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Abstract. The Tunisian coast has been affected in the past by many events of extreme marine submersion (storms and 

tsunamis). A high-resolution study along two sediment cores “GEM3” and “GEM4” taken from the lagoon of the Ghar el Melh 

was performed to identify the different paleo-extreme events and to reconstruct the paleo-environmental changes of the North-

eastern part of Tunisia during the Late Holocene. A very high-resolution of analysis (sedimentological, granulometric, and 

geochemical) was applied on these cores. These cores were also dated with isotopic techniques (137Cs, 210Pbex, 14C) and the 15 

outcomes reveal fives phases of paleoenvironmental changes of this lagoonal complex. The first phase dated from -275 to 200 

Cal AD characterized by a high percentage of Silt and Clay (fine particles) indicating a protected lagoon. The second phase 

synchronous with the Dark Age Climatic Period dated from 200 to 1100 Cal AD, is marked by an increase in the coarse 

sediment and could be explained by a weakening of the sandy barrier due to an increase of storm events. The third phase is 

characterized by a return to a closed lagoon during the Medieval Warm Period (from 1100 to 1690 Cal AD). The fourth phase 20 

dated from 1690 to 1760 Cal AD coincide with “the Little Ice Age” and is marked by one specific sedimentological layer 

attributed to a marine submersion event. This layer could be associated to the 1693 tsunami event in southern Italy or an 

increase of extreme storm events. The fifth phase covering the last 250 years present a reclosing of the lagoon.  

1 Introduction 

Coastal storms or tsunamis are among the most dangerous events that caused significant human and economic losses along 25 

coastal regions (Seisdedos et al., 2013). One of the strongest destructive and dangerous recorded meteorological event was 

that of the hurricane Katrina in Florida in United States in 2005. It engenders more than $100 billion of damages, killed around  

2000 people and touched 90000 square miles of the United States (Phadke, 2005). The 2004 Sumatra tsunami was consecutive 

to a mega-earthquake with Mw9.2. This tsunami generated high waves up to 30 meters and induced 250.000 dead peoples (Lay 

et al., 2005). This tsunami was considered by many Indonesian peoples as the most disastrous event compared to other major 30 
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past catastrophic events that had occurred in 1797 and 1833 (Natawidjaja et al., 2006). 

The Mediterranean basin is defined as an “Hotspot” of the climate change (Lionello and Scarascia, 2018 ; Pausas and Millán, 

2019). According to the IPCC (2014), the coastal erosion and submersion is one of the results of an elevation of sea-level due 

to the global warming. The Mediterranean Sea surface temperature has increased by almost 1°C since 1980 and expected to 

rise further by 2.5 °C in the next seventy years (Jacqueline Karas, 2006). In this context, the Mediterranean coastal zones will 35 

be probably more vulnerable to the climatic extreme events (storms and medicanes), and more exposed to coastal erosion 

processes and flooding (Seisdedos et al., 2013). The Mediterranean basin is also characterized by a high seismic activity due 

to its geographical position between the Eurasian and African plates (Papadopoulos and Fokaefs, 2005; Papadopoulos and 

Baskoutas, 2009). The earthquake of the 21st of May 2003 that happened in the Western Mediterranean Sub-basin precisely in 

Boumerdes (Algeria) with a magnitude of about 6.8 has generated a tsunami (Belazougui, 2008). The low wave generated has 40 

a height < 25 cm and propagated from the Algerian coast toward the Murcia Province. These waves have not caused any 

evident damages (Álvarez-Gómez and Gonzalez, 2011). However, in the Eastern Mediterranean sub-basin, the Crete 

earthquake (21st July 365 AD) induced a tsunami that propagated across the region to reach Alexandria and has hit the Cretan 

coast causing extensive damage (François, 1984).  

Due to the absence of data covering a sufficiently long time period, the recent instrumental data, and textual archive on extreme 45 

events (storm and tsunami) in Tunisia do not allow us to determinate any evolution in time. According to Morton et al. (2007); 

Dezileau et al. (2011); Sabatier et al. (2012) and Degeai et al. (2015), these sedimentary inputs coming from the sea during 

marine submersions, will permit the study of these extremes events over a longer period of time. A historical catalog of 

tsunamis and storms is being built in the Mediterranean region (e.g., Goldfinger et al., 2013), but there is a very few information 

on the Tunisian coasts. The aim of this study is to reconstruct the evolution of Ghar el Melh lagoon and to identify the different 50 

extreme events (storms or tsunamis) using a multi-proxy analysis based on geochemical and sedimentological approaches of 

two sediment cores GEM3 and GEM4 collected from the lagoon of the Ghar el Melh in the North-western part of the Gulf of 

Tunis. 

2 The study site of Ghar El Melh  

2.1 Geological Sitting  55 

This work focuses on the Ghar el Melh lagoon situated in the Northeast of Tunisia. This lagoon is called also “the Porto 

Farina”. It has an elliptic shape and approximately a surface of 28.5 km2. Its average depth is about ~0.8 m (Romdhane, 1985; 

SCET-ERI, 2000; Moussa et al., 2005). This lagoon is directly limited in the north side by a mountain range called “Jbel 

Nadhour” (325 m). This mountain is composed of a marine Pliocene material (Figure 1). The lagoon is bordered by marshy 

grounds to the west and to the south. While in the eastern side, it was separated from the sea by a sandy barrier, with a local 60 

opening (El Boughaz) allowing a permanent hydraulic communication (Oueslati et al., 2006). According to Paskoff (1994), 
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the lagoon was considered as a vestigial and remaining part of the Utique Sea that was formed during the last postglacial 

transgression since 6000 years ago. Progressively, this small gulf has been disconnected from the Utique Sea, due to Medjerda 

fluvial deposits (Paskoff and Trousset, 1992). This caused  a progressive reshaping of the lagoon to its present morphology, 

which could be attributed to an association of the shape of the coastline and alluvium deposition from the Medjerda River 65 

(Moussa et al., 2005).  

2.2 Climatological and hydrological settings 

The Northeast of Tunisia is characterized by a typical Mediterranean climate with hot arid summer and rainy winter 

characterized generally by heavy rainfall periods and floods. The rainfall mean annual in the lower valley of the Medjerda is 

around 500 mm.yr-1 (Oueslati, 2004). Furthermore, in this study area, the rainfall rate is very variable. The mean winter 70 

temperatures are around ~11 °C. The highest precipitation occurred mainly between November and December with an average 

of 248 mm (INS, 2001). The monthly average values sometimes exceed 100 mm (Beni Atta Station in December) and never 

fall below 60 mm (MEAT, 2001). The high temperatures are observed in August with mean values of ~27 °C. In other hand, 

the  salinity in the lagoon depends on the hydrological balance and varies from 36 g/l in winter to 51 g/l in summer due to the 

highest evaporation rate 1450 mm/year (Added, 2001; Moussa et al., 2005; Oueslati et al., 2006).  75 

3 Material and methods   

3.1 Sampling location and sediment samples  

Two piston cores were collected in 2012 in the Northeast of Ghar el Melh lagoon. These cores are 126 cm (GEM4) and 98 cm 

(GEM3) length (Figure 1). They were manually sampled according a transect East West into the lagoon (∼200m from the 

sandy barrier for GEM3 and ∼400m for GEM4). In the laboratory, the two cores GEM4 and GEM3 were divided, 80 

photographed, and described in detail. Before granulometric and geochemical analyses, the cores were split into 1 cm vertical 

sections. Moreover, 29 surface sediment samples were collected from the Medejerda watershed to the sandy barrier of Ghar el 

Melh to assess the origin of the lagoon sediment: (i) 6 samples comes from the Medjerda River (Gr01 to Gr06), (ii) 12 samples 

from different small affluents located in the northern and western part of the lagoon (from Gr07 to Gr18) and (iii) 11 samples 

from the sandy barrier (Gr19 to Gr29) (Figure 1). For all samples, the position was registered using a GPS "GPSmap 60, 85 

Garmin". In the laboratory, granulometric and geochemical analysis were performed on these surface samples. 

3.2 Sedimentology and geochemistry analysis 

To determinate the distribution of grain size a particle Size analysis was adopted by using a Beckman Coulter© LS 13 320 

(Geosciences Montpellier). Due to the high concentration of shells fragments (>200 µm), every sample was sieved at 150 μm 

before analyses. An ultrasounds were used to avoid particles flocculation, after the entrance of sediments into the fluid module 90 
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of the granulometric. We used an XRF core scanner Niton XL3t to analyzed sediment cores and surface samples by X-ray 

fluorescence (XRF). In order to avoid desiccation of the sediment and contamination of the XRF measurement unit, samples 

had to be covered with an Ultralean film. The geochemical analysis from XRF measurements was executed in the mining type 

ModCF proline mode. These semi-quantitative elemental measurements were performed along with the sediment core every 

1 cm. The elemental concentrations obtained are expressed in ppm or percentage values. To evaluate the analytical error and 95 

the precision of measurement, international powder standards (NIST2702 and NIST2781) were adopted, it was between 10 

and 25% for the “Si”, and lower than 5% for the “Ca”, “Sr”, “Ti”, “Fe”, “Zn”, “Ba”, and “Rb”, and between 5 and 10% for the 

“Pb”, “Zr”. 

3.3 Chronological framework 

To determinate the chronology of the two cores GEM4 and GEM3, an accelerator Mass Spectrometry (AMS) 14C dates on 100 

only one mollusk species (Cerastoderma glaucum) associated with the using of 210Pb and 137Cs measurements were adopted. 

In fact, the 137Cs and 210Pbex activities analysis was measured by gamma spectrometry using a CANBERRA Broad Energy Ge 

(BEGe) detector on fine sediment (fraction < 150 µm). The 210Pbex dating is founded on the determination of the 210Pb excess 

activities preserved in the sediment of cores. The utilize of this natural radionuclide 210Pb to indicate  sedimentation rate is 

now a well-established technique (Goldberg, 1963; Krishnaswamy et al., 1971a; Robbins and Edgington, 1975). The dating of 105 

137Cs was released following the procedure of Robbins and Edgington (1975).   

The 14C analysis was conducted at the labratoire de Mesure C14 (LMC14) on the ARTEMIS accelerator in the French CEA 

institute (Atomic Energy Commission) at Saclay, France. These 14C analyses were realized with the classical procedure 

illustrated by Tisnérat-Laborde et al., 2001. The radiocarbon ages were transformed into calendar ages utilizing the Marine 

13 curve (Reimer et al., 2009). The radiocarbon ages of marine and lagoonal organisms are generally ancient than the 110 

atmospheric 14C ages and have been calculated and modified by subtracting the « reservoir age » (Zoppi et al., 2001; Siani et 

al., 2001; Reimer and McCormac, 2002; Sabatier et al., 2010 ; Dezileau et al., 2016). 

4 Results 

4.1 Characterization of different detrital surface sources 

To better characterize the geochemistry of sediment sources in the lagoon of Ghar el Melh, we analyzed the geochemical 115 

results obtained for the sediment samples with a statistical method called principal component analysis (PCA) (Figure 2). This 

statistical approach was applied to distinguish the different surface sediment sources in relationship with the geochemical 

processes or the chemical elements proprieties. The PCA dataset input consists of 29 samples that were analyzed for their 

major and trace elements (“Ca”, “Sr”, “Fe”, “Rb”, “Ba”, “Ti”, “Mn”, “Zn” and “Si”) and were presented as elemental 

concentrations (9 variables). The two first factorial factors represented in the PCA diagram present (Figure 2) 72.25% of the 120 
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entire variance of the dataset. The factor 1 accounts for 61.12% of the entire variance.  Factor number 1 is marked by a positive 

loading for terrigenous elements “Rb”, “Ti”, “Ba”, “Mn”, “Fe”, and “Zn”. Whereas the “Ca” and “Sr” present a modest 

positive loading and are inserted in factor 1. Factor 2 represents 11.13% of the global variance. It indicates positive loading 

for “Si”, “Mn”, “Ti”, “Ba”, “Zn”, “Rb”, and “Fe”, whereas “Sr” and “Ca” have negative loadings. Based on these statistical 

analyses of geochemical data, three distinct sources of sediments were identified (Figure 2): (i) Terrigenous or Alluvial source 125 

(“Mn”, “Fe”, “Zn”, “Ba”, “Rb”) mainly discharged by rivers during floods. (ii) Marine source “Si” such as sands coming from 

the sandy barrier coastal during marine submersion; (iii) and a biogenic origin (“Sr” and “Ca”).  

According to this funding, the sedimentation in the lagoon of the Ghar el Melh is generally manifested by marine and terrestrial 

inputs. Indeed, the geographic distribution (Figure 3) of granulometric results indicates that the high percentage of coarse 

sediments "sands" (% >75%) are from the sandy barrier, whereas, sediments of the Medjerda watershed are distinguished by 130 

a very high percentage of fine sediments (Silt and Clay). Medjerda River and the affluent around it constitute the main origins 

of fine fractions (Clay) in the Ghar el Melh lagoon. The mapping of terrigenous elements such as Silicon, Titanium, and Iron 

contents in surface sediments confirm this distinction of detrital origins around the Ghar el Melh lagoon. High “Si” values 

(>110000 ppm) distinguish especially the sandy barrier. Moreover, the highest contents of Titanium “Ti” (> 1400 ppm) and 

Iron “Fe” (> 17500 ppm) are retrieved in sediment from the watershed of the Medjerda (Figure 4). This difference in the origin 135 

of the terrigenous inputs in Ghar el Melh lagoon could be explained by the fact that, during floods events, finer sediments are 

coming from the Medejerda watershed whereas, at the time of marine storms, coarse marine sand inputs are from the barrier. 

Therefore, the geochemical analysis confirms the results of granulometric analysis by showing that the sedimentation of this 

lagoon was controlled by marine and continental contributions. 

4.2 Downcore results  140 

4.2.1 Age model 

The chronology of the GEM3 and GEM4 cores has been established using the 14C dates and also the137Cs and 210Pb 

measurements on monospecific mollusk shell samples and bulk sediments, respectively. In the uppermost 30 cm of the two 

cores, the measured 210Pbex values range in GEM3 from 287.47 to 2.29 mBqg−1 and f in GEM4 from 253.67 to 1.01 mBqg-1. 

In general, the down-core distribution of 210Pb excess values follows a relatively exponential decrease with depth. Based on a 145 

model Constant Flux, Constant Sedimentation Rate (CFCS) (applicated by Goldberg, 1963; Krishnaswamy et al., 1971), the 

210Pb data determinate a sedimentation rate of 0.7 mm year−1 for GEM3 and 0.6 mm year−1for GEM4. The distribution profile 

of 137Cs activity shows for the first 10 cm (Figure 5) a maximum value at 3.5 cm in GEM3 and 3 cm in GEM4. This can 

represent the period of the utmost radionuclide fallout in the Northern Hemisphere which was related to the weapons atomic 

peak testing in 1963. The 137Cs obtained sedimentation rate is about ∼0.7 mm year−1 for the GEM3 which is slightly higher 150 

than that obtained for GEM4 (0.6 mm year−1; Figure 6). The distribution profile of the total “Pb” shows that the beginning of 

the industrial pollution in 1892 (Latour, 2019) is situated at 9 cm, indicating a sedimentation rate of about 0.75 mm year−1 for 
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both cores (Figure 6). Thereby, sedimentation rate of the GEM3 core calculated using the 137Cs, 210Pb and total “Pb” show 

similar values around 0.75 mm year−1, which are slightly higher than that for GEM4 (mean value of around of ∼0.6 mm year−1). 

The conventional AMS-14C measurements were performed using mollusk shells (Cerastoderma glaucum) on eight control 155 

points for GEM3 (Table 1) and seven ones for the GEM4 (Table 2). Taking into account both the radiocarbon and 210Pbex dates, 

the local 14C reservoir age in the Ghar el Melh lagoon was determined. According to the method of Sabatier et al. (2010), the 

evaluation of the modern 14C reservoir age was conducted by comparing an age obtained from 137Cs and 210Pb data, and from 

geochemical analysis of mining-contaminated lagoonal sediments with an AMS14C age of a pre-bomb mollusk shell. 

According to Reimer et al. (2013), the Sea surface reservoir age R(t) for the recent shell (SacA44506) was measured by 160 

subtracting the atmospheric 14C value determined for the historical date 1845 AD (114±8 14C years) from the measured 

apparent 14C ages of the shell (450±30 14C years, Table 3). This determines an R(t) value of 363 years. The deviance from 

the total mean reservoir age (ΔR) is then calculated by subtracting the marine model age value obtained for 1845 AD (453±23 

14C years) from the measured apparent 14C age of the mollusk (450±30 14C years; Table 3). The calculated ΔR of around 2 

years (Table 3) is thus, adopted. The reservoir age of this lagoon is similar to the marine reservoir age. Finally, the age model 165 

of GEM3 and GEM4 cores was established by using the OxCal 4 on 14C ages and 210Pbex /137Cs average sedimentation rates. 

The 14C mean sedimentation rate calculated is then about ∼2.5mm year−1 (Figure 7A). 

As the GEM4 indicates a level of erosion or inactive deposition process named “a Condensed area” observed from 59 to 72 

cm (between 0 and 1000 Cal AD/BC), which would instigate an error in the obtained age model (Figure 7B), the discussion 

will be focused only on the ages estimated from GEM3 core. The age correction has been obtained by the correlation between 170 

the Strontium profile of the two cores GEM3 and GEM4. 

4.2.2 Lithological, granulometric and geochemical studies of GEM3 and GEM4 cores 

Two sedimentary cores were collected in the northeastern of Ghar el Melh lagoon. They contain fine sediments (clay and silt) 

interbedded with coarse-grained layers formed by mollusk fragments and siliciclastic sand. The sedimentary succession in 

the GEM3 core is very comparable to that presented in GEM4 (Figure 8). Whereas, the thickness of sandy layers is slightly 175 

different between the two cores. This could be attributed to the geographical position of core GEM3, which is closer to the 

sandy barrier (∼200m) than core GEM4 (∼400m). 

The GEM3 and GEM4 sediment cores of 97 and 126 cm long show visual variation in the sediment composition. Lithological 

description of these two cores highlighted three distinct sedimentary facies (Figure 8): The Basal unit (1), situated between 

126 - 67 cm in GEM4 and between 97 - 85 cm in GEM3, is composed generally of a lighter grey silty layer and shells. At the 180 

base (the last 3 cm for the GEM3 and the last 13 cm for the GEM4) the lithological composition of this unit is characterized 

by a very thin fine sandy layer. For the GEM3, the transition between unit (1) to unit (2) is defined by a sharp contact; The 

Middle Unit (2), situated between 85 -63 cm in GEM3 and between 66 – 60 cm in GEM4, is typically composed of a lighter 
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grey sandy layer with a combination of shell fragments and sands; The Upper unit (3): <60 cm in GEM4 and <63 cm in 

GEM3,is composed mainly of organic-rich clay and shells with the intercalation of a sandy layer situated between 36 and 26 185 

cm in GEM3 and between 30 and 24 cm in GEM4 (Figure 8). This sand layer is usually characterized by coarse sediments 

with light colours and also dominated by shell fragments. This coarse grain size layer intercalated in the mud sediments 

indicates an “energetic” event, relative to the background sedimentation. It is probably linked to washover event and marine 

incursion during an intense event such as a storm or tsunami. 

The granulometric analysis shows that the silty clay is the most abundant fraction in our sediment cores (Figure 8). However, 190 

sand is dominant at two levels. The first layer occurred between 86 and 64 cm in GEM3 and between 60 and 65 cm in GEM4 

whereas the second one is observed from 35 to 26 cm in GEM3 and from 30 to 24 cm in GEM4. These two layers are 

characterized by the dominance of a sandy quartz material and shell fragments. 

The geochemical analysis of GEM3 and GEM4 cores performed using an XRF core scanner, have detected 21 chemical 

elements (“Zr”, “Si”, “Sr”, “Rb”, “Th”, “Pb”, “Zn”, “Cu”, “Ni”, “Fe”, “Mn”, “V”, “Ti”, “Sc”, “Ca”, “K”, “S”, “Ba”, “Cs”, 195 

“Te”, and “Sn”) above the limit of detection. Among these elements, we choose to represent in Figure 8 only those with a 

significant down core variation which are “Si”, “Ca”, “Sr”, and “Ti”. The Silicon “Si” will represent the marine geochemical 

pole, while “Ti” represents the terrigenous one. According to the granulometric and geochemical results of surface samples, 

the “Ti” is associated with the silt-clay fraction whereas the “Si” is associated with the sandy fraction. Furthermore, the highest 

Strontium “Sr” and Calcium “Ca” values in the two cores are found to be related with the silt-clay fraction between 62 and 33 200 

cm in GEM3 and between 60 and 30 cm in GEM4. The “Sr” and “Ca” represent a biogenic geochemical pole linked to marine 

shells. These results are in agreement with those acquired by the statistical method (PCA) in surface samples. 

5 Discussion 

According to our granulometric, geochemical results, we can divide the Late Holocene lagoonal history into five phases that 

record the connection between the lagoon and the sea in relation to the sandy barriers evolution. The different phases can be 205 

described as follow: 

The first phase, dated from -275 to 200 Cal AD, is marked by a high percentage of fine sediments (about 70 % of Silt) (Figure 

9). Our geochemical results show a relatively high concentration of terrigenous elements “Ti” (around 250 ppm) and “Fe” 

(around 2500 ppm). This predominance of the fine fraction, rich in Ti and Fe, means that the lagoon is filled in sediments 

coming from the Medjerda River. The presence of fine material suggests that the hydrodynamic current in the lagoon is low, 210 

we have a protected lagoon with a sandy barrier well-constructed. This accumulation of fine sediment could also indicates a 

higher contribution of sediments from Medjerda River. Indeed, this interval corresponds to a more humid phase (Roman 

Climatic Optimum) characterized in Garaet el Ichkel (North of Tunisia) by a stabilization phase of vegetation (Stevenson et 

al., 1993).  
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The second phase has started at 200 Cal AD and finished at 1100 Cal AD. Our granulometric and geochemical results 215 

demonstrate that the sedimentation of Ghar el Melh lagoon during this period was mainly controlled by a marine contribution. 

This phase is marked by a decrease in the percentage of silt, and a rise in the percentage of sand (about 80 %). This time 

interval shows also the presence of a high amount of Silicon (Si >100000 ppm) (Figure 9) which stipulate an enhance in the 

sandy material supply. The decrease in the silty-clay fraction (10%) is can be related to a dilution by high marine inputs. The 

dominance of coarse sediment, rich in Si, could be explained by a weakening of the sandy barrier due to an increase of storm 220 

events. Degeai et al. (2015) and Sabatier et al. (2012) have clearly recorded a period of higher storm activity from 400 to 800 

cal yr AD in the occidental part of the Mediterranean area. This period named Dark Age Cold Period coincides with the North 

Atlantic cooling phase known as Bond Event 1 (Bond et al., 2001). Dezileau et al. (2011) and Sabatier et al. (2012) have 

demonstrated that intervals of an enhance in storm activity in the Western Mediterranean area seem to be well related to the 

cold periods of the Holocene. During these cold periods, the sea ice was prolonged over the North Atlantic basin southward 225 

especially during winter (Lamb, 1995). Dezileau et al. (2011, 2016) hypothesized that this extends propose a   rise in thermal 

gradient, leading to an enhanced lower tropospheric baroclinicity over a large Central European-Mediterranean domain. This 

mechanism related to a southward movement of storm track suggests an enhance of storm activity in the Western 

Mediterranean Sea, in accordance with simulation  (Raible et al., 2007). 

The third phase, dated from 1100 to 1690 Cal AD, is marked by a decrease of sandy material while the highest percentage of 230 

clay (about 30%) (Figure 9) of the whole record are observed. This kind of sedimentation is typically associated with processes 

of decantation in the lagoon (Liu and Fearn, 2000; Donnelly et al., 2004). Geochemical results determinate an enhance in the 

concentration of terrigenous elements “Ti” (around 400 ppm) and “Fe” (around 3500 ppm) (Figure 9) during this interval. This 

increase in the silty-clay fraction is probably due to a decrease of storm activity and/or an increase of fine sediments transported 

into the lagoon by rivers during periods of higher runoff. During this third phase, we have a protected lagoon again with a 235 

sandy barrier well-constructed. 

The fourth phase has started at 1690 Cal AD and finished at 1760 Cal AD. This phase was characterized by a high deposition 

of sand, about 75 % of the total sediment (Figure 9), indicating an opening of the lagoon (Figure 10). This time interval was 

characterized by a sudden decrease of “Sr” (around 200 ppm) and “Ca” (around 55000 ppm) concentrations (Figure 9). The 

presence of coarse sediments can be explained by a higher marine influence. Interestingly, this coarse-grained layer is recorded 240 

in both cores (from 26 to 35 cm for GEM3 and from 24 to 30 cm for GEM4) collected at 200 m and 400 m from the sandy 

barrier respectively (Figure 10). Do we have had a major event? The relationship between the intensity of a sea extreme event 

(storm or tsunami) and the grain size of the overwash sand accumulated in the lagoon is very complex (Dezileau et al., 2011). 

Whereas, a positive relationship has been proved between storm-surge height, storm intensity, and the grain size of sands. 

Donnelly et al. (2001) revealed that outstandingly higher storm surges has been caused by historic and recent major hurricanes 245 

over the Atlantic coast than winter storms and minor hurricanes and demonstrated during the past several centuries, that only 

the major hurricanes left a regionally consistent and stratigraphically distinct record of overwash sand layers in the deposits of 
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the coastal marshes. Thus, this period could be a sign of an enhance of intense storm activity. Indeed, this interval corresponds 

to the historic period called “Little Ice Age” (LIA) which coincides with the North Atlantic cooling phase known as Bond 

Event 0 (Bond et al., 2001). (Dezileau et al., 2011)); (Sabatier et al., 2012)); (Dezileau et al., 2016)) and (Degeai et al., 2015)) 250 

have clearly recorded a period of higher storm activity between 1400 and 1800 cal yr AD in the occidental region of the 

Mediterranean Sea. This sand deposit could also be associated to a tsunami deposit, a tsunami causing a marine submersion 

and an opening of the sandy barrier. This period is in line with the documented Sicilian tsunami that occurred in 1693 CE.  

Due to its geographic position nearby to Sicilian coast, we thought that probably, Tunisian coast and therefore Ghar el Melh 

lagoon can be sensitive to the 1693 tsunami. The sedimentary characteristics of tsunamis or storms deposits are almost similar  255 

((Hawkes et al., 2007); Morton et al., 2007; Kortekaas and Dawson, 2007; Mamo et al., 2009). Regarding the diagnostic 

characteristics of storm or tsunami deposits, several studies have pointed out many hypotheses and determinate that their 

distinctions are very controversial (Tappin, 2007; Engel and Brückner, 2011; Sakuna-Schwartz et al., 2015). Considering the 

available data, the hypothesis of tsunami or storm origin for this recorded extreme event remains open. Deciphering the origin 

of this event requires further investigations, such a modeling of tsunami wave propagation for example.  260 

The fifth phase dated from 1760 to 2012 Cal AD, is characterized by fine sediments (Figure 9). This fifth phase shows a 

protected lagoon (Figure 10) and suggesting that no catastrophic intense sea events have struck Gar El Melh lagoon during 

this last phase. 

6 Conclusion  

To identify the paleo-extreme events (storms or tsunamis) and to reconstruct the paleo-evolution of the lagoon of the Ghar el 265 

Melh, in the Northeast of Tunisia, high resolution of sedimentological, geochemical and geochronological analyses were used. 

This approach gives information about the paleoenvironmental changes of Ghar el Melh lagoon and paleo-extreme events 

since 2300 years. Five phases have been identified: The first phase (from -275 to 200 Cal AD) indicates a protected lagoon. 

The second phase dated from 200 to 1100 Cal AD shows an opening lagoon and more marine inputs. This period was may be 

associated with a more storm activity during the Dark Age Cold Period. The third phase indicates an isolated lagoon and 270 

coincides with the MWP (from 1100 to 1690 Cal AD). The fourth phase “the LIA” dated from 1690 to 1760 Cal AD and shows 

an opening of the lagoon again may be due to an enhance of storm activity or the occurrence of the 1693 tsunami event. The 

fifth phase covered the last 250 years and shows a reclosing lagoon. Even if our records allowed to detect past extreme events, 

it is not possible to differentiate if they are due to tsunamis or storms. Deciphering the origin of these events require further 

investigations.  275 
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Figure 1: Maps of geographic setting of the Ghar el Melh Lagoon. (A) Position of the studied region in the Northeastern 405 
Mediterranean (Ocean Data View 2013). (B) Topographic map of the lagoon and the emplacement of the different surface sediment 
samples preleved from the coastal plain of the Medjerda (Created by Radewane Hout using Arcgis). (C) Topographic map of the 
Ghar el Melh lagoon and its surroundings (e.g © Google Earth). (D) Geological maps of the Medjerda watershed ((a) Recent alluvial 
soils (b) Slope deposits (c) Marine Quaternary (d) Villafranchienen (e) Pliocene (f) Continental Pliocene (g) Upper Miocene (h) Flyche 
de Kchabta (i) Lower Eocene (j) Maastrichtian (k) Senonian (l) Cenomanian (m) Albian (n) Aptian (o) Barrenian  (p) Valanginian-410 
Hautrevian (q) Triassi))  (Geological Map; Paper n ° II of Bizerte at 1/200000 modified from Samaali Hamouda, 2011). 
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Figure 2: The different surface sediment sources from the Medjerda watershed and Ghar el Melh lagoon obtained by using a statistic 

model “A Principal component analysis” (PCA). 415 

 

Figure 3: (3A): Topographic maps of the sand, Silt, and Clay percentage distributed in the Medjerda watershed and around the 
lagoon of the Ghar el Melh (Created by Radewane Hout using Arcgis). (3B) Topographic map of the two cores and the different 
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sediment samples collected from Ghar el Melh lagoon and its surroundings (e.g © Google Earth). (3C): Particle size distributions (ϕ 
< 2000 μm) of representative samples around the Ghar el Melh lagoon. 420 

 

 

 
   

Figure 4: Topographic maps of the Iron (Fe), Titanium (Ti) and Silicon (Si) contents in the coastal plain of Medjerda and around 425 
Ghar el Melh lagoon (Created by Radewane Hout using Arcgis). 

 

Figure 5: Distributions profile of 210Pbex, Pb and 137Cs vs. depth in the GEM3.  The 210Pb data determinate a sedimentation rate of 
0.73 Mm year-1. The activity depth profile Cs present a peak at 3.5 cm, indicating in accumulation rates of 0.7 mm year-1 for the 1963 
depths. 430 

https://doi.org/10.5194/nhess-2020-311
Preprint. Discussion started: 3 November 2020
c© Author(s) 2020. CC BY 4.0 License.



17 
 

 

 

 

Figure 6: Distributions profile of 210Pbex, Pb and 137Cs vs. depth in the GEM4. The 210Pb data present a sedimentation rate of 0.6 
mm year-1. The activity depth profile Cs indicate a peak at 3 cm, determining in accumulation rates of 0.6 mm year-1 for the 1963 435 
depths. 
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Figure 7: (7A): Sediment age-depth for the core GEM3 sampled from Ghar el Melh lagoon (Arrows: sedimentation rates variation). 
The OxCal 4.3 have been used to calculated the age model with 8 samples for 14C dates and only one sample for each Pb and Cs 
dates. (7B): Sediment age-depth for the core GEM3 sampled from Ghar el Melh lagoon (Arrows: sedimentation rates variation). 440 
The OxCal 4.3 have been used to calculated the age model with 7 samples for 14C dates and only one sample for each Pb and Cs 
dates. The blue band determines a period of inactive deposition process or erosion so-called “a Condensed area”. 
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 445 

 

Figure 8: Stratigraphic log and grain size results of GEM3and GEM4 cores compared to the results obtained from the XRF records 
(Titanium, Silicon, Calcium and Strontium) distributing in the two cores, vs. depth. 
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 460 

Figure 9: Evolution of grain size population compared to the results obtained from the XRF records (Iron, Calcium, Silicon, 
Titanium and Strontium) distributing in the GEM3 core, vs. age from -300 till 2012 AD. The two blue bands indicate a period of the 
Lagoon opening. 
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Figure 10: 3D diagram of the lagoon Ghar el Melh evolution since 1690 AD to 2012 AD. (A) Opening of the sandy lido and deposition 
of the washover in the lagoonal sediment (From 1690 to 1760 Cal AD). (B) Reclosure of the lagoon (From 1760 to 2012 Cal AD). 470 
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Tables 

Tab.1. 14C data for shells from GEM3. The model ages were determined by the Oxcal. The 14C ages are calculated and calibrated 480 
using the curve of Marine 13 calibration with reservoir age. 

Labo code  Mollusk used  Depth (cm) δ13C 

(‰) 

14C ages 

(BP) 

Ages (AD) of 

Clam model 

SacA 42679 Cerastodermaglaucum 42 -0.8 565±30 1720 

SacA 42685 Cerastodermaglaucum 54 1.5 930±30 1420 

SacA 42683 Cerastodermaglaucum 60 0.2 1195±30 1210 

SacA 42681 Cerastodermaglaucum 70 0.2 1535±30 850 

SacA 42680 Cerastodermaglaucum 76 1.4 1830±30 590 

SacA 42686 Cerastodermaglaucum 80 0.6 2015±30 360 

SacA 42684 Cerastodermaglaucum 88 -1.1 2350±30 0 

SacA 42682 Cerastodermaglaucum 93 -1.4 2490±30 -200 

 

Tab.2. 14C data for shells from GEM4. The model ages were determined by the Oxcal. The 14C ages are calculated and calibrated 
using the curve of Marine 13 calibration with reservoir age. 

Labo code Mollusk used Depth (cm) δ13C 

(‰) 

14C ages 

(BP) 

Ages (AD) of 

Clam model 

SacA42676 Cerastodermaglaucum 40 -3.7 490±30 1709 

SacA42675 Cerastodermaglaucum 45 1.8 615±30 1621 

SacA42673 Cerastodermaglaucum 58 0.3 1181±30 1160 

SacA42672 Cerastodermaglaucum 72 -2.9 2545±30 -242 

SacA42674 Cerastodermaglaucum 85 -4.3 2660±30 -408 

SacA42678 Cerastodermaglaucum 101 -6.6 2625±30 -525 

SacA42677 Cerastodermaglaucum 110 -4.8 2725±30 -642 

      

 485 

Tab.3. 14C age of recent pre-bomb mollusk samples in GEM3 core. The reservoir age R(t) and  R were calculated using the 210Pbex 
date 

Labo code 210Pb 

age (AD) 

14C 

year (BP) 

Tree-ring 

14C age (BP) IntCall 13 

Reservoir age 

R(t) (year) 

Model age (Marine 

13 curve) 

 R 

(year) 

SacA44506 1845 450±30 114±8 363 453±23 2 
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