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Abstract. In the framework of the EU Copernicus program, the European Centre for Medium-range Weather Forecast (ECMWF)

on behalf of the Joint Research Centre (JRC) is forecasting daily fire weather indices using its medium range ensemble pre-

diction system. The use of weather forecast in place of local observations can extend early warnings up to 1-2 weeks allowing

for greater proactive coordination of resource-sharing and mobilization within and across countries. Using one year of pre-

operational service in 2017 and the fire weather index (FWI) here we assess the capability of the system globally and analyze5

in detail three major events in Chile, Portugal and California. The analysis shows that the skill provided by the ensemble fore-

cast system extends to more than 10 days when compared to the use of mean climate making a case of extending the forecast

range to the sub-seasonal to seasonal time scale. However accurate FWI prediction does not translate into accuracy in the

forecast of fire activity globally. Indeed when all 2017 detected fires are considered, including agricultural and human induced

burning, high FWI values only occurs in 50% of the cases and only in
:::
are

::::::
limited

::
to
::::

the Boreal regions. Nevertheless for10

very important events mostly
::::
large

:::::
events

::::::
which

::::
were

:
driven by weather condition

:::::::::
conditions, FWI forecast provides advance

warning that could be instrumental in setting up management
:::
and

:::::::::::
containment strategies.
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1 Introduction

The prediction of fire danger conditions allows forestry
:::::
forest

:::::::::::
management agencies to implement fire prevention, detection,15

and pre-suppression action plans before fire damages occur. However, in many countries fire danger rating relies on observed

weather data which only allows for daily environmental monitoring of fire conditions (Taylor and Alexander, 2006). Even when

this estimation is enhanced with the combined use of satellite data, such as hot spots for early fire detection, and land cover

and fuel conditions it normally only provides 4- to 6-hour warnings. By using forecast conditions from advanced numerical

weather models, early warning could be extended up to 1-2 weeks allowing for greater coordination of resource-sharing and20

mobilization within and across countries.
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Due to the improved skills of weather forecasting, the use of numerical weather prediction offers a real opportunity to

enhance early warning capabilities (Roads et al., 2005; Mölders, 2008, 2010). In recent years institutions such as Natural Re-

sources Canada (NRC) and the US National Oceanic and Atmospheric Administration (NOAA) have implemented regional

fire danger forecasting systems based on their operational weather forecasts (Bedia et al., 2018). The Global Fire Early Warn-25

ing System is also an international initiative, promoted by the Canadian Parternship for Wildland Fire Science and the United

Nation Office for Disaster Risk Reduction, to provide fire danger forecast up to 10 days ahead using the Canadian operational

weather forecasting system (http://canadawildfire.ualberta.ca/gfews). Parallel initiatives are promoted by the European Com-

mission under the umbrella of the Copernicus Emergency Management Service (CEMS), namely the European Fire Forecast

Information System (EFFIS, http://effis.jrc.ec.europa.eu/) and its global counterpart the Global Wildfire Information System30

(GWIS, http://gwis.jrc.ec.europa.eu/). Both systems
:::::::::
principally rely on the Canadian Fire Weather Index (FWI) (Van Wagner

et al., 1974, 1985) to rate fire danger and on numerical weather predictions to provide forecast fire danger information at the

European and global levels (San-Miguel-Ayanz et al., 2002).

Systems such as the FWI detect dangerous weather conditions conducive of uncontrollable fires rather than modelling

the probability of ignition and fire behaviours. The FWI (developed in Canada) is specifically calibrated to describe the fire35

behaviour in a jack pine stand (Pinus banksiana) typical of the Canadian forests. However, its simplicity of implementation

has made it a popular choice in many countries and it has shown to perform reasonably well in ecosystems very dissimilar to

the boreal forest (Di Giuseppe et al., 2016a; de Groot et al., 2007). The FWI calculation only relies on weather forcings and

no information on the actual vegetation status is taken into account. When weather forecasts are used in place of observations,

uncertainties can be introduced. Sources of uncertainty can be: (i) the limited predictability of atmospheric dynamics which40

is strongly affected by
::::::::
knowledge

:::
of the initial state and (ii) the misrepresentation of physical processes. In the former case,

errors are randomly distributed around the true state (Orrell et al., 2001); in the latter, errors produce systematic deviations

from the true state. In both cases, errors in the weather forecast may be amplified or damped by nonlinear transformations in

the fire weather model (Erickson et al., 2018). Thus, for example, a dry bias in the model in a certain region will lead to the

persistent prediction of higher fire danger values compared to what would be calculated using local observations.45

Handling random errors in weather forecasts is traditionally done through the use of ensemble prediction systems where

several simulations are performed starting from slightly different initial conditions and model configurations (Molteni et al.,

1996; Buizza et al., 1999).
:::::
Given

:::
the

::::::::
expenses

::
of

:::::::
running

:::
an

::::::::
ensemble

::::::
system

:::::
these

::::::::::
simulations

:::
are

::::::
usually

:::::::::
conducted

::
at

::
a

:::::
lower

::::::::
resolution

::::
than

:
a
:::::
single

:::::::::::
deterministic

::::
run. The forecast is then interpreted as probabilistic rather than deterministic. While

it has been shown that the probabilistic information contained in an ensemble prediction system might be difficult to interpret50

for end-users (Pappenberger et al., 2013), ensembles can boost confidence in the decision process during emergency situations

as a cost-loss analysis can be associated to the different scenarios (Cloke et al., 2017). Moreover, ensemble predictions can

have more information value than the single deterministic simulation (Richardson, 2000; Zhu et al., 2002). Systematic biases,

on the other hand, can be reduced by model improvements. For instance, appropriate post-processing (bias correction) of the

atmospheric model (Piani et al., 2010; Di Giuseppe et al., 2013a, b) or post-processing of the sectoral application outputs55

(Raftery et al., 2005) can correct resolved processes and improve the final forecast skill.
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Given the above considerations, in this paper we assess the performance of the fire danger forecasting system developed

for the Copernicus Emergency Management Service by the European Centre for Medium-range Weather Forecasts (ECMWF)

to predict the FWI values where a comparison is performed against observed weather conditions. The system is also assessed

in terms of its capability to mark high danger when an event actually occurred looking at the probability of detection of fire60

during one year of operation in 2017. As the Fire Weather Index is the main index of this system we will concentrate on this

model component.

2 Methods

2.1 FWI calculation

2.1.1 General concept65

The Fire Weather Index system is composed of six variables describing fuel moisture and fire behavior,
:::::::
provides

::
an

:::::::::
indication

::
of

:::
fire

::::::
danger

:::::::::
conditions as influenced by weather (Van Wagner et al., 1987). Three fuel moisture codes provide

:::
four

:::::::
weather

::::::::
parameter,

:::::::::::
temperature,

::::::
relative

::::::::
humidity,

:::::::::::
precipitation

:::
and

:::::
wind

:::::
speed

:::::::::::::::::::::
(Van Wagner et al., 1987).

::
It
::::::
models

:
the moisture con-

tent of dead woody debris of different diameter classes laying on three fuel beds . The dead fine fuels is described by the Fine

Fuel Moisture Code (FFMC) which has a fast response time to weather modification (hourly time scales). The surface organic70

matter of moderate density, such as the fermentation layer of forest soils (Hood, 2010) is calculated using the Duff Moisture

Code (DMC). DMC has a slower response to the weather forcing, conventionally set to 12 days. Finally the deep, compact soil

organic layers, such as the humus layer of forest soils Hood (2010) is expressed with a Drought Code (DC). This is the slower

evolving component of the FWI codes and has a lag-time set to 52 days in the original FWI formulation. The FWI system also

provides fire behavior indexes, in terms of
:::
and

::::
from

:::::
these

::
an

:::::::::
indication

::
of

::::
what

::::::
would

::
be

:::
the

:
rate of fire spread (Initial Spread75

Index, ISI),
:::
and

:::
the

:
fuel available for combustion(Buildup Index, BUI), and head fire intensity (,

::
It
::::
also

::::::::
provides

:
a
:::::::
general

:::::::
indicator

::
of

:::
fire

:::::::
danger,

:::
the Fire Weather Index ,

:
(FWI). The FWI component combines the ISI and BUI and can be considered

as the most general indicator of fire danger.

A comprehensive description of the FWI system, the interaction between the various components and how these are used

in fire management can be found in (Van Wagner et al., 1987; Wotton, 2009). In the interest of brevity we have here only80

recalled the basic concepts underlying the FWI system and how different components might be more appropriate to describe

fire danger depending on the local fuel characteristics and the type of information required. Abatzoglou et al. (2018) showed

that FWI exhibits strong correlative relationships to burned area across most
::::
some non-arid eco-regions globally , while

::::::
albeith

::::
only

::::::
weaker

::::::::::
relationships

::
in
::::::::::
climatically

:::::
drier

::::::
regions

::::::::::
(shrubland)

::::
with

::
the

::::::
larger

:::::::::
correlation

:::::
found

::
in

:::
the

:::::
boreal

::::
and

::::::::
evergreen

::::::::
temperate

::::::
forests

::
of

::::::
western

::::::
North

:::::::
America.

:::::
Also Bowman et al. (2017) highlighted how high FWI values are often associated85

to the most extreme fire activities recorded using Fire Radiative Power observations. As FWI has been shown to provide a good

metric for quantifying fire danger globally, the proposed analysis of forecast skills will concentrate on this index (Di Giuseppe

et al., 2016a; de Groot et al., 2007).
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2.1.2 FWI forecast

For each day indexes of the FWI rating system are calculated operationally at ECMWF using real-time (RT) forecasts. A90

full description of the modeling components can be found in Di Giuseppe et al. (2016a). The high resolution (HRES) and

the ensemble prediction systems (ENS) provide weather forecasts which extend up to 10 days in the future. The atmospheric

forcings have a temporal resolution of 3 hours and a spatial resolution of 9km for the high resolution run and 18 km for

the ensemble prediction simulations. While the HRES is a single (deterministic) model integration, the ENS provides 51

realizations from perturbed initial conditions and different model physics (Buizza et al., 1999). These ENS forecasts are used95

to assess uncertainties in the prediction.

A model integration at any nominal time simulates atmospheric conditions at a different local time, depending on the

location. FWI calculations are usually performed at 12 noon local time because the model was calibrated using measure-

ments at 12:00 against fire behavior in the most active window (between 14:00-16:00) (Van Wagner et al., 1987). There-

fore to produce a snapshot at 12 noon local time, a temporal and spatial collage of 24 hours time model simulations is100

performed. Atmospheric fields are cut into 3-hourly time strips using the closest 3-hour forecast outputs and then concate-

nated together so that the final field is representative of the conditions around the local noon within the 3 hour resolu-

tion available (Di Giuseppe et al., 2016a)
::::
(see

::::::::::::::::::::::
Di Giuseppe et al. (2016a)

::
for

:::::
more

:::::::
datails).

::::::::
ECMWF

::::::::::::::
implementation

:::
for

:::
the

::::
FWI

::
is

::::::::
initialised

:::::
once

:::::::
starting

::::
from

::::::::
idealised

:::::::::
conditions

:::::::::
following

:::::::::::::
Wotton (2009)

:::::
values.

::
It
::::
also

:::::
does

:::
not

:::::::::
implement

::::
any

:::::::::::
overwintering

::::::::
meaning

:::
that

:::
the

:::::::
moisture

::::::
codes

::
are

::::
not

::::
reset

::
to

::::
zero

::::::
during

:::
cold

::::::
winter

::::::
months.105

2.1.3 FWI reference and benchmark

As many forestry agencies still rely on observed meteorological data to provide fire danger, a first assessment of the quality

of forecasted FWI will rely on the comparison with observations. Despite several meteorological observations are available

through the Global Telecommunication System (GTS) SYNOP network, only a subgroup of stations have at least 30 days of

recordings at local noon during 2017 (spatial coverage is given in Figure 1). Many fire prone regions, such as Australia, would110

not be covered by this comparison. In order to overcome this limitation, a reference dataset of FWI modelled values is also

used. This dataset is publicly available through the Copernicus Climate data Store and is constructed using ERA5 reanalysis

dataset. ERA5 is the latest of ECMWF reanalysis products which was released at the beginning of 2019. It substitutes
:::::::
replaces

the previous ERA-Interim database (Dee et al., 2011; Vitolo et al., 2019) providing a much improved spatial resolution and an

extensive increment of assimilated observations. Simulations begin in 1979 and are updated in quasi real time with less than a115

week delay. Fields have a spatial resolution of about 30 km and hourly time resolution. Outputs from ERA5 undergo the same

temporal interpolation described in the previous section to provide the model with a composite fire reanalysis product at 12:00

local time. It has to be noted that, compared to local observations, a reanalysis provides a dynamically consistent estimate

of the climate state at each time step and can, to a large extent, be considered a good proxy for observed meteorological

conditions. Moreover, by combining different observations, reanalysis datasets extend well beyond the natural life of single120

observational networks and they can provide a more homogeneous spatial coverage than using local observations. From ERA5
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we also derive a climatological benchmark simulation (called CLIM hereafter). At pixel level and for every day of the year,

CLIM is constructed using 51 randomly sampled values (with replacements) from observed meteorological forcing in the

period 1980–2019, excluding the verifying year (2017). CLIM has the advantage of having the same climatology of ERA5,

but has no expected predictive skill. The advantage of CLIM is that in theory it has near-perfect reliability with regards to the125

ERA5 runs since it is produced with the same unbiased forcing data. It should, therefore, score better or equal to the forecast as

predictor on time ranges beyond their respective limits of predictability. CLIM is therefore used in this study as a benchmark to

rank the expected improvements provided by a forecasting system.
::
A

:::
full

::::::::
validation

:::
of

:::
the

::::
FWI

:::::::
database

:::::::
derived

::::
from

::::::
ERA5

:::
can

::
be

:::::
found

::
in
::::::::::::
Vitolo (2020)

2.2 Observed fire events130

While national inventories of wildfire activities exist in many countries, they can be heterogeneous and lack the temporal span

desirable for the validation of a fire danger system at the global scale. Satellite observations can supply a valid alternative

especially as they cover remote areas where in-situ observations are sparse (Flannigan and Haar, 1986; Giglio et al., 2003;

Schroeder et al., 2008). Daily maps of fire radiative power (FRP) (Kaufman et al., 2003; Wooster et al., 2005) are available

from ECMWF since 2003 through the Global Fire Assimilation System (GFAS) (Kaiser et al., 2012; Di Giuseppe et al., 2017,135

2018). This dataset has been developed in the framework of the Copernicus Atmosphere Monitoring Services (CAMS) and uses

observations from the MODIS sensors on board of Terra and Aqua platforms and assumptions on fire evolution to calculate a

continuous record of active fires. The GFAS dataset integrates all available FRP observations available in a day over a regular

0.1deg grid. According to Wooster et al. (2005), this provides an indication of the cumulative dry mass available for burning

which can be then put into a relationship with fire emissions. In this paper, the FRP products are only used as an observations of140

fire events. However, FRP values are ignored and only used to derive a mask of fire occurrence based on a minimum detection

criteria: FRP > 0.5Wm−2 (Kaiser et al., 2012). A "hit" is recorded if the fire forecast predicts fire danger above the 90th

percentile of its historical values (provided by the ERA5 simulations) when a fire really occurred.

2.3 Score metrics

The performance of the the fire forecasting systems to reproduce observed FWI values is assessed using deterministic and145

probabilistic scores. Both the synop database and ERA5 are treated as a proxy for observations in the evaluation. To asses

the quality of the computation
::::::
forecats

:
we use traditional deterministic skill scores such as the mean bias (MB) and the

mean absolute error (MAE). For a probabilistic assessment, the continuous ranked probability score is also employed (CRPS;

Hersbach (2000)). These metrics are defined as:
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MB =

cases∑
p=1

[FHRES −O]150

MAE =
1

cases

cases∑
p=1

√
[(FHRES −O)2]]

CRPS =
1

cases

cases∑
t=1

+inf∫
− inf

[
Fn −O)2

]
dn

where F is the forecast at time step t of N number of forecasts and O is the observed value. While the MB and MAE

are applied to a single forecast, the high resolution forecast HRES, the CRPS takes into account the whole distribution of

possible values predicted by the ensemble. The CRPS is the continuous extension of the ranked probability score, where Fn155

is the cumulative distribution function of the predicted ensemble values. Then, the CRPS compares the cumulative probability

distribution of the FWI forecast by the ensemble system to the observation. In this sense the CRPS is sensitive to the mean

forecast biases as well as the spread of the ensemble (Hersbach, 2000).

While conventional skills score can be employed to assess the quality of the FWI computation, the verification of the FWI

as a fire indicator is instead extremely challenging. First, as widely explained, FWI is not a physical measure of fire activity160

but of its potential danger, if one were ignited. Therefore high fire danger, while being correctly forecasted, might not result

in active fires if there is no ignition
:::::
andor

::::::::
aggressive

::::
fire

::::::::::
suppression. From the verification point of view this means that the

identification of false alarms is not meaningful and the verification should mainly rely on hits and misses. Secondly, fires are

rare events and, as for any other infrequent phenomena, the verification statistics are heavily influenced by the small number

of hits when compared to the total. Still, when the cost of a missed event is high, for example in terms of human lives, the165

deliberate over-forecasting may be justified (Richardson, 2000; Cloke et al., 2017).

In these cases a positively oriented score such as "hit rate" may be useful especially if related to the case of not having

a forecast at all. Also forecast quality does not always equal forecast value (Richardson, 2000). A forecast has high quality

if it predicts the observed conditions well according to some objective or subjective criteria. It has value if it helps the user

to make a better decision in terms of protective actions (Cloke et al., 2017). For example predicting high temperature and170

low precipitation in desert areas might be accurate but carries low information content and therefore limited value. Following

these arguments and to gain an appreciation of the potential value of the forecasting system globally we use as a metric the

Probability of Detection (POD), which measures the fraction of the observed events that were correctly forecasted
:::::::
forecast

(POD = hits/(hits+misses)). Therefore, POD only takes into account observed fires and, unlike other skill scores such as

the Brier score, does not suffer from the artificial vanishing due to the high number of correct negative and false alarms (see175

Stephenson et al. (2008); Ferro and Stephenson (2011) for a discussion on this problem).
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Figure 1. GFED4 regional classification and the 3 countries selected to showcase the fire forecast performances (California, Chile, and

Portugal). The black dots show the spatial distribution of weather stations from the synop network which have at least 30 observations

recorded at local noon in 2017.

2.4 Fire regions

The global assessment of the fire forecast skills is mostly provided as an average over selected regions even if the calculation

of the various scores is performed at pixel level by interpolating the model grid over the verification points. For an assessment

at the continental scale, we use the fire macro-regions defined by the Global Fire Emission Database, GFED4 (Giglio et al.,180

2013). These macro-regions are characterized by different fire regimes and are very roughly homogeneous in their burning

emissions contribution (Giglio et al., 2013). Inside these regions we also select 3 areas at national/regional level - California,

Portugal and Chile - which experience recurrent intense fire episodes and saw major events taking place in 2017 (Figure 1).

Events in these locations are also analyzed in detail.

3 Results185

3.1 Skill in the FWI prediction

The first assessment looks at the capability of ECMWF fire forecast to reproduce the same FWI values as would be estimated

from the network of local stations but up to 10 days ahead. The selected stations (Figure 1), which have at least 30 records
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during 2017 at local noon, are used to perform an analysis of MB and MAE at different lead times (Figure 2). For comparison

also FWI calculations using ERA5 are included, which provides a validation of the assumption that ERA5 is a good proxy for190

observations(Di Giuseppe et al., 2016a). As expected there is a performance degradation going towards longer lead times , still

:::::::
however

:::
the

:::::::
increase

:
is
::
in
::::::
within

:::
the

:::::::::
distribution

::::
and mean biases are limited to few units even at day 10. However caution is in

order, as depending on the calibration procedure adopted, few units could mean a mismatch in danger level classification. The

mean absolute error provides information on the residual amplitudes. FWI from reanalysis have the sharpest skills, as expected,

while the mean absolute error rapidly increases with lead times. However the distribution of MAE values clearly shows that in195

selected events the discrepancies between observed and predicted values is confined to few units even 10 days ahead.
::
As

::
it

::
is

:::::::::
recognised

:::
that

::
in

:::::
some

::::::
regions

::
in

:::
the

:::::::
tropical

::::
areas

:::
the

:::::::
number

::
of

:::::::
stations

:
is
::::
very

:::::::
reduced

:
a
:::::::
similar

::::::
analysis

::
is
::::
also

:::::::::
performed

::::
using

::::::
ERA5

::
as

:::
the

::::::::
verifying

::::::::
databases

:::
(see

:::::
figure

::
5
::
in

:::
the

::::::::
following

:::::::
section),

:::::
which

::::::::
however

:::::::
confirms

:::
the

::::::
general

:::::::::::
conclusions.

Despite its importance the analysis performed using the synop network is point-wise and does not homogeneously cover200

all the regions where fires are relevant. Moreover, MB and MAE are based on high resolution forecasts and do not provide

information about the performance of the ensemble forecasting system as a whole. A global assessment of the performances

of the system is provided by the comparison between the CRPS curves for the forecast and CLIM when both are scored

against ERA5 in 2017 (Figure 3). The CRPS calculated from the CLIM database provided a useful benchmark for the forecast

as it defines the error above which the information content stored in the forecast would be equivalent to the information205

provided by the climate. The first interesting information from comparing the two experiments is how far in advance there

is skill in predicting fire danger from weather forecast. In fact the interception between the CRPS curve from the forecast

run and the CLIM run marks the overall length of the predictability windows, i.e where the system still provides skills above

climatology. Encouragingly if we look at the global average, the window of predictability is longer than the 10 days range

provided here, which also suggests that there is scope for extending the prediction to the sub-seasonal and seasonal time scales.210

:::
The

:::::::::::
discontinuity

::::::
visible

::
at

::::
day

:
6
::
is
:::
an

::::::
artefact

::::
due

::
to

:::
the

::::::
change

::
in
::::::::

temporal
:::::::::
resolution

::
in

:::
the

::::::
ecmwf

:::::::
forecast.

:::
Up

:::
to

:::
day

::
6

:::::::
forecasts

:::
are

:::::
stored

::
3
::::::
hourly

:::
and

::::
only

::
6

:::::
hourly

::::
after

::::
this

::::
time

::::
step.

:

There are some regional differences in the skill provided by the ensemble forecast. Regions covered by Boreas forests

(
:::::
Boreal

::::::
forests

::::
(e.g.

::::::
BOAS, BONA, CEAS) have the largest predictability with the maximum gaps between the forecast and the

climate CRPS scores (Figure 4). Savannah regions (NHAF, AUST,SHAF) tends
:::
tend

:
to have a shorter window of predictability215

with the forecast CRPS curve approaching at a
:

shorter lead time
:::
than

:
the CLIM ones. The FWI was not calibrated for this

ecosystem and this could explain the smaller predictability window however
:::::::
regional

::::::::::
differences

::
in

:::
the

:::::::::
prediction

::
of
::::

the

::::::
forecast

:::::
FWI

:::::
when

::::::::
compared

:::
to

:::::
ERA5

:::::::
derived

::::::::
databases

:::
are

:::::::
related

::
to

:::
the

:::::
skills

::
of

:::
the

:::::::
forecast

::::::
which

::::
then

::::::
project

:::
in

:::
the

:::::::
accuracy

::
in

:::
the

::::
FWI

::::::::::
simulation.

:::::
While

::::::::::
temperature

::::::::::
predictions

::::
skills

:::
are

:::::::
globally

::::::
mostly

::::::::
uniform,

:
a
::::::::
complex

::::::
picture

:::::::
emerges

::
for

:::
the

:::::::
forecast

:::::
skills

::
of

:::::::::::
precipitation

::
in

:::
all

::::::
global

::::::
models

::::
used

:::
for

:::::::::
numerical

:::::::
weather

::::::::
prediction

:::::::::
including

::::::::
ECMWF

::::::
model.220

::::::::
Prediction

:::
of

::::::::::
precipitation

:::
in

:::
the

::::
mid

:::::::
latitudes

::
is
::::::::::
notoriously

:::::
more

:::::::
accurate

::::
than

:::
in

:::
the

::::::
tropics

::::
due

::
to

:::
the

:::::::::
connection

:::::
with

:::::
frontal

:::::::
systems

::::::
driven

:::
by

:::::
large

::::
scale

:::::::::
dynamics

::::::::::::::::::::::::::::::
(Simmons and Hollingsworth, 2002).

::::::::::
Convective

:::::::::::
precipitation

:::::
which

:::
is

:::
the

::::
main

::::::
source

::
of

::::::
rainfall

::
in

:::
the

::::::
tropics

::
is

::
by

::::::
nature

:::::::::::
stochastically

::::::::
occurring

::::
and

::::::::
therefore

::::
more

::::::::::
challenging

::
to

:::::::
predcit.

::::::::
Although
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Figure 2. Comparison between modelled and observed FWI value across the GFED macro-regions. FWI calculated using ECMWF high

resolution forecasts at different lead times are verified against ERA5 simulations. The box plots describe the distribution of values across the

observation points for one year of simulations in 2017. Mean bias is plotted in the left panel and mean absolute error in the right panel.
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Figure 3. CRPS for the ensemble fire danger forecast (blue line) and the CLIM database constructed using a random selection of ERA5

years not including the verifying year (red line). Data have been globally aggregated and the forecast is available up to day 10 horizon.

::
the

::::
gap

:::
has

:::::
been

:::::
filled

::::::
through

::::
the

::::
years

:::::::
forecast

::::::::::
predictions

::
in

:::
the

::::::::
Southern

::::::::::::
extra-tropical

:::::
region

::
is
::::

less
:::::::
accurate

:::::
than

:::
the

::::::::
equivalent

::
in
::::

the
::::::::
Northern

::::::::::
hemisphere

:::
due

::
to
::::

the
:::::::::
availability

:::
of

:
a
:::::
better

:::::::::
observing

::::::
system

:::
to

::::::::
constraint

:::
the

:::::::
forecast

::::::
initial225

::::::::
conditions

:::::::::::::::::
(Haiden et al., 2019)

:
.
:::::
These

::::::::::::
considerations

:::::
could

::::::
largely

:::::::
explain

::
the

::::::
better

:::::::::::
performances

::
of

:::
the

::::
FWI

::::::::::
predictions

::
in

::
the

::::::::
northern

:::::::::
hemisphere

:::
for

:::
the

::::
year

:::::
taken

::
in

::::::::::::
consideration.

::::::::
However

:
it
:::
has

:::
to

::
be

:::::
noted

:::
that

:::::::
forecast

:::::
skills

::::
have

::::::
strong

::::
year

::
to

:::
year

:::::::::
variations

::::
with

:::::::
expected

::::::::
increased

:::::
skills

::
in

:::
the

:::::
tropic

:::::
when

:::::
large

::::
scale

::::::::::
phenomena

::::
such

::
as

:::
the

::::::::::::
Madden-Julian

::::::::::
Oscillation

:::::
(MJO)

::::
and

:::
/or

:::
the

::
El

:::::
Nĩno

:::::::
Southern

::::::::::
Oscillation

:::::::
(ENSO)

::::
take

:::::
place.

::::::
Under

::::
these

::::::::::
phenomena

:::
the

:::::::::::
predictability

:::
of

:::
the

::::::
tropics

:::
and

::
of

:::::::::::
extra-tropical

:::::::
regions

:::
can

:::::::::::
substantially

:::::::
improve

::::::
through

:::::::::::::
teleconnections

::::::::::::
(Vitart, 2014).

:
230

:::::::::::
Exceptionally

::::
poor

::
is
:::
the

:::::::::::
performance

::
in

:::
the

::::
two

:::::
South

::::::::
American

:::::::
regions

:::::
where

:::
the

:::::::
forecast

::
at

:::
any

::::
lead

::::
time

::
is
::::::
below

:::
the

::::::
climate

::::
line.

:::
As

::::::::
mentioned

::::::
CRPS

::
is

::::::
heavily

:::::::::
influenced

::
by

:::
the

:::::::
forecast

::::
bias

:::::
which

:::
can

::::::
induce

:
a
::::
fast

::::::
decline

::
in

:::
the

:::::
CRPS

::::::
curve.

:::::::
Looking

::
at

::
the

:::::
mean

::::
bias

::
as

:
a
:::::::
function

::
of

:::
the

::::
lead

::::
time

::::::
(figure

::
5)

:
it
::
is

::::::
evident

::::
how

:::::
these

:::
two

::::::
regions

:::
are

::::::
indeed

:::::::
strongly

:::::::
affected

::
by

:::::::::
systematic

::::::
biases

::::
with

:::
the

::::::
largest

:::::
values

::::::::
recorded

::
at

::::
least

::
in
::::

the
:::
first

:::::
three

::::
days

::
of

::::::::
forecast.

::
In

:::::::
general

:::
for

::
all

:::
the

:::::::
regions

::
the

:::::::
decline

::
in

::::::
CRPSS

::::
(Fig

::
5
:
)
::::
can,

::
to

:::::
some

::::::
extent,

::
be

:::::::::
explained

::
by

:::
the

:::::::
negative

::::
bias

::::
(too

:::
low

:::::
FWI

:::::
values

:::::
when

:::::::::
compared

::
to235

::::::::::
ERA5-FWI).

:::::::::::
Interestingly

:::
the

::::
bias

::
of

:::
the

:::::::
forecast

:
is
:::
not

::::::::
spatially

:::::::::
consistent,

:
it
::
is

::::::::
generally

:::::
larger

::
in

:::
the

:::::::::
Southerns

::::::::::
Hemisphere

::::::
regions

:::
and

:::::
lower

::
in

:::
the

::::::::
Northern

:::::::::
Emisphere,

::
in
:::::::::
agreement

::::
with

:::::
what

::::::::
discussed

::
on

:::
the

::::::::
expected

:::::
skills

::
of

:::
the

::::::
weather

::::::::
forecast.

:::
The

:::::::::
consistent

:::::::
negative

::::
bias

::
at

::
all

::::
lead

:::::
times

::::
also

:::::::::
highlights

:::
that

:::::
there

::
is

:::::
scope

::
to

:::::::
improve

::::
the

::::::
overall

::::
skill

::
of

:::
the

:::::::::
prediction

::::::
through

::::
bias

:::::::::
corrections

::
of

:::
the

::::::::::::
meteorological

::::::
forcing

::
a
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Piani et al., 2010; Di Giuseppe et al., 2013a; Di Giuseppe and Tompkins, 2003)

:
.240

::
As

::
a

::::::
general

:::::::::
conclusion

::::
and

:::::::
provided

:::
the

::::::::
possible

::::
year

::
to

::::
year

::::::::
variability

:::
in

:::::
skills, the general picture that emerges is that

for most of the areas weather forecast provides predictive skills for the FWI beyond 10 days.

10



Figure 4. As figure 3 but with aggregation performed on the GFED macro-regions
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Figure 5.
::::
Mean

:::::::
forecast

:::
bias

::
as

:
a
:::::::
function

:
of
::::

lead
::::
times

:::
and

:::::::
clustered

::
by

::::::
GFED

:::::::::::
macro-regions.

:::
The

::::::
forecast

::::
bias

::
for

::::
2017

::
is

::::::
assessed

:::::
using

::
the

:::::::
ensemble

:::::
mean

:::::
against

:::::
ERA5

:::::
based

::::
FWI

:::::::
database.

3.2 Skill in detecting fire events

Being able to predict the observed value of FWI does not equal to being able to pinpoint occurred fires. Figure 6 shows the

location of recorded fires in 2017 based of Fire Radiative power
::::::
Power

:::::
(FRP) observations from MODIS sensors as integrated245

by the GFAS platform (Kaiser et al., 2012; Di Giuseppe et al., 2016a, b). Fires covered large parts of the globe in 2017, with

157,631 cells recording FRP > 0.5Wm−2. To understand the capability of the FWI to match the occurrence of actual fires

we assume that an active fire is correctly predicted if the FWI is greater than the 90th percentile of its distribution of values

here defined using the ERA5 database. Figure 7 shows a summary table of the mean probability of detection (POD) by region

for all events in 2017 at forecast day 1 to 10. Given the intrinsic limitations of the POD as skill metric, CLIM could provides a250

useful benchmark to understand the incremental skill provided by the forecast. The POD provided by CLIM was found below

0.1 in all regions and is therefore not shown in the table.

12



Figure 6. GFED4 micro-regions with superimposed the locations of all the 2017 events reported as active fires using the Fire Radiative

Power (FRP) observations from MODIS ingested into the GFAS system.

CLIM has no skill in predicting fire events as it always provides the lowest POD, corresponding to a probability of detection

below 10%, even when compared to day 10 forecasts. On the other side, forecasts POD vary widely by region, with Europe

(EURO) and Boreal North America (BONA) being the only regions with POD above 0.5. These are mostly temperate regions255

where vegetation is dominated by forests and fuel is abundant and where fire danger is moisture limited. In these regions the

FWI is a good predictor of fire danger (Di Giuseppe et al., 2016a). It has to be noted that the FWI does not take into account

management measures that could introduce a relevant number of "false-alarm
::::::::::
false-alarms". Central America, the Middle East

and the northern hemisphere areas, Africa are characterized by a POD in the range 0.2-0.5 as in most of the tropics, where fires

usually occur in grass-shrub lands. Here fuel is scarce and weather plays a less relevant controlling role. Also it has to be noted260

that the statistics here are likely to be contaminated by many agricultural and prescribed fires that are considered ‘events’ and

which would dilute some of the skill in regions where annual cropland is high or are heavily managed.

One important exception is the very low performance of the fire forecast in Equatorial Asia (EQAS) and South East Asia

(SEAS) where the system seems to have a predictability below 0.2 (only 20 % of fires corresponded to FWI above the 90th

percentile). de Groot et al. (2007) highlighted how FWI is not a good
::
the

::::
best

:
indicator in this areas and a fire early warning265

system should mostly rely on the drought code. There are a number of factors that could contribute to this low usability of the

FWI in these areas. Fires in these regions are mainly caused by humans for the purposes of cleaning the land for establishing

plantations (Field et al., 2009; Benedetti et al., 2016) and weather, which is the only driver of the FWI, is not the main fire

trigger.
::::::::
However

:
it
::::
has

::
to

::
be

:::::
noted

::::
that

:::::
2017

:::
was

::
a
::::
very

::::
wet

::::
year

::
in

::::::
QUAS

:::
and

:::::::::::
anomalously

::::
low

::::
FWI

:::::
were

::::::::
predicted

::::
(see

::
for

::::::::
exemple

:::::
Figure

::
7
::
in

:::::::::::
Vitolo (2020)

:
)
::::
with

::
a

::::::::
consistent

::::
low

::::::::
emissions

::::::::
recorded

::
by

::::::
GFED.

::::
The

:::
low

:::::
level

:::
for

:::
fire

::::::::
activities

::
in270

::::
2017

::::::
means

:::
that

:::
the

:::::::::::
applicability

::
of

:::
the

:::::
results

:::
for

::::
this

:::::
region

::
in
:::::
2017

:::::
might

:::
not

::::::
extend

::
to

:::::
other

::::
years

::::
with

::::::::
stronger

::::::::
activities.

Also Australia (AUST) has a very low POD for the FWI possibly being a fuel limited ecosystem
:::::::::::::::::::
(Krawchuk et al., 2009). The

13



Figure 7. Regional Probability of Detection (POD) for the high resolution forecasts from day 1 to 10 (HDAY1/10). Events where FRP ≥ 0.5

Wm−2 are categorized as "hits" and compared to FWI prediction above the high warning level (90th percentile of climatology). The statistics

are constructed using FRP observations detected in 2017.

main picture that emerges is that while weather forecast can provide skilful prediction for FWI at least 10 days ahead, this fire

danger index has in many areas a scarce capability to pinpoint emerging fires.

3.3 2017 case studies275

Figure 7 provides an averaged assessment of the global performances of the FWI to mark any fire pixels identified during

2017. This global statistic includes small fires and events that are not exclusively driven by weather conditions. FWI skill could

improve locally, especial when important fire events are considered. It is important to understand how the information provided

by a 10 day forecast could be used in real cases when the information is intended to aid emergency responses. Here we will

analyse three cases of fire events that took place in 2017, which proved to be an extreme year for fire all
::::
year

::::
with

:::::::
extreme

:::
fire280

:::::::
episodes across the globe.
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:::
The

:::::
2017

:::::::
wildfire

::::::
season

:::::::
involved

::::::::
wildfires

::
on

::::::::
multiple

:::::::::
continents

:::
and

::::
also,

::::::::
possibly

::::::::::::
unprecedented

::::::
events

:::::
when

::::::
melted

:::
peat

:::::
bogs

::::::
ignited

::
in

:::::::::
Greenland.

:
The year 2017 started with an extended fire in central Chile that lasted almost all of January.

Strong winds, high temperatures and long-term drought conditions led to an event that has been described as the worst wildfire

in Chilean history (Bowman et al., 2018). Fires in the central regions of O’Higgins, Maule and Bío Bío south of Santiago were285

difficult to control. Although fire activities where recorded since July 2016 they became particularly intense in January 2017.

In June, between day 17 and 18, another devastating fire hit Portugal. It claimed more than 60 lives mostly recorded in the

Pedrógão Grande area, 50 km southeast of Coimbra. A persistent heatwave had been building in the region, with temperatures

above 40C, which are highly unusual for the season. Moreover, relative humidity levels below 30% had a role to the intensifi-

cation of the deflagration and the spread of the wildfire, which raged out of control for several days (Boer et al., 2017). Finally290

in October, extensive wildfires raced just north of the San Francisco Bay Area in California causing historic levels of death and

destruction. These named ‘Wine Country’ wildfires were the most destructive in California history, with 44 deaths; the loss

of 9,000 buildings; damage to approximately 21,000 structures; $10 billion of insured losses; and substantially greater total

economic loss (Nauslar et al., 2018; Mass and Ovens, 2019).

Figures 8 show the information that could have been provided for the study areas by the 10-day fire danger high resolution295

forecasts (HRES), had these been already available. Each plot shows on the x-axis the dates in which FRP was observed and,

on the y-axis, the dates forecasts were issued. The cell in the bottom left corner shows the percentage of pixels in the study

area that are expected to be above the 90th percentile of the FWI climatology for that pixel and day of the year. The forecasts

for day 2 to day 10 are on the same row. The forecasts issued on the following day are one row above and so forth. The dashed

lines show the observed Fire Radiative Power (see also secondary y-axis).300

The reader is reminded that active fires are triggered by highly unpredictable events (ignition) which are not accounted for

in the FWI system. The FWI is not supposed to provide the exact localization of the event but an indication of potential fire

activity. Large areas can be affected by anomalous conditions in the proximity of where the event really occurred. However it

is encouraging that there is some capability for the forecast to detect the increase in fire danger associated to the three events

even if with different intensities and sharpness. For the Chile case, for example from mid-January often around 70% of the305

area exceeded the high danger threshold. The FRP spike occurred on the 26th of January and while the forecast was not able to

capture this increase in fire activity, looking at the whole monthly sequence there is an indication of increased danger conditions

even at 10 days lead time. However it is recognised that the signal extend
::::::
extends

:
for long time and does not mark the peak of

the fire activities. A much better timing of the event was instead forecast during the Portugal and California fires which were

very well predicted 10 days ahead.310

4 Conclusions

In the last years, ECMWF has been involved in the EFFIS development by providing weather forcing and fire danger cal-

culations using its medium-range weather forecasts. Global fields of FWI are calculated daily using the high-resolution (9

km) forecast up to 10 days ahead. The 18 km resolution ensemble prediction system provides additional 51 realizations based
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Table 1. Events summary table.

Country Region Start date End date Main event Location

Chile O’Higgins, Maule, Bío Bío 01-01-2017 31-01-2017 26-01-2017 36◦ 46’S; 73◦ 03’W

Portugal Pedrogao Grande 01-06-2017 30-06-2017 18-06-2017 39◦ 55’N ; 8◦ 08’ W

USA California 21-09-2017 20-10-2017 09-10-2017 38◦ 34’N; 122◦ 34’ W

(a) Chile (b) Portugal

(c) California

Figure 8. Comparison of Fire Radiative Power (gray dashed line with axis on the right hand side) with FWI forecasted using the deterministic

high resolution model for: (a) Chile, (b) Portugal and (c) California. FWI is color coded based on the percentage of pixels exceeding the high

danger level calculated at the country/state level. Each of the panel refers to a specific fire event described in the text and the statistics have

been calculated over the red boxes.
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on slightly different initial conditions and/or using different model configurations (Molteni et al., 1996). These datasets are315

freely available in line with the data and information policy of the Copernicus program which intends to provide users with

free, full and open access to environmental data. Using one year of pre-operational service in 2017 we have showcased the

potential of the use of weather forecasts to support the monitoring of fire danger conditions and planning in case of a po-

tential emergency. Weather forecast provides skillful information to derive FWI values up to 10 days ahead. Looking at the

Continous Ranked Probability Score for the forecast in comparison to climatological simulations it was shown that predictive320

skills could extend also beyond the provided forecast range
::
for

:::::
most

::
of

:::
the

::::::
GFED

:::::::::::
macroregions. Similarly to other sectoral

applications Wetterhall and Di Giuseppe (2017)
:::::::::::::::::::::::::::::
(Wetterhall and Di Giuseppe, 2017) there is scope to extend the prediction to

the sub-seasonal and seasonal time frame (S2S). On the other hand a good skill in forecasting FWI values did not translate

into a satisfactory probability of detection for real fire events. When all observed fires in 2017 where matched to high values

of FWI (> 90th percentile) only the Boreas regions
::::::
Boreal

::::::
regions

:::
for

::::::
which

:::
the

::::
FWI

:::
has

::::
been

:::::::::
calibrated had a POD above325

50%. Mid and high latitude forested areas, where fuel is abundant have the highest predictability while in savana/shrub-land

regions the relationship between FWI and fire occurrence weakens. Still global statistics are likely to be contaminated by many

agricultural and prescribed fires that are considered ‘events’ and which could dilute some of the skill in regions where annual

cropland is high or are heavily managed.

Looking at large fire events in Chile, Portugal and California which occurred in 2017 we have shown that there are regional330

differences and in Portugal and California the forecast was accurate up to 10 days ahead. Another interesting aspect attached

to the use of weather forecasts is the use of probabilistic information. The quantification of forecast uncertainties through the

use of ensemble predictions is something still pretty new in fire forecasting. However it opens great opportunities in terms of

adding a confidence level to the the fire prediction. These aspects will be investigated in follow on work.

::::
Code

::::::::::
availability335

::
In

:::
the

:::::
spirit

::
of

::::::::::::::
reproducibility,

:::::::
function

::::
and

::::::::
workflow

:::
to

:::::::
generate

::::
the

::::::
results

::
of

::::
this

::::::::::
manuscript

:::
are

::::::::
available

:::
on

::::::
public

:::::::::
repositories

::::::::::::::::::::::::::::::::::::::::::
(Vitolo et al., 2018; Vitolo and Di Giuseppe, 2020).

:
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