

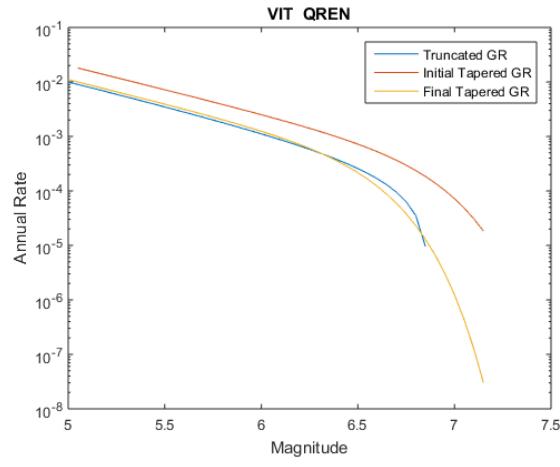
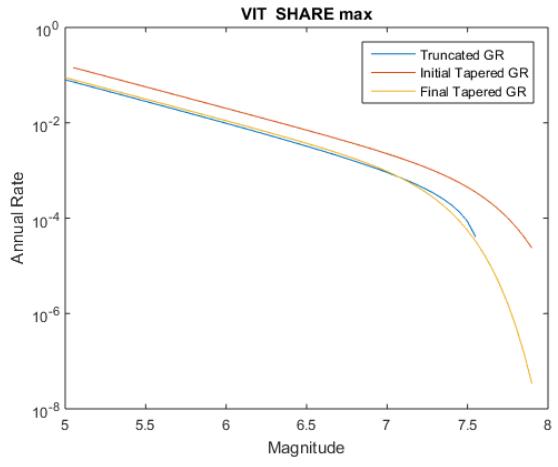
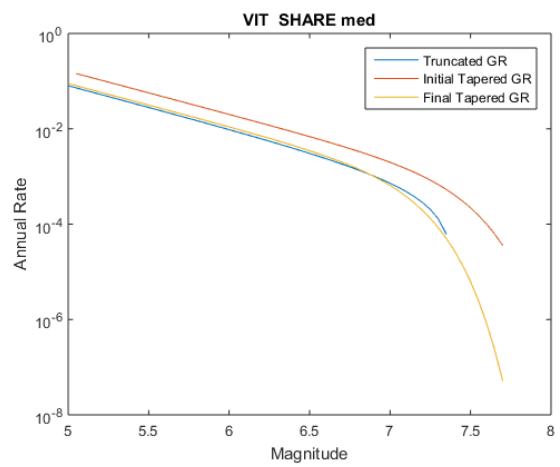
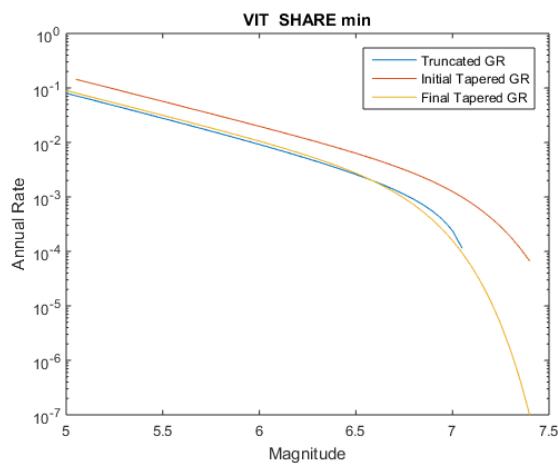
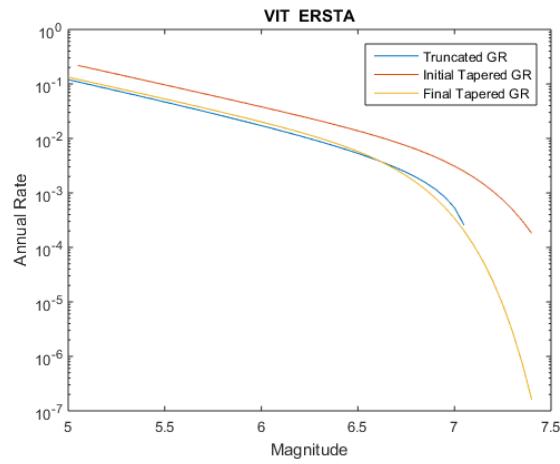
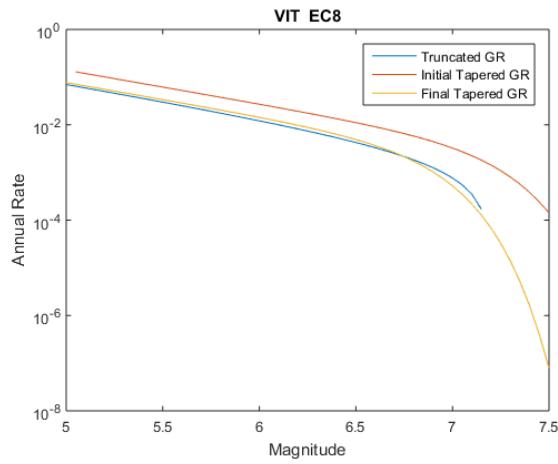
SUPPLEMENT

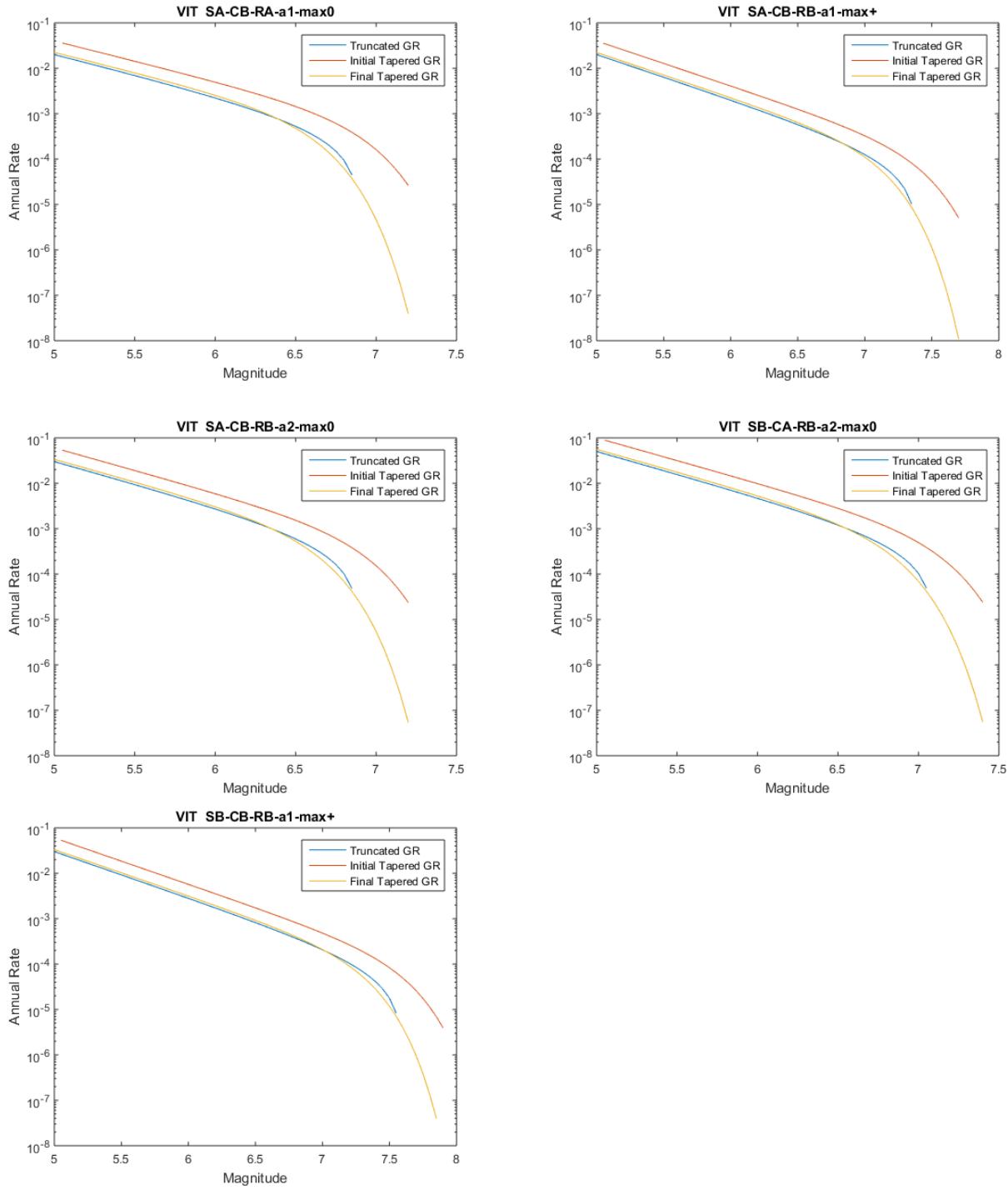
Truncated and Tapered Gutenberg-Richter Distributions

In order to apply the complex consistency test to the PSHA recurrence models investigated we must first obtain the earthquake recurrence parameters with the Tapered Gutenberg-Richter law (\dot{N}^{Comp} , M_T , β_{tGR} and m_c), Eq. (1) below, equivalent to those used with the double truncated Gutenberg-Richter law, Eq. (2) below.

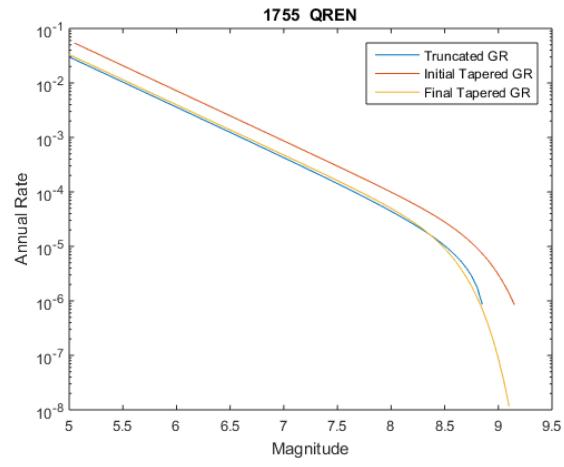
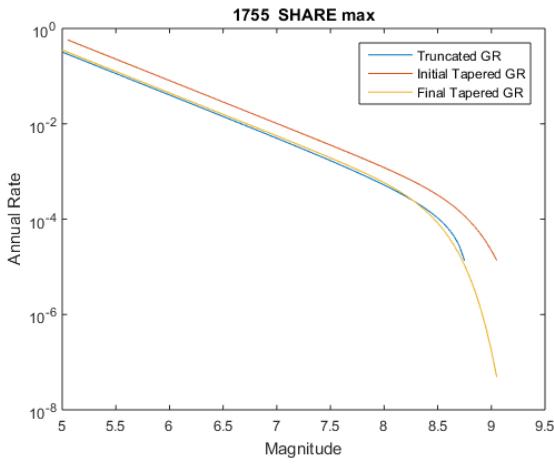
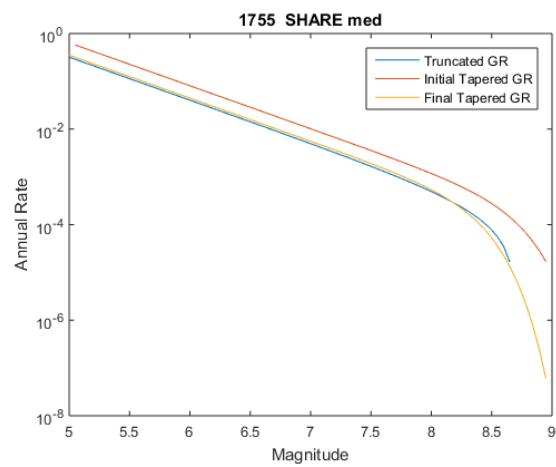
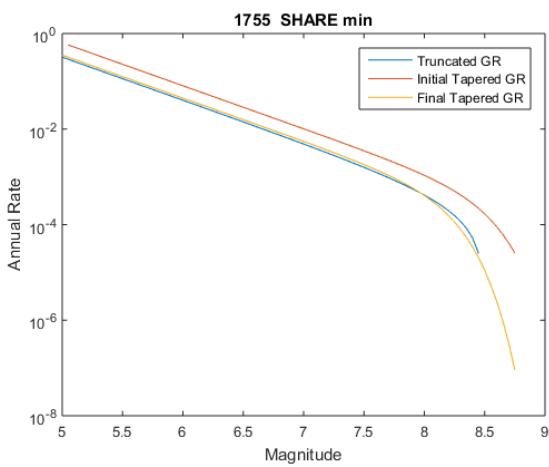
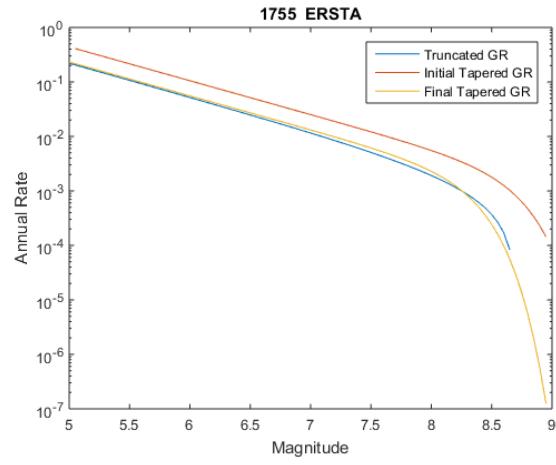
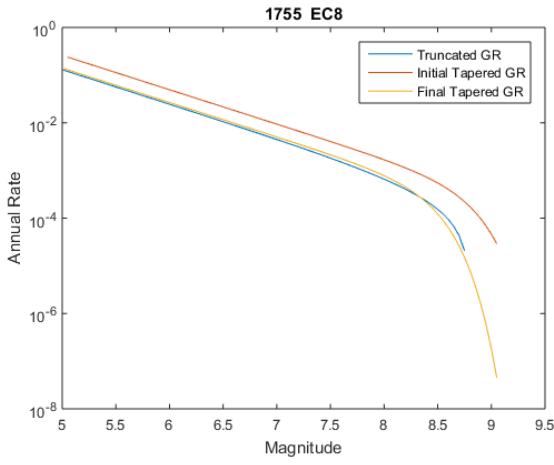
$$\dot{N}(m_T) = \dot{N}^{Comp} \left(\frac{M_T}{M_c}\right)^{-\beta_{tGR}} e^{\left(\frac{M^{Comp} - M_T}{M_c}\right)} \quad (1)$$

$$\dot{N}(m) = \lambda \frac{e^{-\beta(m - m_{min})} - e^{-\beta(m_{max} - m_{min})}}{1 - e^{-\beta(m_{max} - m_{min})}} \quad (2)$$







In this supplement, we will see in detail, the conversion process. In Tables Supp-1 and Supp-2 we present the expected number of earthquakes in 100 years for different classes of magnitude, between 5.0 and the maximum magnitude of each zone, every


10 0.5. The small differences observed are justified by the adjustment of the two laws, one is expressed by magnitude, other by seismic moment, where it was given priority to the equality between seismic moment release rates calculated by the two laws.

Since the laws have slightly different algebraic forms, especially at higher magnitudes, differences in the number of earthquakes may occur, which we consider not relevant (in the adjustment made it was convenient that both laws translate the same total sum of the released seismic moment per year so that the total number of earthquakes in each zone would not be







15 affected). The seismic moment release rate (\dot{M}_0) for 100 years is also shown in these tables.

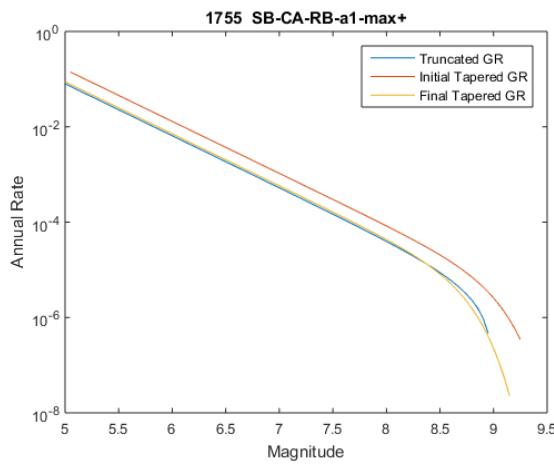
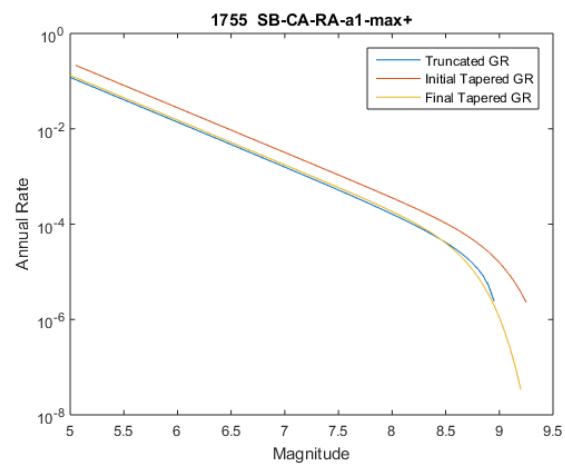
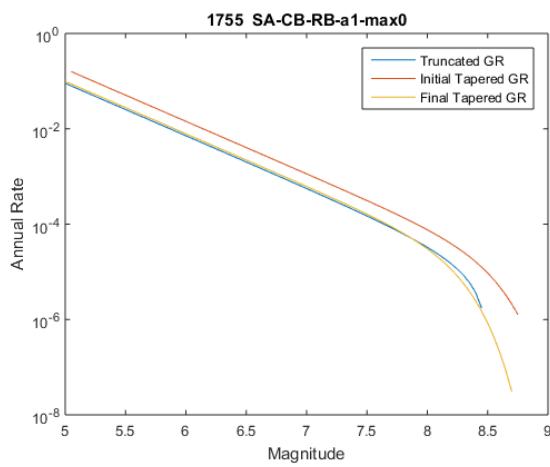
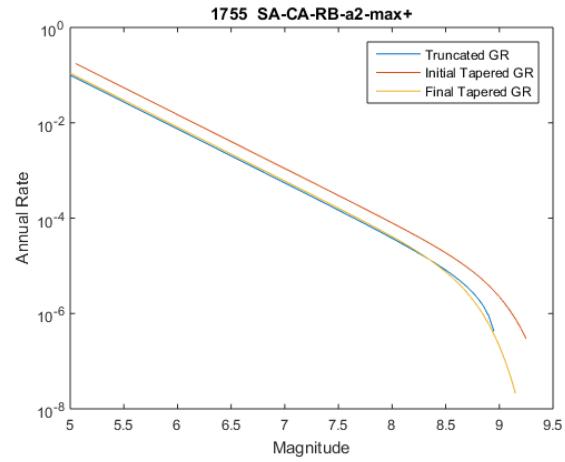
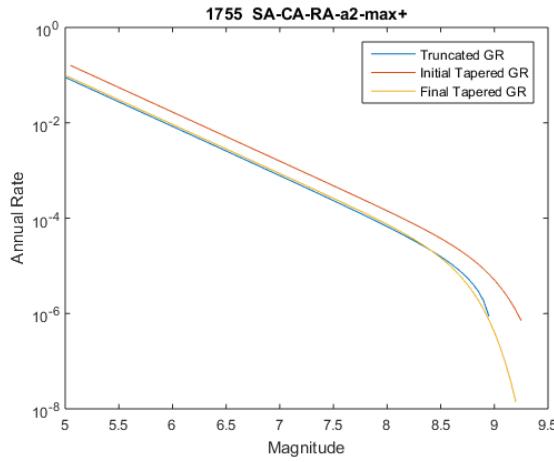





The Fig. Supp-1 and Supp-2 show the comparison of the two sets of laws for the Lower Tagus Valley and 1755 source zone respectively.

Figure Supp-1: (on this and previous page) Comparison between the truncated Gutenberg-Richter law (blue) and initial Tapered Gutenberg-Richter law (orange) and final TGR (yellow), for LTV source zone considering the referred 11 recurrence models investigated with the complex sanity test.

Figure Supp-2: (on this and previous page) Comparison between the truncated Gutenberg-Richter law (blue) and initial “tapered” 45 Gutenberg-Richter law (orange) and final “tapered” (yellow), for 1755 source zone considering the referred 5 proposals.

Table Supp-1: Activity rates in EQs/century for the Lower Tagus Valley zone for each model, for magnitude 5.0 to 7.0, every 0.5. It is presented, for 100 years, the total seismic moment release rate. In blue the calculus with the truncated Gutenberg-Richter law and black the “tapered” Gutenberg-Richter law, for 100 years of catalogue duration.

Model	Lower Tagus Valley (LTV)					\dot{M}_o (Nm/century)
	5.0	5.5	6.0	6.5	7.0	
EC8	7.0	2.99	1.21	0.425	0.077	1.29×10^{19}
	8.6	3.77	1.58	0.511	0.039	
ERSTA	12.0	4.67	1.72	0.532	0.054	1.50×10^{19}
	14.9	5.92	2.21	0.580	0.021	
SHARE _{min}	8.0	2.77	0.92	0.258	0.024	7.65×10^{18}
	9.8	3.47	1.15	0.274	0.010	
SHARE _{med}	8.0	2.81	0.96	0.305	0.072	1.17×10^{19}
	9.8	3.47	1.20	0.368	0.057	
SHARE _{max}	8.0	2.82	0.98	0.323	0.091	1.56×10^{19}
	9.8	3.47	1.22	0.402	0.095	
QREN	1.0	0.35	0.11	0.026	---	6.91×10^{17}
	1.2	0.42	0.13	0.019	---	
SA-CB-RA-a1-max0	2.0	0.69	0.22	0.053	---	1.46×10^{18}
	2.2	0.77	0.25	0.047	---	
SA-CB-RB-a1-max+	2.0	0.63	0.20	0.057	0.013	2.23×10^{18}
	2.2	0.70	0.22	0.063	0.011	
SA-CB-RB-a2-max0	3.0	0.93	0.27	0.060	---	1.79×10^{18}
	3.4	1.07	0.31	0.052	---	
SB-CB-RB-a1-max+	3.0	0.92	0.28	0.082	0.021	3.86×10^{18}
	3.3	1.02	0.31	0.091	0.021	
SB-CA-RB-a2-max0	5.0	1.56	0.47	0.12	0.010	3.76×10^{18}
	5.6	1.76	0.53	0.12	0.007	

The seismic moment release rates are referred to magnitude 5.0.

55 **Table Supp-2:** Activity rates in EQs/century for the 1755 source zone for each model, for magnitude 5.0 to 7.0, every 0.5. It is presented, for 100 years, the total seismic moment release rate. In blue the calculus with the Double Truncated Gutenberg-Richter law and black the Tapered Gutenberg-Richter law, for 100 years of catalogue duration.

Model	1755 Source zone								\dot{M}_o (Nm/century)	
	Magnitude									
	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5		
EC8	13.0	5.66	2.45	1.06	0.45	0.18	0.066	0.015	4.04×10^{20}	
	15.7	6.85	2.98	1.30	0.563	0.236	0.082	0.010		
ERSTA	22.0	10.7	5.18	2.48	1.15	0.508	0.192	0.037	1.03×10^{21}	
	26.2	12.8	6.27	3.06	1.48	0.683	0.239	0.018		
SHARE _{min}	32.0	11.4	4.02	1.41	0.487	0.158	0.042	0	2.20×10^{20}	
	38.8	13.8	4.89	1.732	0.604	0.194	0.038	5.2×10^{-4}		
SHARE _{med}	32.0	11.4	4.02	1.42	0.495	0.166	0.049	0.008	2.90×10^{20}	
	38.8	13.8	4.89	1.736	0.611	0.206	0.055	0.004		
SHARE _{max}	32.0	11.4	4.03	1.42	0.497	0.169	0.052	0.011	3.33×10^{20}	
	38.8	13.8	4.89	1.737	0.613	0.230	0.061	0.007		
QREN	3.0	1.04	0.36	0.12	0.043	0.014	0.004	0.001	3.13×10^{19}	
	3.6	1.25	0.43	0.15	0.052	0.017	0.005	8.2×10^{-4}		
SA-CB-RB-a1-max0	9.0	2.54	0.72	0.20	0.056	0.015	0.003	0	2.17×10^{19}	
	9.9	2.79	0.79	0.22	0.062	0.016	0.003	8.0×10^{-5}		
SB-CA-RB-a1-max+	8.0	2.28	0.65	0.185	0.053	0.015	0.004	9.0×10^{-4}	3.27×10^{19}	
	8.8	2.51	0.72	0.204	0.058	0.016	0.004	8.2×10^{-4}		
SA-CA-RB-a2-max+	10.0	2.7	0.74	0.20	0.055	0.015	0.004	8.0×10^{-4}	3.22×10^{19}	
	10.9	3.0	0.810	0.221	0.060	0.016	0.004	7.4×10^{-4}		
SA-CA-RA-a2-max+	9.0	2.75	0.84	0.257	0.078	0.023	0.002	0	5.36×10^{19}	
	9.9	3.03	0.93	0.283	0.086	0.026	0.007	1.47×10^{-3}		
SB-CA-RA-a1-max+	12.0	4.07	1.38	0.47	0.16	0.052	0.016	0.004	1.28×10^{20}	
	13.3	4.52	1.534	0.521	0.176	0.059	0.019	4.05×10^{-3}		

The seismic moment release rates are referred to magnitude 5.0.

60 When comparing the earthquake rates between DTGR and TGR we note, for both source zones and all recurrence models, that the number of earthquakes is higher for the TGR on all classes of magnitude, except for the largest maximum magnitude evaluated for each zone. However, the seismic moment release rates are identical on both DTGR and TGR recurrence laws.