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Interactive comment on “Assessing Climate Change-Induced Flood Risk in the Conasauga 

River Watershed: An Application of Ensemble Hydrodynamic Inundation Modeling” by 

Tigstu T. Dullo et al. 

 

The authors would like to thank the reviewer for the insightful and constructive comments. We 
have reviewed the comments and provided our responses herein. The reviewer’s comments are 
presented first followed by our response. 
 

Anonymous Referee #1 

The manuscript by Dullo et al. titled, “Assessing Climate Change-Induced Flood Risk in the 
Conasauga River Watershed: An Application of Ensemble Hydrodynamic Inundation Modeling” 
presents a systematic approach for evaluating the impact of climate change on exacerbating the 
future flood risk across a large watershed. First, a hydrologic model is used to simulate 
streamflow corresponding to multiple climate projections and second, a high-resolution 
hydrodynamic model (TRITON) is used to simulate the flood inundation extents corresponding 
to the streamflow values for different scenarios. I appreciate how thoroughly the modeling is 
conducted and described in the text. I particularly like the authors’ approach to quantify flood 
frequency estimates at a grid-level. Overall, this is a strong paper but requires additional 
discussion and justification. Please see below for comments that are intended to improve the 
quality of the manuscript: 

 

R1.1. My major concern is the absence of a variable roughness distribution based on different 
land use types for current and future periods. The hydrodynamic model assumes a fixed channel 
and floodplain roughness which may not be reflective of future land use variability. Therefore, 
the study evaluates climate variability from a hydrologic perspective, but only uses the modified 
streamflow to drive the same hydrodynamic model. Climate change is strongly linked to human-
induced land use change and therefore, the land use variability must be reflective in the future 
simulations. Similarly, channel roughness can also vary spatial from upstream to downstream in 
large channels. Please comment on why this is not incorporated and how this might influence 
results. 

Our response:  

Thank you for the comment. The surface roughness values were selected based on the Whitfield 
County Flood Insurance Study (FIS, 2007; reference listed in the manuscript), which reported a 
range of main channel and floodplain Manning’s n values. This is discussed under sensitivity 
analysis section (section 3.2). Further, to obtain representative roughness values, a couple of flood 
simulations were performed by adjusting the Manning’s n values within the main channel and 
floodplain until a satisfactory agreement was achieved between the simulated and reference FEMA 
flood map. This is discussed in detail under flood model evaluation section (section 3.3). 
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We understand the reviewer’s concern about the absence of variable roughness values based on 
land use in current and future periods. To model future land use and the corresponding surface 
roughness, one may use land use forecasts such as USGS’s FOREcasting SCEnarios of Land-use 
Change (FORE-SCE) model for the Contiguous United States (CONUS) developed by Sohl et al. 
(2018). However, this dataset is only available at 250 m spatial resolution. Resampling this dataset 
to a 10 m spatial resolution will likely introduce more interpolation errors and may not adequately 
represent the spatial variability of land use patterns. This in turn will add additional uncertainty 
and hence requires an even more comprehensive task to characterize its impact. 

The main focus of this manuscript is to evaluate the impacts of climate change on flood inundation 
extent and electricity infrastructures. Incorporating additional factors such as land use land cover 
change (LULCC) would increase the dimension of scenarios and require expanded ensemble 
simulations. These would require more computing resources and creates difficulty in data 
management as the total number of outputs increase significantly. Although we were unable to 
incorporate the suggested change in this study, the reviewer’s comment is very essential in 
enhancing the analysis and model accuracy. As such, we have included additional information in 
section 3.3 to discuss the limitations of our current inundation modeling approach, such as missing 
variable Manning’s n values and simplified river bathymetry correction. These limitations are 
provided as references for the enhancement of inundation modeling in future applications. 

 

R1.2. Is the initial depth modification a proxy for antecedent conditions? How would the results 
change if depth variability in Manning’s n is considered? Usually, the channel and floodplain 
roughness reduce with increasing depth following an exponential function. This has been applied 
previously in GSSHA and ICPR (https://doi.org/10.1029/2019WR025769). Please comment on 
how the results might be impacted having not incorporated a depth-variable roughness 
distribution. 

Our response:  

The initial water depth values represent the starting water surface elevation along the main channel 
(water course). 

Dynamic variability of Manning’s n value was not a part of the current study, as our TRITON 
model does not simulate this phenomenon at this time. However, as the reviewer suggested, if 
depth variability in Manning’s n could be considered, it is likely that the channel and floodplain 
roughness would change and likely increase in part due to incorporating additional flow turbulence 
during bankfull flows (Morvan et al., 2008; Christelis et al., 2016; Bellos et al., 2018), as well as 
additional losses from complex floodplain flows that occurs during high flow events. However, 
the authors are hesitant to comment on the results without providing any evidence as this would 
lead to speculation but not likely affect the scope and outcome of the current study. We have 
discussed this in the limitations of our current inundation modeling approach and also included the 
suggested Saksena et al. (2019) reference in the revised manuscript. 
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While it may be worthy to investigate the potential impacts by considering depth variability in 
Manning’s n, it is unlikely to impact the main objective of the study which is to demonstrate the 
applicability of a computationally intensive ensemble inundation approach to study the climate 
change impacts on flood regimes, floodplain regulation standards, and the vulnerability of existing 
infrastructures. The point by the reviewer is well taken and will be considered in future studies. 

 

R1.3. I know the LP3 distribution works well for streamflow, but I am not sure of its 
applicability for flood depths. I would assume using a log-normal distribution for curve fitting 
flood depths would be more optimal. Can the authors provide a comparative analysis of the two 
distributions? Did the authors consider different distributions for curve fitting? Please comment. 

Our response:  

Thank you for the insightful comment. Indeed, although the Log-Pearson type III (LP3) 
distribution was recommended by Bulletin 17C (England et al., 2019) for streamflow, it may not 
be the optimal choice for flood depth. However, given the community’s familiarity with LP3, we 
still decided to test the applicability of LP3 in this study. Our goodness-of-fit tests suggested that 
LP3 can still be a reasonable choice for flood depths. 

Based on the reviewer’s suggestions, we have conducted an evaluation by randomly selecting 679 
locations in the study area and comparing the fittings of both LP3 and Log-Normal (LN) 
distributions. These locations were identified by sampling at 500 m interval along the streams in 
the domain, which resulted in a total of 851 points. Out of the 440 simulations, if any of these 
points were not wet (i.e., the depth is not greater than 10 cm) for 30 or more simulations, they were 
excluded from further analysis. This resulted in 679 points within the computational domain for 
the next step. 

Using the Anderson-Darling (AD) goodness-of-fit test (α = 0.05), we found that LP3 is accepted 
in more locations than LN. Additionally, we also used Akaike information criterion (AIC) to 
evaluate the suitability of both distributions and we found that LP3 can outperform LN in more 
locations. The results indicated that the LP3 can be an even more suitable choice than LN, for our 
study area (Table R1). 

Table R1 – AD and AIC comparison between LP3 and LN distributions at 679 locations 

 Log-Normal Log-Pearson Type III 
AD p-value > .05 590 636 
AD p-value ≤ .05 89 43 

Suitability based on AIC 235 locations 444 locations 
 

It must be noted, however, that our goal in this study is not to identify the most suitable choice of 
distribution for flood depth. Therefore, there can be other more suitable distributions than the two 
tested herein. Given the good performance of LP3, we believe that it’s sufficient for the purpose 
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of our study. These additional analysis and clarification have been included in Section 3.5 of the 
revised manuscript. 

The distribution fitting (LP3 and LN), Anderson-Darling k-sample test and AIC calculations were 
conducted using Python 3 and SciPy libraries (Hovey & DeFiore, 2003; Salvosa, 1930; Scholz & 
Stephens, 1987; Virtanen et al., 2020; Vogel & McMartin, 1991). 

 

R1.4. Lines 420-424: This result resembles what has been reported in Dey et al. 2019 
(https://doi.org/10.1016/j.jhydrol.2019.05.085). Please add a statement highlighting this similar 
finding. Additionally, this study also highlights the impact of incorporating an optimal channel 
shape. In the manuscript, the authors have modified the channel bottom, but this may not be 
entirely reflective of the bathymetric configuration of the streams. While channel shape and 
sinuosity may not impact 1D models where channel conveyance volumes are more important, 
this may be essential in 2D models. Please discuss the potential limitations of the approach 
adopted in this study. 

Our response: 

Thank you for the comment and suggested reference. We have revised the manuscript to highlight 
the similar findings from other studies. Further, we have included statements such as “Although 
this simple approach is unlikely to adjust the channel bathymetry to its true values, it can improve 
the channel conveyance volume that is lost in the base DEM.” in section 3.3 to discuss our model 
limitations. The suggested Dey et al. (2019) reference has been included. 
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