version of Flood2D-GPU (Kalyanapu et al., 2011). TRITON 256 

allows parallel computing using multiple graphics processing units (GPUs) through a 257 

hybrid Message Passing Interface (MPI) and Compute Unified Device Architecture 258 

(CUDA) (Morales-Hernández et al., 2021). TRITON solves the nonlinear hyperbolic 259 

shallow water equations using an explicit upwind finite-volume scheme, based on Roe’s 260 

linearization. The shallow water equations are a simplified version of the Navier-Stokes 261 

equations in which the horizontal momentum and continuity equations are integrated in 262 

the vertical direction (see Morales-Hernández et al., (2021), for further model details). An 263 

evaluation of TRITON performance for the CRW is presented and discussed in Section 264 

3.3. 265 

TRITON’s input data includes digital elevation model (DEM), surface roughness, 266 

initial depths, flow hydrographs, and inflow source locations (Kalyanapu et al., 2011; 267 

Marshall et al., 2018; Morales-Hernández et al., 2020; Morales-Hernández et al., 2021). 268 

In this study, the hydraulic and geometric parameters from the flood model evaluation 269 

section (Section 3.3) were used in the flood simulation. The topography was represented 270 

using the one-third arc-second (~10 m) spatial resolution DEM (Archuleta et al., 2017) 271 

from the US Geological Survey (USGS). To improve the quality of the base DEM, as 272 

discussed in the flood model evaluation section, the main channel elevation was reduced 273 

by 0.15 m. Elevated roads and bridges that obstruct the flow of water were also removed. 274 

For surface roughness, we used a single channel Manning’s n value of 0.05 and a single 275 

floodplain Manning’s n value of 0.35. The selection of channel and floodplain Manning’s 276 

n value was based on the Whitfield County Flood Insurance Study (FIS, 2007), which 277 
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reported a range of Manning’s n values estimated from field observations and 278 

engineering judgment for about 15 streams inside the CRW (section 3.2). Furthermore, a 279 

water depth value of 0.35 m was defined for the main river channel as an initial boundary 280 

condition. The zero velocity gradients were used as the downstream boundary condition. 281 

Further discussion of model parameter sensitivity and model evaluation are provided in 282 

sections 3.2 and 3.3. 283 

The simulated DHSVM streamflow was used to prepare inflow hydrographs for 284 

ensemble inundation modeling. To provide a large sample size for frequency analysis, we 285 

selected all annual maximum peak streamflow events (the maximum corresponded to the 286 

outlet of CRW [Figure 1]) from the 1981–2012 control simulation (32 years), the 1966–287 

2005 baseline simulation (440 years; 40 years × 11 models), and the 2011–2050 future 288 

simulation (440 years; 40 years × 11 models), with a total of 912 events. For each annual 289 

maximum event, the 3-hour timestep, 10-day hydrographs (which capture the peak CRW 290 

outlet discharge) across all DHSVM river segments were summarized. Following a 291 

procedure similar to Gangrade et al. (2019), these streamflow hydrographs were 292 

converted to TRITON inputs at 300 inflow locations selected along the NHD+ river 293 

network in the CRW (Figure 1). The TRITON model extent, shown in Figure 1, has an 294 

approximate area of 3945 km2 and includes ~44 million model grid cells (7976 rows × 295 

5474 columns in a uniform structured mesh). The ensemble flood simulations resulted in 296 

gridded flood depth and velocity output at 30-minute intervals. The simulations generated 297 

an approximately 400 Terabyte data and utilized ~2000 node hours on the Summit 298 

supercomputer, managed by the Oak Ridge Leadership Computing Facility at Oak Ridge 299 

National Laboratory. 300 
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2.4. Flood Inundation Frequency Analysis 301 

Given the nature of GCM experiments, each set of climate projections can be 302 

considered as a physics-based realization of historic and future climate under specified 303 

emission scenarios. Therefore, an ensemble of multimodel simulations can effectively 304 

increase the data lengths and sample sizes that are keys to support frequency analysis, 305 

especially for low-AEP events. In this study, we conducted flood frequency analyses 306 

separately for the 1966–2005 baseline and 2011–2050 future periods so that the 307 

difference between the two periods represent the changes in flood risk due to climate 308 

change. 309 

To prepare the flood frequency analysis, we first calculated the maximum flood depth 310 

at every grid in each simulation. A minimum threshold of 10 cm flood depth was used to 311 

judge whether a cell was wet or dry (Gangrade et al., 2019). Further, for a given grid cell, 312 

if the total number of non-zero flood depth values (i.e., of the 440 depth values) was less 313 

than 30, the grid cell was also considered dry. This threshold was selected based on the 314 

minimum sample size requirement for flood depth frequency analysis suggested by Li et 315 

al. (2018). Next, we calculated the maximum flooded area (hereafter used alternatively 316 

with “floodplain area”) for each simulation. A log-Pearson Type III (LP3) distribution 317 

was then used for frequency analysis following the guidelines outlined in Bulletins 17B 318 

(USGS, 1982; Burkey, 2009) and 17C (England Jr. et al., 2019). Two types of LP3 fitting 319 

were performed. The first type of fitting is event-based that fitted LP3 on the maximum 320 

inundation area across all ensemble members. The second type of fitting is grid-based 321 

(more computationally intensive) that fitted LP3 on the maximum flood depth at each 322 

grid cell across all ensemble members. For both types of fittings, the frequency estimates 323 
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at 4%, 2%, 1%, and 0.5% AEP (corresponding to 25-, 50-, 100-, and 200-year return 324 

levels) were derived for further analysis. 325 

It is also noted that in addition to the annual maximum event approach used in this 326 

study, one may also use the peak-over-threshold (POT) approach which can select 327 

multiple streamflow events in a very wet year. While such an approach can lead to higher 328 

extreme streamflow and inundation estimates, the timing of POT samples is fully 329 

governed by the occurrences of wet years. In other words, if the trend of extreme 330 

streamflow is significant in the future period, the POT samples will likely occur more in 331 

the far future period. We hence select the annual maximum event approach that can 332 

sample maximum streamflow events more evenly in time, which can better capture the 333 

evolution of extreme events with time under the influence of climate change. 334 

2.5. Vulnerability of Electricity Infrastructure 335 

The vulnerability of electricity infrastructures to climate change-induced flooding 336 

was evaluated using the ensemble flood inundation results. The 44 electric substations 337 

(Figure 1) collected from the publicly available Homeland Infrastructure Foundation-338 

Level Data (HIFLD, 2019) were considered to be the electrical components susceptible to 339 

flooding. To evaluate the vulnerability of these substations, we overlapped the maximum 340 

flood extent from each ensemble member with all substations to identify the substations 341 

that might be inundated under the baseline and future climate conditions. Further, as an 342 

additional flood hazard indicator, the duration of inundation was estimated at each of the 343 

affected substations using the ensemble flood simulation results. 344 

The vulnerability analysis was performed for two different flood mitigation scenarios. 345 

In the first scenario, we assumed that no flood protection measures were provided at all 346 
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substations. Hence, the substations that intersected with the flood footprint were 347 

considered to be failed. In the second scenario, it was assumed that flood protection 348 

measures were adopted for all substations following the FEMA P-1019 recommendation 349 

(FEMA, 2014). According to FEMA P-1019 (FEMA, 2014), for emergency power 350 

systems within critical facilities, the highest elevation among (1) the base flood elevation 351 

(BFE: 1% FEMA AEP flood elevation) plus 3 feet (~0.91 m), (2) the locally adopted 352 

design flood elevation, and (3) the 500-year flood elevation can be used to design flood 353 

protection measures. Since the three recommended elevations were not available at all 354 

substation locations, we focused only on the BFE plus ~0.91 m option. In addition, since 355 

in the CRW the majority of existing flood insurance maps were classified as Zone A—356 

meaning that the special flood hazard areas were determined by approximate methods 357 

without BFE values (FEMA, 2002)—we used the maximum flood depth values across all 358 

control simulation years as the BFE values in this second mitigation scenario. 359 

During the vulnerability analysis, we also assumed that (1) the one-third arc-second 360 

spatial resolution DEM might reasonably represent the elevation of substations, (2) 361 

existing substations would remain functional and would not be relocated, and (3) no 362 

additional hardening measures (i.e., protections such as levees, berms, anchors, and 363 

housings) will be adopted in the future period. Also, the cascading failure of a substation 364 

due to grid interconnection was not considered in this study. 365 

 366 

3. Results and Discussion 367 

3.1. Streamflow Projections 368 
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This section presents a comparison of the annual maximum peak streamflow (at the 369 

outlet of CRW) used in the control, baseline, and future simulations. The sample size 370 

included 32 events from the control (1981–2012) simulation, 440 events from the 371 

baseline (1966–2005) simulations, and another 440 events from the future (2011–2050) 372 

simulations. These samples are illustrated in box and whisker plots in Figure 2, where 373 

central mark indicate the median, while bottom and top edges indicate the 25th and 75th 374 

percentiles respectively. The whiskers extend to the furthest data points not considered 375 

outliers, which correspond to approximately ± 2.7 standard deviations and 99.3% 376 

coverage if the data are normally distributed. As is evident from Figure 2, the 377 

distributions of annual maximum peak streamflow values in the control and baseline 378 

simulations are comparable. The upper and lower whiskers in the control simulation are 379 

727.6 m3/s and 84.2 m3/s, which compare well to the 722.5 m3/s and 65.2 m3/s values in 380 

the baseline simulation. In addition, we also conducted a two-tailed two-sample t-test (α 381 

= 0.05) to compare if the means of control and baseline annual maximum streamflow are 382 

statistically different. The results yielded a p-value of 0.09 which suggested that there is 383 

no significant difference between the means of both control and baseline simulations. A 384 

larger number of outliers are present in the baseline simulation, which is due to the larger 385 

sample size (440 versus 32). 386 

Under the future projection, an increase in the maximum peak streamflow is shown, 387 

where the upper whisker in the future projection is ~21% higher than the baseline. 388 

Moreover, the maximum of distribution in the future climate (2036.7 m3/s) is also much 389 

higher than that in the baseline climate (1436.7 m3/s), suggesting a higher future flood 390 
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risk in the CRW. The increasing trend of streamflow extremes in the CRW is consistent 391 

with the overall findings in the ACT River Basin (Gangrade et al., 2020). 392 

 393 

Figure 2. A comparison of annual maximum peak streamflow at the outlet of Conasauga 394 

River Watershed. The sample size includes 32 events from the control (1981–2012), 440 395 

from the baseline (1966–2005), and another 440 from the future (2011–2050) periods. 396 

3.2. Sensitivity Analysis for Flood Model 397 

For a better understanding and selection of suitable TRITON parameters, a series of 398 

sensitivity analyses were conducted using different combinations of Manning’s 399 

roughness, initial water depths, and river bathymetry correction factors (Table 2). 400 

 401 
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 402 

 403 

Table 2. Summary of hydraulic and geometric parameters used in the sensitivity analysis. 404 

Sensitivity 
parameter Scenario 

Initial water 
depth values 

(m) 
Surface roughness 

(Manning's n values) 

Bathymetry 
correction 
factor (m) 

Initial water 
depth 

1 0.00 

nch =0.050 / nfldpl =0.350 -0.15 

2 0.15 
3 0.35 
4 0.45 
5 0.55 
6 0.65 

Surface 
roughness 

1 

0.35 

N_1: nch =0.035 / nfldpl =0.06 

-0.15 

2 N_2: nch =0.040 / nfldpl =0.25 
3 N_3: nch =0.045 / nfldpl =0.30 
4 N_4: nch =0.050 / nfldpl =0.35 
5 N_5: nch =0.055 / nfldpl =0.45 

6 

N_6: nch =0.060 / nfldpl =0.50 
N_7: Manning’s n map 
prepared based on the NLCD 
2011 

Bathymetry 
correction 

factor 

1 

0.35 nch =0.050 / nfldpl =0.350 

0.00 
2 -0.15 
3 -0.45 
4 -0.75 
5 -1.00 
6 -1.25 

Note: nch represents the Manning’s n value in the main channel and nfldpl represents the 405 
Manning’s n value in the floodplain areas. 406 

 407 

In calibrating a hydraulic model, it is a common practice to adjust the estimated 408 

Manning’s n value, as it is the most uncertain and variable input hydraulic parameter 409 

(Brunner et al., 2016). In this study, we tested six different scenarios (Table 2) based on 410 

the Whitfield County Flood Insurance Study (FIS, 2007), which reported a range of 411 

Manning’s n values estimated from field observations and engineering judgment for 412 

about 15 streams inside the CRW. It is noted that the depth variation of Manning’s 413 
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roughness is not considered in the current study. Readers are referred to studies such as 414 

Saksena et al. (2020) for additional information on the dynamic Manning’s roughness for 415 

potential hydrology and hydraulics applications. 416 

To establish an initial condition for TRITON, a sensitivity analysis was performed on 417 

selected initial water depth values (ranging from 0 m to 0.65 m, Table 2) to understand 418 

their relative effects. To select ranges for the initial water depth, we summarized the 419 

observed water depth values that corresponds to low flow values at five USGS gauge 420 

stations inside the CRW. The distribution of observed water depth values from the five 421 

gauges showed average values ranging from 0.25 to 0.65m. Existing DEM products, even 422 

those with high spatial resolution (i.e., 10 m or finer), do not represent the elevation of 423 

river bathymetry accurately (Bhuyian et al., 2014). For the CRW, Bhuyian et al. (2019) 424 

found that the one-third arc-second spatial resolution base DEM over-predicted the 425 

inundation extent because of the bathymetric error, which reduced the channel 426 

conveyance. In this study, we tested various bathymetry correction factors (ranging from 427 

−1.25 m to 0 m, Table 2) by reducing the DEM elevation along the main channel to 428 

understand the sensitivity of TRITON. 429 

The sensitivity analysis was performed using the February 13–22, 1990 flood event 430 

that has the maximum discharge among all 32 control simulation events. To evaluate 431 

relative sensitivity of TRITON, we extracted simulated flood depths at four arbitrary 432 

selected locations (Figure 1) and estimated the relative inundation area differences. The 433 

impacts of initial water depths were significant only at the beginning where low flow 434 

values dominated the hydrographs (Figure 3a, 3d, 3g, and 3j). Larger initial water depth 435 

values generated higher flood inundation depths for both sample locations. Although the 436 
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differences in flood inundation extents relative to the dry bed show an increasing trend, 437 

the relative differences are less than 1.4% (Figure 4a). Similarly, the differences in 438 

average peak water depths and time to peak relative to the 0.35 m initial water depth were 439 

less than 1.0% (Table 3). Increase in the channel and floodplain Manning’s n values 440 

resulted in higher flood depths for both sample locations (Figure 3b, 3e, 3h, and 3k). The 441 

relative flood inundation area differences increase from about 23% to 31% (Figure 4b) 442 

when the channel and floodplain Manning’s n values are increased from 0.035 to 0.06 443 

and from 0.06 to 0. 50, respectively. In terms of simulated maximum flood extent, the 444 

relative difference between scenario 3 (N_3) and scenario 7 (i.e., Manning’s n map based 445 

on different land use types [N_7]) showed ~16% (22 km2) change in inundation area 446 

(Figure 4b). Similarly, the last scenario (N_7) resulted in ~9% increase in the average 447 

peak water depth (Table 3), when compared to scenario 3 (N_3). Reduction in the 448 

elevation of river bathymetry (to improve the quality of the base DEM) results in a direct 449 

increase in maximum flood depth due to change in the river conveyance (Figure 3c, 3f, 450 

3i, and 3l; Table 3). It also results in a decrease in the maximum flood extent (Figure 4c), 451 

as more water is allowed to transport through the main channel instead of the floodplain. 452 

Overall, the results showed that TRITON was more sensitive to the Manning’s n values 453 

than the initial water depths and bathymetric correction factors. 454 

 455 

 456 



22 
 

457 

Figure 3. Simulated flood inundation depths extracted at location 1 (a, b, c) and at 458 

location 2 (d, e, f). Note: Location 1 and 2 are shown in Figure 1. A description of the 459 

Manning’s n values (N_1 to N_6) can be found in Table 2. 460 

 461 
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462 

Figure 4. Change in simulated maximum flood inundation extents for (a) initial water 463 

depth, (b) Manning’s n value, and (c) bathymetry correction factor. 464 

 465 

Table 3. Change in peak water depth and time to peak. 466 

Sensitivity parameter 
% change in 
peak water 

depth 

% 
change 
in time 
to peak 

Scenarios 
used to 

calculate the 
% change 

values  

Initial water 
depth (m) 

0.00 -0.77 0.59 

0.35 m water 
depth 

0.15 -0.41 0.25 
0.35 0.00 0.00 
0.45 0.16 -0.17 
0.55 0.29 -0.33 
0.65 0.42 -0.43 

N_1: nch =0.035 / nfldpl =0.06 -24.80 -24.53 N_4 
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Manning's n 
value 

N_2: nch =0.040 / nfldpl =0.25 -4.79 -7.44 
N_3: nch =0.045 / nfldpl =0.30 -2.11 -3.03 
N_4: nch =0.050 / nfldpl =0.35 0.00 0.00 
N_5: nch =0.055 / nfldpl =0.45 2.54 5.74 
N_6: nch =0.060 / nfldpl =0.50 3.83 8.88 

N_7: Manning’s n map prepared 
based on the NLCD 2011 8.50 1.31 

Bathymetry 
correction 
factor (m) 

0.00 -2.44 -0.10 
Bathymetry 
correction 
factor of - 

0.15 m 

-0.15 0.00 0.00 
-0.45 4.78 0.19 
-0.75 9.41 0.50 
-1.00 13.11 0.86 
-1.25 16.58 1.17 

 467 

 468 

3.3. Flood Model Evaluation 469 

Because of a lack of observed streamflow data in the CRW, the performance of 470 

TRITON was evaluated by comparing the simulated 1% AEP flood map with the 471 

published 1% AEP flood map from FEMA (FEMA, 2019). The purpose of this 472 

assessment is to understand whether TRITON can provide comparable results to the 473 

widely accepted FEMA flood estimates. While the FEMA AEP flood maps do not 474 

necessarily represent complete ground truth, such a comparison is the best option given 475 

the data challenge. Similar approach has been utilized by several previous studies in the 476 

evaluation of large-scale flood inundation evaluation (Alfieri et al., 2014; Wing et al., 477 

2017; Zheng et al., 2018; Gangrade et al., 2019). 478 

To derive the 1% AEP flood map using TRITON, the ensemble-based approach used 479 

by Gangrade et al. (2019) was followed. The assessment started by preparing the 480 

streamflow hydrographs used to construct the 1% AEP flood map. The 1981–2012 481 

annual maximum peak events and their corresponding 10-day streamflow hydrographs 482 

were extracted from the control simulation. These streamflow hydrographs were then 483 
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proportionally rescaled to match the 1% AEP peak discharge estimated at the watershed 484 

outlet (Figure 1), following the frequency analysis procedures outlined in Bulletin 17C 485 

(England Jr. et al., 2019). The streamflow hydrographs from control simulations were 486 

used for the peak discharge frequency analysis. 487 

The results reported in the sensitivity analysis were also used to help identify suitable 488 

TRITON parameters. In addition to streamflow hydrographs, TRITON requires DEM, 489 

initial water depth, and Manning’s n value. To minimize the effect of bathymetric error in 490 

the base DEM (Bhuyian et al., 2014; Bhuyian et al., 2019), we reduced the elevation 491 

along the main channel by 0.15 m (i.e., a bathymetry correction factor). Although this 492 

simple approach is unlikely to adjust the channel bathymetry to its true values, it can 493 

improve the channel conveyance volume that is lost in the base DEM. To further improve 494 

the quality of the base DEM, we removed elevated roads and bridges that could obstruct 495 

the flow of water in some of the streams and rivers. An initial water depth of 0.35 m was 496 

also selected in this study. For the surface roughness, a couple of flood simulations were 497 

performed by adjusting the Manning’s n values for the main channel and floodplain to 498 

achieve satisfactory agreement between the simulated and the reference FEMA flood 499 

map. We eventually selected a single channel Manning’s n value of 0.05 and a single 500 

floodplain Manning’s n value of 0.35. 501 

Three evaluation metrics, including fit, omission, and commission (Kalyanapu et al., 502 

2011) were used to quantify the differences between the modeled and reference flood 503 

map. The measure of fit determines the degree of relationship, while the omission and 504 

commission statistically compare the simulated and reference FEMA flood maps 505 

(Kalyanapu et al., 2011). The comparison between the simulated maximum inundation 506 
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and the corresponding 1% AEP FEMA flood map showed 80.65% fit, 5.52% 507 

commission, and 15.36% omission (Figure 5), demonstrating that the TRITON could 508 

reasonably estimate flood inundation extent, and depths in the CRW. The computational 509 

efficiency of TRITON can further support ensemble inundation modeling to provide 510 

additional variability information that cannot be provided by the conventional 511 

deterministic flood map. 512 

Although we have obtained satisfactory model performance for the purpose of our 513 

study, the flood model implementation has some limitations that may be enhanced in 514 

future studies. They include: 515 

• Spatially varying Manning’s n values may be derived based on high-resolution 516 

land use land cover (LULC) conditions to better represent the spatial 517 

heterogeneity in the modeling domain. 518 

• Apart from changes in future runoff and streamflow, projections of future LULC 519 

and its corresponding surface roughness can be considered to understand the 520 

broader impacts due to environment change. 521 

• In this study, we corrected DEM bias along the river channel cells by simplified 522 

bathymetry correction factors. More sophisticated bathymetric configuration (i.e., 523 

channel shape and sinuosity) can be considered to better represent channel 524 

conveyance. 525 

• The current TRITON model does not provide capability to route local runoff and 526 

external inflows through stormwater drainage systems. Coupling with additional 527 

stormwater drainage models can be a potential future direction. 528 
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• Hydraulic and civil structures such as bridges, culverts, and weirs have not been 529 

included since TRITON does not provide for the modeling of such components. 530 

This can affect the accuracy of the flood depths, velocities, and flood extents 531 

around these structures. 532 

 533 
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534 

Figure 5. Comparison of simulated maximum flood extent with the corresponding FEMA 535 

1% AEP flood map for the Conasauga River Watershed. Background layer source: © 536 

OpenStreetMap contributors 2020. Distributed under a Creative Commons BY-SA 537 

License. 538 
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 539 

3.4. Change in Flood Regime 540 

In this section, the projected changes in flood regime were calculated using the 541 

flooded area from the baseline and future simulations for each ensemble member. Figure 542 

6 illustrates the box and whisker plots for each of the 11 dynamically downscaled GCMs. 543 

Given the small sample size in each distribution (40 compared to 440 in Figure 2), the 544 

whiskers extend the largest/smallest data points with no outlier detection. For 9 out of the 545 

11 downscaled climate models, the mean of 40 flood inundation showed an increase in 546 

the floodplain area in the future period. In terms of the 75th percentile and maximum, 10 547 

out of 11 models showed increase in the floodplain area. The distribution of maximum 548 

future inundation of 4 models are found to be statistically different than their baseline 549 

distributions at a 5% significance level. Note that the spread in the future period is 550 

generally larger than the spread in the baseline period, suggesting an increase in the 551 

hydrologic variability in the future period. Also, while the results from different models 552 

were generally consistent, some inter-model differences were noted, which highlight the 553 

need of a multi-model framework to capture the uncertainty in the future climate 554 

projections. The multi-model approach provides a range of possible flood inundation 555 

extents, which is critical for floodplain management decision making. The potential 556 

increase in the floodplain area also demonstrates the importance of incorporating climate 557 

change projections in the floodplain management regulations. 558 

 559 
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560 

Figure 6. A summary of simulated maximum flood inundation extents obtained from the 561 

baseline and future scenarios. The mean flooded area values are shown by × symbols. 562 

Note: The suffix “_BL” represents baseline scenarios and the suffix “_F” represents 563 

future scenarios. 564 

3.5. Flood Inundation Frequency Curve and Map 565 

Figure 7 shows the relationship between the 440 flooded area values (across 11 566 

downscaled GCMs) and their corresponding peak streamflow at the watershed outlet, for 567 

both the baseline and future periods. Overall, both results (Figure 7a and 7b) exhibit 568 

strong nonlinear relationships with high R2 values. The results suggest that peak 569 

streamflow is a significant variable controlling the total flooded area, but the variability 570 

of flooded area could not be explained by peak streamflow alone. For instance, in the 571 

baseline period, the peak streamflow values of 423.63 m3/sec and 424.25 m3/sec 572 

correspond to 106.85 km2 and 94.89 km2 floodplain areas, respectively (Figure 7a). 573 
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Similarly, in the future period, the peak streamflow values of 433.27 m3/sec and 434.21 574 

m3/sec correspond to 110.76 km2 and 99.26 km2 floodplain areas (Figure 7b). 575 

 576 

577 

Figure 7. Relationship between floodplain areas and peak streamflow values at the 578 

watershed outlet for (a) baseline and (b) future scenarios. The blue lines indicate the 579 

logarithmic best-fit. 580 

 581 

Figure 8 shows the event-based flood inundation frequency curves and their 582 

corresponding 95% confidence intervals in both the baseline and future periods, for 583 

which each frequency curve was derived using an ensemble of 440 years of data. The use 584 

of long-term data helped reduce the uncertainty and add more confidence in the 585 

evaluation of the lower AEP estimates. This type of assessment cannot be achieved using 586 

only historic streamflow observations, for which the limited records present a major 587 
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challenge for lower AEP estimates. For most of the exceedance probabilities, the flooded 588 

areas projected an increase in the inundation areas in the future period when compared to 589 

the baseline period. The 1% AEP flood shows an ~16 km2 increase in the inundation area 590 

(137.75 km2 in the baseline period versus 153.43 km2 in the future period) (Figure 8). 591 

Similar results can be observed in inundation frequency curves developed for other AEPs 592 

(not shown). 593 

 594 

595 

Figure 8. A summary of flood inundation frequency curves for the baseline and future 596 

periods. 597 

 598 

The grid-based flood depth frequency results at 0.5%, 1%, 2%, and 4% AEP levels 599 

are illustrated in Figure 9. In each panel, the projected change (i.e., future minus baseline) 600 

at each grid is shown. The corresponding histogram across the entire study area is 601 
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presented in Figure 10. As mentioned in section 2.4, the LP3 distribution was used for 602 

frequency analysis. In order to understand the suitability of LP3, we also conducted a 603 

comparative analysis to test an alternative log-normal (LN) distribution. By using the 604 

Anderson-Darling (Anderson and Darling, 1954) goodness-of-fit test (α = 0.05) along 605 

with the Akaike Information Criteria (Akaike, 1974), we found no substantial difference 606 

between these two distributions (not showed), for the purpose of our application. It is 607 

noted, however, that our goal in this study is not to identify the most suitable choice of 608 

flood depth distribution. Therefore, other more suitable distributions may exist but this is 609 

beyond the scope of this study. 610 

Based on the comparisons in Figure 10, it is estimated that the flood depth values at 611 

~80% of grid cells would increase by 0.2 to 1.5 m due to projected changes in climate 612 

(Figure 10). For 0.5% and 1% AEP flood depth frequency maps (Figure 9a and 9b), the 613 

changes in flood depth were more pronounced in the lower part of the CRW, near the 614 

City of Dalton (where there are large population settlements), thereby increasing the 615 

likelihood of population exposure to flood risk in the future period. Furthermore, for the 616 

1% flood depth frequency map (Figure 9b), the projected increase in flood depths and 617 

spatial extent has the potential to extend the flood damage far beyond the FEMA’s 618 

current base floodplain area. Therefore, these results highlight the need for climate 619 

change consideration in the floodplain mapping. The approach presented in this study can 620 

provide an alternative floodplain delineation technique, as it can be applied to develop 621 

flood depth frequency maps that are reflective of the future climate. 622 

 623 
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624 
Figure 9. Projected change (future minus baseline period) in flood depth frequency maps 625 
for (a) 0.5%, (b) 1%, (c) 2%, and (d) 4% AEPs. ArcGIS background layer sources: ESRI, 626 
HERE, Garmin, Intermap, GEBCO, USGS, Food and Agriculture Organization, National 627 
Park Service, Natural Resources Canada, GeoBase, IGN, Kadaster NL, Ordnance Survey, 628 
METI, Esri Japan, Esri China, the GIS User Community, and © OpenStreetMap 629 
contributors 2020. Distributed under a Creative Commons BY-SA License.630 
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631 

Figure 10. Histograms for the future changes (2011–2050) in the flood depth relative to 632 

the baseline period (1966–2005) for (a) 0.5%, (b) 1%, (c) 2%, and (d) 4% AEP flood 633 

depth frequency maps. 634 

 635 

3.6. Vulnerability of Electricity Infrastructure  636 

Figure 11a shows the box and whisker plot for the distributions of maximum flood 637 

depth values extracted at the substation location across all the baseline and future 638 

simulations, assuming that no flood protection measures were adopted (mitigation 639 

scenario 1). Of the 44 substations, 5 substations could have been affected during the 640 
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baseline period, while 7 substations are projected to be affected during the future period 641 

(Figure 11a). Increases are indicated not only for the number of affected substations but 642 

also for flood inundation depth values in the projected future climate. Overall, the mean 643 

of the ensemble flood depth values shows an ~0.6 m increase in the future period (Figure 644 

11a). Such an increase in the flood depth magnitude has the potential to exacerbate flood 645 

related damage to electrical components, which can inflate the cost of hardening 646 

measures such as elevating substations and constructing flood-protective barriers. As 647 

expected, when the substations were flood-proofed up to BFE plus ~0.91 m (mitigation 648 

scenario 2), the number of affected substations is reduced to three and four during the 649 

baseline and future periods, respectively (Figure 11b). The locations of substations that 650 

were impacted in the baseline period, in both mitigation scenarios, are consistent with the 651 

Whitfield County Emergency Management Agency report map (EMA, 2016) that shows 652 

the locations of critical facilities vulnerable to the historical flooding.  653 

The maximum inundation durations at the affected substations are summarized in 654 

Figure 12a (mitigation scenario 1) and Figure 12b (mitigation scenario 2). For both 655 

mitigation scenarios and all affected substations, ensemble mean inundation durations 656 

exhibited an increase under future climate condition. This increase in inundation duration 657 

probably would render substations out of service for longer periods of time by making it 658 

difficult to repair damaged substation equipment and restore grid services to customers. 659 

The potential hazards and consequences may also extend to critical facilities that are 660 

supplied by the affected substations. Similar to results presented in the previous sections, 661 

these results demonstrate the need for improving existing flood mitigation measures by 662 

incorporating the trends and uncertainties that originate from climate change. The 663 
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vulnerability analysis approach presented in this study will better equip floodplain 664 

managers to identify the most vulnerable substations and to recommend suitable 665 

adaptation measures, while allocating resources efficiently. 666 

 667 

Figure 11. A summary of maximum flood depths for substations that were affected in the 668 

baseline and/or future periods (a) without flood protection measures and (b) with flood 669 

protection measures. Note: Affected substations with their corresponding IDs are shown 670 

in Figure 1. There are no negative values in the vertical axis, as the minimum flood depth 671 

value is zero. 672 
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 673 

Figure 12. A summary of maximum inundation durations for substations that were 674 

affected in the baseline and/or future periods (a) without flood protection measures and 675 

(b) with flood protection measures. Note: Affected substations with their corresponding 676 

IDs are shown in Figure 1. There are no negative values in the vertical axis, as the 677 

minimum inundation duration is zero. 678 

 679 
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4. Summary and Conclusion 680 

This paper applies an integrated modeling framework to evaluate climate change 681 

impacts on flood regime, floodplain protection standards, and electricity infrastructures 682 

across the Conasauga River Watershed in the southeastern United States. Building on the 683 

ensemble concept used by Gangrade et al. (2019) for PMF-scale inundation modeling 684 

(AEP < 10-4 %), we focused on more frequent extreme streamflow events (i.e., AEP 685 

around 1–0.2%) based on 11 downscaled CMIP5 GCMs in this study. Our evaluation is 686 

based on a climate-hydrologic-hydraulic modeling framework, which makes use of an 687 

eleven member ensemble of downscaled climate simulations. Nine out of eleven 688 

ensemble members project an increase in the flood inundation area in the future period. 689 

Similarly, at the 1% AEP level, the flood inundation frequency curves indicate ~16 km2 690 

increase in floodplain area under the future climate. The comparison between the flood 691 

depth frequency maps from the baseline and future simulations indicated that, on average, 692 

~80% of grid cells exhibit a 0.2 to 1.5 m increase in the flood depth values. Without the 693 

flood protection measures, of the 44 electric substations inside the watershed, 5 and 7 694 

substations could be affected during the baseline and future periods, respectively. Even 695 

after flood-proofing, three and four substations could still be affected in the baseline and 696 

future periods. The increases in flood depth magnitude and inundation duration at the 697 

affected substations in the future period will most likely damage more electrical 698 

components, inflate the cost of hardening measures and render substations out of service 699 

for a longer period of time. 700 

Although future climate conditions are uncertain, our results demonstrate the needs 701 

for (1) consideration of climate change in the floodplain management regulations; (2) 702 
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improvements in the conventional deterministic flood delineation approach through the 703 

inclusion of probabilistic or ensemble-based methods, and (3) improvements in the 704 

existing flood protection measures for critical electricity infrastructures through enhanced 705 

hydro-meteorologic modeling capacities. In particular, rapidly advanced high-706 

performance computing capabilities have enabled the incorporation of computationally 707 

intensive 2D hydraulics modeling in the ensemble-based hydroclimate impact 708 

assessment. While the computational cost demonstrated in this study may still seem 709 

steep, in the current speed of technology advancement, we will soon be able to implement 710 

such a computationally intensive assessment for wide applications. The approach 711 

presented in this study can be used by floodplain managers to develop flood depth 712 

frequency maps and to identify the most vulnerable electric substations. 713 
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