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ABSTRACT. Jeju Island, located in the southern sea of the Korean Peninsula, is a volcanic island created by the tertiary and 

quaternary volcanic eruptions. A group of lava tubes formed between quaternary lava flows constitutes one of the most 

predominant geological contexts owing to its unique and complex network, for which a total of 178 lava tubes is estimated. 15 

As a significant portion of lava caves have not been discovered, the threat caused by lava cave collapse has become one of the 

major concerns in connection with the recent infrastructure construction in Jeju Island. Considering the risk potential, the 

overall distribution and collapsing risk of the Jeju lava tube network were investigated in this study. Through spatial analysis, 

we firstly found that the lava tubes distribution is not correlated with specific geological units. Secondly, the risk of collapse 

is high especially when there are ongoing artificial constructions around the undisclosed lava tube network. We therefore 20 

introduced Interferometric Synthetic Aperture Radar (InSAR) techniques to measure the deformation of the ground surface 

where lava tube networks distributed underground. InSAR results and the proposed machine learning applications identified 

that the populations of ground deformations was up to 1-2 mm/year and was inferred to be caused by the instability of the 

shallow lava cavity. Given that underground cavities could pose serious risks, a detailed physical exploration and threat 

assessment of potential cave groups is required before intensive anthropogenic construction is developed.  25 
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1. Introduction 

 

Lava tube is known as one of the most representative geomorphic features in volcanic landscape and the major consequences 

of the lava flow formation. Pioneering works have been accomplished to confirm the origin of lava tubes in Hawaii volcanoes 30 

(Greeley, 1987; Greeley, 1971, 1972), Mt. Etna (Calvari and Pinkerton, 1998) and elsewhere. Along with geomorphic 

interpretation (Hwang et al., 2005; Valerio et al., 2010), numerical modelling of strain (Merle, 2000) and thermal erosion (Kerr, 

2001; Bussey et al., 1997) established the outline of lava tube development. Based on the studies listed above, two scenarios 

for understanding lava tube development processing were established. First, the solidified lava roof blocked the liquid lava 

flow and a single structured lava tube was created. Second, the repetitive contraction of lava evolved into a multi-structured 35 

lava tube. (Kempe, 2009;Kempe et al., 2010). Recent research of lava tube has focused on comparative analyses, as the lava 

tube of solid planet/satellites identified by the spotting of skylight (Whittaker, 2012;Witter and Harris, 2007) are now proposed 

as a highly critical habitable environment. 

Jeju Island, located on the southern coast of Korean Peninsular provides a valuable testbed for the geological/geomorphic 

studies of lava tubes due to their high spatial density, unique diversity of cave morphology (Kempe and Woo, 2016) induced 40 

in deformation modes and easy accessibility (Woo et al., 2019). Indeed, the lava tube group in Jeju Island possess highly 

unique characteristics such as 200 more founded tubes in 1850 km2, population of long lava tubes up to 4-11 km and a variety 

of cave structures presenting all sorts of development stages (Son, 2019). The significance of Jeju lava tubes is that they 

occurred along shallow lava flows and there is a risk of cave deformation and collapse (Kim, 2006). With a further inspection, 

lava tubes are distributed along the gentle slopes of Jeju Island, and some are close to dense human settlements. Furthermore, 45 

it is estimated that a large number of lava tubes that have never been disclosed have already collapsed. For instance, 

investigations conducted over decades showed that a large portion of the newly discovered lava caves on Jeju Island has been 

partially collapsed (Son, 2016). The risks involving potential lava tubes in Jeju Island were observed by Waltham and Park 

(2002), especially the cases of road-cave crossing. Based on the observations mentioned above, ground stability should be 

inspected before anthropogenic activities such as infrastructure construction. Take the ongoing construction of the second 50 

international airport in western Jeju Island as the example, the identification of potential lava tubes is hence highly critical to 

avoid risk induced by undiscovered cavities. 

 

To achieve this, we tracked deformation caused by undiscovered lava tube network using Interferometric Synthetic Aperture 

Radar (InSAR) technology and spatial analysis method. Various technical approaches such as geological mapping and related 55 

spatial analysis were used together to improve the interpretation of line-of-sight (LOS) measurements of InSAR time series 

analysis on specific risky points. Such integrated approach was proposed to classify the actual deformed signal caused by lava 

tube instability, which is referred to as lava tube induced deformation point (LTDP). The applications of this study is not only 
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limited to the assessment of the risks provoked by lava tube instability, but is of potential to be extended to identify the lava 

tube development, which has become a significant interest in terms of the planetary habitat environment. 60 

In such context, we firstly introduced the characteristics of the target area together with data sets in section 2. The methodology 

details were introduced in section 3. The outputs from InSAR deformation analyses were interpreted in section 4 and the 

further discussion and conclusions were presented in section 5. 

 

2. Test site and data sets 65 

2.1 Geological background of lava caves 

 

The entire Jeju Island was investigated in this study as lava tubes were distributed throughout the island as shown in Fig. 1. 

The United Nations Educational, Scientific and Cultural Organization (UNESCO) has evaluated the unique geological 

landscape and designated nine geological attractions in 2010 and three more in 2014. Among them, the presences of lava tubes 70 

and involved cone volcanoes are highly distinguished. Up to now, there is still an ongoing discussion regarding the geological 

origin and processes of Jeju Island. Based on the conventional volcanic eruptions theory, the whole Jeju Island is considered 

as a single shield volcanic body (Kim and Choi, 2012). While another theory was developed to assess Jeju Island as a basaltic 

volcanic zone (Brenna et al., 2011; Brenna et al., 2012a; Brenna et al., 2012b). According to a study conducted by Koh et al. 

(2013), Jeju Island was formed based on the accumulation of outpoured lavas and volcanoclastic erupted from a polygenetic 75 

composite volcano of Mt. Halla and numerous monogenetic volcanoes. The materials were intercalated or underlain by 

Seoguipo Formation (KIGAM, 2000). Koh et al. (2013) proposed a new genetic model of the volcanism in Jeju Island on the 

basis of borehole logging and interpretation of stratigraphy from over 100 exploratory boreholes (drilled at < elevation 600 m 

since 2001), rock composition and age dating of volcanic rocks from both 686 recovered cores out of 78 boreholes and 74 

outcrop sites. The geologic structure indicated that the activity of alkali basaltic lava effusion on land started about 1 Ma years 80 

ago and continued until Holocene. Which was also reported in Koh et al. (2008), Koh and Park (2010b) and Koh and Park 

(2010a). Koh et al. (2013) strongly exhibited the post-depositional volcanic activities are defined as extensive volcanic 

activities on land after the termination of sedimentation of Seogipo Formation since about 0.5 Ma. Such studies conclusively 

proposed that volcanic eruptions during the period from 0.3 Ma to 0.1 Ma must have shaped the body of Jeju Island. Also 

volcanic eruptions occurred from 0.1 Ma to the Holocene have constructed the present topography of Jeju Island with various 85 

types of the volcanic tubes. In fact, the rocks distributed at lowerland areas in the eastern and western regions are predominantly 

transitional basalts, tholeiitic basalts and andesites in composition, compared with those in the northern and southern regions. 

Those petrological evidences proposed that lava tubes were primarily due to volcanic activities in 1.88~0.5 Ma and post-

depositional period (0.5 Ma~Holocene) (Kim and Lee, 2000; Sohn and Park, 2004; Koh et al., 2013). Therefore it implied that 
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the lava flow inducing tubes might be originated from geological units especially with the quaternary basalt originated from a 90 

large number of cone volcanoes (see Figure 1 (a)). Although the number of lava tubes is different and gradually increased 

according to surveying works, Jeju volcanic island exhibited more than 179 well-documented lava tubes, including 144 lava 

tubes and 35 sea caves since Feb. 2016 (Son, 2016). The number of the 122 caves among 179 were scattered in eastern (22%) 

and western areas (51%) of Jeju city and the eastern of Seogwipo city (19%). It was noted that a total of 178 lava tubes was 

identified in Jeju Island in the recent research conducted by Son (2019). 95 

According to the geological map produced by KIGAM (2000), the rocks that make up Jeju Island are conglomerate, for which 

volcanic rocks were formed by lava eruption, and volcaniclastic rocks were formed by volcanic eruptions. Conglomerate is 

composed of nitrile sedimentary rock, conglomerate, and concave conglomerate confined between lava flows. Volcanic rocks 

are classified as basalt, rough basalt, basaltic rough andesite, rough andesite, and rough rocks. Some rough rocks show intrusive 

shapes to form high terrain. Basalt is low-viscosity at the time of the eruption, and is covered with a large area to create a 100 

smooth terrain and distributed on the east and west sides of Jeju Island. Therefore it has been proved that the lava tubes exist 

with only basalt low-viscosity lava flow, so-called pahoehoe lava (see Q1 unit in Fig. 1 (b)). However, with the progressive 

discovery of lava tubes since 1990 somehow conflicted with such findings. Some major lava tubes cross the basaltic andesite 

lava flow, so-called ʻaʻā lava which is presented as Q2 in Fig. 2 and has far higher viscosity. A sequence of studies speculated 

the creation process of Jeju lava tubes involving its geological contexts (Kempe and Woo, 2016; Hwang et al., 2005; Son, 105 

2009). 

Results conducted by Son (2009) showed that 27 among the 37 examined lava tubes faced severe collapse and destroyed 

problems. Most lava tubes in Jeju island show that the internal and/or external failure and destroyed problems resulted from 

disconnected lava tubes. The investigation was conducted on 27 out of 179 roads over the lava tube. A total of 122 crossroads 

over caves was scattered in eastern (37) and western areas (62) of Jeju city and the eastern of Seogwipo city (23). Results 110 

showed that 37%, for instance Sunggul, Cheamchongul, Chogiwatgul, Jungryugul, Bangdyi cave, Manjang cave, Yongchun 

cave, Susan cave, Michun cave, Bilraemot cave, Bullalit cave of the 27 examined lava tubes faced serious collapse and 

destroyed problems. Moreover, 55 crossroads located over six natural monument caves out of 27 caves already had lava tube 

problems that are urgently required to take actions to protect citizen from the cave tours. Thus, a series of practice was required 

to address the issue regarding abundant collapsed and destroyed lava tubes, including 1) the safe policy for roads over tubes; 115 

2) the geophysical engineering survey with 27 lava tubes on the mega-sized construction sites; 3) the Cave Geographic 

Information Systems (CGIS) implementation for the systematic operation and management, and 4) the safe guide panel posted 

on the dangerous sites in Jeju Island. 
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 120 

 

Figure 1: Geological context and lava caves of Jeju Island. (a) Lava tubes in detailed geological units associated with cinder 

cones and lava flows. (b) Lava tubes distributions, bedrock geological and road networks. 

2.2 Data sets 

For this study, it is necessary to carry out the detailed topographic data analyses for tracing of surface deformation as well as 125 

subsurface structures. The technology of space geodesy, such as InSAR data interpretation, are being widely used to replace 
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conventional surveys to observe minor surface migration over a long period of time. Those have been successfully exploited 

for the detection of underground stability caused by depressurization, cavity creations and subtle surface creep (Baer et al., 

2018; Intrieri et al., 2015; Hooper et al., 2004; Yun et al., 2019). Thus we expected the surface deformation on shallow lava 

tubes and cavities in Jeju Island are in the scope of InSAR observation accuracy estimated to a few millimetres. For InSAR 130 

processing, the optimal data set is Sentinel-1 SAR imagery (Geudtner et al., 2014) as the following bases. First, it is freely 

available on the public domain, Sentinel data hub. Second, images have been acquired by two SAR-satellite constellations, 

Sentinel 1A and 1B operating from 2015 and 2016 respectively. Therefore the Sentinel-1 constellation provided the shortest 

revisiting time (>6 days) among all available InSAR assets. Third, their unique Interferometric Wide-swath mode (IW) 

operation with Terrain Observation and Progressive Scans SAR (TOPSAR) imaging makes available precise monitoring of 135 

the target area with a moderate spatial resolution (20 m in azimuth and a 4 m in range) and 250 km wide swath coverage 

(Geudtner et al., 2014). Especially its C-band wavelength guarantees relatively minor ionospheric errors carrying long-

wavelength artifacts compared to L-band InSAR. Since the estimated surface deformation over lava tubes is insignificant 

compared to the external error components, we were obliged to use InSAR time series analysis to obtain the displacement 

velocity. In terms of image availability, the image connection geometry in Sentinel-1 InSAR descending modes can be readily 140 

constructed covering sufficient period as shown in Fig. 2. It is worthwhile noting that, in order to achieve a comprehensive 

observation, we employed a strategy combining two different InSAR time-series analysis techniques, one is Persistent 

Scatterers (PS) to monitor the temporal migration on specific scatterers, such as crossing points of roads and lava tubes. 

Another method adopted is Small Baseline Subset (SBAS), which is for the extraction of regional deformation patterns. To 

achieve sufficient InSAR pair stacks, PS analysis was constructed to cover a two year period with 75 images (Fig. 2(a)), while 145 

SBAS network was built on 13 images covering a half year period as shown in Fig. 2(b). The required number of InSAR pairs 

is usually higher in PS processing. SBAS was mainly introduced to observe regional characteristics compared to PS analysis. 

Thus a selection of 13 SBAS images for a half year fits the purpose. Basic characteristics of Sentinel-1 imagery are summarized 

in Table 1. 

 150 

Table 1. Characteristics of employed Sentinel-1 images. 

 PS mode processing SBAS mode processing 

Image number 77 13 

Master image 2017.10.04. 2017.10.04. 

Time coverage 2016.01.01–2018.12.22. 2017.06.20–2017.11.11. 

Heading angle (deg) −167.107 

Incidence angle (deg) 44.0 

Relative Orbit 134 

Acquisition time  06:32 KST (GMT+9)  
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Figure 2: Connection graphs of employed Sentinel-1 InSAR pair as shown in (a) 72 descending images which are employed 

for PS time series analysis. (b) 13 descending images for SBAS analysis.  155 

Another highlight of this study is that a few subsurface morphologies in lava tubes were established by 3D laser scanning to 

demonstrate their stability. Laser scanning was conducted using FARO Focus3D X330 laser scanner and GPS receiver. Point 

density of laser scanning was set as 15 mm. A number of targets were pre-installed to be used as a joint point for data merging 

and also as an inspection point. The targets were installed without interfering with the point cloud acquisition inside the cave. 

Once the scanned was finished, the scanned point cloud collected in multiple stations were merged to form one complete model 160 

in the FARO SCENE 5.4 data post-processing software. Given the parameters such as the number of points, the number of 

repetitions and the search range, the registration error value was calculated within ± 2 mm. After then, noise removal and geo-

referencing were performed based on ground control points to construct a fully co-registered 3D cave model for three lava 

caves. 

3. Results 165 

3.1 Spatial analysis of lava tube distributions 

 

In spite of long historical research works, the distribution pattern of lava tubes still remains unclear. One clue to reveal the 

pattern is an involvement with low viscosity lava flow so called pahoehoe lava (Ahn and Hwang, 2009). However, as shown 

in Fig. 1, the spatial extent of pahoehoe lava flow and distribution of lava tubes are not highly correlated. Therefore, we tried 170 

to constrain the potential distribution of lava tubes using other evidences. We created the density map of lava tubes (178 in 

https://doi.org/10.5194/nhess-2020-321
Preprint. Discussion started: 17 October 2020
c© Author(s) 2020. CC BY 4.0 License.



8 
 

total) with the weighted values of their lengths and the co-kriging interpolation as shown in Fig. 3(b). The other useful 

information to spot the subsurface lava cavity is the existence of a geological feature so-called Sumgol, which assigns the 

collapsing place of lava cavity or the vertical joints or cracks over lava flows (Hamm et al., 2005). It is presumably related to 

the distribution of undiscovered lava tubes. We digitized the Sumgols and applied the distance transformation with the city 175 

block sampling method (Huang and Mitchell, 1994) as shown in Fig. 3(d). The convolution of two spatial distributions was 

proposed as the representation of subsurface cavities by lava flow (refer Fig. 8(a)). The convolution is corresponding to simple 

adding of the two materials as we do not apply any weighting. The gridded data sets assigned the distribution of Sumgol and 

the footprints of lava tubes were employed for the further processing of InSAR data sets as a constraint. The other data sets 

extracted from the geospatial information were used for the ground truth and validation. The details were described in section 180 

4. 

 

Figure 3: Spatial analyses to create processing mask. (a) Lava tube distributions and (b) density map of lava tubes calculated 

weighted their lengths. (c) Sumgol distributions and (d) distance transformation map of Sumgol.  

         185 

3.2 InSAR processing 

 

Although InSAR techniques have been effectively used for natural and artificial surface deformation observations, land surface 

monitoring caused by instability on the subsurface cavity would be a challenge of InSAR techniques due to the expected low 
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deformation rate. There are two InSAR time series analysis algorithms commonly applied, including PS and SBAS approaches. 190 

The PS method exploits strong scatterers in time series interferograms, which are paired by a common master image and 

sufficient number of slave images (Ferretti et al., 2001; Ferretti et al., 2000). Compared with the PS approach, the SBAS 

technique (Berardino et al., 2002) determines all the appropriate InSAR pair subsets possessing a small baseline. In this study 

we employed PS and SBAS to respectively perform a long-term pointwise observation and short-term regional observations. 

An improved SBAS technique, New-SBAS (NSBAS), was employed to enhance the performance. The algorithmic 195 

improvements of time series analysis mainly aim for the densification of reliable scatterers and the capabilities have been 

proven.  

According to a preliminary PS InSAR analysis, it was indicated that the temporal and spatial baseline conditions between SAR 

images in this study were adequate to address technical challenges with a standard PS algorithm, as shown in Fig. 2(a).  

The observations and error component terms to be handled in algorithms of time series analyses is expressed as follows: 200 

 

∆φ௢௕௦ ൌ ∆φ஽௜௡௧ ൅ ∆φ௔௧௠ ൅ ∆φ௢௥௕ ൅ ∆φ௧௢௣௢ ൅ ∆φ௜௢௡ ൅ φ௡௢௜௦௘ (1) 

∆φ஽௜௡௧ ൌ ∆φ௜௡௧ െ φ௧௢௣௢ (2) 

 

where ∆φ௢௕௦ is the phase difference of interferogram, ∆φ஽௜௡௧ is the phase difference only by target topography, ∆φ௢௥௕ is the 205 

phase difference by inaccurate orbital information, ∆φ௧௢௣௢ is the phase difference by inaccurate base topography, φ௡௢௜௦௘ is the 

other phase noise, ∆φ௔௧௠ is the phase difference by atmospheric phase components, and ∆φ௜௢௡is the phase difference caused 

by delay in the ionosphere. 

The core idea of PS algorithm is to discriminate Persistent Scatterers with constant responses for amplitude dispersion and to 

address the error estimations using iterative non-linear equations. Although PS required a large number of image stacks, the 210 

accuracy of InSAR deformation is up to 1 mm/year (Crosetto et al., 2016). On the contrary, PS algorithm is often suffered by 

the lack of observation density. Thus some PS variants were often introduced. In this study, the target area is full with stable 

rock scatterers. We therefore are able to employ the conventional PS algorithm to observe the temporal migration with high 

precision. It was also observed that the density of extracted scatterers was sufficient for further interpretation. Refer to Fig. 

4(a) which shows the LOS displacements extracted via the PS time series analysis in the target area. The stable reference point 215 

which is as the standard for measuring relative deformations was carefully chosen based on the stability and dispersion of 

phase coherence and deformation rate.  The time series displays of LOS surface deformations demonstrate that the deformation 

patterns along geological/landcover units were consistent overall. However, there were discrepancies between a few geological 

units and LOS deformations, particularly along the Manjang, Namhyun and Posunri cave clusters. This implies that there is 

clear surface migration induced by cave instability. 220 
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Figure 4: PS processing results over Jeju Island. (a) LOS deformation velocity (mm/year) and (b) average phase coherence. 

 225 

The outcomes by PS algorithms were further complemented by SBAS technique to manipulate InSAR time series in regional 

scale. The local deformation was then interpreted together with scatterer behaviours. Since we experienced that SBAS 

technique is interfered by atmospheric noises, NSBAS technique was employed to improve this performance issue. The 
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technical details of SBAS was firstly summarized as follows. The stacked differential interferograms consisting of multiple 

masters and slaves are constructed. It corresponds to a linear system consisting of a small baseline combination matrix, phase 230 

values, and mean phase velocities. Therefore, Singular Value Decomposition (SVD) together with Low Pass (LP) and High 

Pass (HP) filters are employed on such a linear system to eradicate the spatial and the temporal components of the noise, and 

to extract the error-reduced deformation. The resultant deformation velocity estimated from such linear operation has excluded 

the atmospheric, orbital and base DEM noise which are estimated by LP and HP filtering.  

However, the populated cultivated and natural vegetation together with many decorrelations factors, such as reconstructions 235 

and changes of topography, mis-registrations and weather conditional changes, lead occasional breaks in connection of 

correlation covering all observations. Therefore, the inverted deformation by SBAS and/or PS algorithms was limited to 

provide highly densified observations in InSAR time series analyses to trace regional deformation which may be induced by 

lava tube networks. Thus an enhanced SBAS technique was required and the modified time series analysis techniques, such as 

Stanford Method for Persistent Scatterers/Multi-Temporal Interferometry (StaMPS/MTI) (Hooper, 2008) and NSBAS (López-240 

Quiroz et al., 2009; Doin et al., 2011), were developed. As reported in Gong et al. (2016), among the four different time series 

InSAR algorithms, including NSBAS, SBAS, StaMPS/MTI, NSBAS is a noted distinguished time series technique because of 

its significant merit of manipulating partially connected scatterers. It was demonstrated that the NSBAS technique produced 

superior observation point densities in the target sites. Thus it fits our purpose to observe regional deformation patterns caused 

by potential lava tube networks. Since the target area is highly fragile against phase delay of atmospheric water vapour created 245 

by surrounding sea areas, the atmospheric error in phase difference was essential to be compensated. Although it was usually 

done by algorithmic bases of PS and SBAS, the introduction of external atmospheric phase screen (APS) data sets and the 

fusion with atmospheric correction of InSAR time series are more efficient (Nico et al., 2011). European Centre for Medium‐

range Weather Forecasts (ECMWF) ERA-Interim (Szczypta et al., 2011) was employed as the source of APS considering the 

large extend of the target area, as Jolivet et al. (2012) has identified that the effects of such atmospheric phase screen (APS) 250 

model employing ECMWF ERA is efficient to compensate time series analysis. Error compensations of each interferogram 

product were performed by subtracting APSs (Jolivet et al., 2014; Kim et al., 2017; Kim et al., 2018). The orbital error 

compensation was carried out by the procedures as described in Biggs et al. (2007) and Wang and Jonsson (2014). The orbital 

inaccuracy caused the image registration errors and its consequent distortions can be approximated by the form of polynomial 

as: 255 

 

𝑓ሺ𝑅, 𝐴ሻ ൌ aXଶ ൅ 𝑏𝑋𝑌 ൅ 𝑐𝑌ଶ ൅ 𝑑𝑋 ൅ 𝑒𝑌 ൅ 𝑓  (3) 

 

X and Y are the range and azimuth respectively, (a,b,c,d,e) is the coefficients which can be found through the least squared 

solution and f is error residual. By adding this correction component, it is possible to achieve sub-pixel co-registration removing 260 

the erroneous mis-registration by the orbital inaccuracy. In this study, we constructed APSs using Generic Atmospheric 

Correction Online Service (GACOS) service (http://ceg-research.ncl.ac.uk/v2/gacos/) which is created also based on ECMWF 
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ERA-Interim model (Yu et al., 2018). Then APSs were applied to each interferogram produced by Centre for the Observation 

and Modelling of Earthquakes, Volcanoes and Tectonics (COMET) provided by Looking Into Continents from Space with 

Synthetic Aperture Radar (LICSAR) (Lazecký et al., 2020) service (https://comet.nerc.ac.uk/COMET-LiCS-portal/), and feed-265 

forwarded NSBAS routine, LiCSBAS (Morishita et al., 2020). 

The outcomes of NSBAS using the interferometric pairs presented in Fig. 2(b) together with its phase coherence values was 

given in Fig. 5. Note that in PS observations, their phase coherences are in high ranges (> 0.75) and the reliability was proved 

(Fig. 4(b)). However the phase coherences of NSABS are relatively low except for rocky surfaces and urban areas as shown 

Fig. 5(b). Hence, we employed NSBAS data as an ancillary data rather than a deformation signal of LTDP. 270 

 

 

 

Figure 5: NSBAS processing results over Jeju Island. (a) LOS deformation velocity (mm/year) and (b) average phase 

coherence. Noted that the phase coherence extracted in NSABS is lower than the coherence in PS processing. 275 
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4. Interpretation and Discussion  

 

As PS velocities on the observation points present LOS directional behaviours, PS points were introduced to identify the trail 

of potential lava tubes and their deformation hazards with proper interpretations. Since the instabilities of lava tube have been 

identified by the structural analyses employing Finite Element Method (FEM) (Blair et al., 2017; Theinat et al., 2020) or the 280 

field work demonstrating the lava tube collapsing (Son, 2009), the surface deformations induced by lava tubes might also be 

detected by InSAR time series analyses. In addition, the sinkhole detected by InSAR analyses previously performed by Atzori 

et al. (2015), Baer et al. (2018) and Intrieri et al. (2015) are proposed as comparable study cases as the cavities induced by 

underground sinkholes and lava tubes would cause similar surface deformations. Although we were able to extract a large 

number of  deformation candidates based on the InSAR analysis results and concepts described above, the technical difficulties 285 

to discriminate the potential LTDPs still remain as follows : 1) there are false deformations caused by other factors such as 

regional subsidence, the thermal dilations and the failures of InSAR algorithms; 2) the definition of LTDP’s behaviours is not 

clear as we do not have precise ground truth; 3) The domains to be tested as target LTDP is enormous because the PS 

observations included more than 200,000 points all over Jeju Island.  

To tackle all problems, we introduced machine learning methods. First, we built the training datasets based on the spatial 290 

analyses and the geological/demographic contexts. The established ground truth data sets were then feedforwarded to the 

training stage of proposed machine learning methods. Subsequently we classified all PS target points using trained machine 

learning platforms. The extracted points as LTDPs were re-analysed in the comparison of background context and validation 

data sets. 

In Table 2 and Fig. 6, the standards to define training data sets and their locations were shown. As Son (2009) assigned, the 295 

road crossing with lava tubes or the cavities on lava flows often caused the failures of the roof of corresponding lava 

tubes/cavities. We investigated the deformations patterns of PS observations on road-crossing points with Manjang cave and 

all Sumgols. We choose Manjang cave as the most deformation fragile case because of the shallow structure of the lava cave 

(see Fig. 9(a)), extensive length and high interaction with tourist activities. On the contrary, Sumgols was originally created 

by the vertical failures of lava cavities, and the proximity to roads supposedly indicates the instability and deformations. With 300 

177 InSAR observations (77 on Manjang cave and 100 on Sumgols) in road crossing areas regions, we discovered that the 

deformation patterns could be classified as 1) minus LOS migrations (< -1 mm/year) which imply vertical subsidence, so called 

V-migration patterns; 2) positive LOS migrations (> 0.75 mm/year) which might refer to horizontal deflections, so called H-

migration patterns as consistent uplift deformations are almost impossible especially in rocky surface of lava flow. Thus 50 V-

migrations and 17 H-migrations were assigned as the training data. Note that there might be some minus LOS migrations 305 

induced by horizontal creep to LOS direction in SAR sensor but this portion in V-migration should be minor as the major 

contribution to LOS direction is up- and downward deformation (Hu et al., 2014). Interestingly, around Sumgol, the major of 

deformations (> 70%) are V-migration, while H-migration in Manjang cave occupied 50% of deformation points. It fits the 
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hypothesis in which vertical failures in Sumgols mainly induce V-migration patterns, but the large cavity such as Manjang 

produced H/V-migration pattern together. Therefore, we constructed the training vectors of potential lava tubes combining 310 

two V-migrations patterns together. Their behaviours included highly variable signals perhaps involved with seasonal effects 

as shown in Fig. 7(a) and (b), where changes possibly induced by thermal expansion are noticed in summer time. H-migration 

patterns were introduced as the secondary indicator of potential instability by lava cavity. The stable PS points with no 

significant variation were excluded for the input data of machine learning applications. However, we observed that two kinds 

of deformation patterns might be mis-recognized as the genuine LTDPs. The first one is the deformation induced by regional 315 

subsidence, while the other is the structural deformation such as newly built buildings. The regional subsidence is clearly 

observed in Seowipo sediment perhaps caused by regional condensations (see Fig. 6 and Fig. 1). Therefore the strong minus 

deformations (< -2 mm/year) in Seowipo sediment were chosen as the training vectors of regional subsidence. The stable 

behavior is shown in Fig. 7(c) in which the variation is quite different from the Smugol-road-crossing or tube-road-crossing 

regions. The instability of individual structures was chosen on the opposite side of Jeju city areas where large buildings are 320 

populated. Since there are a large number of deformations with random changing patterns, the average behaviour is uniform 

and is shown in Fig. 7(d). Since there are not enough training points, the pattern of H-movement is highly variable (Fig. 7(e)). 

 

 

Figure 6: Training point locations of V-migration, H-migration, regional subsidence and instability points by artificial 325 

structures for machine learning. The training vectors for regional subsidence were chosen in Seogwipo City where Jeju Island’s 

only sediment unit exists. Training vectors for instability caused by artificial structures were built in the Jeju City area, where 

the largest buildings are concentrated. 

 

 330 
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Table 2. The number and standard of training data. 

 Number Selection standard 

(velocity (mm/year) and standard deviation) 

Constraints 

V-migrations 50 Velocity <-1.0 

Stddev > 0.5 

Soumgol and 

Manjang cave around 

road crossing 

H-migration 17 Velocity>-0.75 

Stddev > 0.5 

Soumgol and 

Manjang cave around 

road crossing 

Regional subsidence 483 Velocity<-2 

Stddev > 1.0 

Seogwipo sediment 

unit 

Instability points by artificial 

structures 

433 Velocity<4.5 

Stddev > 1.0 

Jeju City area 

 

 

Figure 7: Deformations and standard deviations for training vectors on (a) collapse (Sumgol)-road crossing points, (b) 

Manjang cave-road crossing points, (c) deformation points in Seogwipo sediments, (d) deformation points in Jeju City urban 335 

area and (e) deformations points on H-migrations. 
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Once after the training vectors were established, point classification was conducted. We employed two algorithms – random 

forest (RF) (Ho, 1998; Breiman, 2001) and gradient boosting (GB) (Friedman, 2002; Mason et al., 2000) methods. RF is the 

use of multiple decision tree construction in the time of training stage and bootstrap aggregation of their outputs as an ensemble 340 

method. Thus it is effective to prevent overfitting and to upgrade modelling accuracy. Since Liaw and Wiener (2002) presented 

its applications for classification, it has been widely used and the capability for manipulating spatial data sets was demonstrated. 

GB is an algorithm to exploit residual fitting of model as a kind of boosting approach and has been known as the classifier 

with high precision. We applied both algorithms on PS points screened by the mask through the spatial analyses (see the 

Section 3.1). As a result, it was observed that the outputs by RF have significant problems to detect H-migrations as only 1% 345 

instability points were classified as H-migrations. Therefore we excluded RF results for further analyses. The detected H/V-

migrations in potential LTDPs using GB algorithm were presented in Fig. 8(a), in which, 1034 V-migrations and 245 H-

migrations were detected. Through an overlaying of the potential LTDPs on the strength of spatial analysis mask, some insight 

of undiscovered lava tubes were revealed and shown in Fig. 8(a). First, potential LTDPs around Jeju city area might include 

lots of instability induced by individual building structures rather than the potential lava tubes. The constraints to identify 350 

LTDPs on the undiscovered lava tubes are: 1) it should be distributed as a linear form in the direction of lava flow, which is 

mostly from the cinder cone as the source of lava flows to the coastal line; 2) V/H-migrations must be distributed together; 3) 

the lava tube networks producing LTDPs might cause regional linear deformation.  

Overlaying of H/V-migrations and the NSBAS deformation map is shown in Fig. 8(b). We defined the locations of potential 

lava networks from group A to G as assigned ellipses. The major axis of the ellipse is the estimated direction of the involved 355 

lava flow. The most interesting and distinguished group is B1, which originated from Gama cinder cone to the coastal area, 

has well-distinguished V/H-migrations along a significant subsidence corridor of NSBAS deformation. Around Gama cinder 

cone, there is a 2 km length underground tunnel which was built by Japanese army during World War II (WWII) and starts to 

become unstable. Although some unstable points might be caused by the military tunnel, the spatial extent of group B1 is too 

large to be considered as the consequence of WWII military tunnel. However it is worthwhile noting that more than 700 WWII 360 

military tunnels are widely distributed in Jeju Island and a large number of them are in structural failures and/or not discovered. 

It is the reason we classified the points only within spatial analysis mask defined in section 3.1. Group B2 has also similar 

contexts, such as a subsidence corridor and flow direction from a cinder cone to coastal line. The other obvious potential LTDP 

group is A1, which certainly fits with the direction of a Basalt-Trachyte unit (see Fig. 1(b)) and follows the terminus of a lava 

flow. Since only a small number of lava tubes are identified over there, we proposed an extensive and undisclosed lava tube 365 

network over A1. Group A2 is proposed as a lava tube trail as it very well fits with an independent Basalt-Trachyte lava flow 

unit starting a cinder cone shown in Fig. 1(b). Although the trail of potential LTDPs is not clear, groups D1 and D2 should be 

noticed as the area will soon be reconstructed to the international airport. Groups E and C are coincided with the trails of two 

biggest lava tunes, Majang (length > 7.4 km)-Yunchen (length > 2.4 km) cluster and Bilremot (length > 11.7 km) cave 

respectively. The average deformation pattern of detected V-migration shown in Fig. 8(c) is very similar to that of the cave-370 
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road-crossing points in Fig. 7(a) than other training data. The average H-migration pattern in Fig. 8 (d) is quite different from 

H-migration training vectors but has steady increase as expected.  

 

 

 375 
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Figure 8: Distribution of LTDPs on (a) spatial analysis mask and Pahoehoe lava flow and (b) SBAS regional deformations 

together with estimated clusters implying potential lava tube networks. (c) PS average deformation and standard deviation of 

V-migration points and (d) PS average deformation and standard deviation of H-migration points. 

 380 

Regarding the instability points around Manjang (E) cave, it is corresponding to the exit of Manjang cave which has shallow 

double cave structure as shown in Fig. 9(a). Groups F1-F3 demonstrates the high density of potential LTDPs and alignment 

with lava flow directions from cinder cones to coastal line. Groups G1 and G2 are ambiguous as their alignments do not fit 

with lava flow directions in that area. Although regional subsidence and/or alignment with corresponding lava flow was not 

observed, a constant attention of the potential LTDP distribution in north-eastern side is still required. Along the north western 385 

coastal line, there are some lava tubes which are in collapsing risks due to their shallow cavity and proximity to road-crossing 

(see the Geamcheon and Gamnamdap caves shown in the laser scanned data respectively given in Fig. 9(b) and (c)). The 

potential LTDP distributions in the north western coastal line are only limited along the coastal line and irregularly distributed. 

This could be explained by the deeply-incised caves in inland side to limit the InSAR observation capability in comparison to 

Geamcheon and Gamnapdap caves. Note that the deep incised caves are located in the inland area from Geamcheon cave. The 390 
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issue now being raised is whether these 3D cave structures make deformations as observed in InSAR analyses. Since numerical 

modelling, for instance the FEM using 3D cave data and estimated tensile stress, is beyond the scope of this study, clues can 

be found in precedent studies regarding tunnel stability. In particular, Yang and Long (2015) established the relationship 

between the dimensions of collapsing parts which are defined with L1, L2 and radius R on circularly approximated cavity (see 

Fig. 9 (d)), stresses and material properties. Thus the displacement induced by collapse will be dominated by the vertical way 395 

but mixed with the horizontal deformations which are applied symmetrically at the centre of the approximated circular as 

shown in Abdellah et al. (2018). Therefore H-migrations detected by PS InSAR mainly contained part of horizontal 

deformations directed toward the SAR sensor, whereas the detected V-migrations represented mainly vertical deformations 

combining horizontal deformations away from SAR sensor position. The magnitude of deformations around circular tunnels 

are very much different according to the applied tensile stress, materials properties (hard/soft rocks and soil) and the dimension 400 

of tunnel. If the tunnel depths are limited to very shallow (< 10-20 m), the deformation values calculated in the case studies 

vary from sub-millimetre depending on the scenarios (Paternesi et al., 2017; Abdellah et al., 2018; Zhang and Li, 2009). 

However, the fractures in the weathering wall of the lave tubes and the relatively weak brittle strength of basaltic rocks 

combined with anthropogenic stresses certainly cause sufficiently high deformations which can be detected by InSAR 

observations. 405 

InSAR LOS migrations can be expressed using the quantities in Fig. 9 (d) and the relationship by Fialko et al. (2001) as 

 

𝑑𝑖𝑠𝑝௟௢௦ ൌ െ𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛼𝑑𝑖𝑠𝑝௛ ൅ 𝑐𝑜𝑠𝜃𝑑𝑖𝑠𝑝௩  (4) 

 

where displos is LOS displacement, disph, and dispv are horizontal and vertical displacements, θ represents the incidence angles 410 

and α is the heading angle. 

Thus, the observed displos can be estimated using the angles in Table 1 and eq. (4) in the case of Fig. 9 (d). 

 

H-migration= 0.694dh-0.719dv 

V-migration=-0.694dh-0.719dv  (5) 415 

 

It explains the relatively small H-migrations compared to the V-migrations even on the same cavities.  
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Figure 9: Examples of 2D/3D caves models and instability check. (a) The 2D profile of Manjang caves and the location of 420 

detected LTDPs on the terminus of tube which is taken from Ahn and Hwang (2009). (b) 3D LiDAR map in Geamcheon cave 

as a typical collapsing cave around road cross. Note the elevations in this cave range from 1-3 meter above mean sea level. (c) 

3D LiDAR map in Gamnamdap cave with thin topography. (d) The diagram of expected deformations on cross sectional lava 

tube (H: depth of cave, R: Radius of approximated circular on lava tube, L1 and L2: the lengths of upper and lower parts of 

collapsing part, dh and dv: hypothesized H/V deformations at certain collapsing points). Refer Fig. 10 to identify cave locations.  425 

 

After all, we identified a group of potential LTDPs using InSAR observation and spatial analyses. To prove the reliability of 

this approach, we employed road-crossing survey by Son (2016) to measure the known collapses of lava tubes. Among 27 

ongoing collapses of lava tubes in this survey, 14 caves have LTDP within the buffer zones built by their length and 7 of them 

have both H-V migrations (referred to Fig. 10).  430 
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Figure 10: The distribution of detected deformations and the buffer zones around collapsing lava tubes. Buffer zone was given 

by the cave length. 

Considering some deep instabilities which would not be revealed as the surface topographic deformations, the estimated PS 435 

measurement in this study is capable of discriminating LTDP with considerable accuracy. However, the concern remained 

unsolved in this study is to eradicate the false/pseudo LTDPs which can lead to wrong conclusions regarding the spatial 

distribution of lava tube networks. The detailed validation using planned GPS and InSAR survey, or perhaps employing corner 

reflector to be synchronized observation is necessary in the future study. 

 440 

5. Conclusions 

 

The geological importance of lava tube in Jeju Island has been noticed with the discovery of exterritorial lava tubes in Moon 

(Kaku et al., 2017), Mars (McGown et al., 2002), Io (Schenk and Williams, 2004) and their habitable environments. However 

the risk caused by such geological environment is not regularly monitored. Being a testbed of risk assessment, the lava tubes 445 

and the undisclosed lava tube networks in Jeju Island have been investigated. Along with the construction of the second 

international airport located in western Jeju, a significant concern on the risk imposed by the instability of the hidden lava tube 

network was raised. To address the issue, this study conducted InSAR campaign and subsequent machine learning applications 

together with spatial analyses of geological contexts. The discovered LTDPs demonstrated a plausible distribution to be 

classified as the instabilities on the undiscovered lava tube networks based on their peculiar patterns confined on thin corridors 450 
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and deformation behaviours. However, some false/pseudo LTDPs still remained due to the instabilities by other artificial 

structures and regional condensations. 

 

The lessons learned from this study are summarized as follows. First, the study elucidates a procedure to spot shallow lava 

tube networks and their imposing risks. However, the outcomes also demonstrate that the demand to fuse ground works such 455 

as GPS and corner reflector over suspected deformations to clarify InSAR outcome. The future InSAR missions with the better 

penetration depth such as L-band NASA-ISRO Synthetic Aperture Radar (NiSAR) (Alvarez-Salazar et al., 2014) and P-band 

BIOMASS missions (Scipal et al., 2010) will be greatly useful as those can detect subsurface deformation signals. The 

combination with structural analyses to classify InSAR signals using estimated instability is a highly useful approach and will 

be the destination of future improvement of this study. Second, beside the proposed/existing methods to discover 460 

terrestrial/extra-terrestrial lava tunes, such gravitation data sets (Chappaz et al., 2017), ground penetrating radar (Kaku et al., 

2017), morphological analyses and spotting of skylight (Cushing et al., 2007;Whittaker, 2012), we proved InSAR survey is an 

effective tool to detect lava tube networks. Considering proposed planetary InSAR missions (Carrer et al., 2018; Rosen et al., 

2001; Ghail et al., 2016; Kim et al., 2015), it has the potential to be applied to lava tubes on the planetary surface. 

 465 
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