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Abstract. Rapid impact assessments immediately after disasters are crucial to enable rapid and effective mobilization of 

resources for response and recovery efforts. These assessments are often performed by analysing the three components of 

risk: hazard, exposure and vulnerability. Vulnerability curves are often constructed using historic insurance data or expert 20 

judgments, reducing their applicability for the characteristics of the specific hazard and building stock. Therefore, this paper 

outlines an approach to the creation of event-specific vulnerability curves, using Bayesian statistics (i.e., the zero-one 

inflated beta distribution) to update a pre-existing vulnerability curve (i.e., the prior) with observed impact data derived from 

social media. The approach is applied in a case study of Hurricane Dorian, which hit the Bahamas in September 2019. We 

analysed footage shot predominantly from unmanned aerial vehicles (UAVs) and other airborne vehicles posted on YouTube 25 

in the first 10 days after the disaster. Due to its Bayesian nature, the approach can be used regardless of the amount of data 

available as it balances the contribution of the prior and the observations. 

1 Introduction 

Natural hazards, such as tropical cyclones (Mendelsohn et al., 2012), floods (Winsemius et al., 2016) and earthquakes 

(Bilham, 2009), affect millions of people and cost billions of dollars in damages every year. Their impacts are expected to 30 

increase further (Cutter et al., 2015) often attributed to factors such as climate change (Mora et al., 2018) and increasing 

exposure (Bouwer, 2011). Damage assessment immediately after a natural disaster is crucial to enable rescue and relief 

organizations to mobilize resources for response and recovery processes (Kryvasheyeu et al., 2016). However, detailed and 

accurate assessments often take months to complete (UNDP, World Bank, 2013). Therefore, the World Bank has recently 
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employed the Global RApid post-disaster Damage Estimation (GRADE) approach to rapidly estimate damages to physical 35 

assets after major disasters (Gunasekera et al., 2018). 

 

Damage estimations are commonly modelled using the three components of risk: hazard, exposure and vulnerability (Desai 

et al., 2015). Hazard is defined as a potentially damaging event, exposure as the elements subject to damage and losses as a 

result of a hazard and vulnerability as “the conditions determined by physical, social, economic and environmental factors or 40 

processes which increase the susceptibility of an individual, a community, assets or systems to the impacts of hazards” 

(UNISDR, 2016). Vulnerability and fragility functions are commonly used to model damage to buildings due to natural 

disasters. These functions typically relate a measure of impact, such as wind speed (Pita et al., 2015), water depth (de Moel 

et al., 2013) or ground motion (Li et al., 2013), to damage. These relations are mostly based on previous insurance claims, 

experiments or expert judgment and are often only applicable to particular hazard characteristics and specific built 45 

environments (Chung Yau et al., 2011; Douglas, 2007; Pita et al., 2013).  

 

Observations, such as those from surveys (Wijayanti et al., 2017), can improve the accuracy of damage estimates (Douglas, 

2007). However, affected areas are often difficult to access following a disaster (Bono and Gutiérrez, 2011), and human 

resources are often limited (Koshimura et al., 2009). Data sources such as social media (Kryvasheyeu et al., 2016), 50 

unmanned aerial vehicles (UAVs) (Kim and Davidson, 2015) and other remote sensing techniques can provide detailed 

observations of damage quickly during and after a disaster. However, the amount of data is heavily dependent on the 

characteristics of the disaster area, such as the number of people that are able to use social media (de Bruijn et al., 2019; Yu 

et al., 2018) and cultural differences (Cho et al., 2009). 

 55 

A scientific challenge is to seek for methods that use observations from the affected area to improve vulnerability curves. An 

example of such method is Bayesian analysis, which enables the updating of prior beliefs (e.g., beliefs based on expert 

judgment) with observational data, irrespective of the amount of data available (Koutsourelakis, 2010). The balance between 

prior information and observational data depends on the number of observations and the level of uncertainty in both the 

observations and the prior beliefs. 60 

 

Bayesian updating of fragility functions (i.e., the probability of exceeding a certain damage state) has been employed in 

numerous studies. For example, Li et al. (2013) combined results from numerical simulations and experimental testing of 

bridge substructures with Bayesian updating to obtain improved earthquake fragility functions. Mishra et al. (2017) updated 

and quantified the uncertainty of analytical hurricane fragility functions for wood-frame buildings with experimental data. In 65 

another study, a Bayesian framework was designed to create fragility functions for earthquakes (Koutsourelakis, 2010). 

However, from a risk management perspective, vulnerability functions (where damage is represented as a damage ratio) are 

more desirable, as they measure the actual capacity of the built environment in an event (Rossetto et al., 2015). 
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In this paper, we aim to improve existing vulnerability functions employed in GRADE assessments by updating these 70 

functions with post-disaster observations using Bayesian zero-one inflated beta regression (Ospina and Ferrari, 2010). The 

method is applied to a case study of tropical cyclone wind damage in the Bahamas caused by Hurricane Dorian in September 

2019. The observations were obtained from online media reports (i.e., YouTube) in the days following the disaster. This data 

includes some ground observations from driving cars but is mostly composed of observations from UAVs and videos shot 

from other airborne vehicles. In the remainder of this paper, we describe the general methodology (Sect. 2) and its 75 

application to the Bahamas (Sect. 3). We also discuss the applicability of the proposed method to other disaster types and 

different data sources. 

2 Methodology 

Bayesian updating or inference refers to the process of updating existing knowledge for a set of n parameters Θ, defined as Θ 

= (𝜃𝜃1, … ,𝜃𝜃𝑛𝑛) and expressed in a prior distribution, defined as 𝑃𝑃(Θ), with new information X to find the posterior distribution, 80 

defined as 𝑃𝑃(Θ|Χ). Mathematically, we can express Bayesian updating as 

𝑃𝑃(Θ|Χ) ∝ 𝑃𝑃(X|Θ) ∗ 𝑃𝑃(Θ). (1) 

The posterior distribution 𝑃𝑃(Θ|Χ)  is obtained by multiplying the prior distribution 𝑃𝑃(Θ)  by the likelihood distribution 

𝑃𝑃(X|Θ), which is the probability of observing X given parameter set Θ, and a normalizing constant. The normalizing constant 

𝑃𝑃(𝑋𝑋) is omitted here since this is automatically determined during the process of Gibbs sampling (see below; Gilks et al., 85 

1996; Plummer, 2003b). 

 

Following the Bayesian framework, the prior distribution 𝑃𝑃(Θ) for vulnerability must be defined. The vulnerability of the 

building stock can be expressed as a curve that maps wind speed as the explanatory variable (𝑣𝑣1, … ,𝑣𝑣𝑛𝑛) to a damage ratio 

from 0 to 1 (inclusive) as the response variable (𝑦𝑦1, … , 𝑦𝑦𝑛𝑛). Fragility curves of individual components of buildings (e.g., roof 90 

sheathing and nails) are widely regarded as following a cumulative lognormal distribution (Ellingwood et al., 2004; Lee and 

Rosowsky, 2005; Li and Ellingwood, 2006). Assuming identical fragility curves for individual components and 

independence of failure, a vulnerability curve for a building follows that same cumulative lognormal distribution (Holmes, 

1996): 

𝑦𝑦 = Φ�
ln(𝑣𝑣 𝛼𝛼⁄ )

𝛽𝛽 � (2) 95 

where 𝑦𝑦 𝜖𝜖 (0,1) is the damage ratio, 𝛼𝛼 the median capacity of the building stock, 𝛽𝛽 the logarithmic standard deviation of that 

capacity, Φ(∙) the cumulative probability density function for the standard normal distribution and 𝑣𝑣 the sustained wind 

speed. While 𝛼𝛼 and 𝛽𝛽 can be expressed deterministically, we prefer to regard both parameters as uncertain and we express 

them as the random variables 𝜃𝜃1 and 𝜃𝜃2, respectively. 
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 100 

For proportional data, the beta distribution is often used as the basis for the likelihood function 𝑃𝑃(X|Θ)  (Gupta and 

Nadarajah, 2004) because it supports a wide range of shapes on the interval (0, 1). Its probability density function, re-

parameterized in terms of mean 𝜇𝜇 and precision 𝜑𝜑, is given by Ferrari and Cribari-Neto (2004): 

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑦𝑦; 𝜇𝜇,𝜑𝜑) =
Γ(𝜑𝜑)

Γ(𝜇𝜇𝜑𝜑)Γ�(1− 𝜇𝜇)𝜑𝜑� 
𝑦𝑦𝜇𝜇𝜑𝜑−1(1− 𝑦𝑦)(1−𝜇𝜇)𝜑𝜑−1, 𝑦𝑦 ∈ (0,1) (3) 

where Γ(∙) is the gamma function.  105 

 

However, observations of the damage ratio can be true values of zero (i.e., no damage) and one (i.e., complete destruction), 

which are not supported by the beta distribution. In fact, such observations are more frequent because the assumption that the 

individual building components of buildings fail independently does not always hold. For example, houses are often 

completely destroyed (i.e., damage ratio of 1) due to the collapse of an important fundament (Keote et al., 2015) or complete 110 

displacement of the entire building (Shultz et al., 2005). By contrast, houses may be completely undamaged due to their 

environment or protection measures, such as shielding by other standing buildings (Keote et al., 2015). Using the zero-one 

inflated beta distribution enables us to explicitly model these 0 and 1 observations through probabilities 𝜋𝜋0  and 𝜋𝜋1 , 

respectively. 

 115 

Therefore, for proportional response variables 𝑦𝑦𝑖𝑖 ∈ [0,1], Ospina and Ferrari (2010) propose a zero-one inflated beta 

regression. Here, the response variable (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) is modeled as a mixture probability function of 𝜋𝜋0, the probability that 

𝑦𝑦 = 0; 𝜋𝜋1, the conditional probability 𝑃𝑃𝑃𝑃(𝑦𝑦 = 1 | 𝑦𝑦 ≠ 0); and the beta distribution with expected value 𝜇𝜇𝑦𝑦 and precision 𝜑𝜑 

for the values between 0 and 1 (0− 1). Its probability density function is given by: 

𝑓𝑓𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍(𝑦𝑦;  𝜋𝜋0,𝜋𝜋1,𝜇𝜇,𝜑𝜑) = �
𝜋𝜋0                                                                   𝑖𝑖𝑓𝑓 𝑦𝑦 = 0         
(1− 𝜋𝜋0)𝜋𝜋1                                                   𝑖𝑖𝑓𝑓 𝑦𝑦 = 1          
(1 − 𝜋𝜋0)(1− 𝜋𝜋1)𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝑦𝑦; 𝜇𝜇𝑦𝑦 ,𝜑𝜑�           𝑖𝑖𝑓𝑓 𝑦𝑦 ∈ (0,1)   

(4) 120 

By employing this distribution with proper parameterization (Sect. 3.3), we can model a process where it is highly probable 

that the damage ratio is 0 for low wind speed and 1 for high wind speed. For a wind speed in between, it is likely that 𝑦𝑦 is 

modelled on the continuous scale (0-1) through the beta distribution. We base the equation for 𝜇𝜇𝑦𝑦  on Eq. (2) presented 

above: 

𝜇𝜇𝑦𝑦 = Φ�
ln(𝑣𝑣 𝜃𝜃1⁄ )

𝜃𝜃2
� (5) 125 

For probabilities 𝜋𝜋0 and 𝜋𝜋1 we specify a linear relationship with 𝑣𝑣 on the logit scale as follows: 

𝜋𝜋0 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙−1(𝜃𝜃3 + 𝜃𝜃4𝑣𝑣) (6) 

𝜋𝜋1 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙−1(𝜃𝜃5 + 𝜃𝜃6𝑣𝑣) (7) 
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In Eq. (5-7), the parameters 𝜃𝜃1, … , 𝜃𝜃6  are assumed to come from normal distributions with some mean and standard 

deviation. 130 

 

Finally, the prior distribution (Eq. 4-7) and parameters (𝜃𝜃1, … , 𝜃𝜃6) can be updated with some observations with the wind 

speed as the explanatory variable (𝑣𝑣1, … , 𝑣𝑣𝑛𝑛) and the corresponding response variables (𝑦𝑦1, … , 𝑦𝑦𝑛𝑛) using Gibbs sampling, 

which is a Markov chain Monte Carlo (MCMC) algorithm, see Gilks et al., (1996), for a general treatment. For the purpose 

of Gibbs sampling, the predictor variable 𝑣𝑣 is normalized such that 𝑣𝑣� 𝜖𝜖 (0,1] by dividing 𝑣𝑣 by the maximum observed wind 135 

speed (i.e., max (𝑣𝑣)). All other input variables are scaled accordingly. Then, samples of the posterior distribution are 

generated using the Just Another Gibbs Sampler program (JAGS; Plummer, 2003a). We first use 1,000 iterations to tune the 

samplers (i.e., adaptation), 1,000 iterations as a burn-in to find the place where the Markov chain is most representative of 

the sampled distribution, followed by 100,000 iterations in three chains with a thinning of 100. 

 140 

To verify the convergence of the Markov chains, we can present different diagnostics which are reviewed in, amongst others, 

Cowles and Carlin (1996) and Brooks and Roberts (1998). In particular, we concentrate on diagnostics based on 

distributional and autocorrelation statistics. 

3 Case study of Hurricane Dorian 

In this section, the methodology for updating vulnerability curves described above is applied to a rapid damage estimation of 145 

Hurricane Dorian in Grand Bahama and the Abaco Islands, the northernmost main islands of the Bahamas. First, the hazard 

(Sect. 3.1) and exposure components (Sect. 3.2) are briefly described. Then, we discuss the collection of observations for the 

vulnerability component and the Bayesian updating process (Sect. 3.3). Finally, these three components of risk are combined 

to obtain a final damage estimate (Sect. 3.4). It should be noted that all data sources had to have been collectible in the first 

10 days following the first landfall of the Hurricane in the Bahamas to be eligible for the rapid damage estimate. 150 

3.1 Hazard 

On 24 August 2019, Tropical Storm Dorian formed over the Atlantic Ocean and began tracking through the Windward 

Islands and the U.S. Virgin Islands towards the Bahamas (Avila et al., 2020). On 1 September, Dorian reached Category-5 

strength with maximum sustained wind speeds exceeding 300 km/h. At 16:40 UTC that day, Dorian made landfall at Elbow 

Cay, Great Abaco, in the Bahamas. During its passage over the Great Abaco and Grand Bahama islands, the weakening of 155 

the nearby high-pressure area caused the hurricane to lose its steering currents and therefore significantly slowing its forward 

speed to 2 km/h, at times even coming to a standstill. Dorian remained near-stationary for 36 hours, until the hurricane 

started moving north-northwestwards towards North Carolina (USA). Dorian dissipated on 8 September near Canada.  
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In this study, meteorological conditions during Hurricane Dorian’s passage over the Bahamas is taken from the International 160 

Best Track Archive for Climate Stewardship (IBTrACS; Knapp et al., 2010). Using the position of the eye, the minimum 

pressure, maximum wind speed, and size of the eye (i.e., radius to maximum winds) the 2D wind field is constructed by 

applying the parametric approach of Holland (1980), which was further refined in by Lin and Chavas (2012). To obtain the 

wind field at 10 meter above surface level (Fig. 1) a reduction factor of 0.85 is applied (Powell et al., 2005). 

3.2 Exposure 165 

To determine the exposure of the residential buildings on the Abaco and Grand Bahama Islands, we consulted the 2000 and 

2010 Population and Housing Census of the Bahamas (Department of Statistics, 2002, 2012). The census contains 

information about the housing stock. Specifically, it contains data on residential buildings and occupied and vacant dwelling 

units for each settlement and enumeration district in the Abaco Islands and each supervisory district in Grand Bahama, as 

well as the number of bedrooms and the total annual household income for each household size. In the Abaco Islands (and to 170 

a lesser extent in Grand Bahama), the proportion of vacant housing stock is relatively high as the islands are a tourist 

destination, and many homes are owned or rented by vacationers. The Abaco Islands also has many migrant communities 

(mainly working in the service sectors for the tourism industry), who reside in low-quality housing in several informal 

settlements, such as the Mudd and the Pigeon Peas settlements. Other settlements are occupied by the local Bahamian 

population, while tourists and foreign citizens, often reside in high-value homes and resorts. 175 

 

To account for this heterogeneity all settlements and supervisory districts (“regions”) were mapped individually and the 

value of residential buildings within three building classes (low-, medium- and high-quality) was estimated for each region. 

We first estimated the number and area of buildings per building type in each region. To do so, we consulted building 

footprints from OpenStreetMap (and found 16,100 and 12,500 building footprints in Grand Bahama and the Abaco Islands 180 

respectively). We estimated the housing stock in 2019 by projecting data from the 2000 and 2010 census onto 2019, taking 

official population projections into account (Department of Statistics, 2015) and estimated the floor area of the dwellings 

using data on the number of bedrooms per dwelling. We also consulted the Bahamas 2013 Household Expenditure Survey 

(Department of Statistics, 2016), which provided information about household consumption quintiles and housing 

conditions, such as type of dwelling, number of rooms, bedrooms, period of construction of the dwelling, type of tenure, type 185 

of construction material used for the outer walls, the roof cover and the floors. 

 

Next, we estimated the unit cost of construction of the building classes based on housing prices provided by real estate 

agents, building contractors and a census of informal settlements in the Abaco Islands (Shanty Town Task Force, 2018). 

Finally, we consulted the Annual Building Construction Statistics Reports (e.g., Department of Statistics, 2018), which 190 

contain data on the investment values of newly constructed buildings. Figure 2 shows the reported monetary value of low-

quality residential buildings per region (Fig. A1 and A2 for values of medium- and high-quality buildings; note the adjusted 
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scales). Note that these estimations do not include building content. Since no official maps of the regions were available, we 

determined the coordinates of the population centres for each region. All maps are presented as Voronoi diagrams (i.e., 

partitioned into regions closest to each centre point) based on these centroids.  195 

3.3 Vulnerability 

To derive event-specific vulnerability curves, we aimed to update vulnerability curves derived from previous hurricane 

observations in similar built environments using damage observations for individual buildings in the affected area. 

Therefore, we analysed all 498 YouTube videos that were listed when we searched for “Bahamas Dorian” and that were 

posted in the 10 days after the first landfall of Hurricane Dorian in the Bahamas (September 1st–9th). We then analysed all 200 

videos that 1) showed an overview of an area or a row of buildings (to ensure the sample was as representative as possible), 

2) that we were able to geotag (i.e., locate) and 3) that showed buildings that did not appear to have undergone extensive 

flood damage. This resulted in a set of 15 videos (Appendix B), from which we extracted 732 buildings. Figure 3 depicts two 

examples of buildings extracted from the videos. By comparing the footage with satellite imagery of the area before the 

hurricane, we ensured that all buildings in an observed area or row of buildings were analysed, including those that 205 

completely disappeared in the storm. 

 

Then, the damage ratio [0-1] and building class (i.e., low-, medium, and high-quality) were estimated for each building. 

Based on experience in post-disaster damage assessment in insurance, economic damage ratios were estimated based on the 

damage seen in the value of subcomponents of the structure and their relative values and interactions as a whole, see 210 

Massarra et al. (2019). In some areas, especially those with low-quality houses, it was difficult to extract an image of each 

individual building due to the large amount of destruction and displacement. In such cases, we estimated the number of 

buildings per level of damage from pre-event satellite imagery. 

 

Next, we derived a prior (i.e., a vulnerability curve based on pre-existing knowledge; Sect. 2) for each building class by 215 

estimating the parameters based on expert judgment of the strength of the buildings in similar built environments.  Such 

curves have fitted the results of previous PDNAs within the Caribbean for stronger wind events for economic damage, and 

provide similar smoothed curves to existing models in the region such as those presented in the UNDRR’s Global 

Assessment Report on Disaster Risk Reduction (UNISDR, 2015) for developed locations.  Figure 4 (left) shows the 

parameters 𝛼𝛼 and 𝛽𝛽 of these curves for the three housing qualities and Fig. 4 (right) shows the associated damage ratio for 220 

low-quality buildings in the affected region. 

 

We then set the priors (Fig. 5) for 𝜇𝜇𝜃𝜃1  and 𝜇𝜇𝜃𝜃2  (Eq. 5) using the specified values of 𝛼𝛼 and 𝛽𝛽 for each building class; 𝜎𝜎𝜃𝜃1  was 

set to 15 using the uncertainty range expressed in the fragility curves for a specific damage state (i.e., the range of wind gust 

speed that causes a specific damage state) in HAZUS (a tool for analysing natural hazards in the United States) for a similar 225 
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built environment (Vickery et al., 2006) and 𝜎𝜎𝜃𝜃2 was set to 0.03 to allow for uncertainty of the building typology. The values 

of the means and standard deviations of 𝜃𝜃3, … ,𝜃𝜃6  (Eq. 6, 7) were set such that the probability 𝜋𝜋0 is near one when 𝜇𝜇𝑦𝑦 is near 

zero and 𝜋𝜋0 near zero when 𝜇𝜇𝑦𝑦 is near one. Conversely, 𝜋𝜋1 is set such that its value is near one when 𝜇𝜇𝑦𝑦 is near one and 𝜋𝜋1 

near zero when 𝜇𝜇𝑦𝑦 is near zero. This is explained in full in Appendix C. For precision parameter 𝜑𝜑, we use an uninformed 

uniform prior. 230 

 

For each building’s observed damage ratio (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛)  ∈  [0,1] , the maximum sustained wind speed (𝑣𝑣1, … ,𝑣𝑣𝑛𝑛)  was 

obtained using the location of the building (Sect. 3.1). Finally, using these observations we performed Gibbs sampling to 

obtain the posterior distribution (Fig. 5; Sect. 2). In Fig. 5, the upper row (a-c) shows the prior vulnerability curves, whereas 

the lower row (d-f) shows the posterior curves. From left to right the columns represent the vulnerability curves for low- 235 

(a,d), medium- (b,e) and high-quality (c,f) buildings. The red, blue and green colours denote respectively 𝜋𝜋0, 𝜋𝜋1 and 𝜇𝜇𝑦𝑦. The 

solid line represents the median (𝑃𝑃50), the dashed lines (𝑃𝑃25−75)  represent the 25th and 75th percentile and the shaded area 

represents the 10th-90th percentile range. 

 

Comparing the top and the bottom row, the curves for all building types have shifted substantially showing the result of the 240 

Bayesian updating. Note that for the posterior vulnerability curves for low-quality buildings (bottom left; d) it appears that 

there is a significant probability that the building is entirely destroyed (green curve). However, this is not the case since 𝜋𝜋1is 

the conditional probability that the damage ratio is one given that the damage ratio is not zero (𝑃𝑃𝑃𝑃(𝑦𝑦 = 1 | 𝑦𝑦 ≠ 0); Eq. 4). 

 

Figures D1, D2 and D3 display the values per iteration, density plot and autocorrelation for 𝜃𝜃1, … , 𝜃𝜃6 for each building 245 

quality class. While most sequences of generated parameters in the MCMC have low autocorrelations, some parameters do 

show high autocorrelations (i.e., 𝜃𝜃3 and 𝜃𝜃4 for low- and medium- quality buildings and 𝜃𝜃1 and 𝜃𝜃2). This is likely caused by 

the absence of data information for these parameters, together with a possibly large disagreement between the prior and 

observed data. 

 250 

Figure 6 shows the posterior damage ratio per district for low-, medium- and high-quality buildings. 

3.4 Damage estimation 

Finally, the three components of risk were combined (i.e., hazard × exposure × vulnerability) to obtain a damage estimation 

for residential buildings (Table 1; Fig. 7) of 1056 million USD using the prior vulnerability curves versus an estimate of 658 

million USD using posterior curves (i.e., ~38% lower). It should be noted that we used the coordinates of the population 255 

centre determined for each region (Sect. 3.2) to extract the wind speed data (Sect. 3.1). 
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4 Discussion and conclusions 

In this paper, we present a framework that uses Bayesian updating with social media data (YouTube videos) to create event-

specific vulnerability curves. This framework uses the zero-one inflated beta distribution, which allows us to use post-

disaster observations to create vulnerability curves that have been adjusted for local hazard and building characteristics. We 260 

demonstrate their application in a rapid damage assessment of structural damage to buildings caused by Hurricane Dorian in 

the Bahamas. In our estimation, wind damage to residential buildings is ~38% lower compared to that calculated using pre-

existing vulnerability curves (i.e., the priors). The largest relative differences were found for medium- and high-quality 

buildings, which we argue are most likely designed to be designed according to strict building codes (Ministry of Works & 

Utilities, 2003). 265 

 

However, using social media data to assess building damages has several limitations. Observations from online media are 

biased, and some demographic groups have easier access to internet resources than other groups (Duggan and Brenner, 

2013). In addition, observations tend to focus on the most impacted areas, as these are more newsworthy (Miles and Morse, 

2007). While we have aimed to reduce this bias by only including footage that showed relatively large areas, we found very 270 

little footage of the less severely impacted parts of the islands, such as the northern and southern tips of the Abaco Islands. 

Moreover, the large spread in the observations (Fig. 5) shows that vulnerability is a complex concept. The vulnerability of a 

single building or part of building to a specific hazard is determined by many factors. In this paper, we only considered 

sustained wind speed. However, rainfall patterns and other environmental factors could also be important (Hatzikyriakou et 

al., 2016; Knapp et al., 2010). In addition, while we used three different building classes, the real variation in the strength of 275 

these buildings cannot be captured by three relatively simple curves. 

 

The variation in building classes was also difficult to capture. For our case study, we based our classification of damaged 

buildings on post-disaster imagery. While we aimed to deduce the building quality class from the building structure rather 

than from the damage to the building, it is likely that bias was introduced in the classification. A better approach would be to 280 

use pre-disaster imagery (e.g., Google Street View or Mapillary) or, even better, detailed construction data per building. 

Unfortunately, these were unavailable for the Grand Bahamas and the Abaco Islands. 

 

This was further complicated by the limited availability of vulnerability curves for the specific built environment. The 

estimated priors are based on a combination of data sources and expert judgement. This likely caused a relatively large 285 

disagreement between priors and observations for some parameters, resulting in a high autocorrelation (Fig. D1, D2 and D3). 

This calls for the establishment of a database of vulnerability curves for hurricane winds that considers a wide range of 

building typologies and strengths across a wide spectrum of wind intensities. 
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We applied the method using observations from online media. However, point observations from other sources could also be 290 

used. For example, survey data collected by experts or insurance claims would likely be more reliable. However, the 

availability of such observations from such sources during the first days following a disaster is generally limited, which 

reduces their applicability for rapid post-disaster damage assessments. Our method could be applied to other hazard types, 

such as floods and earthquakes. However, building damage caused by standing water may be more difficult to observe from 

pictures than structural damage caused by earthquakes. Therefore, for floods additional data, such as data from surveys or 295 

insurance reports, may be required. 

5 Appendices 

Appendix A 

 
Figure A1: Value of medium-quality buildings per region. 300 
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Figure A2: Value of high-quality buildings per region. 

Appendix B 

• https://www.youtube.com/watch?v=rq95eJWxpd8 
• https://www.youtube.com/watch?v=beXg9egFcAs 305 
• https://www.youtube.com/watch?v=U0omTvsIr_U 
• https://www.youtube.com/watch?v=SuzXtIdZqvg 
• https://www.youtube.com/watch?v=8QoqtB6HPMY 
• https://www.youtube.com/watch?v=SN4jgJX0OP8 
• https://www.youtube.com/watch?v=hvCQtLWW-y4 310 
• https://www.youtube.com/watch?v=11lZzCpeILs 
• https://www.youtube.com/watch?v=SrUfwnX-UjI 
• https://www.youtube.com/watch?v=Ar2BdIEI59w 
• https://www.youtube.com/watch?v=9PypGi8M29Q 
• https://www.youtube.com/watch?v=mpgGw3iyBPU 315 
• https://www.youtube.com/watch?v=AdHombKmG78 
• https://www.youtube.com/watch?v=_tFfnIGq2qE 
• https://www.youtube.com/watch?v=E-zdt-fYLlg 

Appendix C 

𝜇𝜇𝜃𝜃3and 𝜇𝜇𝜃𝜃4  are chosen such that 𝜋𝜋0 (i.e., the probability that the damage ratio is zero) is 0.99 where 𝜇𝜇𝑦𝑦 is 0.01 and 𝜋𝜋0 is 0.01 320 
where 𝜇𝜇𝑦𝑦 is 0.05. In simpler terms this means that the probability that the response variable 𝑦𝑦𝑖𝑖 is a true zero, is near-one 
when 𝜇𝜇𝑦𝑦 is also near-zero, and near-zero otherwise (𝑃𝑃50 or median in Fig. 5). The standard deviation is set at 10% of the 
mean. Likewise, 𝜇𝜇𝜃𝜃5and 𝜇𝜇𝜃𝜃6  are chosen such that 𝜋𝜋1 (i.e., the probability that the damage ratio is one) is 0.01 where 𝜇𝜇𝑦𝑦 is 
0.95 and 𝜋𝜋1 is 0.99 where 𝜇𝜇𝑦𝑦 is 0.99. Likewise, the standard deviation is set at 10% of the mean. 
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Appendix D 325 

 
Figure D1: Values per iteration, density plot and autocorrelation of 𝜽𝜽𝟏𝟏, … ,𝜽𝜽𝟔𝟔 for low-quality buildings. The dashed lines in the top 
row represent the cut-offs between the 3 chains used in Gibbs sampling. 
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Figure D2: Values per iteration, density plot and autocorrelation of 𝜽𝜽𝟏𝟏, … ,𝜽𝜽𝟔𝟔 for medium-quality buildings. The dashed lines in 330 
the top row represent the cut-offs between the 3 chains used in Gibbs sampling. 
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Figure D3: Values per iteration, density plot and autocorrelation of 𝜽𝜽𝟏𝟏, … ,𝜽𝜽𝟔𝟔 for high-quality buildings. The dashed lines in the 
top row represent the cut-offs between the 3 chains used in Gibbs sampling. 

6 Code availability 335 

Python and R code is available on GitHub (https://github.com/jensdebruijn/Bayesian-updating-of-hurricane-vulnerability-
functions). 
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7 Data availability 

The damage observations and wind field are available on GitHub (https://github.com/jensdebruijn/Bayesian-updating-of-
hurricane-vulnerability-functions). 340 
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 480 

Figure 1: Maximum 1-minute average sustained wind speeds at 10 meter above surface level at 0.01° resolution for Hurricane 
Dorian during its passage over the Bahamas in September 2019. Time stamps are given in UTC. 
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Figure 2: Value of low-quality buildings per region. 

 485 
Figure 3: Footage from “Dorian's Destruction of Treasure Cay, Abaco Bahamas” 
(https://www.youtube.com/watch?v=hvCQtLWW-y4) containing (left) a medium quality building with structural detailing with 
roof damage and water intrusion to part of the building’s structure, non-structural damage (ca. 25% damage) and (right) a low 
quality building (with minor structural detailing), missing its front wall, roof damage, and significant debris (ca. 50% damage). 

 490 
Figure 4: Vulnerability functions for low-, medium- and high-quality buildings (left) and damage ratios for low-quality buildings 
in Grand Bahama and the Abaco Islands (right). 
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Figure 5: Visualization of observations, priors and posteriors 25th, 50th (median), 75th percentile and the 10th–90th percentile range 
for low-, medium- and high-quality buildings. 495 

 
Figure 6: Posterior damage ratio per district for low-, medium- and high-quality buildings. 
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Figure 7: Damage to low-, medium- and high-quality housing combined derived from prior and posterior vulnerability curves. 

Table 1: Damage for residential buildings per building class derived from prior and posterior distributions 500 

 Prior 

(million USD) 

Posterior 

(million 

USD) 

Percentage 

change 

Low-quality 155 124 -20% 

Medium-quality 543 324 -40% 

High-quality 359 210 -41% 

Total 1056 658 -38% 
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