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Abstract. In the framework of the EU Copernicus program, the European Centre for Medium-range Weather Forecast (ECMWF)

on behalf of the Joint Research Centre (JRC) is forecasting daily fire weather indices using its medium range ensemble pre-

diction system. The use of weather forecast in place of local observations can extend early warnings up to 1-2 weeks allowing

for greater proactive coordination of resource-sharing and mobilization within and across countries. Using one year of pre-

operational service in 2017 and the fire weather index (FWI) here we assess the capability of the system globally and analyze5

in detail three major events in Chile, Portugal and California. The analysis shows that the skill provided by the ensemble fore-

cast system extends to more than 10 days when compared to the use of mean climate making a case of extending the forecast

range to the sub-seasonal to seasonal time scale. However accurate FWI prediction does not translate into accuracy in the

forecast of fire activity globally. Indeed when all 2017 detected fires are considered, including agricultural and human induced

burning, high FWI values only occurs in 50% of the cases and are limited to the Boreal regions. Nevertheless for very large10

events which were driven by weather conditions, FWI forecast provides advance warning that could be instrumental in setting

up management and containment strategies.

Copyright statement. TEXT

1 Introduction

The prediction of fire danger conditions allows forest management agencies to implement fire prevention, detection, and pre-15

suppression action plans before fire damages occur. However, in many countries fire danger rating relies on observed weather

data which only allows for daily environmental monitoring of fire conditions (Taylor and Alexander, 2006). Even when this

estimation is enhanced with the combined use of satellite data, such as hot spots for early fire detection, and land cover

and fuel conditions it normally only provides 4- to 6-hour warnings. By using forecast conditions from advanced numerical

weather models, early warning could be extended up to 1-2 weeks allowing for greater coordination of resource-sharing and20

mobilization within and across countries. Due to the improved skills of weather forecasting, the use of numerical weather

prediction offers a real opportunity to enhance early warning capabilities (Roads et al., 2005; Mölders, 2008, 2010). In recent
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years institutions such as Natural Resources Canada (NRC) and the US National Oceanic and Atmospheric Administration

(NOAA) have implemented regional fire danger forecasting systems based on their operational weather forecasts (Bedia et al.,

2018). The Global Fire Early Warning System is also an international initiative, promoted by the Canadian Parternship for25

Wildland Fire Science and the United Nation Office for Disaster Risk Reduction, to provide fire danger forecast up to 10 days

ahead using the Canadian operational weather forecasting system (http://canadawildfire.ualberta.ca/gfews). Parallel initiatives

are promoted by the European Commission under the umbrella of the Copernicus Emergency Management Service (CEMS),

namely the European Fire Forecast Information System (EFFIS, http://effis.jrc.ec.europa.eu/) and its global counterpart the

Global Wildfire Information System (GWIS, http://gwis.jrc.ec.europa.eu/). Both systems principally rely on the Canadian Fire30

Weather Index (FWI) (Van Wagner et al., 1974, 1985) to rate fire danger and on numerical weather predictions to provide

forecast fire danger information at the European and global levels (San-Miguel-Ayanz et al., 2002).

Systems such as the FWI detect dangerous weather conditions conducive of uncontrollable fires rather than modelling the

probability of ignition and fire behaviours. The FWI (developed in Canada) is specifically calibrated to describe the fire be-

haviour in a jack pine stand (Pinus banksiana) typical of the Canadian forests. However, its simplicity of implementation has35

made it a popular choice in many countries and it has shown to perform reasonably well in ecosystems very dissimilar to the

boreal forest (Di Giuseppe et al., 2016a; de Groot et al., 2007). The FWI calculation only relies on weather forcings and no

information on the actual vegetation status is taken into account. When weather forecasts are used in place of observations,

uncertainties can be introduced. Sources of uncertainty can be: (i) the limited knowledge of the initial state and (ii) the mis-

representation of physical processes. In the former case, errors are randomly distributed around the true state (Orrell et al.,40

2001); in the latter, errors produce systematic deviations from the true state. In both cases, errors in the weather forecast may

be amplified or damped by nonlinear transformations in the fire weather model (Erickson et al., 2018). Thus, for example, a

dry bias in the model in a certain region will lead to the persistent prediction of higher fire danger values compared to what

would be calculated using local observations.

Handling random errors in weather forecasts is traditionally done through the use of ensemble prediction systems where45

several simulations are performed starting from slightly different initial conditions and model configurations (Molteni et al.,

1996; Buizza et al., 1999). Given the expenses of running an ensemble system these simulations are usually conducted at a

lower resolution than a single deterministic run. The forecast is then interpreted as probabilistic rather than deterministic. While

it has been shown that the probabilistic information contained in an ensemble prediction system might be difficult to interpret

for end-users (Pappenberger et al., 2013), ensembles can boost confidence in the decision process during emergency situations50

as a cost-loss analysis can be associated to the different scenarios (Cloke et al., 2017). Moreover, ensemble predictions can

have more information value than the single deterministic simulation (Richardson, 2000; Zhu et al., 2002). Systematic biases,

on the other hand, can be reduced by model improvements. For instance, appropriate post-processing (bias correction) of the

atmospheric model (Piani et al., 2010; Di Giuseppe et al., 2013a, b) or post-processing of the sectoral application outputs

(Raftery et al., 2005) can correct resolved processes and improve the final forecast skill.55

Given the above considerations, in this paper we assess the performance of the fire danger forecasting system developed

for the Copernicus Emergency Management Service by the European Centre for Medium-range Weather Forecasts (ECMWF)

2

http://canadawildfire.ualberta.ca/gfews
http://effis.jrc.ec.europa.eu/
http://gwis.jrc.ec.europa.eu/


to predict the FWI values where a comparison is performed against observed weather conditions. The system is also assessed

in terms of its capability to mark high danger when an event actually occurred looking at the probability of detection of fire

during one year of operation in 2017. As the Fire Weather Index is the main index of this system we will concentrate on this60

model component.

2 Methods

2.1 FWI calculation

2.1.1 General concept

The Fire Weather Index system provides an indication of fire danger conditions as influenced by four weather parameter,65

temperature, relative humidity, precipitation and wind speed (Van Wagner et al., 1987). It models the moisture content of dead

woody debris of different diameter classes laying on three fuel beds and from these an indication of what would be the rate

of fire spread and the fuel available for combustion, It also provides a general indicator of fire danger, the Fire Weather Index

(FWI).

A comprehensive description of the FWI system, the interaction between the various components and how these are used in70

fire management can be found in (Van Wagner et al., 1987; Wotton, 2009). Abatzoglou et al. (2018) showed that FWI exhibits

strong correlative relationships to burned area across some non-arid eco-regions globally albeith only weaker relationships in

climatically drier regions (shrubland) with the larger correlation found in the boreal and evergreen temperate forests of western

North America. Also Bowman et al. (2017) highlighted how high FWI values are often associated to the most extreme fire

activities recorded using Fire Radiative Power observations. As FWI has been shown to provide a good metric for quantifying75

fire danger globally, the proposed analysis of forecast skills will concentrate on this index (Di Giuseppe et al., 2016a; de Groot

et al., 2007).

2.1.2 FWI forecast

For each day indexes of the FWI rating system are calculated operationally at ECMWF using real-time (RT) forecasts. A

full description of the modeling components can be found in Di Giuseppe et al. (2016a). The high resolution (HRES) and80

the ensemble prediction systems (ENS) provide weather forecasts which extend up to 10 days in the future. The atmospheric

forcings have a temporal resolution of 3 hours and a spatial resolution of 9km for the high resolution run and 18 km for

the ensemble prediction simulations. While the HRES is a single (deterministic) model integration, the ENS provides 51

realizations from perturbed initial conditions and different model physics (Buizza et al., 1999). These ENS forecasts are used

to assess uncertainties in the prediction.85

A model integration at any nominal time simulates atmospheric conditions at a different local time, depending on the loca-

tion. FWI calculations are usually performed at 12 noon local time because the model was calibrated using measurements at

12:00 against fire behavior in the most active window (between 14:00-16:00) (Van Wagner et al., 1987). Therefore to produce

3



a snapshot at 12 noon local time, a temporal and spatial collage of 24 hours time model simulations is performed. Atmospheric

fields are cut into 3-hourly time strips using the closest 3-hour forecast outputs and then concatenated together so that the final90

field is representative of the conditions around the local noon within the 3 hour resolution available (see Di Giuseppe et al.

(2016a) for more datails). ECMWF implementation for the FWI is initialised once starting from idealised conditions following

Wotton (2009) values. It also does not implement any overwintering meaning that the moisture codes are not reset to zero

during cold winter months.

2.1.3 FWI reference and benchmark95

As many forestry agencies still rely on observed meteorological data to provide fire danger, a first assessment of the quality

of forecasted FWI will rely on the comparison with observations. Despite several meteorological observations are available

through the Global Telecommunication System (GTS) SYNOP network, only a subgroup of stations have at least 30 days of

recordings at local noon during 2017 (spatial coverage is given in Figure 1). Many fire prone regions, such as Australia, would

not be covered by this comparison. In order to overcome this limitation, a reference dataset of FWI modelled values is also100

used. This dataset is publicly available through the Copernicus Climate data Store and is constructed using ERA5 reanalysis

dataset. ERA5 is the latest of ECMWF reanalysis products which was released at the beginning of 2019. It replaces the previous

ERA-Interim database (Dee et al., 2011; Vitolo et al., 2019) providing a much improved spatial resolution and an extensive

increment of assimilated observations. Simulations begin in 1979 and are updated in quasi real time with less than a week delay.

Fields have a spatial resolution of about 30 km and hourly time resolution. Outputs from ERA5 undergo the same temporal105

interpolation described in the previous section to provide the model with a composite fire reanalysis product at 12:00 local

time. It has to be noted that, compared to local observations, a reanalysis provides a dynamically consistent estimate of the

climate state at each time step and can, to a large extent, be considered a good proxy for observed meteorological conditions.

Moreover, by combining different observations, reanalysis datasets extend well beyond the natural life of single observational

networks and they can provide a more homogeneous spatial coverage than using local observations. From ERA5 we also110

derive a climatological benchmark simulation (called CLIM hereafter). At pixel level and for every day of the year, CLIM

is constructed using 51 randomly sampled values (with replacements) from observed meteorological forcing in the period

1980–2019, excluding the verifying year (2017). CLIM has the advantage of having the same climatology of ERA5, but has no

expected predictive skill. The advantage of CLIM is that in theory it has near-perfect reliability with regards to the ERA5 runs

since it is produced with the same unbiased forcing data. It should, therefore, score better or equal to the forecast as predictor115

on time ranges beyond their respective limits of predictability. CLIM is therefore used in this study as a benchmark to rank the

expected improvements provided by a forecasting system. A full validation of the FWI database derived from ERA5 can be

found in Vitolo (2020)

2.2 Observed fire events

While national inventories of wildfire activities exist in many countries, they can be heterogeneous and lack the temporal span120

desirable for the validation of a fire danger system at the global scale. Satellite observations can supply a valid alternative
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especially as they cover remote areas where in-situ observations are sparse (Flannigan and Haar, 1986; Giglio et al., 2003;

Schroeder et al., 2008). Daily maps of fire radiative power (FRP) (Kaufman et al., 2003; Wooster et al., 2005) are available

from ECMWF since 2003 through the Global Fire Assimilation System (GFAS) (Kaiser et al., 2012; Di Giuseppe et al., 2017,

2018). This dataset has been developed in the framework of the Copernicus Atmosphere Monitoring Services (CAMS) and uses125

observations from the MODIS sensors on board of Terra and Aqua platforms and assumptions on fire evolution to calculate a

continuous record of active fires. The GFAS dataset integrates all available FRP observations available in a day over a regular

0.1deg grid. According to Wooster et al. (2005), this provides an indication of the cumulative dry mass available for burning

which can be then put into a relationship with fire emissions. In this paper, the FRP products are only used as an observations of

fire events. However, FRP values are ignored and only used to derive a mask of fire occurrence based on a minimum detection130

criteria: FRP > 0.5Wm−2 (Kaiser et al., 2012). A "hit" is recorded if the fire forecast predicts fire danger above the 90th

percentile of its historical values (provided by the ERA5 simulations) when a fire really occurred.

2.3 Score metrics

The performance of the the fire forecasting systems to reproduce observed FWI values is assessed using deterministic and

probabilistic scores. Both the synop database and ERA5 are treated as a proxy for observations in the evaluation. To asses the135

quality of the forecats we use traditional deterministic skill scores such as the mean bias (MB) and the mean absolute error

(MAE). For a probabilistic assessment, the continuous ranked probability score is also employed (CRPS; Hersbach (2000)).

These metrics are defined as:

MB =

cases∑
p=1

[FHRES −O]

MAE =
1

cases

cases∑
p=1

√
[(FHRES −O)2]]140

CRPS =
1

cases

cases∑
t=1

+inf∫
− inf

[
Fn −O)2

]
dn

where F is the forecast at time step t of N number of forecasts and O is the observed value. While the MB and MAE

are applied to a single forecast, the high resolution forecast HRES, the CRPS takes into account the whole distribution of

possible values predicted by the ensemble. The CRPS is the continuous extension of the ranked probability score, where Fn

is the cumulative distribution function of the predicted ensemble values. Then, the CRPS compares the cumulative probability145

distribution of the FWI forecast by the ensemble system to the observation. In this sense the CRPS is sensitive to the mean

forecast biases as well as the spread of the ensemble (Hersbach, 2000).

While conventional skills score can be employed to assess the quality of the FWI computation, the verification of the FWI

as a fire indicator is instead extremely challenging. First, as widely explained, FWI is not a physical measure of fire activity

but of its potential danger, if one were ignited. Therefore high fire danger, while being correctly forecasted, might not result150
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in active fires if there is no ignition andor aggressive fire suppression. From the verification point of view this means that the

identification of false alarms is not meaningful and the verification should mainly rely on hits and misses. Secondly, fires are

rare events and, as for any other infrequent phenomena, the verification statistics are heavily influenced by the small number

of hits when compared to the total. Still, when the cost of a missed event is high, for example in terms of human lives, the

deliberate over-forecasting may be justified (Richardson, 2000; Cloke et al., 2017).155

In these cases a positively oriented score such as "hit rate" may be useful especially if related to the case of not having a

forecast at all. Also forecast quality does not always equal forecast value (Richardson, 2000). A forecast has high quality if it

predicts the observed conditions well according to some objective or subjective criteria. It has value if it helps the user to make a

better decision in terms of protective actions (Cloke et al., 2017). For example predicting high temperature and low precipitation

in desert areas might be accurate but carries low information content and therefore limited value. Following these arguments and160

to gain an appreciation of the potential value of the forecasting system globally we use as a metric the Probability of Detection

(POD), which measures the fraction of the observed events that were correctly forecast (POD = hits/(hits+misses)).

Therefore, POD only takes into account observed fires and, unlike other skill scores such as the Brier score, does not suffer

from the artificial vanishing due to the high number of correct negative and false alarms (see Stephenson et al. (2008); Ferro

and Stephenson (2011) for a discussion on this problem).165

2.4 Fire regions

The global assessment of the fire forecast skills is mostly provided as an average over selected regions even if the calculation

of the various scores is performed at pixel level by interpolating the model grid over the verification points. For an assessment

at the continental scale, we use the fire macro-regions defined by the Global Fire Emission Database, GFED4 (Giglio et al.,

2013). These macro-regions are characterized by different fire regimes and are very roughly homogeneous in their burning170

emissions contribution (Giglio et al., 2013). Inside these regions we also select 3 areas at national/regional level - California,

Portugal and Chile - which experience recurrent intense fire episodes and saw major events taking place in 2017 (Figure 1).

Events in these locations are also analyzed in detail.

3 Results

3.1 Skill in the FWI prediction175

The first assessment looks at the capability of ECMWF fire forecast to reproduce the same FWI values as would be estimated

from the network of local stations but up to 10 days ahead. The selected stations (Figure 1), which have at least 30 records

during 2017 at local noon, are used to perform an analysis of MB and MAE at different lead times (Figure 2). For comparison

also FWI calculations using ERA5 are included, which provides a validation of the assumption that ERA5 is a good proxy

for observations. As expected there is a performance degradation going towards longer lead times however the increase is in180

within the distribution and mean biases are limited to few units even at day 10. However caution is in order, as depending on
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Figure 1. GFED4 regional classification and the 3 countries selected to showcase the fire forecast performances (California, Chile, and

Portugal). The black dots show the spatial distribution of weather stations from the synop network which have at least 30 observations

recorded at local noon in 2017.

the calibration procedure adopted, few units could mean a mismatch in danger level classification. The mean absolute error

provides information on the residual amplitudes. FWI from reanalysis have the sharpest skills, as expected, while the mean

absolute error rapidly increases with lead times. However the distribution of MAE values clearly shows that in selected events

the discrepancies between observed and predicted values is confined to few units even 10 days ahead. As it is recognised that185

in some regions in the tropical areas the number of stations is very reduced a similar analysis is also performed using ERA5 as

the verifying databases (see figure 5 in the following section), which however confirms the general conclusions.

Despite its importance the analysis performed using the synop network is point-wise and does not homogeneously cover

all the regions where fires are relevant. Moreover, MB and MAE are based on high resolution forecasts and do not provide

information about the performance of the ensemble forecasting system as a whole. A global assessment of the performances190

of the system is provided by the comparison between the CRPS curves for the forecast and CLIM when both are scored

against ERA5 in 2017 (Figure 3). The CRPS calculated from the CLIM database provided a useful benchmark for the forecast

as it defines the error above which the information content stored in the forecast would be equivalent to the information

provided by the climate. The first interesting information from comparing the two experiments is how far in advance there

is skill in predicting fire danger from weather forecast. In fact the interception between the CRPS curve from the forecast195

run and the CLIM run marks the overall length of the predictability windows, i.e where the system still provides skills above
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Figure 2. Comparison between modelled and observed FWI value across the GFED macro-regions. FWI calculated using ECMWF high

resolution forecasts at different lead times are verified against ERA5 simulations. The box plots describe the distribution of values across the

observation points for one year of simulations in 2017. Mean bias is plotted in the left panel and mean absolute error in the right panel.
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climatology. Encouragingly if we look at the global average, the window of predictability is longer than the 10 days range

provided here, which also suggests that there is scope for extending the prediction to the sub-seasonal and seasonal time scales.

The discontinuity visible at day 6 is an artefact due to the change in temporal resolution in the ecmwf forecast. Up to day 6

forecasts are stored 3 hourly and only 6 hourly after this time step.200

There are some regional differences in the skill provided by the ensemble forecast. Regions covered by Boreal forests

(e.g. BOAS, BONA, CEAS) have the largest predictability with the maximum gaps between the forecast and the climate

CRPS scores (Figure 4). Savannah regions (NHAF, AUST,SHAF) tend to have a shorter window of predictability with the

forecast CRPS curve approaching at a shorter lead time than the CLIM ones. The regional differences in the prediction of

the forecast FWI when compared to ERA5 derived databases are related to the skills of the forecast which then project in the205

accuracy in the FWI simulation. While temperature predictions skills are globally mostly uniform, a complex picture emerges

for the forecast skills of precipitation in all global models used for numerical weather prediction including ECMWF model.

Prediction of precipitation in the mid latitudes is notoriously more accurate than in the tropics due to the connection with

frontal systems driven by large scale dynamics (Simmons and Hollingsworth, 2002). Convective precipitation which is the

main source of rainfall in the tropics is by nature stochastically occurring and therefore more challenging to predcit. Although210

the gap has been filled through the years forecast predictions in the Southern extra-tropical region is less accurate than the

equivalent in the Northern hemisphere due to the availability of a better observing system to constraint the forecast initial

conditions (Haiden et al., 2019). These considerations could largely explain the better performances of the FWI predictions in

the northern hemisphere for the year taken in consideration. However it has to be noted that forecast skills have strong year to

year variations with expected increased skills in the tropic when large scale phenomena such as the Madden-Julian Oscillation215

(MJO) and /or the El Nĩno Southern Oscillation (ENSO) take place. Under these phenomena the predictability of the tropics

and of extra-tropical regions can substantially improve through teleconnections (Vitart, 2014).

Exceptionally poor is the performance in the two South American regions where the forecast at any lead time is below the

climate line. As mentioned CRPS is heavily influenced by the forecast bias which can induce a fast decline in the CRPS curve.

Looking at the mean bias as a function of the lead time (figure 5) it is evident how these two regions are indeed strongly affected220

by systematic biases with the largest values recorded at least in the first three days of forecast. In general for all the regions

the decline in CRPSS (Fig 5 ) can, to some extent, be explained by the negative bias (too low FWI values when compared to

ERA5-FWI). Interestingly the bias of the forecast is not spatially consistent, it is generally larger in the Southerns Hemisphere

regions and lower in the Northern Emisphere, in agreement with what discussed on the expected skills of the weather forecast.

The consistent negative bias at all lead times also highlights that there is scope to improve the overall skill of the prediction225

through bias corrections of the meteorological forcing a (Piani et al., 2010; Di Giuseppe et al., 2013a, b).

As a general conclusion and provided the possible year to year variability in skills, the general picture that emerges is that

for most of the areas weather forecast provides predictive skills for the FWI beyond 10 days.
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Figure 3. CRPS for the ensemble fire danger forecast (blue line) and the CLIM database constructed using a random selection of ERA5

years not including the verifying year (red line). Data have been globally aggregated and the forecast is available up to day 10 horizon.

3.2 Skill in detecting fire events

Being able to predict the observed value of FWI does not equal to being able to pinpoint occurred fires. Figure 6 shows the230

location of recorded fires in 2017 based of Fire Radiative Power (FRP) observations from MODIS sensors as integrated by

the GFAS platform (Kaiser et al., 2012; Di Giuseppe et al., 2016a, b). Fires covered large parts of the globe in 2017, with

157,631 cells recording FRP > 0.5Wm−2. To understand the capability of the FWI to match the occurrence of actual fires

we assume that an active fire is correctly predicted if the FWI is greater than the 90th percentile of its distribution of values

here defined using the ERA5 database. Figure 7 shows a summary table of the mean probability of detection (POD) by region235

for all events in 2017 at forecast day 1 to 10. Given the intrinsic limitations of the POD as skill metric, CLIM could provides a

useful benchmark to understand the incremental skill provided by the forecast. The POD provided by CLIM was found below

0.1 in all regions and is therefore not shown in the table.

CLIM has no skill in predicting fire events as it always provides the lowest POD, corresponding to a probability of detection

below 10%, even when compared to day 10 forecasts. On the other side, forecasts POD vary widely by region, with Europe240

(EURO) and Boreal North America (BONA) being the only regions with POD above 0.5. These are mostly temperate regions

where vegetation is dominated by forests and fuel is abundant and where fire danger is moisture limited. In these regions the

FWI is a good predictor of fire danger (Di Giuseppe et al., 2016a). It has to be noted that the FWI does not take into account

management measures that could introduce a relevant number of "false-alarms". Central America, the Middle East and the

northern hemisphere areas, Africa are characterized by a POD in the range 0.2-0.5 as in most of the tropics, where fires usually245

occur in grass-shrub lands. Here fuel is scarce and weather plays a less relevant controlling role. Also it has to be noted that the

statistics here are likely to be contaminated by many agricultural and prescribed fires that are considered ‘events’ and which

would dilute some of the skill in regions where annual cropland is high or are heavily managed.
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Figure 4. As figure 3 but with aggregation performed on the GFED macro-regions
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Figure 5. Mean forecast bias as a function of lead times and clustered by GFED macro-regions. The forecast bias for 2017 is assessed using

the ensemble mean against ERA5 based FWI database.

One important exception is the very low performance of the fire forecast in Equatorial Asia (EQAS) and South East Asia

(SEAS) where the system seems to have a predictability below 0.2 (only 20 % of fires corresponded to FWI above the 90th250

percentile). de Groot et al. (2007) highlighted how FWI is not the best indicator in this areas and a fire early warning system

should mostly rely on the drought code. There are a number of factors that could contribute to this low usability of the FWI

in these areas. Fires in these regions are mainly caused by humans for the purposes of cleaning the land for establishing

plantations (Field et al., 2009; Benedetti et al., 2016) and weather, which is the only driver of the FWI, is not the main fire

trigger. However it has to be noted that 2017 was a very wet year in QUAS and anomalously low FWI were predicted (see255

for exemple Figure 7 in Vitolo (2020)) with a consistent low emissions recorded by GFED. The low level for fire activities in

2017 means that the applicability of the results for this region in 2017 might not extend to other years with stronger activities.

Also Australia (AUST) has a very low POD for the FWI possibly being a fuel limited ecosystem (Krawchuk et al., 2009). The
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Figure 6. GFED4 micro-regions with superimposed the locations of all the 2017 events reported as active fires using the Fire Radiative

Power (FRP) observations from MODIS ingested into the GFAS system.

main picture that emerges is that while weather forecast can provide skilful prediction for FWI at least 10 days ahead, this fire

danger index has in many areas a scarce capability to pinpoint emerging fires.260

3.3 2017 case studies

Figure 7 provides an averaged assessment of the global performances of the FWI to mark any fire pixels identified during

2017. This global statistic includes small fires and events that are not exclusively driven by weather conditions. FWI skill

could improve locally, especial when important fire events are considered. It is important to understand how the information

provided by a 10 day forecast could be used in real cases when the information is intended to aid emergency responses. Here265

we will analyse three cases of fire events that took place in 2017, which proved to be an year with extreme fire episodes across

the globe. The 2017 wildfire season involved wildfires on multiple continents and also, possibly unprecedented events when

melted peat bogs ignited in Greenland. The year 2017 started with an extended fire in central Chile that lasted almost all of

January. Strong winds, high temperatures and long-term drought conditions led to an event that has been described as the

worst wildfire in Chilean history (Bowman et al., 2018). Fires in the central regions of O’Higgins, Maule and Bío Bío south270

of Santiago were difficult to control. Although fire activities where recorded since July 2016 they became particularly intense

in January 2017. In June, between day 17 and 18, another devastating fire hit Portugal. It claimed more than 60 lives mostly

recorded in the Pedrógão Grande area, 50 km southeast of Coimbra. A persistent heatwave had been building in the region, with

temperatures above 40C, which are highly unusual for the season. Moreover, relative humidity levels below 30% had a role to

the intensification of the deflagration and the spread of the wildfire, which raged out of control for several days (Boer et al.,275

2017). Finally in October, extensive wildfires raced just north of the San Francisco Bay Area in California causing historic

levels of death and destruction. These named ‘Wine Country’ wildfires were the most destructive in California history, with 44
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Figure 7. Regional Probability of Detection (POD) for the high resolution forecasts from day 1 to 10 (HDAY1/10). Events where FRP ≥ 0.5

Wm−2 are categorized as "hits" and compared to FWI prediction above the high warning level (90th percentile of climatology). The statistics

are constructed using FRP observations detected in 2017.

deaths; the loss of 9,000 buildings; damage to approximately 21,000 structures; $10 billion of insured losses; and substantially

greater total economic loss (Nauslar et al., 2018; Mass and Ovens, 2019).

Figures 8 show the information that could have been provided for the study areas by the 10-day fire danger high resolution280

forecasts (HRES), had these been already available. Each plot shows on the x-axis the dates in which FRP was observed and,

on the y-axis, the dates forecasts were issued. The cell in the bottom left corner shows the percentage of pixels in the study

area that are expected to be above the 90th percentile of the FWI climatology for that pixel and day of the year. The forecasts

for day 2 to day 10 are on the same row. The forecasts issued on the following day are one row above and so forth. The dashed

lines show the observed Fire Radiative Power (see also secondary y-axis).285

The reader is reminded that active fires are triggered by highly unpredictable events (ignition) which are not accounted for

in the FWI system. The FWI is not supposed to provide the exact localization of the event but an indication of potential fire

activity. Large areas can be affected by anomalous conditions in the proximity of where the event really occurred. However it
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Table 1. Events summary table.

Country Region Start date End date Main event Location

Chile O’Higgins, Maule, Bío Bío 01-01-2017 31-01-2017 26-01-2017 36◦ 46’S; 73◦ 03’W

Portugal Pedrogao Grande 01-06-2017 30-06-2017 18-06-2017 39◦ 55’N ; 8◦ 08’ W

USA California 21-09-2017 20-10-2017 09-10-2017 38◦ 34’N; 122◦ 34’ W

is encouraging that there is some capability for the forecast to detect the increase in fire danger associated to the three events

even if with different intensities and sharpness. For the Chile case, for example from mid-January often around 70% of the290

area exceeded the high danger threshold. The FRP spike occurred on the 26th of January and while the forecast was not able to

capture this increase in fire activity, looking at the whole monthly sequence there is an indication of increased danger conditions

even at 10 days lead time. However it is recognised that the signal extends for long time and does not mark the peak of the fire

activities. A much better timing of the event was instead forecast during the Portugal and California fires which were very well

predicted 10 days ahead.295

4 Conclusions

In the last years, ECMWF has been involved in the EFFIS development by providing weather forcing and fire danger calcu-

lations using its medium-range weather forecasts. Global fields of FWI are calculated daily using the high-resolution (9 km)

forecast up to 10 days ahead. The 18 km resolution ensemble prediction system provides additional 51 realizations based on

slightly different initial conditions and/or using different model configurations (Molteni et al., 1996). These datasets are freely300

available in line with the data and information policy of the Copernicus program which intends to provide users with free, full

and open access to environmental data. Using one year of pre-operational service in 2017 we have showcased the potential of

the use of weather forecasts to support the monitoring of fire danger conditions and planning in case of a potential emergency.

Weather forecast provides skillful information to derive FWI values up to 10 days ahead. Looking at the Continous Ranked

Probability Score for the forecast in comparison to climatological simulations it was shown that predictive skills could extend305

also beyond the provided forecast range for most of the GFED macroregions. Similarly to other sectoral applications (Wet-

terhall and Di Giuseppe, 2017) there is scope to extend the prediction to the sub-seasonal and seasonal time frame (S2S). On

the other hand a good skill in forecasting FWI values did not translate into a satisfactory probability of detection for real fire

events. When all observed fires in 2017 where matched to high values of FWI (> 90th percentile) only the Boreal regions for

which the FWI has been calibrated had a POD above 50%. Mid and high latitude forested areas, where fuel is abundant have310

the highest predictability while in savana/shrub-land regions the relationship between FWI and fire occurrence weakens. Still

global statistics are likely to be contaminated by many agricultural and prescribed fires that are considered ‘events’ and which

could dilute some of the skill in regions where annual cropland is high or are heavily managed.
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(a) Chile (b) Portugal

(c) California

Figure 8. Comparison of Fire Radiative Power (gray dashed line with axis on the right hand side) with FWI forecasted using the deterministic

high resolution model for: (a) Chile, (b) Portugal and (c) California. FWI is color coded based on the percentage of pixels exceeding the high

danger level calculated at the country/state level. Each of the panel refers to a specific fire event described in the text and the statistics have

been calculated over the red boxes.

Looking at large fire events in Chile, Portugal and California which occurred in 2017 we have shown that there are regional

differences and in Portugal and California the forecast was accurate up to 10 days ahead. Another interesting aspect attached315

to the use of weather forecasts is the use of probabilistic information. The quantification of forecast uncertainties through the

use of ensemble predictions is something still pretty new in fire forecasting. However it opens great opportunities in terms of

adding a confidence level to the the fire prediction. These aspects will be investigated in follow on work.

Code availability

In the spirit of reproducibility, function and workflow to generate the results of this manuscript are available on public reposi-320

tories (Vitolo et al., 2018; Vitolo and Di Giuseppe, 2020).
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