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Abstract: The aim of the present study is to explore the potential relationship between debris flow9

and soil slide by establishing susceptibility zoning maps (SZM) separately with the use of random10

forest. Longzi County, located in Southeastern Tibet, where historical landslides occurred11

commonly, was selected as the study area. The work has been carried out with the following steps:12

(1) An inventory map consisting of 448 landslides (399 soil slides and 49 debris flows) was13

determined; (2) Slope units and 11 conditioning factors were prepared for the susceptibility14

modelling of landslide while watershed units and 12 factors for debris flow; (3) SZM were15

constructed for landslide and debris flow, respectively, with the use of random forest; (4) The16

performance of two models were evaluated by 5-fold cross-validation using relative operating17

characteristic curve (ROC), area under the curve (AUC) and statistical measures; (5) The potential18

relationship between soil slide and debris flow was explored by the superimposition of two zoning19

maps; (6) Gini index was applied to determined the major factors and analyze the difference20

between debris flow and soil slide; (7) A combined susceptibility map with two kinds of disaster21
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was obtained. Two models had demonstrated great predictive capabilities, of which accuracy and22

AUC was 87.33%, 0.902 and 85.17%, 0.892, respectively. The loose sources need by the debris23

flow were not necessarily brought by the landslides although most landslides can be converted24

into debris flow. The area prone to debris flow did not promote the occurrence of landslide. A25

susceptibility zoning map composed of two or more natural disasters is comprehensive and26

significant in this regard, which provides valuable reference for researches of disaster-chain and27

engineering applications.28
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1. Introduction31

Soil slide and debris flow are two kinds of natural phenomenon mainly occurring in mountainous32

areas, which pose considerable threats to people, industries, and the environment directly or33

indirectly. Generally, damages can be decreased to a certain extent by predicting the likely34

location of future disasters (Pradhan, 2010). Thus, extensive research has been conducted for the35

prediction and susceptibility assessment of soil slide and debris flow.36

In geomorphology, a “landslide” is the movement of a mass of rock, debris or earth down a37

slope, under the influence of gravity (Cruden and Varnes, 1996). According to different variables,38

landslides can be divided into different types (Varnes, 1978). Debris flow is a specific type of39

landslide, which can be defined as (Hungr et al. 2013): ‘‘Very rapid to extremely rapid surging40

flow of saturated debris in a steep channel”. Generally, slides that occur on a steep slope and41

become disaggregated as they tumble down can transform into debris flows if they contain42
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sufficient water for saturation (Huang et al., 2020). Therefore, slides may provide sufficient43

material source for the occurrence of debris flow and most of the slides are accompanied by debris44

flow. In the past, few scholars have specifically distinguished the slides and debris flow in terms45

of susceptibility assessment (Alessandro et al., 2015; Guzzetti et al., 2005). In addition, some46

scholars made separate evaluations of slides and debris flow (Park et al., 2011; Haydar et al.,47

2016). Some scholars have proposed a coupled model of landslide-debris flow (Chiang et al., 2012;48

Gomes et al., 2013). However, not every slide has evolved into a debris flow and the material49

source of the debris flow is not necessary coming from slides. The formation and manifestations50

of different types of landslides are different, especially debris flow, which is a kind of “wet51

flow”(Varnes, 1978). In other words, there is no determined connection between debris flow and52

other types of landslide. Therefore, the potential relationship between debris flow and other types53

of landslide need further exploration.54

Besides, the conditioning factors and mapping units involved in the susceptibility assessment55

different kinds of landslides are not identical. Especially slope and water content are the most56

critical factors controlling movements of debris flow (Takahashi 2007). Therefore, it is more57

reasonable to evaluate the susceptibility of different kinds of landslides separately. As an example,58

one landslide inventory map includes only one type of landslide, as does debris flow.59

The methods of susceptibility assessment can be broadly classified as qualitative or60

quantitative (Aleotti et al., 1999). Several methods and approaches have been proposed and tested61

to ascertain susceptibility, such as physical-based approaches (Carrara et al., 2008), heuristic62

methods (Blais et al., 2016) and statistically-based approaches (Reichenbach et al., 2018). In63

addition, new machine learning models, such as neural networks (Park et al.,2013), support vector64
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machines (Colkesen et al.,2016) and random forest (RF) (Zhu et al., 2020a), have also been65

applied.66

The Longzi County in Southeastern Tibet is always exposed to slides and debris flow hazard67

because of climatic and topographic conditions, which is chosen as the study area. The purpose of68

the present study is to explore the potential relationship between the occurrence of debris flow and69

soil slide by establishing susceptibility zoning maps separately with the use of random forest. It70

also provides a reference for the study of landslide-debris flow, a common disaster chain.71

2. Materials72

2.1 Study area73

The study area located in Longzi Township, Longzi County, Southeastern Tibet is bounded by74

longitudes of 92°15'E and 92°45'E, latitudes of 28°10'N and 28°30'N (Fig.1). It covers an area of75

about 535 km2 with a population of more than 6000. The study area belongs to a semi-arid76

temperate monsoon climate with the annual rainfall of 279 mm, mainly concentrated in May to77

September. The seismic intensity within the area has a degree of VIII on the modified Mercalli78

index.79

The study area belongs to the zone of stratigraphic division of the Northern Himalayan block.80

The strata is mainly composed of Mesozoic Cretaceous, Jurassic, Triassic, and Cenozoic units.81

There were three common lithology observed during our field investigation: Siltstone from the82

Laka Formation (K1l); Conglomerates from the Weimei Formation (J3w) and Quaternary slope83

wash (Q4el+dl) from the Cenozoic strata.84

The disasters in the study area mainly consist of rain-fed high frequency debris flows and85
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landslides, which destroyed and flooded roads, bridges, farmlands, villages, etc., causing great86

economic losses.87

2.2 Landslide and debris flow inventory88

The statistically-based susceptibility models are based on an important assumption: future89

landslides will be more likely to occur under the conditions which led to the landslides past and90

present (Varnes, 1984; Furlani and Ninfo, 2015). Therefore, a complete and accurate inventory91

map is the key for model training and validation. In this study, data comes from historical records,92

field surveys (Fig.2 and Fig.3) and interpretation of Google Earth images carried out in Google93

Earth pro 7.1(Fig.4). Finally, a total of 399 soil slides and 49 debris flow locations were recorded94

and mapped (Fig.1).95

2.3 Mapping units96

The selection of the mapping unit is an important pre-requisite for susceptibility modelling97

(Guzzetti, 2006). The main mapping units commonly used for landslide and debris flow98

susceptibility assessment are grid cells (Reichenbach et al., 2018). Despite its popularity and99

operational advantages, grid-cells have clear drawbacks for susceptibility modelling (Guzzetti et100

al., 1999). There is no physical relationship between a grid-cell and slope, while slope units can101

make up for this deficiency. Depending on the landslide type, a slope unit may correspond to an102

individual slope, an ensemble of adjacent slopes or a small catchment (Reichenbach et al., 2018).103

The geometry of debris flow is better represented by a polygon or a set of polygons in vector104

format. In the present study, adjacent slope units were applied to the susceptibility assessment of105

soil slide. First-order sub-catchments, which is also called watershed unit, was applied to the106
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susceptibility of debris flow (Francesco et al., 2015; Zhu et al., 2020b). Accordingly, the study107

area was divided into 1003 slope units for the modeling of soil slide or 174 watershed units for108

debris flow.109

2.4 Controlling factors and mapping110

The selection of evaluation parameters is another key prerequisite to ensure that the model is111

accurate and reasonable. With reference to previous studies (Ahmed et al., 2016; Xu et al., 2013;112

Braun et al., 2018), there are differences in the controlling parameters used in soil slide and debris113

flow susceptibility assessment. The occurrence of debris flow emphasizes the indispensability of114

provenance, topography and triggering factors. Availability, reliability, and practicality of the115

factor data were also considered (van Westen et al., 2008). In this paper, 11 controlling factors are116

selected for the susceptibility assessment of landslide, including distance to fault, distance to road,117

distance to river, annual rainfall, slope angle, aspect, plan curvature, profile curvature, topographic118

wetness index, elevation and maximum elevation difference. Besides, a total of 12 controlling119

factors, including basin area, main channel length, normalized difference vegetation index (NDVI),120

drainage density, roundness, melton, average gradient of main channel, slope angle, maximum121

elevation difference, annual rainfall, distance to fault and elevation were selected to fully reflect122

the characteristics of the watershed for the susceptibility assessment of debris flow. Detailed123

information on conditioning factors is shown in Fig.5a~5m. A brief description of each controlling124

factor is given below.125

Aspect, which is frequently used as landslide controlling factor (Dai and Lee, 2002), was126

reclassified into 8 classes (Fig. 5g). Plan curvature and profile curvature were both considered and127
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reclassified into six classes (Fig. 5b and 5e). Generally, faults, rivers and roads play a key role in128

the occurrence of landslides and were reclassified into seven classes using an interval of 1500m129

(Fig. 5i~k). Topographic wetness index was reclassified into five classes (Fig. 5h).130

NDVI reflects the vegetation conditions in the area and was reclassified into 5 classes(Fig.131

6b). Drainage density is the ratio of the total drainage length to the watershed area and was132

reclassified into six classes (Fig.6 g). Roundness refers to the ratio of the area of a basin to the133

area of a circle with the same circumference and was reclassified into six classes (Fig.6 d) .134

Melton ratio refers to the ratio of the degree of undulation in the watershed to the square root of135

the arithmetic area of the watershed (Melton, 1965), which is reclassified into seven classes (Fig.136

6a). Considering the correlation between the two controlling factors, basin area and main channel137

length are represented by the same graph, which was reclassified into four classes (Fig.6h).138

Average gradient of main channel, which is the ratio of the maximum elevation difference of main139

channel to its linear length, was reclassified into six classes (Fig. 6j).140

Rainfall is the only triggering factor to be considered for both landslide and debris flow in this141

paper, which was reclassified into six classes (Fig. 5a and Fig. 6c). Slope angle is frequently employed142

in both landslide and debris flow susceptibility mapping and was reclassified into six classes (Fig. 5f143

and Fig. 6i). Maximum elevation difference reflects the kinetic energy condition and is reclassified144

into 6 classes using an interval of 200m (Fig. 5c and Fig. 6e). Elevation was reclassified into five145

classes (Fig. 5d and Fig. 6f), which has also been used by many authors (Ayalew and Yamagishi, 2005;146

Pourghasemi et al. 2013a, b) .147

Totally 18 factors are obtained by processing the row data in the ArcGIS 10.2 platform.148

Morpholigical and topographic related factors were derived from the DEM with a resolution of 30149
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× 30 m. Geological related factors were extracted from 1:50000 geological maps. Rainfall is one150

of the most important external factors inducing landslides and debris flow, which was determined151

by ordinary kriging interpolation in ArcGIS by collecting data of 11 precipitation stations near the152

area under study as a reference.153

3. Methods154

3.1 Sampling strategy and performance assessment155

Statistical models for landslide susceptibility zoning reconstruct the relationships between156

dependent and independent variables using training sets, and verify these relationships using157

validation sets (Guzzetti et al., 2006a,b), which usually implies the partitioning of the inventory in158

subsets. The sampling strategy affects the results of the susceptibility map (Yilmaz, 2010). Based159

on temporal, spatial or random criteria, the partition of landslide inventories can be made (Chung160

and Fabbri, 2003) and the most applied one is a one-time random selection (Reichenbach et al., 2018).161

However, there is a need for a more reliable estimation of the model performance. The ability of162

the models to classify independent test data was elaborated using a k-fold cross validation163

procedure (k=5 in this paper) (James et al., 2013).164

The computation of the area under the curve (AUC) is the most popular metrics to estimate165

the quality of model , which has been applied for ROC curves( Green and Swets, 1966). It is one166

of the most commonly used indicators. Three statistical metrics as accuracy, sensitivity, and167

specificity are generally applied to assess the performance of the landslide susceptibility models168

(Tien Bui et al. 2016).169

ccur TP TNA acy
TP TN FP FN




  
170

https://doi.org/10.5194/nhess-2020-294
Preprint. Discussion started: 8 October 2020
c© Author(s) 2020. CC BY 4.0 License.



9

TNFP
TNySpecificit

FNTP
TPsitivityS





en

171

(1)172

where True Positives (TP), i.e., cells predicted unstable and observed unstable, True Negatives173

(TN), i.e., cells predicted stable and observed stable, False Positives (FP), i.e., cells predicted174

unstable but observed stable and False Negatives (FN), i.e., cells predicted stable but observed175

unstable.176

3.2 Random Forests177

Random forest (RF) is a powerful ensemble-learning method and was first introduced by Breiman178

(2001). RF uses the bagging technique (bootstrap aggregation) to select, at each node of the tree,179

random samples of variables and observations as the training data set for model calibration.180

Unselected cases (out of bag) are used to calculate the error of the model (OOB Error). The181

increase in OOB error is proportional to the importance of the predictive variable (Breiman and182

Cutler 2004). There are no restrictions on the types of variables, either numerical or categorical.183

RF has the ability to reduce errors caused by unbalanced data, which is suitable for susceptibility184

assessment.185

In order to obtain reliable results of non-parametric models, their respective186

hyperparameters must be optimized before application (Schratz et al., 2019). Scikit-learn package187

(Pedregosa et al.,2011) in the programming software python version 3.7 was used for the188

modeling. The number of trees and the number of predictive variables used to split the nodes are189

two user-defined parameters required to grow a random forest (Ahmed et al.,2016). The involved190
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parameters for modeling utilized in this study were shown in Table 1. Gini index (the larger the191

value of the obtained result, the greater the contribution to the occurrence of landslide)192

(Breiman,2001) was applied to analyze the major conditioning factors for both soil slide and193

debris flow.194

4. Results and verification195

4.1 Landslide susceptibility mapping results196

The predictive accuracy, ROC curves and AUC values of the RF model using training data were197

showed in Table 2 and Fig. 7. The RF model ensured a satisfactory performance of for classifying198

landslides with sensitivity value of 91.62%. In terms of the classification of non-landslides zones,199

specificity value also reached 89.06. An AUC equals to 1 indicates perfect prediction accuracy200

(Vorpahl et al., 2012). The RF model had great performance in terms of AUC, with value of 0.976.201

Standard error (St.), confidence interval (CI) at 95% and significance (Sig.) were applied as three202

evaluation statistics. All these results indicated a reasonable goodness-of-fit for models with the203

training dataset, for which the values were reasonably small.204

Verifying the generalization ability of the model is a key step in prediction models as shown205

in Table 3 and Fig. 7. Accordingly, the values of sensitivity and specificity were 88.69% and206

86.05%, respectively. The model also achieved a great performance in terms of AUC with value of207

0.902. In comparison with the training model, the accuracy and AUC values have slightly208

decreased, but still perform well.209

The landslide susceptibility map was reclassified into five classes: very low (0~0.2), low210

(0.2~0.4), moderate (0.4~0.6), high (0.6~0.8), very high (0.8~1) by using the equal spacing211
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method (Fig.8 ). The map should satisfy two spatial effective rules: (1) The existing disaster points212

should belong to the high-susceptibility class and (2) The high-susceptibility class should cover213

only small areas (Bui et al. 2012). The number of units belonging to very high class reached 179,214

accounting for 17% (Fig.9). Disaster points were mostly in the dark (red or orange) areas. The215

units belonging to moderate class accounted for the smallest proportion, at 13% (Fig.9).216

The controlling factors with significant effects were selected and normalized as shown in217

Table 2. The weight values of slope angle, distance to fault, plan curvature and topographic wetness218

index was 0.21, 0.19, 0.17, 0.13 respectively, which was closely related to the occurrence of219

landslide. The weight values of distance to road, maximum elevation difference, profile curvature220

and elevation are less than 0.1 as 0.08, 0.08, 0.06, and 0.05, respectively (Fig.10).221

4.2 Debris flow susceptibility mapping result222

The debris flow susceptibility model perform well with a very high sensitivity and specificity223

values as 87.80% and 88.89%, respectively. In terms of accuracy and AUC, the model had also a224

great prediction performance with the value of 88.57% and 0.967 (Fig.7). Three evaluation225

statistics also indicate a reasonable goodness-of-fit for the model.226

Table 3 shows that the values of sensitivity and specificity were 85.71% and 84.62%, which227

were slightly decreased compared to the training model. However, the model had achieved a great228

performance in terms of AUC, with value of 0.892.229

The number of units belonging to very high-class reached to 26, which was accounting for230

15% while the units belonging to high-class accounted for the smallest proportion at 13%. More231

than half of the units (58%) belong to on a low or very low-class (Fig.9). Disaster points were232
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mostly in the dark (Bright or deep red) areas (Fig.8).233

The weight values of main channel length, roundness and slope angle were 0.25, 0.16, 0.14234

respectively, which has significant influence on the occurrence of debris flow. The weight values235

of elevation, maximum elevation difference, melton and basin area are close to 0.1, which are 0.13,236

0.12, 0.1, and 0.1 respectively(Fig.10).237

4.3 Analysis and comparison of landslide and debris flow238

susceptibility239

It is worth comparing the two susceptibility zoning maps. In terms of prediction accuracy, the240

values of sensitivity, specificity and AUC of landslide model were slightly higher than that of241

debris flow. However, both models achieved high predictive performance. Therefore, the landslide242

and debris flow susceptibility assessment models based on RF are reliable. The purpose of the243

present study is to explore the potential relationship between landslides and debris flows by244

establishing the respective susceptibility zoning maps. Figure 11 shows the overlapping areas245

between debris flow and landslide in high or very high-class of susceptibility zoning map. It can246

be seen that most of the areas with high or very high-class in the map of debris flow are covered247

with landslides. However, there are also non-overlapping areas between the two zoning maps.248

There are 23 watershed units belonging to high-class in the debris flow susceptibility zoning map249

(Fig.8), of which 17 units are covered with high or very high-class slope units in the landslide250

zoning map (Table 5). In addition, there are 4 watershed units covered with low or very low class251

slope units. In the same way, 19 watershed units belonging to very high-class are covered with252

high or very high-class slop units and 4 watershed units with low or very low-class slop units. In253
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other words, more than 70% of the high or very high-class watershed units are covered with high254

or very high-class slope units. However, there are still 30% of watershed units with high or very255

high-class without the distribution of slope units in corresponding grades. It validated the previous256

view that most of landslides can be transformed into debris flows. Factor analysis was applied to257

further analyze the reasons for the difference. 36 watershed units with distribution of high or very258

high-grade slope units were taken as model 1 and the left 8 watershed units as model 2 (Table 5).259

The KMO (Kaiser-Meyer-Olkin) and significance (Sig.) testing are two statistical parameters260

which ensured the feasibility before application. The KMO values were 0.766 and 0.643261

respectively, which indicated that the correlation between variables was obvious and suitable for262

factor analysis (Table 6). In model 1, the cumulative contribution rate of the first three factors (C1,263

C2 ,C3 ) reached to 83.6%, while the cumulative contribution rate of the first four factors (F1,264

F2 ,F3 and F4 ) reached to 80.5% for model 2 (Table 7). According to the correlation coefficient265

of each common factor (Table 7), the first common factor mainly highlighted the information of266

basin area, main channel length and maximum elevation difference. Similarly, the second and the267

third common factor highlighted the information of slope angle and elevation and roundness,268

respectively. The difference between the two models is that the second model has the fourth269

common factor (Table 8), which emphasized the effects of rainfall and distance to the fault. The270

transformation from a landslide to a debris flow often occurs during heavy rainfall (Takahashi,271

1978), and the landslides are the source area. But landslides are not the only source of debris flows.272

The loose material distributed in the basin is not necessarily caused by landslide.273

In turn, we analyze the distribution of high or very high-class slope units in watershed units.274

The landslide zoning map was put at the bottom floor and the debris flow zoning map on the top275
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floor (Fig. 11). There are 167 slope units belonging to high-class, of which 68 units (accounting276

for about 40%) are distributed in the area of high or very high-class watershed units in the debris277

flow zoning map (Table 9). Besides, 69 slope units (accounting for about 41%) are distributed in278

the area of low or very low-class watershed units. Similarly, 53 slope units (accounting for about279

30%) belonging to very high-class are distributed in the area of high or very high-class watershed280

units and 88 slope units (accounting for about 50%) in low or very low-class slop units (Table 9).281

Comparing with the extent of the landslide affecting the debris flow, the impact of the debris flow282

on the landslide is not obvious. It indicated that the area prone to debris flow does not promote the283

occurrence of landslides.284

Finally, we took the center of gravity of 1,003 slope units as the potential hazard points and285

spread them over 174 watershed units. Thus, a combining susceptibility zoination map for286

landslide and debris flow was obtained (Fig.11). The darker the color, the higher the class of287

susceptibility will be. It can be seen that the susceptibility in the south is generally higher than that288

in the north, and the area in the southwest is disaster-prone. The northeast and central locations in289

the area are less likely to be affected by landslides and belong to low-susceptibility areas. Green or290

yellow dots, which refer to slope units with very low or low- class in the landslide zoning map,291

mainly distributed in light-colored areas but there are also quite a few green or yellow dots292

distributed in dark areas, which means that the occurrence of debris flow not necessarily depend293

on landslides. Blue or black spots are mainly distributed in dark areas but there are also quite a294

few blue or black spots distributed in dark light areas, which means that landslide is not the only295

condition for debris flow to occur. Most of the watershed units are distributed with two or more296

colored dots, which means that there would be multiple slope units with different susceptibility297
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class in the same watershed. According to the combining susceptibility zoning map of landslide298

and debris flow, the study area can be divided into 4 categories: (1) Low or very low-class299

watershed units coupled with low or very low-class slope units; (2) Low or very low-class300

watershed units coupled with high or very high-class slope units; (3) High or very high-class301

watershed units coupled with low or very low-class slope units; (4) High or very high-class302

watershed units coupled with high or very high-class slope units. We assume that the occurrence303

of landslides can bring rich sources of debris flow, thereby promoting or aggravating the outbreak304

of debris flow, that is, forming a landslide-debris flow disaster chain. Therefore, the susceptibility305

assessment of the landslide-debris flow chain in the study area can be roughly divided into three306

classes, which are low, moderate and high (Table 10).307
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5. Discussion308

5.1 Method used for modeling309

Many researchers have used different statistically-based methods to evaluate the susceptibility of310

landslides or debris flows. Logistic regression and discriminant analysis are the most popular311

methods to use in traditional multivariate statistical analysis. The performance of new learning312

machines, such as support vector machines and neural networks, has also been verified. RF, as a313

newly integrated learning machine, has less application in landslide and debris flow analysis.314

Actually, RF have powerful data processing capabilities and can simultaneously solve problems315

such as high-dimensional, unbalanced and data loss, which are common in geological disaster316

assessment. Most importantly, RF can compare the important differences between features and317

have ability to reduce errors caused by unbalanced data and, which achieved strong generalization318

properties (Zhu et al., 2020a).319

5.2 Potential relationship between landslide and debris flow320

There is a certain similarity in the evaluation of the susceptibility of landslide and debris flow321

from the concept, the selection of controlling factors and the application of modeling strategies.322

Therefore, some researchers have neglected the difference between landslide and debris flow i.e to323

express two different disasters with the same susceptibility zoning map (Ciurleo et al., 2016;324

Ciurleo et al., 2017; Persichillo et al., 2017;). However, similarity does not always mean325

consistency. Many researchers have previously conducted studies into the debris flow mobilization326

from shallow landslide using a coupled methodology. They are interested in the dynamic327

simulation of debris flow based on the prediction of landslide susceptibility (Wang et al., 2013;328

https://doi.org/10.5194/nhess-2020-294
Preprint. Discussion started: 8 October 2020
c© Author(s) 2020. CC BY 4.0 License.



17

Fan et al., 2017). However, not every landslide evolves into a debris flow, which means that the329

analysis process is highly selective or uncertain. In the same way, the source of the debris flow is330

not limited to landslide. There, the potential relationship between landslide and debris flow needs331

to be discussed more reasonably and effectively. In this study, the corresponding influencing332

factors and mapping units are selected to establish landslide and debris flow susceptibility zoning333

maps, respectively. The potential relationship between landslide and debris flow is explored in two334

ways: 1) Superimposing the high or very high-class susceptibility areas in the two maps; 2)335

Transforming the slope units into points and distributed them on the watershed units. The336

relationship between landslide and debris flow is illustrated by the distribution of slope units of337

different grades on the watershed units with different prone grades.338

5.3 Necessity and feasibility of combining multiple natural339

disaster susceptibility zoning maps340

Previous studies on susceptibility zoning mapping of disaster have agreed that one disaster341

corresponds to one map. Multiple disasters may be bred simultaneously in a watershed unit and it342

will cause some confusion in practical. For example, the probability of a disaster occurring in a343

watershed is negligible, while it is high of another disaster. Therefore, we need to combine344

multiple zoning maps at the same time to give a comprehensive evaluation, which is arduous to345

achieve. On the one hand, the prediction accuracy and error of different zoning maps should be346

similar or even consistent. On the other hand, the dimensions of the mapping unit should be347

consistent or complementary. The fact that the appropriate prediction method and mapping units348

applied to the two disasters makes it possible to merge the two zoning maps. Disaster risk is349
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higher in landslide-debris flow chain, causing significant loss of life and property. Therefore, two350

natural disasters with potential relationship are simultaneously reflected in the same susceptibility351

zoning map, which can better guide the implementation of engineering, such as landslide-debris352

flow disaster chain.353

6. Conclusion354

In this study, susceptibility assessment models for landslide and debris flow are established355

through RF, respectively and the performance of the models are excellent in terms of accuracy and356

goodness of fit. The potential relationship between landslide and debris flow is discussed by the357

superimposition of two zoning maps and the following conclusions can be drawn:358

(1) The landslide and debris flow susceptibility assessment models based on random forest have359

great performance of accuracy and goodness-of-fit and have the ability to analyze the relative360

importance of different impact factors, which is suitable for the evaluation of natural disasters;361

(2) Although most landslides will be converted into debris flow, the landslides are not necessarily362

the source of debris flow, and the loose sources carried by the debris flow are not necessarily363

brought by the landslides;364

(3) By comparing the extent of the landslide affecting the debris flow, the impact of the debris365

flow on the landslide is not obvious, which indicates that the area prone to debris flow does not366

promote the occurrence of landslides;367

(4) A susceptibility zoning map composed of two or more natural disasters is more368

comprehensive and significant, which provides valuable reference for researchers and engineering369

applications.370
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Table 1 The optimized parameters of RF511

Methods Parameters

RF
Number of iterations, 100; number of execution slots, 10; 1oob_score = true; percentage of

bag size, 0.382; max_features, sqrt; n_estimators, 500

Table 2Models’ performance using training dataset512

Metrics Landslide Debris flow

TP（%） 88.71 87.80

TN（%） 91.89 88.89

FP（%） 11.29 12.20

FN（%） 8.11 11.11

Sensitivity（%） 91.62 88.77

Specificity（%） 89.06 87.93

Accuracy（%） 90.65 88.57
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AUC 0.976 0.967

Table 3Models’ performance using verification dataset513

Metrics Landslide Debris flow

TP（%） 85.56 85.71

TN（%） 89.09 84.62

FP（%） 14.44 14.29

FN（%） 10.91 15.38

Sensitivity（%） 88.69 84.79

Specificity（%） 86.05 85.55

Accuracy（%） 87.33 85.17

AUC 0.902 0.892

Table 3 Variables importance assigned for landslide514

Test

group

Slope

angle

Distance

to fault

Plan

curvature

Topographic

wetness index

Distance

to road

Maximum

elevation

difference

Profile

curvature
Elevation

Landslide 0.21 0.19 0.17 0.13 0.08 0.07 0.06 0.05

Table 4 Variables importance assigned for debris flow515

Test group
Main channel

length
Roundness

Slope

angle
Elevation

Maximum elevation

difference
Melton

Basin

area

Debris flow 0.25 0.16 0.14 0.13 0.12 0.1 0.1

Table 5 The overlap number of debris flow and landslide height and very high-class mapping units516
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Landslide

Debris flow
Very low Low High Very high

High 3/23 1/23 5/23 12/23

Very high 2/26 2/26 8/26 11/26

Table 6 Statistical parameters of the two models517

Statistical parameters Model Model 1 Mode 2

KMO 0.766 0.643

Sig. 0.001 0.003

Table 7 The correlation coefficients between common factors and primitive variables518

Factor F1 F2 F3

NDVI 0.386 -0.336 -0.621

Basin area 0.897 -0.007 0.041

Main channel length 0.984 0.046 -0.023

Slop angle -0.223 0.829 0.455

Maximum elevation difference 0.744 0.66 0.011

Rainfall -0.768 0.33 0.201

Average gradient of main channel -0.753 0.544 0.106

Drainage density -0.844 0.06 0.015

Roundness 0.331 0.14 0.818

Elevation 0.133 0.846 0.382

Distance to fault -0.16 0.211 0.421
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Melton -0.625 0.737 0.149

Contribution rate (%) 41.2 24.7 16.7

Accumulative contribution (%) 41.2 65.9 83.6

Table 8 The correlation coefficients between common factors and primitive variables519

Factor C1 C2 C3 C4

NDVI 0.042 -0.079 -0.279 -0.813

Basin area 0.802 -0.344 0.057 0.009

Main channel length 0.885 0.126 -0.196 0.227

Slop angle 0.009 0.748 0.58 -0.057

Maximum elevation difference 0.801 0.434 -0.128 0.144

Rainfall 0.197 -0.076 -0.487 0.637

Average gradient of main channel -0.744 0.205 0.15 -0.23

Drainage density -0.776 -0.176 -0.267 0.117

Roundness -0.014 0.022 0.896 -0.002

Elevation 0.34 0.746 0.25 0.326

Distance to fault 0.31 0.289 -0.344 0.757

Melton -0.182 0.932 -0.192 0.061

Contribution rate (%) 29.2 20.3 15.2 15.8

Accumulative contribution (%) 29.2 49.5 64.7 80.5

Table 9 The overlap number of landslide and debris flow height and very-high class mapping units520
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Debris flow

Landslide
Very low Low High Very high

High 36/167 33/167 25/167 43/167

Very high 48/179 40/179 25/179 28/179

Table 10 Comprehensive evaluation of landslide-debris flow susceptibility521

Debris flow

Landslide
Low or Very low High or Very high

Low or Very low Low Moderate

High or Very high Moderate High

25°0′0″ N

30°0′0″ N

35°0′0″ N

80°0′0″ E 85°0′0″ E 90°0′0″ 95°0′0″ E 100°0′0″ E

80°0′0″ E 85°0′0″ E 90°0′0″ E 95°0′0″ E 100°0′0″ E

25°0′0″ N

30°0′0″ N

35°0′0″ N

522

Fig.1. Location map of the study area showing landslide and debris flow inventory.523
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524

525

Fig.2. Photos of landslide or debris flow: (a) Lunba landslide in a tributary; (b) Zhenqiong landslide in526

Jiayu village; (c) Debris flow in Misha Township; (d) Debris flow in Lelong Village.527

76m
178m

Multi-level Sliding belt

374m 112°

528

Fig.3.Multistage landslide in Xiongqu village529
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530

Fig.4. Stereo remote sensing map of landslides in Longzi Township (Tong et al., 2019):（a）Landslides531

in Longzi town; (b) Landslides in Malu town.532
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（a） （b） （c）

（d） （e） （f）

（g） （h）

（j） （k）

（i）

533

Fig.5. Study area thematic maps for landslide:（a）Rainfall;（b）Profile curvature;（c）Maximum534

elevation difference;（d）Average elevation;（e）Plan curvature;（f）Average slope;（g）Aspect;535
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（h）Wetness;（i）Distance to road;（j）Distance to river;（k）Distance to fault.536
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（a） （b） （c）

（d） （e） （f）

（h）（g） （i）

（k）

（j）537
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Fig.6. Study area thematic maps for debris flow:（a）Melton;（b）NDVI;（c）Rainfall;（d）Roundness;538

（e）Maximum elevation difference;（f）Average elevation;（g）Drainage density;（h）Area;（i）539

Average slope;（j）Average gradient of main channel;（k）Distance to fault.540

Legend
AUC=0.976 S.t=0.004

Sig.=0.001 95% C.I=0.968~0.984
Reference line (AUC=0.5) (a) (b)

Legend
AUC=0.892 S.t=0.007

Sig.=0.001 95% C.I=0.885~0.899
Reference line (AUC=0.5)

Legend
AUC=0.902 S.t=0.004

Sig.=0.001 95% C.I=0.898~0.906
Reference line (AUC=0.5) (d)(c)

AUC=0.967 S.t=0.005

Sig.=0.001 95% C.I=0.957~0.978
Reference line (AUC=0.5)

541

Fig. 7.Analysis of ROC curve for the two susceptibility maps: (a) Success rate curve of landslide using542

the training dataset; (b) Prediction rate curve of landslide using the validation dataset; (c) Success rate543

curve of debris flow using the training dataset; (d) Prediction rate curve of debris flow using the544

validation dataset.545
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（a） （b）546

Fig.8. Susceptibility maps:（a）Landslide susceptibility zoning map;（b）Debris flow susceptibility547

zoning map.548

（a） （b）

549

Fig. 9. Numbers and percentage of units in different susceptibility classes for landslide and debris flow:550

(a) Numbers of units in different susceptibility classes for landslide and debris flow; (b) Percentages of551

different susceptibility classes for landslide and debris flow.552
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（a） （b）
553

Fig.10. Parametric importance graphics obtained from RF model: (a) Parametric importance graphics554

of landslide; (b) Parametric importance graphics of debris flow.555
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（a）

（c）

（b）

（d）

（e）556
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Fig.11. Landslide-debris flow susceptibility maps: (a) Height and very high-class watershed units with557

high or very high slope units; (b) High or very high-class watershed units with low or very low slope558

units; (c) High or very high-class slope units with high or very high-class watershed units; (d) Mapping559

units.560

561

562

563

564
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