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Abstract. High resolution simulations at 4.4km and 1.5km resolution have been performed for 12 historical tropical cyclones 

impacting Bangladesh.  We use the European Centre for Medium-Range Weather Forecasting 5th generation Re-Analysis 

(ERA5) to provide a 9-member ensemble of initial and boundary conditions for the regional configuration of the Met Office 

Unified Model.  The simulations are compared to the original ERA5 data and the International Best Track Archive for Climate 10 

Stewardship (IBTrACS) tropical cyclone database for wind speed, gust speed and mean sea-level pressure.  The 4.4km simu-

lations show a typical increase in peak gust speed of 41 to 118 knots relative to ERA5, and a deepening of minimum mean 

sea-level pressure of up to -27 hPa, relative to ERA5 and IBTrACS data.  Generally, the timing of gust maxima and mean sea-

level pressure (MSLP) minima are delayed relative to ERA5 and IBTrACS.  Cyclones in the 1.5km dataset have similar MSLP 

minima, but slightly faster maximum gust speeds.  The downscaled simulations compare more favourably with IBTrACS data 15 

than the ERA5 data suggesting tropical cyclone hazards in the ERA5 deterministic output may be underestimated.  The dataset 

(Steptoe et al., 2020) is freely available from https://doi.org/10.5281/zenodo.3600201.  

1 Introduction 

To construct this dynamically simulated tropical cyclone dataset dataset we use the latest generation Met Office regional 

models to simulate tropical cyclones (TCs) over the Bay of Bengal (BoB) at grid-box resolutions of 4.4km and 1.5km.  Using 20 

the ERA5 reanalysis data (C3S, 2017; Hersbach et al., 2018) to initialise and provide boundary conditions for our regional 

models, we dynamically downscale 12 historical TCs that made land-fall over Bangladesh between 1991 and 2019, using an 

ensemble approach.   

 

Downscaling of ERA5 is reported in a few other studies: Bonanno et al. (2019) downscale ERA5 using the Weather Research 25 

and Forecasting (WRF) model to produce a new 7km reanalysis over Italy; preliminary work by Taddei et al. (2019) use ERA5 

to force the BOlogna Limited Area Model-MOdello LOCale (BOLAM-MOLOCH) regional model for the purposes of coastal 

risk assessment in the North Western Mediterranean sea, and Wang et al. (2020) use ERA5 to run a 10km WRF domain over 

high mountain Asia.  Specifically examining tropical cyclones, many studies use variations of the Weather Research and 

https://doi.org/10.5281/zenodo.3600201
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Forecasting (WRF) Model (e.g. Skamarock et al., 2019), such as Kaur et al. (2020) who use WRF to downscale the National 30 

Center for Environment Prediction (NCEP) Climate Forecast System (CFSv2) and its atmospheric component Global Forecast 

System (GFS) to 9km over the north Indian Ocean for two historical cases (Mora and Ockhi), with analysis focusing on the 

spatial accuracy of rainfall and 850 hPa vorticity, and the vertical profiles of wind and temperature.  They conclude that the 

downscaled model significantly improves the spatial distribution of rainfall, maximum vorticity evolution, wind, and temper-

ature profiles for mature phase cyclones.  Studies specifically examining the BoB simulations include Srinivas et al. (2013), 35 

Singh & Bhaskaran (2020) and Mahala et al. (2019), amongst others.  These studies typically make empirical comparisons of 

TC simulations at ~10km resolution against observationally based data, but often with an India-centric domain that contains a 

larger number of landfalling events.  By contrast, in this study we specifically focus on Bangladesh, with simulations at higher 

resolution.  

We make 12 variables available, including: air temperature, maximum wind gust speed, minimum air pressure at sea level and 40 

precipitation amounts (see Table 1), at a range of temporal scales (including model instantaneous values) as well as hourly and 

daily aggregations.  Simulations are performed for the following tropical cyclones (landfall date): BOB01 (Apr 1991), BOB07 

(Nov 1995), TC01B (May 1997), Akash (May 2007), Sidr (Nov 2007), Rashmi (Oct 2008), Aila (May 2009), Viyaru (May 

2013), Roanu (May 2016), Mora (May 2017), Fani (May 2019) and Bulbul (Nov 2019).  Table 2 lists approximate landfall 

times and their International Best Track Archive for Climate Stewardship (IBTrACS, Knapp et al., 2010, 2018) ID number.  45 

At the time of writing, ERA5 data are only available from 1979 onwards, so our new catalogue excludes cyclones prior to 

1979, most notably Cyclone Bhola of November 1970.  Section 2 describes the RAL2 numerical model, the storm tracking 

algorithm and the key aspects of ERA5 and IBTrACS datasets, and we compare our results to the source ERA5 reanalysis and 

the International Best Track Archive for Climate Stewardship (IBTrACS) tropical cyclone database v.4 (Knapp et al., 2010, 

2018) in Section 3. 50 

2 Methods 

2.1 Numerical modelling 

Our high-resolution convection-permitting modelling utilises the latest generation Met Office Unified Model (Brown et al., 

2012) v11.1, regional atmosphere configuration RAL2-T, a further development of RAL1-T (after Bush et al., 2020) – hereafter 

referred to as RAL2.  For each historical tropical cyclone case listed on Table 2, we run the RAL2 model in a ‘downscaling’ 55 

configuration, using ERA5 data to initialise and provide boundary conditions for a series of 9 time-lagged ensembles (see 

Figure 1 for a visual representation of this configuration).   

 

As there is no data assimilation process or nudging, the initial conditions imposed by ERA5 are found to have significant 

influence on the resulting tropical cyclone development.  The time-lagged configuration is designed to limit the free-running 60 
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model time to 72 hours, whilst ensuring that the central 24-hour period of interest (centred on the tropical cyclone landfall 

time) is sufficiently sampled from a range of ERA5 initial conditions.  This initial condition ensemble approach produces a set 

of 9 plausible tropical cyclone development scenarios associated with each named event.   After initialisation, each ensemble 

member is free running for 72 hours, with hourly boundary conditions provided by ERA5.  Each run requires a 24-hour spin-

up period as the regional model adjusts from the weak initial state inherited from the ERA5 driving global model.  This initial 65 

24 hours of model data are discarded in subsequent analysis and data files.  Together, the amassed ensemble provides 9 simu-

lations of the central 24 hours, but covers a total period of 72 hours.  

 

The RAL2 4.4km domain avoids placing model boundaries over the Himalayas and covers Nepal, Bhutan, Myanmar, most of 

India, and parts of the Tibetan plateau; the RAL2 1.5km domain is limited to Bangladesh only (Figure 2).  To ensure model 70 

stability over this mountainous terrain, the RAL2 model was run with a 30 second time-step for both 4.4km and 1.5km simu-

lations with additional orographic smoothing applied (using a 1-2-1 filter) to model cells 1500m above mean sea level.  

2.2 Storm tracking 

Storm tracking is performed on 3-hourly fields of RAL2 mean sea-level pressure (MSLP), 400 hPa temperature and 10m wind 

speed, using the Tempest extremes software of Ullrich and Zarzycki (2017). Unfortunately, 3-hourly fields are not frequent 75 

enough to estimate landfall time using the Tempest tracking algorithm for RAL2 data. The tracking algorithm has two parts – 

the initial feature detection and the stitching of these features to calculate tracks.  

 

Feature detection is based on finding minima in air pressure at sea level, with features within a radius of 6° of each other being 

merged. The features are then further refined with a two ‘closed contour criteria’. First an increase in sea level pressure of at 80 

least 200 Pa (2 hPa) within 5.5° of the candidate node, and second a decrease in 400 hPa air temperature of 0.4 K within 8° of 

the node within 1.1° of the candidate with maximum air temperature. 

 

Stitching, to combine the individual features into tracks, uses a maximum distance between features of 3°, a minimum track 

length of 2 points (equivalent to 6 hours) and a minimum path distance of 0.1°. We also apply a topographic filter and a filter 85 

on maximum wind speed: tracks were rejected if they did not have at least one time-step and last at least 24 hours at an altitude 

less than 10m; and if they did not have maximum wind speed of at least 17 m s-1 at one time-step. 
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3 Datasets 

3.1 ERA5 Reanalysis Data 

ERA5 (C3S, 2017; Hersbach et al., 2018) is the fifth and latest generation reanalysis dataset issued by the European Centre 90 

for Medium-Range Weather Forecasts (ECMWF). It combines both model data and observations on a real-time basis in a data 

assimilation process. Like a forecast, newly available observations are combined with model data to produce the best estimate 

of the state of the atmosphere.  ERA5 data offers many improvements on the previous reanalysis, ERA-Interim, including 

more developed model physics and dynamics and an increased horizontal resolution of 30km. In term of vertical resolution 

and extent, it has 137 model levels up to 80km.   95 

 

For ERA5, we compare our simulated storm data with ‘10 metre wind gust since previous post-processing’ defined as the 

maximum 3-second wind for each hour (parameter ID 49) and MSLP (parameter ID 151).  Prior to 30th Sep 2008, ERA5 gust 

estimates only include turbulent contributions; the convective contribution was added to the wind gusts in post-processing for 

events after this date (Bechtold and Bidlot, 2009). 100 

3.2 International Best Track Archive for Climate Stewardship (IBTrACS)  

International Best Track Archive for Climate Stewardship (IBTrACS, Knapp et al., 2010, 2018) forecasts are made by numer-

ous forecasting centres around the world, and consists of the positions and intensities of tropical cyclones (Kruk et al. 2010). 

For our validation purposes, two Regional Specialized Meteorological Center (RSMC) datasets are used: the India Meteoro-

logical Department, New Delhi (IMD), and the Central Pacific Hurricane Center, Honolulu (CPHC).  105 

 

IBTrACS best track data are typically calculated using a post-season reanalysis of storm positions and intensities from all 

available data, including ship, surface and satellite observations (Kruk et al. 2010). Typically, best track data consist of a time 

series of the storm’s position, maximum sustained wind speed (in knots) and minimum central pressure. Estimated uncertainty 

of the IBTrACS forecast wind speed are ±10 to ±20 knots, with positional uncertainty radiuses of 10km to 40km, dependent 110 

on wind speed intensity (IBTrACS, 2019).  No uncertainty information is provided for pressure, but we note that the World 

Meteorological Organisation typically assume reporting precision of ±3 hPa.  We also note that IBTrACS data is subject to 

forecaster best judgement and best track data typically lags the provisional operational data cyclone estimates by some months, 

subject to the availability of reanalysis data. 

 115 

For the IBTrACS dataset we compare with ‘maximum sustained wind speed’ and MSLP. Although the WMO(1983) defines 

sustained wind speed as a 10-minute average windspeed at 10-m height above ground, it is reported as 1-minute averages by 

US forecast centres, and 3-minute averages by IMD. Some agencies, including CPHC, estimate gust speeds; however this data 

is not available for the BoB basin. Methods for obtaining maximum wind speed in IBTrACS vary by agency, as do their 
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availability of TC observation data.  IBTrACS minimum central pressure is generally estimated with both subjective and 120 

objective satellite analysis as well as automated buoys that may be present (IBTrACS, 2019).  Note that IBTrACS estimates 

usually end once the cyclone makes landfall. 

3.3 Comparing Datasets 

For the purposes of comparing RAL2 simulated winds and gusts with IBTrACS and ERA5, the RAL2 maximum sustained 

wind speed is taken as the maximum of a single RAL2 model timestep windspeed over the accumulation period (1 hour). This 125 

is broadly comparable to a sustained maximum windspeed calculated with 30-second averaging period. In contrast, the param-

eterised RAL2 gust diagnostic represents a prediction of the 3-second average windspeed at every timestep. The maximum of 

this 3-second average speed over an hour is then taken to give the hourly maximum 3-second gust speed.  

 

Considering the ERA5 and RAL2 model physics, ERA5 uses a mass flux scheme for cumulus parameterisation (an updated 130 

version of Tiedtke, 1989) whereas RAL2, while not truly resolving deep convection, is able to explicitly represent deep con-

vective processes within the resolved dynamics. At these kilometre-scale resolutions the lower horizontal size limit of convec-

tive cells is still set by the effective resolution (e.g. 1.5km or 4.4km).  More generally, as summarised by Leutwyler et al. 

(2017, and references therin), only grid spacings on the order of 1km are comparable to the size of particularly energetic eddies 

in the planetary boundary layer, so the turbulent processes as well as the dominant turbulent length scale will be under resolved 135 

in both our downscaled model and ERA5.  ERA5 gusts are parametrised based on the 10m wind speed, friction velocity, 

atmospheric stability, roughness length and a convective contribution based on wind shear between the model levels at 850hPa 

and 925hPa (Bechtold and Bidlot, 2009).  It is known that extreme gusts associated with vigorous convection in ERA5 are 

generally under-estimated, sometimes by a factor of two (Owens and Hewson, 2018). The RAL2 model uses a gust parametri-

sation based on 10m wind speed with scaling proportional to the standard deviation of the horizontal wind that also accounts 140 

for friction velocity, atmospheric stability and roughness length (see Lock et al., 2019 for further details).  

 

Comparisons of minimum MSLP are more straightforward.  We compare the RAL2 hourly minimum MSLP estimated every 

30-seconds, with the hourly minimum MSLP from ERA5, and the 3-hourly minimum MSLP from IBTrACS. 

4 Data Validation 145 

A lack of reliable, high-frequency and consistent meteorological observation data available for Bangladesh mean that verifi-

cation of modelling results against in-situ observational data is not possible. Instead we establish the validity of the RAL2 

4.4km data relative to ERA5 and the IBTrACS catalogue. It is important to recognise the differences in how the data are 

collected, their processing and resolution (see Table 3). Comparison of storm tracks is performed against the IBTrACS best 

track data, after Kruk et al. (2010), only.   150 
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For the purposes of validation, we focus on three key variables: maximum wind speed, maximum gust speed and minimum 

pressure at mean sea level (MSLP).  All comparisons against IBTrACS compare hourly maximum wind from our RAL2 4.4km 

model versus 3-hourly maximum wind speed estimates from IBTrACS.  For maximum gust speed, we compare the RAL2 

hourly maximum 3-second gust diagnostic with ERA5 hourly maximum 3-second gust speed diagnostic.  MSLP estimates are 155 

comparable across all three datasets. In each case, the comparison is performed over a land-masked longitude-latitude domain 

that extends [79, 100]°E and [10, 25]°N – see Figure 2.  This domain explicitly seeks to focus on the Bay of Bengal so as to 

compare model fields without land effects.  In all cases, excluding land areas has very minor impact on the validation compar-

ison (not shown) as peak wind, gust and minimum MSLP all occur over the ocean.  Although our storm tracking output does 

not allow us to explicitly compare the time of landfall between datasets (see Section 2.2), we expect that differences in the 160 

time of peak wind speeds would be mirrored in the differences in the time of landfall across datasets as peak wind speeds tend 

to occur just prior to landfall. 

 

Each validation plot (Figure 3, and Appendix B) displays the gust speed, wind speed and MSLP from the ERA5, IBTrACS 

and RAL2 4.4km.  We resample the IBTrACS 3-hourly data by forward filling to 1-hourly intervals to aid the comparison of 165 

max/min timing with ERA5 and RAL2 datasets. Where IBTrACS maxima (minima) persist over several hours, the time dif-

ferences reported in Sections 4.1 and 4.2 are then the minimum time difference between padded IBTrACS data and RAL2.  

The actual difference of RAL2 with respect to ERA5 (RAL2 – ERA5) is denoted ΔERA5 for brevity.  For IBTrACS, actual 

differences with respect to IMD and CPHC are denoted ΔND and ΔUS respectively.  

 170 

The statistical robustness of differences between datasets are assessed using the percentile bootstrap hierarchical shift function 

(Rousselet, G. A. and Wilcox, 2019; Rousselet et al., 2017) based on Wilcox & Erceg-Hurn (2012) and Wilcox et al. (2014).  

Given the potential skewness of the data, rather than looking at the differences of a single estimate of central tendency across 

all events (e.g. the median), differences are assessed for deciles (or percentiles) across the full distribution of the data, calcu-

lated using the distribution-free Harrell-Davis estimator (Harrell and Davis, 1982).  This method explicitly deals with the 175 

hierarchical setting of data representing the same event, sharing common synoptic atmospheric conditions, but where different 

events are independent in time.  The robustness of differences is assessed using bootstrapped (n=1000) uncertainty intervals 

for each decile difference.  Where the 95% highest density interval (HDI) of uncertainty does not intersect zero, decile differ-

ences are considered statistically robust. 

4.1 Intensity and timing of maximum sustained wind speed   180 

For all events, RAL2 maximum sustained wind speeds are faster than ERA5 wind speeds (Figure 4), with median (across all 

events) ΔERA5 = 35 kn (18 m s-1), with the 5th to 95th percentiles of the data spanning [10, 70] kn ([5, 36] m s-1).  Comparing 

IBTrACS, median ΔUS = -6 kn (-3 m s-1) and ΔND = 10 kn, (5 m s-1).  Assessing the robustness of differences, the distribution 
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of ΔERA5 is robustly slower than RAL2 across all deciles (based on 95% HDI for each decile difference). ΔND is also robustly 

slower for differences greater than the 40th percentile; however, note that at the time of writing, IBTrACS IMD maximum 185 

sustained wind speed data for Fani and Bulbul were unavailable. Although IBTrACS US data has a tendency toward faster 

sustained wind than RAL2 (i.e. negative ΔUS) these differences are not robustly different to zero at the 95% HDI. 

 

The timing of maximum wind speed shows significant variation between events, with no clear correlation to peak wind inten-

sity differences; however, generally RAL2 peaks are delayed relative to ERA5 and IBTrACS data.  Across all events, median 190 

ΔERA5 = 5.5 hours delay, with ΔUS = 2.5 hours and ΔND = 0.5 hours. Only ΔERA5 and ΔUS times are robustly different to 

RAL2 (evaluated at the 95% HDI). The largest time differences occur against ERA5 data: e.g. for Fani, some RAL2 ensemble 

members show maximum wind intensities delayed by over 20 hours relative to ERA5 (see also Figure A5), but it is noted that 

for these cases the ERA5 tropical cyclone simulation seems especially weak (for maximum wind, gust and minimum MSLP) 

compared to IBTrACS data.  Some of the variance in peak times will also derive from the differences in data frequency (1-195 

hourly for RAL2 versus 3-hourly for IBTrACS) but this requires further investigation to quantify. 

4.2 Intensity and timing of mean sea-level pressure 

For most events, the RAL2 ensemble produces deeper MSLP minima than the ERA5 and IBTrACS data (Figure 5), but whilst 

ΔERA5 (median = -18 hPa) and ΔND (median = -10 hPa) differences with RAL2 are robustly different to zero, ΔUS (median 

= -2 hPa) is not (all evaluated at the 95% HDI).  At the time of writing, IBTrACS MSLP data for Fani and Bulbul are unavail-200 

able from IMD, and BOB01, BOB07 and TC01B are unavailable from CPHC. 

 

As for wind speeds, the timing of RAL2 MSLP minimum is typically delayed relative to IBTrACS or ERA5 data.  Median 

time difference of MSLP minima are similar to wind speed maxima differences: ΔERA5 = 7.5 hours delay, ΔUS = 3.5 hours 

and ΔND = 0.5 hours. Again, only ΔERA5 and ΔUS times are robustly different to RAL2 (evaluated at the 95% HDI). As for 205 

the timing of gust peaks (Section 3.1), the RAL2 simulation of Fani shows median delays in MSLP minima of 14 hours 

(ΔERA5) and 11 hours (ΔUS).  BOB01 also has an equivalent delay of 13 to 14 hours (ΔND and ΔERA5 respectively). 

4.3 Intensity and timing of maximum 3-second gust speed 

The distribution of RAL2 gust speeds across events, are uniformly higher than ERA5 (Figure 6). The median difference across 

all events is 63 kn (32 m s-1, Figure 6), with some particularly strong individual events showing median differences up to 93 210 

kn (48 m s-1, BOB01) and 118 kn (61 m s-1, Sidr). Comparing differences in the RAL2 and ERA5 gust speed distributions 

using bootstrapped median difference by percentile across all events, shows that these differences are robustly different to zero 

at the 95% HDI. 
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As with wind and MSLP, differences in the timing of maximum 3-second gust speed vary considerably between events with 215 

no clear correlation between the magnitude of the gust difference and the absolute time differences. The median time difference 

across all events is 2.5 hours (Figure 6), but this is not robustly different to zero at the 95% HDI.   

4.4 Storm Tracks 

We compare the track density of our nine downscaled ensemble members to IBTrACS in 30x30km spatial bins.  Typically, 

the area influenced by the tropical cyclone wind hazard is in excess of 200x200km, so this assessment of storm tracks plays a 220 

more important role in evaluating storm surge, primarily influenced by the area of low pressure at the centre of the cyclone. 

 

Comparing storm tracks (Figure 7) shows that for 8 of 12 cyclones, the RAL2 storm tracks have at least one ensemble member 

that makes landfall with the bounds of an IBTrACS track.  Notable exceptions to this are: BOB07, which shows high con-

sistency in storm track amongst the RAL2 ensemble, but makes landfall to the north of the IBTrACS estimates; TC01B and 225 

Viyaru, which show greater spread amongst the RAL2 ensemble members, but consistently make landfall to the south of the 

IBTrACS estimate.  Note that no IBTrACS track data are available for cyclone Fani at the time of writing. 

4.5 Differences between 1.5km and 4.4km model output 

We don’t explicitly validate the 1.5km data but summarise differences between the distributions of maximum gust speed and 

minimum MSLP on a quantile basis, in relation to the 4.4km data (Figure 8).  In order to facilitate a fair comparison, we 230 

compare identical spatial domains roughly equivalent to the 1.5km model domain (see Figure 2), but with a reduced northern 

extent to exclude as much mountainous terrain as possible, whilst encompassing the full geographic extent of Bangladesh. 

 

Differences in maximum gust speed footprints, for the 1st to 80th percentiles, of the 1.5km data are order 1 kn faster than the 

4.4km data.  In all cases these differences are sufficiently robust that the 90% highest density interval (HDI) of the differences 235 

amongst storms does not overlap zero ([0.3, 1.7] kn; [0.14, 0.86] m/s).  For the very highest gust speeds (90 th, 95th and 99th 

percentiles of the 1.5km data) the differences with the 4.4km data shows much greater variability.  The 90% HDI does overlap 

zero, with extremes of the quantile differences ranging from -2.4 kn to 1 kn ([-1.22, 0.50] m/s). Compared to lower percentiles, 

there are comparatively less data in the extreme upper percentiles, so the large range in this case is expected.  Given the 

relatively robust speed increase seen in the 1.5km data, compared to the 4.4km data, for lower percentiles, we suspect that the 240 

minimal difference seen in the upper extreme percentiles results from under sampling rather than a systematic difference.  

Although we might expect the speed increase in the 1.5km data to be consistent across all percentiles given better sampling, 

we cannot draw this conclusion based on these 12 storms alone. 

 

For minimum MSLP footprints, the 1st and 5th percentiles of the 1.5km data are [50, 87] hPa and [10, 37] hPa shallower 245 

respectively (90% HDI), but note that the equivalent under sampling observed for high percentiles of gust speeds is likely to 
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be prevalent in the low percentiles of MSLP.  All other percentiles do not show any robust differences – the 90% HDI ranges 

[-11, 12] hPa.  We do not feel these results show robust evidence for a systematic difference in MSLP between the 1.5km and 

4.4km data. 

 250 

The percentile differences suggest that the environmental MSLP (i.e. high percentiles) on the edge of the cyclone are similar 

in both the 1.5km and 4.4km simulations.  Given the relationship between central pressure deficit (i.e. the difference between 

the tropical cyclone central pressure and the environmental pressure outside the tropical cyclone), peak wind speed and tropical 

cyclone size (e.g. Chavas et al., 2017), this comparisons suggests that 1.5km storms may also be smaller in size than the 4.4km 

storms.  This result is commonly cited in analyses of general circulation models (e.g. Bengtsson et al., 1995; Reed and Chavas, 255 

2015; Shaevitz et al., 2014) and reanalysis data (e.g. Malakar et al., 2020; Schenkel and Hart, 2012).  

 

In general, the substantial increase in computing effort required for the 1.5km simulations, over and above the 4.4km simula-

tions, is probably not merited for most applications given the nature of the parametrisation (see discussion in Section 3.3). 

4.6 Other notable results 260 

There is a semi-diurnal sea level pressure oscillation which occurs in the days preceding the minimum in MSLP.  This oscil-

lation is particularly noticeable in the ERA5 dataset for storms Aila, Bulbul, Rashmi, Roanu, Sidr and Viyaru, and to a lesser 

extent in RAL2 cyclones Akash, Mora, Rashmi, Roanu and TC01B (see Appendix A). The IBTrACS data does not capture 

this oscillation, probably due to the limited time sampling.  This may be a manifestation of the diurnal radiation cycle as noted 

by Tang & Zhang (2016), Dunion et al. (2014, 2019) and Knaff et al. (2019), amongst others.  From simulation studies, Tang 265 

& Zhang (2016) in particular note that the absence of a diurnal cycle (principally night time cooling) fails to trigger convection 

outside the cyclone inner core.  Night-time cooling and associated destabilization typically enhance the primary storm vortex, 

eventually promoting the development of outer rain bands and increasing the size of the storm.  Where this process is not 

evident in model simulations, it could diagnose simulations that have not correctly simulated the cyclogenesis stage and are 

therefore likely to underestimate cyclone intensity.  In our case, most RAL2 simulations, as shown in Appendix B, do not start 270 

the cyclone simulations sufficiently in advance of the cyclone landfall (for computational efficiency reasons) and we have 

trimmed the spin-up period from the plots. This means that we cannot fully utilise this observation.  Assessment of future 

tropical cyclone simulations could benefit from earlier initialisation times to investigate this further. 

 

It is worth emphasising that the RAL2 model wind speed typically compare more favourably with IBTrACS wind speed data 275 

than to ERA5 wind speed.  Based on the evaluation of these 12 events, tropical cyclone hazards in the ERA5 deterministic 

output may underestimated wind and gust intensity, and MSLP depth for tropical cyclones.  For some specific cases, despite 

the ERA5 representation of Fani and Bulbul being less intense compared to the IBTrACS estimates, our RAL2 ensemble has 

sufficient model freedom (over a 24 hour spin-up period) to develop the ERA5 initial conditions into peak gust and minimum 
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MSLP intensities that have much greater agreement with the IBTrACS data than the ERA5 data.  This adds credibility to the 280 

spread of the RAL2 model ensembles: where there is substantial RAL2 ensemble spread (e.g. Viyaru or Mora) we suggest this 

reflects greater atmospheric variability associated with these events, such that the RAL2 ensemble might producing a wider 

range of counterfactual storm outcomes than would otherwise be seen in the driving reanalysis.  Comparing these event en-

sembles with the ERA5 ensemble spread would be an interesting avenue of future work. 

 285 

5 Data Access 

RAL2 model (Steptoe et al., 2020) output in NetCDF format is available from https://doi.org/10.5281/zenodo.3600201. All 

data is licenced under Creative Common Attribution 4.0 International (CC BY 4.0).  ERA5 data is available from the Coper-

nicus Climate Change Service portal https://climate.copernicus.eu/climate-reanalysis. IBTrACS version 4 data is available 

from https://www.ncdc.noaa.gov/ibtracs/index.php?name=ib-v4-access. 290 

5.1 Compatibility with Oasis Loss Model Framework 

To facilitate integration with loss modelling processing necessary for risk management and risk transfer, we also make data 

available in a format compatible with the open source Oasis loss model (OASIS LMF, 2020).  This data format is designed to 

be used as one component of a loss model and is formed of CSV and binary files.  This data is available under CC-BY 4.0 

licence from https://oasishub.co/dataset/bangladesh-tropical-cyclone-historical-catalogue. 295 

6 Conclusions 

To our knowledge, these are the first kilometre scale simulations of tropical cyclones over Bangladesh, using ERA5 data as 

initial and boundary conditions.  We summarise key results as follows: 

• RAL2 model ensembles typically compare more favourably with IBTrACS data than the ERA5 data.  In general, the 

RAL2 downscaled wind speeds tend to better capture the amplitude of wind speed increase displayed by the IBTrACS 300 

data, than ERA5. This implies tropical cyclone hazards in the ERA5 deterministic output may be underestimated. 

• RAL2 model ensemble shows a typical increase in peak gust speed of 41 to 118 knots (relative to ERA5 only) and a 

deepening in minimum MSLP of up to -27 hPa (relative to ERA5 and IBTrACS). 

• Generally, there is greater delay in RAL2 MSLP minima, relative to ERA5 and IBTrACS, than in RAL2 gust speed 

maxima.  305 

• Cyclones that compare particularly well are Mora (timing and intensity of gust and MSLP) and Aila (track, timing of 

gust and MSLP). 

https://doi.org/10.5281/zenodo.3600201
https://climate.copernicus.eu/climate-reanalysis
https://www.ncdc.noaa.gov/ibtracs/index.php?name=ib-v4-access
https://oasishub.co/dataset/bangladesh-tropical-cyclone-historical-catalogue
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• Cyclones in the 1.5km dataset have similar MSLP minima, but slightly faster maximum gust speeds.  This implies 

that that tropical cyclones in the 1.5km RAL2 simulations may be smaller in size than the 4.4km tropical cyclones. 

• Further work comparing the spread of RAL2 ensembles with the ERA5 uncertainty information would contextualise 310 

the range of variability that is introduced by the RAL2 model ensemble configuration.   

• Further work is needed to identify landfall times based on the RAL2 tracks.  Future downscaling simulations would 

benefit from outputting variables required for tracking at hourly intervals, to facilitate hourly storm tracking. 

Appendix A Supplementary Data Descriptions 

A1 RAL2 Time Methods 315 

Time methods are defined by the sampling period of the data and the sampling type applied to this period. The sampling period 

(or sampling interval) is one of: hourly (T1H), 3-hourly (T3H) or 24-hourly (T24H).  The sampling type is one of max (max-

imum), min (minimum), mean or point. Point sampling is an instantaneous sample taken from the model time-step (which is 

typically much less than the sample period). Together then, T1Hmax is interpreted as hourly maximum data; T3Hmean is 

interpreted a 3-hourly mean data, and T1Hpoint are model instantaneous time-step output taken every hour.   320 

 

In addition to timeseries data, we produce time-aggregated data for each ensemble member.  Referred to as event ‘footprints’, 

variables are aggregated by minima or maxima over the entire time period. These are commonly used within the catastrophe 

modelling industry. 

A2 RAL2 File naming 325 

Model time-series files are named according to the following convention:  

 

VAR.TIMEMETHOD.UMRA2T.TIMEPERIOD.NAME.RES.nc 

 

where: VAR is a short variable identifier of the variable contained within the netCDF file; TIMEMETHOD is the time method, 330 

specifying if the var is a mean, min, max or point and the period of time over which the mean, min, max or point measure is 

found (as described above); UMRA2T is an identifier for the Met Office regional model type; TIMEPERIOD is the time period 

that the data spans, in the form START_END formatted as YYYYMMDD; NAME is the common name of the storm for the 

given time period; RES is the resolution of the dataset, either 4p4km = 4.4km or 1p5km = 1.5km grid size.   

 335 

Files relating to ensemble footprints have a simpler file naming structure: fpens.VAR.TIMEMETHOD.NAME.RES.nc 
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Appendix B Additional Validation Figures 

[List of Figures B1 – B11] 

Code availability 

The Met Office Unified Model is available for use under licence. A number of research organisations and national meteoro-340 

logical services use the UM in collaboration with the Met Office to undertake basic atmospheric process re- search, produce 

forecasts, develop the UM code, and build and evaluate Earth system models. For further information on how to apply for a 

licence, see http://www.metoffice.gov.uk/research/ modelling-systems/unified-model 

 

Python and R code used to process the RAL2 data is available at https://doi.org/10.5281/zenodo.3953773  345 
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Figure 1 Ensemble configuration for the RAL2-C (UM) downscaling suite.  ERA5 initial conditions (orange dots) initialise the simulation 

start point (green dots).  Each ensemble member then has a 24 hour spin-up period (grey dashed lines) which is discarded from all analysis.  

The 48-hour simulation that is kept is represented by the solid blue line.  ERA5 lateral boundary conditions (LBCs, black dots) feed into 

the 4.4km domain every hour.  The lagged ensemble is designed to simulate a central 24-hour period (shaded grey), common to all 

ensemble members and centred on the tropical cyclone land-fall time (orange star), but also sample a range of ERA5 initial conditions. 
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 455 

Figure 1 Model domains used for the 4.4km (red) and 1.5km (blue) regional models. ERA5 data, with global coverage, provides initial 

conditions for the 4.4km domain.  The 1.5km model takes its initial and boundary conditions from the 4.4km model. The domain data mask 

used for validation plots on Section 3 is in green. 
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Figure 2 Storm specific comparison of maximum gust speed (top), maximum wind speed (middle) and minimum sea-level pressure (bottom) 460 
for tropical cyclone Sidr (Nov 2007).  The dynamically downscaled, high-resolution Met Office model (RAL2) is shown by the coloured 

lines, where each individual line represents one ensemble member, where the initialisation time is coloured lighter to darker. These are 

shown against IBTrACS (grey triangles with uncertainty ranges) and ERA5 (black line).  Equivalent plots for other events can be found in 

Appendix B. 
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 465 

 

Figure 4 Differences in maximum wind speed intensity (left) and timing of maximum (right) for IBTrACS US (blue) ND (orange) and 

ERA5 (green) relative to RAL2 ensemble members, ordered by magnitude of the intensity difference.  Comparisons are made only within 

the period of RAL2 data, up to 36 hours pre and post landfall.  Differences are calculated relative to RAL2 maximum, such that a positive 

intensity (time) difference indicates that the RAL2 model is faster (ahead) of the respective ERA5 or IBTrACS data.  IBTrACS data is 470 
resampled by forward padding data to hourly intervals to aid comparison with RAL2.  Where there are joint maxima in the IBTrACS data 

over multiple timesteps, we plot the smallest differences.  Individual model differences are shown by coloured circles, with median difference 

per storm are show by coloured bars. Lower boxplots aggregate differences across all storms, with the 50th percentile marked by the black 

bar and whiskers extending to the 5th and 9th percentiles of the data 
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 475 

 

Figure 5 Differences in minimum MSLP (left) and time of minimum (right) for IBTrACS US (blue) ND (orange) and ERA5 (green) relative 

to RAL2 ensemble members, ordered by magnitude of the MSLP intensity difference.   Details as for Figure 4. A negative (positive) differ-

ence in MSLP indicates that the RAL2 MSLP minima are deeper (shallower) than the respective ERA5 or IBTrACS data. Note that IBTrACS 

ND MSLP data was not available for Fani or BulBul, and US MSLP not available for BOB01, BOB07 and TC01B, at the time of writing. 480 
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Figure 6 Differences in maximum 3-second gust speed (left) and timing of maximum gust speed (right) for ERA5 relative to RAL2 ensemble 

members, ordered by the magnitude of the gust speed difference.  Details as for Figure 4. A positive (negative) difference in gust speed 

indicates that the RAL2 gust speed maximum is faster (slower) than ERA5 data.  Note that at the time of writing gust speed data was not 485 
available from IBTrACS for any of these events. 
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Figure 7 Storm track comparisons for IBTrACS US (blue lines) and ND (orange) with RAL2 ensemble track bin densities.  Note that 

IBTrACS data for the most recent cyclone Fani and Bulbul are incomplete at the time of writing. Dashed lines represent variable IBTrACS 

storm track uncertainty, based on cyclone intensity. 490 
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Figure 8 Percentile differences between 1.5km and 4.4km tropical cyclone data for (a) maximum gust speed and (b) minimum mean sea-

level pressure (MSLP) footprints.  Differences between resolutions are assessed on a quantile basis, in a hierarchical manner to account for 

dependence between storm ensemble members sampled from multiple storms. Quantile median estimates are shown by black circles, with 

95% highest density intervals (HDI) shown by black bars. Where the 95% HDI overlaps 0, the median circles are filled white.  The boot-495 
strapped difference distribution (n=1000) at each quantile is shaded turquoise (gust speeds) and orange (MSLP). 
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Variable Identifier Unit 

net down surface sw flux corrected rsnds W m-2 

wet bulb potential temperature wbpt K 

air pressure at sea level psl Pa 

air temperature tas K 

geopotential height zg M 

relative humidity hur % 

stratiform rainfall amount prlst kg m-2 

stratiform snowfall amount prlssn kg m-2 

surface downwelling shortwave flux in air rsds W m-2 

wind speed of gust fg m s-1 

x wind ua m s-1 

y wind va m s-1 

 505 

Table 1 Available model output and their SI units. 

 

 

Name Landfall Date 

(DD/MM/YYYY HH:MMZ) 

IBTrACS ID 

BOB01 30/04/1991 00:00Z 1991113N10091 

BOB07 25/11/1995 09:00Z 1995323N05097 

TC01B 19/05/1997 15:00Z 1997133N03092 

Akash 14/05/2007 18:00Z 2007133N15091 

Sidr 15/11/2007 18:00Z 2007314N10093 

Rashmi 26/10/2008 21:00Z 2008298N16085 

Aila 25/05/2009 06:00Z 2009143N17089 

Viyaru 16/05/2013 09:00Z 2013130N04093 

Roanu 21/05/2016 12:00Z 2016138N10081 

Mora 30/05/2017 03:00Z 2017147N14087 

Fani 04/05/2019 06:00Z 2019117N05088 

Bulbul 09/11/2019 18:00Z 2019312N16088 

 

Table 2 List of tropical cyclones downscaled in this dataset.  IBTrACS ID refers to the International Best Track Archive for Climate Stew-510 
ardship storm identifier. Landfall dates are provided for reference and do not necessarily reflect the landfall date of the downscaled data. 

Similarly, names are provided as a shorthand identifier, and are used for file naming purposes, but do not necessarily reflect the official 

storm identifier. 
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Dataset Data Type 
Spatial 

Resolution 

Temporal  

Resolution 

Compared  

Variables 

Convective/parameter-

ised wind speed 

Downscaled 

(RAL2) 

model data 

Gridded 4.4km 1-hourly Gust, Wind, MSLP Convective permitting 

Downscaled 

(RAL2) 

model data 

Gridded 1.5km 1-hourly Gust, Wind, MSLP Convective permitting 

ERA5 Gridded 30km 1-hourly Gust, Wind, MSLP Parameterised 

IBTrACS v4, 

US 
Time Series 

10km 

(0.1°) 
3-hourly Wind, MSLP 

Observed from various 

sources 

IBTrACS v4, 

India 
Time Series 

10km 

(0.1°) 

Interpolated to 

3-hourly (most data 

reported at 6 hourly) 

Wind, MSLP 
Observed from various 

sources 

 

Table 3 Datasets and their key characteristics used in the model validation. 
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Figure B1 Comparison of maximum wind/gust speed and minimum sea-level pressure for tropical cyclone Aila (May 2009).  Details as 

for Figure 3. 
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Figure B2 Comparison of maximum wind/gust speed and minimum sea-level pressure for tropical cyclone Akash (May 2007).  Details 

as for Figure 3. 
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Figure B3 Comparison of maximum wind/gust speed and minimum sea-level pressure for tropical cyclone BOB01 (Apr 1991).  Details 

as for Figure 3. 
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Figure B4 Comparison of maximum wind/gust speed and minimum sea-level pressure for tropical cyclone BOB07 (Nov 1995).  Details 

as for Figure 3. 
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Figure B5 Comparison of maximum wind/gust speed and minimum sea-level pressure for tropical cyclone Bulbul (Nov 2019).  Details 

as for Figure 3. 
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Figure B6 Comparison of maximum wind/gust speed and minimum sea-level pressure for tropical cyclone Fani (May 2009).  Details as 

for Figure 3. 
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Figure B7 Comparison of maximum wind/gust speed and minimum sea-level pressure for tropical cyclone Mora (May 2017).  Details as 

for Figure 3. 
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Figure B8 Comparison of maximum wind/gust speed and minimum sea-level pressure for tropical cyclone Rashmi (Oct 2008).  Details 

as for Figure 3. 



 

35 

 

 

Figure B9 Comparison of maximum wind/gust speed and minimum sea-level pressure for tropical cyclone Roanu (May 2016).  Details 

as for Figure 3. 
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Figure B10 Comparison of maximum wind/gust speed and minimum sea-level pressure for tropical cyclone TC01B (May 1997).  Details 

as for Figure 3. 
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Figure B11 Comparison of maximum wind/gust speed and minimum sea-level pressure for tropical cyclone Viyaru (May 2013).  Details 

as for Figure 3. 
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