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Abstract. We use high resolution (4.4 km) numerical simulations of tropical cyclones to produce exceedance probability 

estimates for extreme wind (gust) speeds over Bangladesh.  For the first time, we estimate equivalent return periods up to and 

including a 1-in-200 year event, in a spatially coherent manner over all of Bangladesh, by using generalised additive models.  10 

We show that some northern provinces, up to 200 km inland, may experience conditions equal to or exceeding a very severe 

cyclonic storm event (maximum wind speeds in ≥ 64 knots) with a likelihood equal to coastal regions less than 50 km inland.  

For the most severe super cyclonic storm events (≥ 120 knots), event exceedance probabilities of 1-in-100 to 1-in-200 events 

remain limited to the coastlines of southern provinces only.  We demonstrate how the Bayesian interpretation of the generalised 

additive model can facilitate a transparent decision-making framework for tropical cyclone warnings. 15 

1 Introduction 

Bangladesh is one of the most disaster-prone countries in the world, ranking seventh in the 1999-2018 Long-Term Climate 

Risk Index (Eckstein et al., 2019). Large portions of the population are exposed to the multiple natural hazards, including those 

derived from tropical cyclones (TCs), such as high-winds, storm surge and flooding (e.g. Dilley et al., 2005). In the last 30 

years, TCs impacting Bangladesh, from the Bay of Bengal (BoB), have been responsible for damages of c.US$5.1 billion and 20 

affected 60 million people (Guha-Sapir et al., 2014), with average annual extreme weather event-related losses amounted to 

1.8 percent of GDP between 1990 and 2008 (International Monetary Fund, 2019b). The wider North Indian Ocean basin 

averages 5 cyclone per year (accounting for c.7% of global tropical cyclone activity) (Sahoo and Bhaskaran, 2016); however, 

there is some indication of a decrease in TC frequency (Alam et al., 2003; Mohapatra et al., 2017; Rao, 2004; Singh et al., 

2019) and an increase in cyclone intensity (Balaguru et al., 2014) that is projected to continue under a warming climate 25 

(Knutson et al., 2020).  

 

Recently, the IMF (2019b) highlighted the early response Bangladesh is taking to the challenges posed by climate change; 

however, they also emphasise the importance of insurance mechanisms to enhance financial cover against impacts of natural 
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disasters (International Monetary Fund, 2019a). Insurance facilitates disaster risk resilience and adaptation by transferring 30 

residual risk away from individuals and communities. Cost effective and risk-informed sustainable development is based on 

the comprehensive understanding of hazards, the vulnerability of economies, societies and governments, and the exposure of 

society, people and belongings (UNDRR, 2019), but the lack of understanding of one or more of these components frequently 

limits the use of insurance mechanisms in many regions of the world most at risk from weather and climate hazards. This 

leaves significant populations around the world more vulnerable to the economic consequences of events that are otherwise 35 

manageable in countries with well-developed insurance markets (von Peter et al., 2012). 

 

Detailed understanding of hazards is an essential part of understanding risk, but a relatively sparse meteorological 

observational network and interrupted non-continuous data records impose fundamental constraints on the description of TC 

hazards.  Simulations of tropical cyclones in the BoB remains challenging for the current generation of seasonal forecasting 40 

systems (Camp et al., 2015), global climate models (Shaevitz et al., 2014) and reanalyses (Hodges et al., 2017), partly due the 

relatively coarse spatial and temporal resolution of the numerical simulations.  It is well understood that large-scale 

thermodynamics and vertical wind shear has a significant impact on TC intensity, but there are also numerous vortex, 

convective, turbulent and frictional dissipative processes (e.g. Bryan and Rotunno, 2009; Nolan et al., 2007; Tang et al., 2015 

amongst others) that occur on much smaller scales and also influence TC intensity, the impacts of which are not captured in 45 

low resolution modelling. For example, extreme gusts associated with vigorous (deep) convection will generally be under-

estimated without kilometre scale grid spacing that can explicitly resolve deep convection (e.g. Leutwyler et al., 2017; 

Weisman et al., 1997). More generally, as summarised by Leutwyler et al. (2017, and references therein), grid spacings of O(1 

km) are comparable to the size of the particularly energetic eddies in the planetary boundary layer. Consequentially, we expect 

that turbulent processes, as well as the dominant turbulent length scale, will still be under resolved in this 4.4km dataset. 50 

 

Previous insights into TC hazards affecting Bangladesh focus on compiling catalogues of events (see Alam and Dominey-

Howes, 2015 and references therein), or apply statistical analysis to event catalogues (e.g. Bandyopadhyay et al., 2018; 

Bhardwaj et al., 2020), and can only provide limited insight into the spatial extent, variability and magnitude of events based 

on first-hand eye-witness reports and limited observational records.  Other authors take a parametric wind-field approach, 55 

combing the geostrophic (gradient) wind with a planetary boundary layer model to produce hazard maps at kilometre-scale 

resolution (e.g. Done et al., 2020; Krien et al., 2018; Tan and Fang, 2018); although this is a relatively computationally 

inexpensive approach, the quality of the result appears highly variable between global TC basins. Additionally, there are 

several holistic risk assessment views, that combine multiple sources of hazard data, recognising that there are multiple hazards 

associated with TCs, and that a combined risk assessment is non-trivial. However, these techniques are often limited to 60 

particular events (e.g. Hoque et al., 2016, 2019) or particular areas (e.g. Alam et al., 2020).  In both cases, the quality of hazard 

and/or risk assessment is limited by available observational and track data.   
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In this study we seek to improve our understanding of the historical extreme gust speed hazard associated with recent TCs. To 

address the lack of observation data in this region, we use the latest generation Met Office regional model over the BoB,  to 65 

simulate 9 versions of 12 historical tropical cyclone cases representing 1979-2019.  This generates spatially and temporally 

consistent, counterfactual simulations (relative to observed TC cases), albeit limited by the constraints of the model 

configuration and computational resources.  This ensemble configuration enhances our understanding of how each cyclone 

may evolve if a similar event were to happen again.  We combine the ensemble information in a spatially coherent manner to 

produce hazard maps at 4.4km resolution over Bangladesh for extreme wind (gust) hazards.  Using Bayesian inference, we 70 

estimate gust speed exceedance intervals (return periods) across all of Bangladesh, and demonstrate how this information can 

be directly integrated into a decision making framework. 

2 Numerical Modelling & Geospatial processing 

Tropical cyclone simulations are derived from a 9-member ensemble for 12 historical events, using the latest generation Met 

Office Unified Model (Brown et al., 2012) convection-permitting regional atmosphere configuration RAL2-T, based on Bush 75 

et al. (2020) – hereafter referred to as RAL2. The RAL2 4.4 km domain avoids placing model boundaries over the Himalayas 

and covers Nepal, Bhutan, Myanmar, most of India, and parts of the Tibetan plateau.  To ensure model stability over this 

mountainous terrain, the RAL2 model was run with a 30 second time-step.  Each ensemble member requires a 24-hour spin-

up period as the RAL2 model adjusts from weak initial conditions taken from the ERA5 driving global model (of Hersbach et 

al., 2020).  This initial 24 hours of model data are discarded in subsequent analysis and data files.  Thereafter, each ensemble 80 

member is free running for a further 48 hours, with hourly boundary conditions provided by ERA5.  Collectively, the ensembles 

members sample a range of lead times before landfall from 12-36 hours. 

 

The parameterised RAL2 gust diagnostic represents a prediction of the 3-second average windspeed at every timestep. The 

maximum of this 3-second average speed over an hour is then taken to give the hourly maximum 3-second gust speed.  While 85 

not truly resolving deep convection, RAL2 is able to explicitly represent deep convective processes within the resolved 

dynamics. At these kilometre-scale resolutions the lower horizontal size limit of convective cells is still set by the effective 

resolution of 5 to 10 times the grid length (Boutle et al., 2014; Skamarock, 2004).  Generally, only grid spacings on the order 

of 1 km are comparable to the size of particularly energetic eddies in the planetary boundary layer (Leutwyler et al., 2017), so 

the turbulent processes as well as the dominant turbulent length scale will be under resolved in our downscaled model (and 90 

also ERA5).  The RAL2 model uses a gust parametrisation based on 10 m wind speed with scaling proportional to the standard 

deviation of the horizontal wind that also accounts for friction velocity, atmospheric stability and roughness length (Lock et 

al., 2019).  
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We use the ensemble output to first derive event ‘footprints’ – a common method within the catastrophe modelling community 95 

to define peak hazard relating to a given event.  In this case, footprints are based on the maximum wind gust speed achieved 

within each model run of 48 hours, that implicitly collapses the time dimension to leave a 2D gust field in a longitude-latitude 

frame of reference.  Although the original regional model data covers a significant portion of the BoB, we crop the data to 

approximately 87.5°E to 93.0°E and 20.5°N to 27.5°N. 

 100 

In general, median peak gust speeds from the RAL2 model ensemble are found to be 22 to 43 m s-1 faster compared to ERA5 

reanalysis, but it is known that extreme gusts associated with vigorous convection in ERA5 are generally under-estimated, 

sometimes by a factor of two (Owens and Hewson, 2018).  For wind speed, the RAL2 median difference is 18 m s−1 faster 

compared to ERA5, and 5m s−1 and −3 m s−1 compared to the International Best Track Archive for Climate Stewardship data 

(IBTrACS, of Knapp et al., 2010, 2018) for the India Meteorological Department and Central Pacific Hurricane Center, 105 

Honolulu regional forecast centres respectively. Further details of the regional modelling process and validation against 

IBTrACS and ERA5 reanalysis  can be found in Steptoe et al. (2021). 

 

2.1 Generalised Additive Modelling (GAM) 

To summarise information from all 9 regional model ensemble member footprints into a coherent spatial summary of the 110 

tropical cyclone hazard, we use a generalised additive model (GAM), after Hastie & Tibshirani (1986), based on the R package 

mgcv of Wood (2017), as a flexible spatial regression framework. GAMs are an extension of generalised linear modelling that 

use smooth functions of covariates to build a linear predictor and have previously been applied in similar geospatial natural 

hazard assessments, such as storm count data over Europe (Youngman and Economou, 2017), spatial prediction of maximum 

wind speed over Switzerland (Etienne et al., 2010) and return level estimation for U.S. wind gusts (Youngman, 2019).  In each 115 

case, these studies incorporate spatial information into the GAMs formation, thereby implicitly respecting the spatial 

interaction (autocorrelation) present in the source data, and use the spatial dependence as a source of information. 

 

For our purposes, we use a Gaussian location-scale (GLS) model family (Wood et al., 2016) to describe the natural logarithm 

(log) of the gust speed, where both the mean and the log of the standard deviation are smooth functions of predictors – in this 120 

case, longitude and latitude.  Although other model families were trialled (such as generalized extreme value and gamma 

distributions) the GLS family was found to have the best trade-off between computational efficiency and model fit. The general 

form of our GAM is: 

 

𝑦𝑖(𝑠) ~ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝜇(𝑠), 𝜎(𝑠)2) 125 

𝑓𝜇(𝑠) = 𝑓𝜇(𝑙𝑜𝑛(𝑠), 𝑙𝑎𝑡(𝑠)) 



5 

 

𝑙𝑜𝑔(𝜎(𝑠)) = 𝑓𝜎(𝑙𝑜𝑛(𝑠), 𝑙𝑎𝑡(𝑠))  

 

where 𝑦𝑖(𝑠) is the response variable, namely log gust speed for each ensemble member 𝑖 in each grid cell 𝑠 =  1, . . . , N, N =

207,081. 𝑓𝜇 (a function of the mean) and 𝑓𝜎  (a function of the variance) are each defined as thin-plate regression splines 130 

(Wood, 2003) – isotropic smooth functions of covariates 𝑙𝑜𝑛𝑖 and 𝑙𝑎𝑡𝑖  (longitude and latitude respectively). Each smooth 

function requires a user-defined maximum amount of desired flexibility (wiggliness), traditionally quantified by the number 

of “knots”.  This flexibility is objectively penalised within mgcv to avoid over-fitting, while optimally explaining the trends in 

the data (Wood, 2003).  Trial and error shows that 𝒪(600) knots are required to construct thin-plate spline basis functions that 

avoid over smoothing given the resolution of the regional model data.  Under this model formulation, the mean 𝜇(𝑠) can be 135 

interpreted as an aggregated prediction across the ensemble members. 

 

The smooth model parameters are estimated using restricted maximum likelihood (REML). However, once the model is fitted, 

it can be shown that it has a Bayesian interpretation. In particular, the coefficients of the smooth functions are assumed to have 

a multivariate Normal prior distribution, whose covariance matrix determines the wiggliness penalisation (see Wood, 2017 for 140 

further details). A Gaussian approximation of the posterior distribution for the coefficients then provides a multivariate Normal 

distribution as the posterior (Gelman et al., 2013). In practice, once a GAM model is fitted to each named storm, under the 

Bayesian interpretation, we obtain 1000 simulations from the posterior distribution of the smooth function coefficients via 

random draws from a multivariate normal distribution (MVN). The MVN mean vectors are the REML coefficient estimates, 

and the MVN covariance is derived as a function of the covariance matrix of the sampling distribution of the model coefficients. 145 

In Bayesian inference, sampling from the posterior distribution implies we can then derive samples from the posterior 

predictive distribution of gust speed for each grid cell, 𝑦𝑖(𝑠). The predictive distribution, a unique feature of Bayesian 

inference, fully quantifies estimation uncertainty and variability in gust speed across ensemble members.  We take 1000 

samples from the posterior predictive distribution and construct prediction intervals based on the empirical quantiles of these 

samples.  To aggregate gust information from all ensembles of all named storms, we pool the 1000 posterior predictive 150 

simulations from each event into a total of 12,000 samples from the predictive distribution of gust speed across all 12 events. 

Figure 1 summarises the key parts of this process. 

 

Assessing the GAM specification for 𝑦𝑖(𝑠) with detrended quantile-quantile (worm) plots (based on the method of Augustin 

et al., 2012), Figure 2 shows that generally storms are well represented.  For some storms (such as Aila, BOB01, BOB07, 155 

Bulbul, Rashmi & TC01B) there is a tendency for the GAM to overestimate the tails of the distribution (positive kurtosis) 

relative to the 4.4km data, as indicated by quantile-quantile plot points falling below the zero residual line.  In these cases, the 

GAM will over-estimate extremes. Akash is the only storm where maximum gust speeds are likely to be underestimated in the 

GAM relative to the 4.4km data, but only for extreme upper-tail gust speeds.  Checking for the consistency of variance over 
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the range of predictor values, shows that the distribution of the residuals is stationary for both longitude and latitude (not 160 

shown). 

3 Tropical Cyclones in Bangladesh 

Aggregating the 12 historical tropical cyclones ensembles, Figure 3 shows the 50th, 95th and 99th percentiles of the posterior 

predictive maximum gust speed distribution across Bangladesh.  Based on historical cases, the provinces of Chittagong, Barisal 

and Khulna are most exposed to high wind speed associated with tropical cyclone gusts, whilst Sylhet and Rajshahi are least 165 

exposed.  The cities of Chittagong and Cox’s Bazar are particularly at risk of maximum tropical cyclone gust speeds exceeding 

45 m s-1 (87 kn) and 60 m s-1 (116 kn) respectively, in 5% of events making landfall.  Maximum gust speeds in Dhaka are 

likely to reach 35 m s-1 (68 kn) in 1% of events, 25 m s-1 (48 kn) in 5% to 50% of events.  We note that despite the northern 

provinces of Rajshahi, Rangpur and Mymensingh being over 200 km inland, they experience 95th and 99th percentile gust 

speeds greater than those observed in the populated provincial capitals of Dhaka, Barisal and Khulna.  These extreme 170 

percentiles reflect the influence of cyclones Fani (May 2019) and Aila (May 2009) which had strong persistent in-land tracks. 

 

The gust speed hazard can also be considered in terms of the probability of exceeding a threshold. Using WMO thresholds for 

tropical cyclone wind speeds (WMO, 2018), Figure 4 shows that significant areas of southern provinces (Khulna, Barisal and 

Chittagong) will experience maximum windspeed in excess of severe cyclonic storm condition ≥ 25 m s-1 (48 kn) with a 175 

probability of 20-50% per tropical cyclone event.  At higher wind speeds, only areas within 30 km of the coastline are predicted 

to experience gust speeds in excess of very severe cyclonic storm conditions ≥ 33 m s-1 (64 kn) with the same likelihood (20-

50% per event).  Windspeeds in excess of super cyclonic conditions ≥ 62 m s-1 (120 kn) are predicted to be exceeded with a 

likelihood of 0.5-5% per event in limited areas south of Chittagong, with a small area in the vicinity of Cox’s Bazar seeing 

exceedances of 5-10% per event.  180 

 

In addition to specific thresholds, exceedance probability curves (Figure 5) summarise information for gust speeds up to 80 m 

s-1 (155 kn) for 18 of the most populated towns and cities in Bangladesh (grey lines) with four key cities highlighted.  Coastal 

cities of Cox’s Bazar and Chittagong are unsurprisingly the population centres most exposed to high gust speeds.  Chittagong 

and Cox’s Bazar are roughly 2.5 and 4.8 times more likely to experience tropical cyclones exceeding ‘Very Severe’ cyclonic 185 

storm conditions than Dhaka, for a landfalling cyclone. 

3.1 Decision-making under uncertainty 

By defining a loss function, it is possible to exploit the information in the Bayesian posterior predictive distributions to create 

a warning model based on decision theory (Lindley, 1991).  Following Economou et al. (2016), defining a loss function L(a,x) 

to quantify the consequences of the various actions a (e.g. issuing warnings) that could be taken in the event of a landfalling 190 
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TC of varying intensities x (see Table 1 for an example of four discrete gust categories), provides a method of mapping 

predictive information onto an action.  The optimum action a*, given some predictive information y (i.e. predictions of gust 

speed 𝑦𝑖(𝑠) from the GAM), is one that minimises the loss L(a, x) taking into account the uncertainty in the predictive 

information, expressed as the probability of TC intensity x given predictive information y, p(x | y): 

 195 

a∗  =  arg min ∫ 𝐿(𝑎, 𝑥) 𝑝(𝑥|𝑦) 𝑑𝑥

𝑥

 

 

In practice, 𝑝(𝑥|𝑦) can be easily computed from the predictive samples from the GAM, while the loss function L(a, x) is 

defined subjectively. Defining L(a,x) is a non-trivial process, as it should encapsulate the relative cost of false-positive (i.e. 

where action against a TC was taken, but the TC did not occur) and false-negative (i.e. where no action was taken, but the TC 200 

did occur) events.  For the purposes of demonstrating the principle of this approach, we define a dummy loss function in Table 

1, based on the four TC warning levels used in Bangladesh (WMO, 2018).  Here relative loss is defined on a 100-point scale, 

where 0 equates to no loss associated with a given landfalling event, and 100 equates to maximum loss. Evacuation typically 

takes places at the ‘Great Danger’ level. 

 205 

Figure 6 illustrates the optimal warning that should be issued based on Table 1 and the range of gust speed information 

summarised by our GAM.  This can be interpreted as the default optimal action to take for planning and preparation purposes, 

and in this case, the northern extent of TC risk, as highlighted in Figures 2 and 3, is again reflected in the warning level, but in 

practice separate loss functions could be defined for each province, or for different economic sectors of society.  By 

understanding the exposure, vulnerability and decision-making process of each user, bespoke warnings could be issued.  , For 210 

operational forecasting purposes, the optimal action (a*) would be updated once forecast information of a TC becomes 

available specific to an impending event.  Actions are strongly conditioned by the loss function and the accuracy of the gust 

speed information, but our aim here is demonstrate a proof-of-concept transparent workflow that clearly translates hazards into 

actions and which is equally applicable to short-term numerical weather prediction information as it is to hazard maps derived 

from historical events.   215 

3.2 Limitations 

Despite the ensemble simulation framework, our analysis is still restricted to only 12 historical cases, which represent the 

recent 40-year period.  The number of events was determined by the availability of source data (ERA5) for driving the regional 

model (RAL2), for TC events that made landfall over Bangladesh – in this case limited to the period of ERA5 data availability, 

which at the time of analysis extended back to 1979.  Given the relatively low ERA5 resolution (31 km), we selected TCs 220 
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defined as at least a Category 1 event in the IBTrACS database, to be sure they would be identifiable within the low-resolution 

ERA5 data and could be downscaled by the RAL2 model. 

 

The initial conditions posed in the regional model play a significant role in determining the outcome of each event.  In 

forecasting situations this is desirable behaviour: well-chosen initial conditions ensure the model retains a realistic 225 

representation of reality.  Even though the modelling domain that produced these 4.4km data had the freedom to deviate in a 

physically plausible way (see Steptoe et al., 2021), it does not have the ability to sample the full spectrum of possible BoB 

tropical cyclone events.  Simulations driven by a wider range of initial conditions, derived from a wider range of historical 

cases, would improve the sample size of cyclonic conditions on which this analysis is based.  Note that this wouldn’t 

necessarily reduce uncertainty in exceedance thresholds (in a frequentist paradigm), but it would update our view (i.e. our 230 

posterior estimate) of what is credible within the continuum of possible tropical cyclone events. In Bayesian parlance, our 

posterior view of Bangladesh tropical cyclones would become our new prior belief if subsequent simulation data became 

available. 

 

A different limitation is posed by the initial aggregation of the 4.4 km model over time.  This removes our ability to draw 235 

inferences on annual occurrence of (or longer-term variability in) TC events. This means that our estimates of exceedance 

probabilities are conditional on a tropical cyclone event actually impacting Bangladesh.  For the purposes of risk assessment, 

we do not feel this limitation is significant – current generation weather forecast models are capable of accurately predicting 

the landfall location and track of tropical cyclones in the BoB many days in advance (e.g. Mohanty et al., 2020; Singh and 

Bhaskaran, 2020).  It should also be noted that due to the computation expense of the 4.4 km data simulation, we only chose 240 

events that specifically impacted Bangladesh, so conclusions cannot be drawn on the frequency of other TCs within the wider 

BoB region. 

4. Summary & Conclusions 

Generalised additive models (GAMs) provide a useful framework for condensing spatial hazard information in an interpretable 

way, from multiple numerical model simulations, into a single spatially coherent hazard map. Using a restricted maximum 245 

likelihood approach to fit the GAM allows us to interpret model predictions in a Bayesian fashion that logically provides 

credible exceedance estimates. High-resolution convection-permitting numerical predictions of 12 historical cyclone events, 

in an ensemble model set-up, gives an improved sense of the plausibility and likelihood of possible extreme events without 

being constrained by the lack of observational history in this region. Combining ensemble simulations with a GAM then allows 

us to robustly quantify the likelihood of maximum gust speed exceedances in a spatially coherent manner. 250 
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Our new maps of exceedance intervals show that north-western provinces of Bangladesh are relatively exposed to high wind 

speed hazards – in some areas the exceedance probabilities are equal to those experienced along the coast.  Our hazard-to-

decision making framework suggests that these areas may need to be considered in an equivalent manner to coastal regions, 

from a disaster risk reduction perspective. In coastal areas of Cox’s Bazar and Chittagong we show super cyclonic conditions 255 

may occur as frequently as 1-in-20 to 1-in-100 years. We hope that these kilometre scale hazard maps facilitate one part of the 

risk assessment chain to improve local ability to make effective risk management and risk transfer decisions. Future work to 

co-produce a proper loss function, given wind speed thresholds, would facilitate a method of transparent operational decision 

making that could be used as the basis of an operational warning system. 
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Figure 1 Summary of generalised additive modelling and the derivation of the posterior predictive gust speed distribution.  The posterior 

predictive distribution is derived for each grid cell of the regional model domain.  Gust speed prediction intervals are found from the 

percentiles of the posterior predictive distribution. 410 
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Figure 2 Detrended quantile-quantile (worm) plots for each GAM model per storm.  We discretise the quantiles into 50 bins (open 

circles). The red dashed lines represents zero deviance between data and theoretical quantiles defined in the GAM. Where model quantile 

deviates below (above) the zero deviance line, this implies that the model predictions are overestimated (underestimated) relative to the 

data: for any given theoretical model quantile, the data quantile is lower (higher).   Deviance residuals respect the model family used 

when fitting the GAM and are calculated via the simulation method of Augustin et al. (2012). 
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Figure 3: Gust speed exceedance thresholds for the 50th (left) 95th (middle) and 99th (right) percentile credible intervals.  The 50th, 95th and 

99th percentiles represent the maximum gust speeds expected from a 1-in-2, 1-in-20 and 1-in-100 event respectively (conditional on a tropical 415 
cyclone making landfall over Bangladesh). These credible intervals are based on the posterior model distribution derived from all 12 named 

tropical cyclones, conditional on a tropical cyclone making landfall in Bangladesh.  The 20 – 60 m s-1 gust speed range roughly corresponds 

to a range of 39 – 117 kn, equivalent to the cyclonic to super cyclonic storm classification used in Bangladesh. Province boundaries are 

outlined in white, with the 18 most populated towns and cities marked by circles. 

 420 
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Figure 4: Event exceedance probabilities for a severe cyclonic storm (left), very severe cyclonic storm (middle) and super cyclonic storm 

(right) WMO tropical cyclone classifications used in the Bay of Bengal (WMO, 2018).  Event exceedance probabilities show the likelihood 

of a maximum tropical cyclone gust speed being greater than or equal to the corresponding classification wind threshold, conditional on a 425 
tropical cyclone making landfall over Bangladesh.  An exceedance threshold of 50% (0.5%) represent a 1-in-2 (1-in-200) chance of a tropical 

cyclone exceeding a given threshold.  Areas where the exceedance probability is > 50% (< 0.5%) are shaded black (grey).  Province 

boundaries are outlined in white, with the 18 most populated towns and cities marked by circles. 

 

Figure 5: Exceedance probability curves for 18 of the most populated towns and cities in Bangladesh (grey lines), with 4 key cities 430 
highlighted: Dhaka (orange), Comilla (blue), Chittagong (green) and Cox’s Bazar (red).  For reference, the minimum and maximum range 

of exceedance probabilities (across all of Bangladesh) are represented by the dashed lines.  Note that storm exceedance probability is shown 

on a log-scale. 
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 435 

Figure 6: Example warning status given an impending landfalling tropical cyclone over Bangladesh.  These warnings represent the most 

effective action minimising the loss as defined in Table 1. 

 

Loss Function 
Warning Level (y) 

OK Warning Disaster Great Danger 

E
v

en
t 

(x
) 

< 14 m s-1 0 5 15 20 

14 ≥ m s-1< 1761 50 10 20 25 

17 ≥ m s-1 < 25 80 50 25 30 

≥ 25 m s-1 100 100 80 40 

 

Table 1 Dummy loss function for actions associated with 4 Bangladesh TC warning levels, and their associated wind speed intensity.  In 440 
this case loss is defined on a 100-point scale, where 0 = no loss, and 100 = maximum loss, associated with a given landfall TC event. 
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