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Modelling multiple hazards interrelations remains a challenge for practitioners. This article primarily focuses on the 

interrelations between pairs of hazards. The efficacy of six distinct bivariate extreme models is evaluated through their fitting 

capabilities to 60 synthetic datasets. The properties of the synthetic datasets (marginal distributions, tail dependence structure) 

are chosen to match bivariate time series of environmental variables. The six models are copulas (one non-parametric, one 10 

semi-parametric, four parametric). We build 60 distinct synthetic datasets based on different parameters of log-normal margins 

and two different copulas. The systematic framework developed contrasts the model strengths (model flexibility) and 

weaknesses (poorer fits to the data). We find that no one model fits our synthetic data for all parameters, but rather a range of 

models depending on the characteristics of the data. To highlight the benefits of the systematic modelling framework 

developed, we consider the following environmental data: (i) daily precipitation and maximum wind gusts for 1971 to 2018 in 15 

London, UK; (ii) daily mean temperature and wildfire numbers for 1980 to 2005 in Porto district, Portugal. In both cases there 

is good agreement in the estimation of bivariate return periods between models selected from the systematic framework 

developed in this study. Within this framework, we have explored a way to model multi-hazard events and identify the most 

efficient models for a given set of synthetic data and hazard sets.  
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1 Introduction 

A multi-hazard approach considers more than one hazard in a given place and the interrelations between these hazards (Gill 

and Malamud, 2014). Multi-hazard events have the potential to cause damage to infrastructure and people that may differ 

greatly from the associated risks posed by a single hazard (Terzi et al., 2019). Here, natural hazards (which we will also refer 

to as ‘hazards’) will be defined as (UNISDR, 2009) a natural process or phenomenon that may have negative impacts on 25 

society. For modelling purposes, we consider two main mechanisms in natural hazards interrelations (Tilloy et al., 2019): (i) 

cascade interrelations (i.e., when there is a temporal order and causality between natural hazards); (ii) compound interrelations 

(i.e., when several natural hazards are statistically dependent without causality). 

Meteorological phenomena such as extratropical cyclones or convective storms often lead to the combination of multiple 

drivers and/or hazards and can therefore be related to compound events as defined by Zscheischler et al. (2018) This research 30 

concentrates on cascading and compound interrelations between natural hazards (e.g., a storm can include rain, lightning, hail, 

with rain and hail both potentially triggering landslides). Case examples of meteorological phenomena influencing natural 

hazard interrelations include the following: 

(i)  In 2010, storm Xynthia hit the west coast of France. The storm itself was not particularly extreme for the season but 

the compound effect of extreme wind, high tides, storm surge, extreme rainfall and the fact that the soils were already 35 

saturated led to huge damage due to wind and flooding (CCR, 2019).  

(ii) In summer 2010, Russia experienced a heatwave. Low precipitation in spring 2010 led to a summer drought that 

contributed to the heatwave having a large magnitude (Barriopedro et al., 2011; Hauser et al., 2015; Zscheischler et 

al., 2018). The co-occurrence of extremely dry and hot conditions resulted in widespread wildfires, which damaged 

crops and caused human mortality (Barriopedro et al., 2011).  40 

(iii) Extreme thunderstorms occurred in the Paris region in 2001, involving lightning and extreme rainfall, with the rainfall 

triggering flooding, mudslides and ground collapse, with subsequent damage to railway networks (CCR, 2019). 

In this context, the quantification of interrelations between natural hazards can play an important role in risk mitigation and 

disaster risk reduction. Some of the natural hazards presented in the above examples are extreme occurrence of environmental 

variables (e.g. extreme temperature) which have different characteristics and statistical distributions (e.g., wind and landslides). 45 

Natural hazards can be interrelated with different mechanisms (i.e. compound, cascade). For a given mechanism, interrelations 

also vary in strength and intensity. Additionally, as highlighted in Tilloy et al. (2019), different modelling approaches have 

been developed to quantify interrelations between variables. Here we focus on stochastic models that include copulas (Nelsen, 

2006; Genest and Favre, 2007; Salvadori et al., 2016), and multivariate extreme models (Heffernan and Tawn, 2004), limiting 

our analysis to the bivariate case. The potential for misinterpretation of the dependence structure of two variables clearly 50 

presents a problem when end-users try to account for hazard interrelations. 

We choose six distinct bivariate models able to handle different types of tail (extreme) dependence: one non-parametric (JT-

KDE), one semi-parametric (Cond-Ex) and four different parametric copulas (Galambos, Gumbel, FGM, Normal) (see Section 

2). The fitting capacities of each model are compared with the estimation of level curves. Level curves are extensively described 

in Section 2.3. However, these curves correspond to probabilities that can be related to compound and cascading hazard 55 

interrelations. Compound interrelations are represented with a joint probability while cascading (sequential) interrelations are 

represented with conditional probabilities. 

Examples of joint and conditional probabilities are given in Fig. 1. A joint probability is the probability of two events occurring 

together where both variables are extreme (also called AND probability) (Fig. 1a) and a conditional probability is the 

probability of an event given that another has already occurred (Fig. 1b). Figure 1 illustrates the concepts of joint probability 60 

and conditional probability, with daily rainfall data from a high‐resolution gridded data set of daily meteorological observations 

over Europe (termed ‘E-OBS’) (Cornes et al., 2018) and daily maximum wind gust data at Heathrow airport provided by the 

Met Office (2019). A wind gust here is defined as maximum value, over the observing cycle, of the 3-second running average 
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wind speed (WMO,2019). These datasets and the interrelation between extreme rainfall and extreme wind are discussed in 

Section 4.1. 65 

 

Figure 1: Illustration of joint and conditional extremes with daily rainfall r (mm day–1) and daily maximum wind gust w (m s–1) data 

at Heathrow airport for the period 1971–2018: (a) joint extremes (AND) of rainfall and wind gust (blue circles); (b) conditional 

extremes of rainfall given that wind gust is extreme (yellow circles). Daily rainfall data from E-OBS (Cornes et al., 2018) and daily 

maximum wind gust (3 s period) data from the Met Office (2019). 70 

Joint and conditional probabilities are relevant metrics for practitioners and have been studied and used in several studies in 

the environmental sciences (e.g., Hao et al., 2017; Zscheischler and Seneviratne, 2017). However, as the most widely used 

level curve is the joint probability curve, we initially focus on it. To analyse our results and compare the performances of the 

models we designed diagnostic tools that are presented in Section 3.2.  

This paper is organized as follows. We first (Section 2) provide a theoretical background on key concepts used in this study 75 

and present the models and methodology used. We then (Section 3) discuss the characteristics of our synthetic dataset and 

present the results of the simulation study. The diagnostic tools used to compare models are also discussed (i.e., joint return 

level curves and dependence measure). As a result, a map exhibiting the strength and weaknesses of our six models is presented. 

It aims to provide objective criteria to justify the use of one model rather than another for a given set of hazards Two 

applications to pairs of natural hazards that can impact energy infrastructure are presented in Section 4.The main purpose of 80 

these data applications is to illustrate our methodology, but the natural hazard interrelations studied have the potential to 

negatively impact energy infrastructure. The first application looks at compound daily rainfall and wind in the United 

Kingdom. The combination of these two hazards can result in different and greater impacts than the addition of impacts due 

to extreme wind and extreme rainfall (e.g., wind destroys roof leading to greater damages, power plants flooded with rescuers 
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slow down by strong winds) (Martius et al., 2016). The second application studies extreme hot temperatures and wildfires in 85 

Portugal. Extreme temperatures can lead to damage on infrastructure (e.g., rail track deformation) and put pressure on the 

energy infrastructure by increasing the demand (Hatvani-Kovacs et al., 2016; Vogel et al., 2020), it also increases the 

probability of wildfires (Witte et al., 2011; Perkins, 2015) which have the potential to cause fatalities and destroy 

infrastructure(Tedim et al., 2018). We finish (Section 5) with a discussion and conclusions. 

2 Methods 90 

We are interested in modelling interrelations between hazards in the extreme domain. This implies the use of methods and 

concepts coming from the broad area of Extreme Value Theory (EVT). Amongst the six models compared in this study, four 

are directly linked to EVT (JT-KDE, Cond-Ex, Galambos, Gumbel). Extreme Value Theory has its roots in univariate studies 

(Coles, 2001) and has been extended to the multivariate framework (Pickands, 1981; Davison and Huser, 2015). A theoretical 

background on extreme value theory is given in Supplement S1.1. In this study, we focus on modelling the dependence 95 

between two variables. Bivariate extreme value models developed within the statistical community (Resnick, 1987; Heffernan 

and Tawn, 2004; Cooley et al., 2019) have recently been used for environmental application and therefore natural hazard 

interrelations (De Haan and De Ronde, 1998; Zheng et al., 2014; Sadegh et al., 2017). In order to reproduce the complexity 

and variety of natural hazard interrelations we use 60 synthetic datasets to compare the fitting performances of the models. In 

these synthetics datasets we vary two main attributes of the bivariate datasets: the dependence structure and the marginal 100 

(individual) distributions. Of these 60 different synthetic datasets, 36 datasets have asymptotically dependent variables and 24 

have asymptotically independent variables (see Section 2.1 for a definition of these two concepts). 

In this section, we first present the two types of asymptotic behaviour in bivariate extreme value statistics: asymptotic 

dependence and asymptotic independence and discuss different dependence measures for the estimation of the relationship 

between two variables (Section 2.1). The six bivariate models are then described (Section 2.2). Finally, we discuss the concept 105 

of the return level in the bivariate framework (Section 2.3). 

2.1 Bivariate extreme dependence 

2.1.1 Asymptotic dependence and asymptotic independence 

Let X1, …, Xn be n different variables, with each variable a vector that can take on multiple values. Assume that these vectors 

are random and independent and identically distributed (i.i.d). The asymptotic dependence implies that if one variable Xk for k 110 

ϵ (1, n) has values Xk that are large it is possible for the other variables to take on values that are simultaneously extreme (Coles 

et al., 1999). One way to characterise extremal dependence structures is to split them into those with asymptotic dependence 

and those with asymptotic independence. In the bivariate case, for (X1, X2) random pair with joint distribution G, the random 

variables X1 and X2 are asymptotically dependent if the following conditional probability (Heffernan, 2000) 

𝑃 (𝑋1 > 𝑥 |𝑋2 > 𝑥)  → 𝑐 > 0 𝑎𝑠 𝑥 → 𝑥∗ (1) 

Where X1 > x are those values of variable X1 that are greater than a threshold x, the probability of both X1 > x and X2 > x is c ∈ 115 

(0,1] and x* is the upper end point (maximum) of the common marginal distribution. 

The variables X1 and X2 are asymptotically independent if (Heffernan, 2000)  

𝑃 (𝑋1 > 𝑥 |𝑋2 > 𝑥)  → 0 𝑎𝑠 𝑥 → 𝑥∗ (2) 

where u is a high threshold. In practice (Davison and Huser, 2015), extremal dependence is often observed to weaken at high 

levels (i.e., as x → 1), and it can happen that dependence between variables is observed in the body of the joint distribution, 

but that the multivariate distribution is in fact in the max-domain of attraction of independence (Davison and Huser, 2015).  120 
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Using models that take the assumption of asymptotic dependence (independence) in the case of asymptotically independent 

(dependent) variables can lead to a large overestimation (underestimation) of the probability of joint extreme events (Ledford, 

1996; Mazas and Hamm, 2017; Cooley et al., 2019). Multivariate extreme value and regular variation theory presented in the 

Supplement S1.2 provides a rich theory for asymptotic dependence (De Haan and Resnick, 1977; Pickands, 1981) but are not 

able to distinguish between asymptotic independence and full independence. 125 

2.1.2 Tail dependence measures 

A popular method to analyse hazard interrelationships is to compute dependence measures (Zheng et al., 2013; Petroliagkis, 

2018). Dependence measures aim to describe how two (or more) variables are correlated.  

When focusing on the dependence in the tails or extreme part of distributions, linear or rank dependence measures might not 

be accurate and other coefficients appear more relevant (Hao and Singh, 2016). Dependence between variables in the joint tail 130 

domain has been widely studied in the statistics community (Coles and Tawn, 1991; Ledford and Tawn, 1997; Coles et al., 

1999; Heffernan and Tawn, 2004; Zheng et al., 2014). As explained in Section 2.1.1, in the tails, two variables can be either 

asymptotically independent or asymptotically dependent; different diagnostics and coefficients previously developed are 

summarized in Heffernan (2000).  

In this study, we use the following tail dependence measures:  135 

• the extremal dependence measures χ and 𝜒 ̅ introduced by Coles et al. (1999);  

• the coefficient of tail dependence η, introduced by Ledford and Tawn (1996).  

These coefficients aim to measure the extremal dependence for bivariate random variables (X1, X2) and assume initially that 

(X1, X2) have a common marginal distribution. Coles et al. (1999) defined the extremal dependence measure: 

(𝑥) = 𝑃(𝑋2 > 𝑥|𝑋1 > 𝑥) with lim
𝑥→𝑥∗

(𝑥) =   (3) 

with x a sufficiently high threshold. A sufficiently high threshold x is a value that can be considered as extreme within a given 140 

distribution (corresponding to a high quantile); the value of the threshold depends on the marginal distribution. The extremal 

dependence measure (x) is the probability of one variable (X1 or X2) being extreme given the other is extreme (X2 or X1). This 

measure  varies in the range [0,1], where a value of χ = 0 means that the two variables are asymptotically independent and χ 

= 1 means that they are perfectly dependent. The extremal dependence measure  is only suitable for asymptotic dependence. 

In the case of asymptotic independence (χ = 0), Coles et al. (1999) introduced the measure 𝜒 ̅ which falls between the range [-145 

1,1], 1 being asymptotic independence. Ledford and Tawn (1996) defined their coefficient of tail dependence to be able to 

assess the strength of dependence between two asymptotically independent variables. They show that the joint survivor 

function for random variables (Z1, Z2) with common standard Fréchet margins can be expressed as (See Supplement S1.2): 

𝑃(𝑍1 > 𝑧, 𝑍2 > 𝑧) ~ ℒ(𝑧)(𝑃(𝑍1 > 𝑧))
1

𝜂⁄  (4)  

with z a sufficiently high threshold in the standard Fréchet space. ℒ(𝑧) a slowly varying function while z→∞ and η is the 

coefficient of tail dependence, lying in the range [0,1]. Different values of each coefficient and their implications are 150 

summarized in Fig. 2. For large z, the three tail dependence measures presented above are related in the following way (Ledford 

and Tawn, 2003): 

𝜒 ̅ =  2𝜂 − 1  

𝝌 =  {
𝟎

𝟏
 

(5) 

 

𝑖𝑓 𝜒 ̅ = 1 and ℒ(𝑧) → 𝑐 > 0 𝑎𝑠 𝑧 → 𝑧∗ 

𝑖𝑓 𝜒 ̅ < 1 
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Figure 2: The three coefficients used in this study to assess the dependence between two variables at an extreme level. In the upper 155 
part of the plot (blue), the coefficient 𝝌 varies between perfect asymptotic dependence (light blue, 𝝌 = 0) and asymptotic 

independence (dark blue, 𝝌 = 1). In the lower part of the plot (orange), which is in the asymptotic independence domain (in other 

words, 𝝌 = 0) the coefficients 𝝌 ̅𝐚𝐧𝐝 𝜼 both vary between negative association (light orange, 𝝌 ̅ = −𝟏;   𝜼 = 0) and positive association 

(dark orange, 𝝌 ̅ = 𝜼 = 1). 

 160 

2.2 Bivariate models 

Dependence measures are empirical measures which estimate the strength of the correlation, or dependence between two (or 

more) variables. Despite the fact that these measures provide crucial information, these do not allow to model joint (or 

conditional) exceedance probabilities. To model joint exceedance probabilities which represent the joint occurrence of hazards 

(here represented by extremes of environmental variables) in time and space, the use of stochastic models is required. In this 165 

section we present the three stochastic approaches for multivariate modelling that are used in the simulation study: parametric 

copulas, the semi-parametric conditional extremes model and a non-parametric approach based on multivariate extreme value 

theory (see Supplement S1.2) and kernel density estimation. 

2.2.1 Copulas 

In the bivariate case, a copula is a joint distribution function which defines the dependence between two variables 170 

independently from the marginal distributions of these variables (Heffernan, 2000; Nelsen, 2006; Genest and Favre, 2007; Hao 

and Singh, 2016). Let the random variables (X1, X2) be vectors of i.i.d. values with marginal distributions F1(x1) and F2(x2) and 

a joint cumulative distribution function F1,2(x1,x2). Any bivariate distribution function with marginal distribution functions 

FX1(x1) and FX2(x2) can be expressed as a copula function as follows (Sklar, 1959; Nelsen, 2006): 

𝐹1(𝑥1, 𝑥2) =  𝐶{𝐹1(𝑥1), 𝐹2(𝑥2)}, (6) 

where C is the copula function. Copulas are not limited to two variables and Eq. 6 can be extended to higher dimensions. 175 

Several classes of copula with different properties are available, including Archimedean copulas, elliptical and extreme value 

copulas (e.g., Joe, 1997; Nelsen, 2006). Extreme value copulas have been used within various domains such as finance, 

insurance and hydrology because of their ability to model extremal dependence structures (Genest and Nešlehová, 2013).  

However, extreme value copulas are by definition asymptotically dependent as they follow the rules of multivariate extreme 

value theory (see Supplement S1.2). The two types of extremal dependence were presented in Section 2.1 and show that it is 180 

important to also consider asymptotic independence. Many copulas are asymptotically independent, including the normal 

copula and the Farlie-Gumbel-Morgenstern (FGM) copula (Heffernan, 2000). These two copulas will be used in the simulation 

analysis as asymptotically independent models (Section 3) 
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In the present study, the application of a copula model can be summarized in four main steps: 

(i) Fitting marginal distributions to the two variables and then an empirical cumulative distribution function below 185 

a threshold and generalised Pareto distribution (GPD) above this threshold. 

(ii) Transforming the variables to uniform margins. The transformed datasets no longer have information on the 

marginal distributions but keep the information about the dependence structure (Nelsen, 2006). 

(iii) Fitting the copula function to the pseudo-observations by estimating the copula parameter(s) with an estimator 

(Genest and Favre, 2007). 190 

(iv) Estimating the probability of joint events with the copula function previously fitted. 

2.2.2 Conditional extreme model 

The conditional extremes model (Heffernan and Tawn, 2004; Keef et al., 2013) is a semi-parametric model designed to 

overcome several limitations of copulas and other approaches such as the joint tail methods in which all variables must become 

large at the same rate. The aforementioned methods can typically handle only one form of extremal dependence, either 195 

asymptotic dependence or asymptotic independence. The conditional extremes model has the ability to be more flexible with 

asymptotic dependence classes; it can account for asymptotic independence and asymptotic dependence (Heffernan and Tawn, 

2004; Keef et al., 2013). It can also be used to analyse more than two i.i.d variables more easily than copula-based methods 

(Winter and Tawn, 2016); we restrict the theory provided here to the bivariate case.  The conditional model has been used for 

different purposes: spatial or temporal dependence between extremes (Winter and Tawn, 2016; Winter et al., 2016), 200 

dependence between extreme hazards (Zheng et al., 2014) and even financial purposes (Hilal et al., 2011). 

The conditional extremes model assesses the dependence structure between several variables conditioning on one being 

extreme and aims to model the conditional distribution. As in joint-tail models, the first step is to transform the marginal 

distributions; here the preferred marginal choice is the following: Laplace (or Gumbel) margins (Heffernan and Tawn, 2004; 

Keef et al., 2013). Let the random variables (Y1,Y2) be vectors of i.i.d. values with Laplace distributions. The conditional 205 

extremes model aims to identify two normalizing functions a(yi) and b(yi) such that a satisfies ℝ+  → ℝ and b satisfies ℝ+  →

ℝ+, Both are defined such that for y > 0 (Winter, 2016): 

𝑃 (
𝑌2 − 𝑎[𝑌1]

𝑏[𝑌1]
≤ 𝑧, 𝑌1 − 𝑢 > 𝑦|𝑌1 > 𝑢) ⟶ 𝑒𝑥𝑝(−𝑦) 𝐺(𝑧)          

(7) 

as u → ∞, where G(z) is a non-degenerate distribution function. In the case of Laplace margins the normalising functions a 

and b are given by (Winter, 2016): 

𝑎[𝑦] = 𝛼𝑦   𝑎𝑛𝑑    𝑏[𝑦] = 𝑦𝛽  (8) 

where α ∈ [−1, 1] and  ∈ (−∞, 1). The different values of α and β characterise different forms of tail dependence. In the case 210 

where α = 1 and β = 0, variables (Y1, Y2) exhibit asymptotic positive dependence and the case of asymptotic negative 

dependence is given when α = −1 and β = 0 (Winter, 2016). 

Formally, the application of the conditional extreme model can be summarized in four main steps: 

(i) Fitting marginal distributions to the two variables; an empirical cumulative distribution function below a 

threshold and generalised Pareto distribution (GPD) above this threshold. 215 

(ii) Transforming those distributions onto Laplace (or Gumbel) margins. 

(iii) Estimating the dependence parameters using non-linear regression. 

(iv) Estimating the probability of joint events  by simulating new extreme data through the conditional model 
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2.2.3 Joint tail KDE (kernel density estimation) approach 

The non-parametric approach used in this paper is an adaptation of the non-parametric approach presented by Cooley et al. 220 

(2019). Moreover, the dependence measures η is estimated to determine whether data are asymptotically dependent or 

asymptotically independent. This approach is based on the 2D kernel density estimator and the multivariate extreme value 

framework (see Supplement S1.2). 

The kernel density estimation (KDE) method has the advantage of being a non-parametric way to estimate the joint distribution 

of n variables. With KDE, we make no assumption about the underlying distribution of the margins or about the dependence 225 

structure. The KDE centres a smooth kernel at each observation. The choice of the bandwidth is crucial when using this method 

(Duong, 2007; Hao and Singh, 2016). This selection was done automatically in our case within the kernel survival function 

estimation function from the R package ks (Duong, 2007, 2016).  

The kernel density estimator is used here to estimate an empirical density distribution 𝑓(𝑋) and a joint survival distribution 

�̂�(𝑋) of the bivariate dataset where X=(X1, X2). The joint survival distribution corresponds to the joint exceedance probability 230 

of the two variables (See Section 2.3). From the joint survival distribution, it is possible to estimate level curves which are 

isolines corresponding to given joint probabilities of exceedance (see Section 2.3).  

After estimating the joint survival distribution of the two variables with a kernel density estimator, the cumulative distributions 

𝐹 ̂ 𝑖
(𝑥) of the two random variables Xi  (i = 1, 2,…) are estimated empirically below a threshold and from a Generalized Pareto 

distribution above the threshold. The two marginal cumulative distribution functions are then transformed to Fréchet margins 235 

to allow the use of multivariate extreme value theory(Cooley et al., 2019): 

𝑇 ̂𝑖
(𝑥) =

−1

𝑙𝑛(�̂�𝑖(𝑥))
. 

(9) 

Therefore, 𝑍 = 𝑇 (𝑋) = (𝑇1(𝑋1), 𝑇2(𝑋2))  can be assumed to be regularly varying with an index of regular variation 1 (see 

Supplement S1). An extrapolation from a base probability pbase (blue area in Fig. 3) estimated with a kernel density to an 

objective probability pobj (purple area in Fig. 3) is then done on the transformed space. Thus, on the transformed scale, it is 

possible to construct 𝑙Z(obj)= 𝑡𝑙Z(base) (Cooley et al., 2019). To produce level curves on the original scale, the transformation 240 

in Eq. 11 is reversed: 𝑙obj = 𝑇−1𝑙Z(obj) . Figure 3 gives a graphical representation of the extrapolation done within the joint 

tail KDE approach.  
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Figure 3: Extrapolation in a regularly varying tail for a distribution in the max-domain of attraction of some multivariate extreme 

value distribution. Black circles represent an asymptotically dependent bivariate dataset. In order to estimate the extreme joint probability 245 
P(tA) (where tA is an extreme set represented by the purple area), one can compute P(A) = P{Z ∈ A}, (where A is a less extreme set than tA 

represented by the light blue area) with t < 1. More data points are available in A than tA, Then, from the regular variation framework t P(tA) 

≈ tP(A). Adapted from Huser (2013) 

The methodology presented above is only valid when the two variables X1, X2 are asymptotically dependent. In the asymptotic 

independence case, one needs to adjust the methodology. Two asymptotically independent variables follow the properties of 250 

hidden regular variation (Resnick, 2002; Maulik and Resnick, 2005) (see Supplement S1.2.3). Formally, the coefficient of 

tail dependence η is introduced such as (Cooley et al., 2019): 

𝑙𝑍(𝑜𝑏𝑗)= 𝑡
1

𝜂𝑙𝑍(𝑏𝑎𝑠𝑒) (10) 

The specificity of this approach (presented below) is that it combines a non-parametric estimation of the joint density and the 

framework of multivariate extreme value presented in the Supplement S1.2. It can deal with both asymptotic dependence and 

independence. The coefficient of tail dependence estimation has an influence on the extrapolation process in the asymptotic 255 

independence case. Here we used the estimator presented in Winter (2016) which is derived from the joint-tail model of 

Ledford and Tawn (1997). 

Formally, the application of the joint tail KDE model can be summarized in five main steps: 

(i) Estimating the joint cumulative distribution of the variables with a kernel density estimator. 

(ii) Fitting marginal distributions to the two variables; empirical distribution below a threshold and General Pareto 260 

Distribution (GPD) above this threshold. 

(iii) Transforming those distributions into Fréchet margins. 

(iv) Determining whether variables are asymptotically dependent or asymptotically independent by estimating the 

coefficients of tail dependence χ and η. 

(v) Estimating the probability of joint events and extrapolate the base isoline to an objective isoline. 265 
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2.3 Return levels in the bivariate framework: 

Studying natural hazards as multivariate — and particularly bivariate — events is a growing practice in multiple disciplines, 

including the following: coastal engineering (Hawkes et al., 2002; Mazas and Hamm, 2017); climatology Hao et al., 2017, 

2018; Zscheischler and Seneviratne, 2017); and hydrology (Zheng et al., 2014; Hao and Singh, 2016). There has been debate 

among scientists trying to define a “multivariate return period” (Serinaldi, 2015; Gouldby et al., 2017). Serinaldi (2015) defined 270 

seven different types of probabilities that can be considered as bivariate probabilities of exceedance. These can be expressed 

through copula notation.  

Let the random variables (X1, X2) be vectors of i.i.d. values with marginal distributions Fi(xi) with i=1,2, 𝐶 their copula function 

(Section 2.3.1) and 𝐹1,2 (𝑥1, 𝑥2) =  𝐶{𝐹1(𝑥1), 𝐹2(𝑥2)} = 𝐶(𝑢, 𝑣) where  𝐹1,2 is the bivariate distribution function of X1 and 

X2,  𝑢 = 𝐹1and  𝑣 = 𝐹2 are standard uniform random variables. The seven types of probability and their equations are given in 275 

Table 1. 

Table 1: Types of probabilities for bivariate (X,Y) return period estimation. u and v are extreme thresholds. From (Serinaldi, 2015). 

Type of probability Equation Eq. # 

𝑷𝑨𝑵𝑫 
𝑃(𝑋 > 𝑢 ∩ 𝑌 > 𝑣) =  1 − 𝑢 − 𝑣 + 𝐶(𝑢, 𝑣) 

(11) 

𝑷𝑶𝑹 
𝑃(𝑋 > 𝑢 ∪  𝑌 > 𝑣) =  1 − 𝐶(𝑢, 𝑣) 

(12) 

𝑷𝑪𝑶𝑵𝑫𝟏 
𝑃(𝑋 > 𝑢 | 𝑌 > 𝑣) = ( 1 − 𝑢 − 𝑣 + 𝐶(𝑢, 𝑣))/(1 − 𝑢) 

(13) 

𝑷𝑪𝑶𝑵𝑫𝟐 
𝑃(𝑋 > 𝑢 | 𝑌 ≤ 𝑣) =  1 −

𝐶(𝑢, 𝑣)

𝑢
 

(14) 

𝑷𝑪𝑶𝑵𝑫𝟑 
𝑃(𝑋 > 𝑢 | 𝑌 = 𝑣) =  1 −

𝜕𝐶(𝑢, 𝑣)

𝜕𝑢
 

(15) 

𝑷𝑲 
𝑃(𝐶(𝑢, 𝑣) > 𝑡) =  1 − 𝐾𝐶(𝑡) 

(16) 

𝑷𝑺 
𝑃(𝑔(𝑈, 𝑉)) =  1 − 𝐹𝑍(𝑧) 

(17) 

 

The function Kc in Eq. 16 is the Kendall function and represents the distribution function of the copula (Salvadori and De 

Michele, 2010; Serinaldi, 2015). Equation 17 refers to the ‘structure-based’ return period introduced by Volpi and Fiori 280 

(2014). Among these seven types of probabilities, we selected the “AND” and the “COND1” probabilities (see Fig. 4) as these 

are commonly used in the literature (Chebana and Ouarda, 2011; Tencer et al., 2014; Sadegh et al., 2018) and correspond to 

the two types of interrelations we are interested in (i.e., compound and cascade). 
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Figure 4: Graphical representation of two bivariate (X1, X2) probabilities of exceedance: (a) PAND probability and (b) PCOND 285 
probability with level curves (blue in ‘a’ and orange in ‘b’) representing p = 0.01 (1000 data points on a Gumbel copula with log-

normal marginal distributions). Colours represent the domain on which the probabilities are computed while the areas with diagonal 

hatching represent the critical regions which are the regions corresponding to the given probabilities.  

In 2D space, probabilities of exceedance (or quantiles) are not represented by a single value but by a curve with an infinite 

number of points with the same probability of exceedance. However, as shown in Fig. 4, these probabilities are defined by: (i) 290 

the domain where these are computed and (ii) the critical region corresponding to the probability type. For the AND probability, 

the computation domain remains similar when moving along the curve while the critical region evolves constantly. For the 

COND1 probability, both computation domain and critical region evolve when moving along the curve (see Fig. 4). Bivariate 

probabilities of exceedance are curves. These curves have been given various names in different research papers including the 

following:  295 

• isolines (Salvadori, 2004; De Michele et al., 2007; Salvadori et al., 2016; Sadegh et al., 2017, 2018)  

• level curves (Coles, 2001; Salvadori, 2004; De Michele et al., 2007; Volpi and Fiori, 2012; Serinaldi, 2015, 2016; 

Bevacqua et al., 2017).  

For the specific case of the AND probability, the following names have been used: 
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• joint exceedance curves (Hawkes et al., 2002; Hawkes, 2008; Mazas and Hamm, 2017). 300 

• quantile curves (De Haan and De Ronde, 1998; Chebana and Ouarda, 2011).  

3 Simulation study 

Here we are interested in comparing the abilities of six different models presented in Section 2.3 to reproduce a given 

dependence structure. We create 60 different synthetic dataset types with varying marginal distributions and dependence 

structures. By doing this, we aim to produce bivariate synthetic datasets comparable to the ones studied in bivariate  hazard 305 

analysis (Zheng et al., 2014; Hendry et al., 2019). This will allow us to confront the six models against the synthetic datasets, 

as a reference for bivariate hazard interrelation analysis (See Section 4). The six models compared in this simulation study 

are:  

(i) the conditional extremes model (Cond-Ex) (Section 2.3.2);  

(ii) the non-parametric joint-tail model (JT-KDE) (Section 2.3.3);  310 

(iii) the Gumbel copula (Gumcop) (Section 2.3.1);  

(iv) the normal copula (Normalcop) (Section 2.3.1);  

(v) the Farlie-Gumbel-Morgenstern (FGMcop) copula (Section 2.3.1);  

(vi) the Galambos copula (Galamboscop) (Section 2.3.1).  

Among the four copulas used here, two are asymptotically dependent (Gumbel and Galambos) and two are asymptotically 315 

independent (normal and FGM). A description of the six models is given in Table 2. Table 2 synthetizes a range of information 

about all the six models used in this simulation study including their type (nonparametric, semiparametric, parametric), 

equation, parameter range (if there is a parameter) and asymptotic modelling domain. This latter information is important to 

interpret the result of the simulation study in Section 3.3. 

Table 2: Description of the six statistical models compared in this article. The description includes the model name and acronym (used 320 
throughout the article), type of model (parametric, semi-parametric, non-parametric), the mathematical description, the parameter range 

(where relevant) and the asymptotic modelling domain (AI for asymptotic independence and AD for asymptotic dependence) 
Model name Model 

acronym  

Model type Mathematical description Parameter 

range 

Asymptotic 

modelling 

domain 

Joint tail KDE JT-KDE Non-

Parametric 

 

  AD 

Semi-

parametric 

   ∈ [0,1] AI 

Conditional 

Extremes 

Model 

Cond-Ex Semi-

Parametric 

 

 

for y> 0, as u → ∞ where G(z) is a non-degenerate 

distribution function. 

  AI and AD 

Gumbel copula GumCop Parametric 
  

AD 

Normal copula NormalCop Parametric  

 

 

With Φ(.) the standard Gaussian distribution function  

 

AI 

FGM copula FGMCop Parametric 
  

AI 

Galambos 

copula 

GalambosCop Parametric 
  

AD 

𝐶(𝑢, 𝑣) = exp {−[(− ln(𝑢))𝜃 + −(ln(𝑣))𝜃]
1/𝜃

} 

𝐶(𝑢, 𝑣) = 𝑢𝑣exp {−[(− ln(𝑢))−𝜃 + −(ln(𝑣))−𝜃]
−1/𝜃

} 

𝐶(𝑢, 𝑣) = 𝑢𝑣[1 + 𝜃(1 − 𝑢)(1 − 𝑣)] 

𝐶(𝑢, 𝑣) = ∫ ∫
1

2𝜋√1 − 𝜃2
exp (

2𝜃𝑥𝑦 − 𝑥2 − 𝑦2

2(1 − 𝜃2)
) 𝑑𝑥𝑑𝑦

𝛷−1(𝑣)

−∞

𝛷−1(𝑢)

−∞

 

𝑃 (
𝑌2 − 𝑎[𝑌1]

𝑏[𝑌1]
≤ 𝑧 ,  𝑌1 − 𝑢 > 𝑦| 𝑌1 > 𝑢) ⟶ exp(−𝑦) 𝐺(𝑧) 

𝜃 ∈ [1, ∞) 

𝜃 ∈ [0, ∞) 

𝜃 ∈ [−1,1] 

𝜃 ∈ [−1,1] 

𝑃(𝑍 ∈ 𝑠𝐴∗) ≈  𝑠−1𝑃(𝑍 ∈ 𝐴∗) 

𝑃(𝑍 ∈ 𝑠𝐴∗) ≈  𝑠−1/𝜂𝑃(𝑍 ∈ 𝐴∗) 
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In this section, we first describe and display the synthetic data that have been generated to conduct this study. We shall then 

present the measures used in this study to compare the level curves and the dependence measures estimated from the six models 

presented in Table 2. Finally, results of the simulation will be displayed and analysed. 325 

3.1 Synthetic data 

Synthetic datasets are often used to compare different statistical models (Chebana and Ouarda, 2011; Zheng et al., 2014; 

Cooley et al., 2019). Here we generated 60 bivariate synthetic datasets representative of environmental data such as daily 

rainfall, daily wind gust and daily wildfire occurrences (see Section 4). The number of synthetic data points we use here have 

been fixed to 5000 for each dataset. For the asymptotic dependence case, 36 distinct datasets are generated from a Gumbel 330 

copula (see Supplement S1.3.1); for the asymptotic independence case, 24 datasets are generated from a normal copula (see 

Supplement S1.3.2). Each synthetic dataset set of parameters has been used to generate 100 realizations to produce confidence 

intervals. 

The synthetic datasets are generated from two marginal distributions and a dependence model (i.e., copula). Both marginal 

distributions are log-normal; the log-normal distribution has been used (among others) for the modelling of a wide range of 335 

natural hazards, including wind, flood and rainfall (Malamud and Turcotte, 2006; Clare et al., 2016; Loukatou et al., 2018; 

Nguyen Sinh et al., 2019).  

Random variables X with a log-normal distribution are governed by two parameters: the location parameter μ and the shape 

parameter σ which correspond respectively to the mean and the standard deviation of Y, the variable’s natural logarithm, i.e., 

Y = ln(X) (Aitchison, 1957). The parameter σ influences the shape of the distribution and the heaviness of the tail and the 340 

dispersion of a log-normal distribution mostly depends on the shape parameter (Koopmans et al., 1964)  

We can characterize log-normal distributions with the coefficient of variation cv which is the ratio of the standard deviation s 

of the log-normally distributed variable x to its nonzero mean 𝑥 ̅(Malamud and Turcotte, 1999): 

𝑐𝑣  =  
𝑠

�̅�
 

(18) 

The standard deviation s and the nonzero mean 𝑥 ̅ are both related to the two parameters μ and σ of the log-normal distribution 

(see Table 3). The use of the coefficient of variation characterises the log-normal distribution with one single parameter instead 345 

of two. The distribution used in the simulation study, the parameters and the relationship between these parameters and the 

different tail dependence measures are summarised in Table 3. 

Table 3: Marginal distributions and copula used for the synthetic datasets 

Distribution Cumulative density function  Parameters 
Parameter

s values 

Log-normal 
distribution  

  

μ, σ of y, where y = ln(x) 

�̅� = 𝑒𝑥𝑝(𝜇 + 𝜎2/2) 

𝑠 = √(𝑒𝑥𝑝(𝜎2 − 1)𝑒𝑥𝑝(2𝜇 + 𝜎2)
 
 

 𝑐𝑣  =  𝑠/�̅� 

A: cv =0.25 
B: cv =0.53 
C:  cv =2.91 

Gumbel 
copula 

 

 
𝜃 = 𝑙𝑜𝑔2(2 − 𝜒)  

 = 0.05, 
0.10, 0.30, 
0.50, 0.70, 
0.90 

Normal 
copula 

 

 

𝜃 = 2𝜂 − 1  

 = 0.25, 
0.50, 0.75, 
0.90 

where Φ  is the cumulative distribution function of the standard normal distribution 
 

We use three different coefficient of variations cv = 0.25 (labelled as A for the rest of this paper), 0.53 (labelled B) and 2.91 350 

(labelled C) (See Table 3). The log-normal distribution A (cv = 0.25) produces a distribution close to the normal distribution. 

The distribution C (cv = 2.91) is a highly right-skewed distribution. The distribution B (cv = 0.53) is intermediate skewness 

𝐹(𝑥) =  𝛷 (
(ln(𝑥) − 𝜇

𝜎
 ) 

𝐶(𝑢, 𝑣) = 𝑒𝑥𝑝 {−[(− ln(𝑢))𝜃 + −(ln(𝑣))𝜃]
1/𝜃

} 
 

𝐶(𝑢, 𝑣) = ∫ ∫
1

2𝜋√1 − 𝜃2
exp (

2𝜃𝑥𝑦 − 𝑥2 − 𝑦2

2(1 − 𝜃2)
) 𝑑𝑥𝑑𝑦

𝛷−1(𝑣)

−∞

𝛷−1(𝑢)

−∞
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between A and B. In the bivariate context, there are six possible combinations of these distributions: AA, AB, AC, BB, BC, 

and CC.  

The dependence structure is represented by a Gumbel copula in the case of asymptotic dependence (AD) and a normal copula 355 

in the case of asymptotic independence (AI) as no copula can be both asymptotically independent and asymptotically 

dependent (Heffernan, 2000; Coles, 2001). The Gumbel copula is an extreme value copula, asymptotically dependent (see 

Supplement Eq. S19). The Gumbel copula function only has one parameter 𝜃 which can be related the extremal dependence 

measure χ. Here, we vary χ between 0.05 (very weak asymptotic dependence) and 0.9 (strong asymptotic dependence) (see 

Fig. 5). The Normal (or Gaussian) copula is asymptotically independent. Its unique parameter is related to the coefficient of 360 

tail dependence η (Heffernan, 2000). We vary η from η = 0.25 (negative sub-asymptotic dependence) to η = 0.9 (positive sub-

asymptotic dependence) (see Fig. 5). In total, ten different dependence structures were simulated for each of the six 

combinations of marginal distributions. The 60 bivariate synthetic datasets used in this study are displayed in Fig. 5.  

 



15 

 

 365 

Figure 5: The 60 different synthetic bivariate datasets used in our simulation study. On the y-axis: the dependence strength (a) χ (for 

asymptotic dependence) and (b) η (for asymptotic independence), vary from slightly negative association to heavily dependent (see 

also Fig. 2). On the x-axis AA to CC represent the marginal distributions that are part of the bivariate distributions (see Table 3) 

with A, B, C representing log-normal distributions with different coefficient of variations cv (A: cv = 0.25; B: cv = 0.47; C: cv = 0.95). 

 370 

To compare the fitting capabilities of the different models presented in Section 2.3, we vary several characteristics of the 

synthetic dataset: 
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(i) The shape of the marginal distributions. Natural hazards can exhibit very diverse statistical properties depending not 

only on their type but also on the location where they occur (Sachs et al., 2012).  

(ii) The strength of the dependence represented by the parameter of the copula function. The type and strength of the 375 

relationship between natural hazards can vary within a broad range depending on the natural hazard studied or the 

location (Gill and Malamud, 2014; Martius et al., 2016). In order to take consider both the AD and AI cases, the two 

parameters χ and  (Section 2.2) are used. 

3.2 Diagnostic tools 

There are many diagnostic tools, to assess the goodness-of-fit of parametric bivariate models (Arnold and Emerson, 2011; 380 

Couasnon et al., 2018; Genest et al., 2009, 2011; Genest and Nešlehová, 2013; Sadegh et al., 2017). Amongst these, some of 

the most popular are the following:  

• Cramer–von Mises statistic (Arnold, Taylor and Emerson, John, 2011) 

• Kolmogorov-Smirnov test (Arnold, Taylor and Emerson, John, 2011) 

• Akaike information criterion (AIC) (Akaike, 1974) 385 

• Bayesian information criterion (BIC) (Schwarz, 1978) 

These measures have been developed in a univariate framework and then extended to the bivariate framework. Genest (2009) 

proposed several approaches for Cramer–von Mises and Kolmogorov–Smirnov goodness-of-fit tests for copulas. There are 

two issues we faced using these measures for our study:  

(i) these criteria are designed to fit on the dependence structure of the whole dataset and not the extreme dependence 390 

which can be different.  

(ii) in our study we aim to compare parametric and non-parametric models.  

To tackle the first issue, goodness-of-fit tests have been developed for extreme value copulas (Genest et al., 2011). The latter 

issue is more complicated; each modelling approach has its own fitting methodologies, and although it is now possible to 

compare copulas against each other (Sadegh et al., 2017; Couasnon et al., 2018), it is more difficult to compare copulas against 395 

semi-parametric or non-parametric models. The measures mentioned above are not suitable for the present study as they require  

models to be parametric  to be compared against observations (Stephens, 1970; Arnold, Taylor and Emerson, John, 2011). It 

is then not possible to compare the goodness-of-fit of the six models used in this study all together  .  

However, we are interested in fitting capabilities in the extremes. The models will then be compared on the estimation of two 

attributes of the synthetic data detailed below:  400 

(i) The PAND probability of exceedance (Section 2.3) represented by the level curve at p = 0.001. 

(ii) The tail dependence measures  and  (Section 2.2.2). 

We present here the diagnostic tools related to the level curve. The tools used to compare tails dependence measures can be 

found in Appendix A. Here we chose to compare our six models with respect to their ability to reproduce a reference level 

curve from the underlying bivariate (X1, X2) distribution of the data lobj (‘obj’ is again used to indicate objective) which 405 

corresponds to an extreme joint probability p = 0.001. For each model i a level curve lobj,i is computed. Several methods and 

criteria have been used in the literature to compare level curves to a reference including comparing the curves with vertical 

point-wise distances between the underlying curves (Chebana and Ouarda, 2011). This approach finds its limitation when level 

curves do not share the same x-axis coordinate (X1 axis). In Fig. 6 is presented our procedure for computation of the goodness-

of-fit indicators (described in further detail below). In Fig. 6 the example modelled and reference curves do not reach the same 410 

coordinate on the X1 axis, making it impossible to compare these two level curves between X2=0.0 and X2=0.3. Cooley et al. 

(2019) divided level curves into two parts, comparing six x-axis coordinates on one part and six y-axis on the other part, to 

overcome the aforementioned limitation. Here we chose to use a consistent criterion all along the curves to evaluate the distance 

between each modelled curve and the reference curve. The four steps we use are the following: 
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(i) Each modelled and reference level curve is normalized by dividing its coordinates by their maximum values. With 415 

that process, the curves are bounded in the [0,1] by [0,1] space. The different indicators are then computed in this 

normalized space. 

(ii) Cartesian coordinates (x,y) of the modelled and reference level curves are transformed to polar coordinates (θ, r). 

(iii) Each modelled and reference level curve is discretized via linear interpolation into points. Each point corresponds to 

an angle value (triangles and dots on the curves in Fig. 6). 420 

(iv) Points from both the modelled and reference level curves with the same angle are coupled. Indicators are computed 

at each of the 80 couples of points (see Fig. 6). 

The indicator designed in this study is derived from the distance between the two curves and are listed in Table 4:  

 
Figure 6: Procedure for computation of the goodness-of-fit indicators. Two variables are given, X2 as a function of X1. The 425 

red triangles and red curve represent the modelled level curve from a given model. The blue circles and blue curve are the 

reference level curve from the underlying bivariate (X1, X2) distribution of the data. Distance between the curves are calculated 

along the radius at 80 (X1, X2) coordinates (e.g., between the blue circles and the red triangles). 

 

We used a weighted Euclidean distance (wd) as comparison criteria. The density of level curves (described in the Supplement 430 

S2) allows one to weight the Euclidean distance of each of the 80 points by the local density of the curve. By weighting the 

Euclidean distance according to the reference bivariate distribution probability density function, we give more importance to 

the proper part of curve where a bivariate event is more likely to occur, rather than the naïve part (here the naïve part is defined 

as where the bivariate event is less likely to occur) (Chebana and Ouarda, 2011; Volpi and Fiori, 2012).  

∑ 𝑤𝑖( 

𝑁

𝑖=1

√(𝑥𝑚𝑜𝑑,𝑖 − 𝑥𝑟𝑒𝑓,𝑖)2 + (𝑦𝑚𝑜𝑑,𝑖 − 𝑦𝑟𝑒𝑓,𝑖)2) 
(19) 

3.3 Results 435 

Two analyses are conducted in parallel, one for asymptotic dependence (AD) and one for asymptotic independence (AI). In 

the case of asymptotic dependence, the Gumbel copula is used with 5000 data points. The χ value is the one of interest under 

AD, values taken by χ have been presented in Section 3.1. For each χ value, we generated 100 realizations of the dataset from 
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the same underlying bivariate distribution. The 100 realizations generated have two purposes: (i) increase the robustness of 

the results and (ii) create a confidence interval around the median which was set at the 95% confidence level by taking the 440 

quantiles Q2.5 and Q97.5 of the 100 realizations. To confront this approach, we generated two sets of 100 realizations which 

showed very small variations in the values of Q2.5, Q50 and Q97.5 without impacting our interpretation of the results. In the 

case of asymptotic independence, the normal copula is used.  

The marginal distributions do not have any impact on the dependence structure (Nelsen, 2006; Genest and Favre, 2007). We 

show in Appendix A that marginal distributions also have a very small impact on the estimation of dependence measures. All 445 

the methods used in this study include a transformation of marginal distributions and the fitting of a GPD above an extreme 

threshold (Section 2.3). By varying the marginal distribution of the variables of our synthetic dataset we aim to capture 

uncertainties and errors arising from both the fitting of the marginal distributions and the dependence structure. 

For both asymptotic dependence AD and asymptotic independence AI, the objective level curve 𝑙obj to be compared has been 

fixed at the probability 𝑝obj = 0.001. For each of the 60 bivariate datasets, the six models presented are fitted to the 100 450 

realizations. The dependence measures �̂� 𝑖 , �̂� 𝑖 as well as the level curve 𝑙 𝑜𝑏𝑗,𝑖 are estimated for each six model, with i⋲ (1:6) 

correspond to each model. We then use the diagnostic tool and criteria presented in Section 3.2 to compare the performance 

of the models. From the 100 realizations, 100 level curves 𝑙 𝑜𝑏𝑗,𝑖 are generated for each model. Three curves are designed: (i) 

the 2.5% quantile level curve, (ii) The median level curve, (iii) the 97.5 % quantile level curve.  

In an analogous way, for each of the diagnostic tools presented in Section 3.2, three values are computed: (i) the 2.5% quantile, 455 

(ii) the median, (iii) the 97.5% quantile. To assess more accurately whether the models manage to represent the synthetic data 

in the large value extremes, we compared their fitting capabilities to a naïve approach. Here, the naïve approach is an empirical 

level curve. For each of the 60 synthetic datasets, we compute the wd of the empirical level curves to the reference curves 

following the same steps as for the six models. The empirical wd (wdnaïve) is therefore compared to the wd of each model. 

Models that represent the data with more accuracy than a naïve approach (wd<wdnaïve) are considered to be representative of 460 

the data. Figure 7 displays the values of the wd for each model applied to each bivariate dataset and highlight the cases where 

models outperform a naïve approach (blue bold). Squares are coloured according to the median of the wd and thickness of the 

edges is proportional to the size the confidence interval (i.e., the distance between the quantiles Q2.5 and Q97.5). 
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Figure 7: Weighted Normalized Euclidean Distance (wd) to the reference curve for all 60 different synthetic datasets. Fitting 465 
capacities of each model are represented. Values in cells and colours represent the median wd from low (dark green) to high (red). 

Bold blue values highlight cases where models are representative of the data. Thickness of borders represent the 95% uncertainty 

around the median value on a logarithmic scale. 

It is important here to note that we tested more AD (36-60%) cases than AI (24-40%) cases. To assess, the flexibility of models, 

additionally to comparison to the naïve approach, we also consider the proportion of cases where model have a wd < 0.1. From 470 

Fig. 7, we observe the following:  

• The Gumbel and normal copulas, which have been used to generate the synthetic datasets with AD and AI, generally 

outperform all the other models in AD and AI cases respectively. 

• The conditional extremes model and the joint-tail KDE model are the most flexible models tested here as they can 

handle (Cond-Ex) 98% [72–100%] and (JT KDE) 97% [65–100%] of the situation with a wd < 0.1; these values reach 475 

100% for the AI cases. However, the Cond-Ex model is slightly more flexible, having a representative fit to more 

datasets (95%) than the JT-KDE model (68%). 
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• The normal copula, even if asymptotically independent, is the most flexible copula model with wd < wdnaïve in 47% 

of the cases, more than the number of AD datasets. The normal copula has a low wd (<0.1) in 76% [60–90%] of the 

cases and has a representative fit to the data for every AI case and in some AD cases. 480 

• Gumbel and Galambos copulas have representative fits to only 57% of the AD datasets. Among the 36 AD cases, 

they fail to represent only two with χ=0.9. It is important to note that both aforementioned copulas cannot handle 

complete independence (=0.5) or negative dependence ( = 0.25).  

• The FGM copula can only handle one type of extremal dependence, which is asymptotic independence (AI) with 

 = 0.5. Consequently, it is the least flexible model in our results with a wd < wdnaïve.in only 10% of the cases.  485 

• Higher shape parameters of the margins are associated with poorer goodness-of-fit for all models. It is particularly 

striking with the conditional extremes approach which exhibits high uncertainty and high wd when both margins have 

a standard deviation σ=1.5.  

The Cond-Ex and JT-KDE provide close results according to Fig. 7 despite adopting very different approaches. Thus, their 

flexibility arises from their semi parametric nature. Fig. 7 also displays the uncertainty of the estimate of wd. For all models, 490 

a more accurate fit is accompanied with a reduction in uncertainties. However, both Cond-Ex and JT-KDE have on average 

more uncertainty around its wd despite their good fitting capabilities. On average, copulas tend to have less uncertainty due to 

their parametric nature.  

However, the copulas are penalized by the weighting function as they usually reproduce quite well the naïve part of the curve. 

By considering again the percentage of situations with a criterion below 0.1, the normal copula has its performances reduced 495 

by the weighting function (–6% compared to d). The JT-KDE model has its performance boosted by the weighting function 

(+7% compared to d). 

4 Application to natural hazards 

Results from the simulation study presented in the previous section (Section 3) can provide useful insights when modelling 

the interrelations between two natural hazards. In this section, we will show how results previously presented can be useful to 500 

identify the most relevant models for a given dataset according to its visual characteristics. The concordance (or discordance) 

of the relevant models can also increase (decrease) confidence around the results.  

The methodology for model selection presented here is composed of five steps to select the most relevant models estimate 

joint exceedance probability level curves: 

(i) The two-tail dependence measures are estimated empirically with a 95% confidence interval. The dataset with a tail 505 

dependence measure falling in that confidence interval are suggested as analogue to the studied bivariate dataset. To 

select relevant combinations of marginal distribution, a scatterplot is compared visually to density plots for the 60 

different datasets simulated in Section 3 and displayed in Fig. 5.  

(ii) From the aforementioned 60 datasets, a set of one to six analogous datasets (i.e. with similar bivariate distribution) is 

taken. 510 

(iii) A confidence score is used to compare the abilities of each model for the datasets selected in step (ii). For each model, 

the confidence score is 𝑤𝑑̅̅ ̅̅  the average of the computed weighted Euclidian distance wd for all datasets selected in 

step (ii). By taking the average of wd, a poor fit on one analogous dataset will have a high influence on the confidence 

score.  

(iv) Models are fit to the bivariate hazard dataset and level curves from the most relevant models are kept. 515 

(v) Tail dependence measures are estimated using the most relevant model with a possible new iteration of the four 

previous steps according to the value of the dependence measures. 
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To produce a confidence interval as was done in the simulation study (Section 3) and to visually measure the uncertainty 

associated to each level curve as in Section 3, we use a nonparametric bootstrap procedure. The function tsboot from the R 

package boot (Davison and Hinkley, 1997; Canty and Ripley, 2019) is used to generate 100 bootstrapped replicate datasets 520 

with the same number of observations as the original (but some are repeated). Our six models are then fitted to the original 

dataset and on the 100 bootstrapped replicates.  

4.1 Rain and wind gusts at Heathrow Airport (Asymptotic independence) 

Here, we study the interrelation between daily extreme wind gusts (w) and extreme rainfall (r) at London Heathrow airport, 

UK for the period 1 January 1971 to 31 May 2018, both introduced in Fig. 1. The relationship between wind and rainfall has 525 

been studied both globally (Martius et al., 2016) and locally (Johansson and Chen, 2003; Ming et al., 2015). These two hazards 

are often associated with different types of storms (Dowdy and Catto, 2017) and in particular cyclones (Ming et al., 2015; 

Raveh-Rubin and Wernli, 2016). In South England, these two hazards are mostly associated with extratropical cyclones in the 

winter season and thunderstorms in summer season (Hawkes, 2008; Anderson and Klugmann, 2014; Webb and Elsom, 2016; 

Hendry et al., 2019).  530 

The bivariate dataset used to study the interrelation between wing gusts and rainfall at Heathrow airport is composed of the 

following data: 

a) Daily Wind Gust (w): daily maximum wind gust at London Heathrow airport (UK) weather station where a gust 

is the maximum value, over the observing cycle, of the 3-second running average wind speed (WMO, 2019). 

Wind gusts are short lived wind peaks in speed that can inflict great damage during a storm. However, it might 535 

not capture the overall wind intensity (Met Office, 2019). The time range of the observations is 38 years, from 1 

January 1971 to 31 May 2018 of which 74 days (0.4% of the data) had no values recorded and all other values 

in the dataset had w > 0 m s‒1. This observation data has been provided by the Met Office (2019).  

b) Daily Rainfall (r): daily total precipitation in a grid cell containing London Heathrow airport (UK). The data 

have been extracted from the E-OBS gridded database (Cornes et al., 2018) which is formed from the 540 

interpolation of observations from 18,595 meteorological stations through Europe and the Mediterranean 

(including Heathrow airport station). It has been shown that E-OBS has excellent correlation with other high-

resolution gridded datasets even if this correlation tends to decrease for extremes (Hofstra et al., 2009). However, 

by selecting a grid containing a weather station we limit uncertainties arising from interpolation. The spatial 

resolution in the E-OBS dataset is 0.1° x 0.1° and the period covered is 1950 to 2019. Data from 1 January 1971 545 

to 31 May 2018 (38 years) in the cell containing Heathrow airport is used, with a total of 6074 days (35.1% of 

the dataset) having nonzero rainfall r > 0 mm d‒1.  

From 1 January 1971 to 31 May 2018 there are a total of 17,318 days (including leap years). Our bivariate wind gust-rainfall 

dataset is composed of those values where there is both non-zero rainfall r > 0 mm d‒1 and windgusts w > 0 m s‒1 recorded, 

resulting in a total of 6044 bivariate observations (34.9% of the days in our record). An overview of both daily rainfall and 550 

daily wind gust is displayed in Fig. 8 in the form of monthly violin plots, where the probability density of w and r at different 

values are given, smoothed by a kernel density estimator.  
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Figure 8: Violin plots of daily wind gust w (red) and daily non-zero rainfall r (blue) by month for the period 1 January 1971 to 31 555 
May 2018 at Heathrow airport weather station, UK. Diamonds represent the median of all values for that month from 1971-2018. 

Numbers at the top of the graph represent the average number of days per month where there is recorded both non-zero rainfall r 

> 0 mm d‒1 and windgusts w > 0 m s‒1. Daily rainfall data from E-OBS (Cornes et al., 2018) and wind gust data (maximum 3 s wind 

velocity in a day) from the Met Office (2019).  

From Fig. 8 we observe a seasonality in daily wind gust speed. January is the month with the highest median (diamond symbol) 560 

and range of most values in the violin plot while July is the month with the lowest median and range of most values in the 

violin plot. The daily non-zero rainfall median per month varies between 2.5 mm in February and 3.5 mm in June, with the 

highest individual daily values occurring in October (53.3 mm d‒1), May (49.6 mm d‒1) and June (49.2 mm d‒1). The dataset 

is also represented as a scatterplot in Fig. 9. The scatterplot will be used for the model selection methodology presented at the 

beginning of Section 4. 565 



23 

 

 
Figure 9: Days where there are recorded both daily wind gust (m s-1) w and nonzero daily rainfall (mm d-1) r > 0 mm d–1 at Heathrow 

airport (London, UK) for the period 1971–2018. Daily rainfall data from E-OBS (Cornes et al., 2018) and wind gust data (the 

maximum 3 s wind velocity in a day) from the Met Office (2019). Colours (legend) represent the bivariate density estimated from a kernel 

density estimator with higher values and lighter colours representing a higher density of points at that bivariate value (r, w). 570 

Extreme rainfall and extreme wind have a compound interrelation according to Tilloy et al. (2019). We then estimate the joint 

exceedance probability curve, corresponding to a PAND probability (Section 2.3).  

We now go through the four steps presented for rainfall and wind gusts in Heathrow. 

(i) From Figs. 5  and 9, along with empirical estimates of χ and η, we hypothesize that over our time range 1971-

2018, daily rainfall and daily maximum wind gusts in London Heathrow Airport are asymptotically independent 575 

or weakly dependent (η = 0.5 / χ = 0.05 / χ = 0.1) and that both marginal distributions have a small shape 

parameter (AB, BB).  

(ii) This then gives us four analogous datasets and it is then possible to visually infer from Fig. 6 which models are 

the most suitable for these conditions. The four analogous datasets are the following: 

1. χ = 0.05 and AB 580 

2. χ = 0.05 and BB 

3. η = 0.5 and AB 

4. η = 0.5 and BB 

5. χ = 0.1 and AB 

6. χ = 0.1 and BB 585 

 

(iii) The confidence score for each model is 𝑤𝑑̅̅ ̅̅  the average of the weighted Euclidean distance wd from the four 

situations above. For the Gumbel and Galambos copulas, the cases of independence or negative dependence 

between variables are outside the modelling range (Section 2.3.1), and thus the confidence score for these models 
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has been penalized by putting wd =1.0 for η = 0.5 and η = 0.25. The conditional extremes model has the smallest 590 

confidence score 𝑤𝑑̅̅ ̅̅ =0.02 and is representative for all six analogous datasets. The JT-KDE model has a 𝑤𝑑̅̅̅̅  = 

0.03 and is representative for 4 out of 6 analogous. The FGM and Normal copula have a confidence score of 𝑤𝑑̅̅̅̅  

= 0.04 and are only representative in AI cases. Gumbel and Galambos copulas have a confidence score of variable 

= 0.35 due to their penalty (Table 4). 

According to these three first steps, the conditional extremes model appears to be the most suitable. However, we selected the 595 

four most relevant models for the bivariate dataset of daily rainfall and daily wind gust at London Heathrow Airport. The 

conditional extreme model, the JT-KDE model, the normal copula and the FGM copula all have low 𝑤𝑑̅̅̅̅  as it can be seen in 

Table 4. 

Table 4: Euclidian weighted distance (wd) for datasets 1 to 6 based on wind-rainfall and six models, along with confidence scores 

(average of the wd for datasets 1 to 6). In blue bold are highlighted the values below the naïve approach wd and the average 600 
values four models with confidence scores < 0.1 are highlighted in bold. 

Dataset Cond-Ex JT-KDE Gumcop Normalcop FGMcop Galamboscop 

1 0.03 0.03 0.02 0.04 0.04 0.02 

2 0.02 0.02 0.01 0.03 0.04 0.02 

3 0.02 0.02 1.00 0.01 0.01 1.00 

4 0.01 0.01 1.00 0.01 0.01 1.00 

5 0.02 0.04 0.02 0.06 0.07 0.02 

6 0.03 0.04 0.02 0.06 0.08 0.02 

Average 0.02 0.03 0.35 0.04 0.04 0.35 

 

(iv) For illustration and/or confronting our models with the data, the six models are fit to the dataset and joint 

exceedance level cure are produced with a joint exceedance probability set at p = 0.001, corresponding to a 

bivariate return period of 8 years. However, another joint exceedance probability could have been chosen. 605 

In Fig. 10 are displayed the level curves produced from the four models that were selected after steps (i) to (iii) above 

(Cond-Ex, JT-KDE, NormalCop and FGMCop) and presented in bold numbers in Table 4. 
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Figure 10: Level curves for a Pand joint probability p = 0.001 of daily wind gust and daily rainfall at Heathrow airport (London, UK). 

Level curves from the four models selected through the model selection methodology are displayed. 610 

From Fig. 10, we can observe that the conditional extremes model, the FGM and the normal copula all produce very similar 

joint exceedance curves and that their confidence intervals overlap. Table 5 displays the estimates (with bounds of the 95% 

confidence interval) of the two dependence parameters χ and η from the six models. These estimates converge toward a very 

weak asymptotic dependence. However, the estimation of dependence parameters in near independence is highly uncertain 

(Section 3.3.2).  615 

Table 5: Estimates of dependence parameters χ and η for extreme rainfall and wind gust at Heathrow airport for the time range 

1971-2018 

Models Cond-Ex JT-KDE Gumcop Normalcop FGMcop Galamboscop 

χ 0.01 [0.00,0.02] 0.06[0.05,0.09] 0.04[0.01,0.06] 0[0,0] 0[0,0] 0.04[02,0.06] 

η 0.49[0.45,0.54] 0.54[0.49,0.59] 1[1,1] 0.52[0.51,0.54] 0.5[0.5,0.5] 1[1,1] 

4.2 Daily wildfire number and temperature extremes in Portugal (Asymptotic dependence) 

Here we present a second example of applying our models to natural hazards data, using as a case study daily temperature and 

daily number of wildfires in Portugal. Wildfire variables such as daily number and burned area depend on many influences 620 

such as wind speed/direction/gustiness, topography, and type of fuel and soil moisture (Hinks et al., 2013). The aim of our 

study is not to decipher the processes leading to a wildfire but rather to provide an exemplar study examining the relationship 

between the two variables, daily temperature and daily number of wildfires, in a given case study area. It has been shown that 

dry and warm conditions increase the risk of wildfire (Littell et al., 2009; AghaKouchak et al., 2018). Witte et al. (2011) 

established a direct link between a persistent heatwave and wildfire outbreaks in Russia and Eastern Europe in 2010. The 625 

Northern Mediterranean countries (Portugal, Spain, France, Italy and Greece) are particularly affected by summer fires (Vitolo 
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et al., 2019). Among these, Portugal holds the highest number of wildfires per land area (Pereira et al., 2011). There are many 

environmental and anthropogenic factors influencing the rural fire regime in Portugal and making its territory a fire prone area. 

However, the majority of rural fires are recorded during hot and dry conditions in the summer (Pereira et al., 2011). Here, we 

used the mainland continental Portuguese Rural Fire Database, that includes 450,000 fires and covers the period 1980-2005 630 

(Pereira et al., 2011), and includes data for all 18 districts in Portugal. This database is the largest such database in Europe in 

terms of total number of recorded fires in the 1980–2005 period (Pereira et al., 2011) and includes fires recorded down to a 

size of 0.001 ha. From the Portuguese Rural Fire database, we chose to focus on the Porto district, which was the worst affected 

in the period (out of the 18 Portugal districts) in term of number of wildfires with 21.6% of the total fire recorded in the dataset 

between 1980 and 2005. The Porto district is situated in the northern part of Portugal (see Fig. 11), has an area of 2,395 km² 635 

and is one of the most populated districts of Portugal with an estimated population of 1,778,146 in 2018 (Instituto Nacional de 

Estatística Portugal, 2019). 

 

 

Figure 11: Portugal study area for the interrelation between extreme hot temperature and wildfire burned areas. The red area 640 
represents the Porto district in Portugal containing studied wildfire burned areas. The blue tiles represent cells from the high‐

resolution gridded data set of daily climates over Europe (E-OBS) (Cornes et al., 2018) containing mean daily temperature data. 

Satellite image retrieved with ggmap (Kahle and Wickham, 2013). © Google Maps (2020). 

The bivariate dataset used to study the interrelation between extreme temperature and wildfire burned areas in the Porto district 

is composed of the following data: 645 

a) Daily number of wildfires (f). Daily number of wildfires for the 26-year period 1980–2005 for the Porto district 

were extracted from the Portuguese Rural Fire Database dataset from Pereira et al. (2011). To account for under 

sampling of smaller wildfires in earlier years, and as suggested by Pereira et al. (2011), we used only those fires 

with a burned area AF ≥ 0.1 ha, resulting in 59,522 fires, an average of 6.3 fires per day (for those days with at 

least one fire occurrence) over the Porto district in Portugal (2395 km2).  650 
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b) Daily temperature data (t). Daily mean temperature was extracted from the E-OBS gridded dataset (Cornes et 

al., 2018). We approximate the area in red in Fig. 11 (Porto district) for each day with one temperature value by 

taking the average of daily temperatures in each of the six 0.25° x 0.25° cells represented by blue rectangles in 

Fig. 11. This assumption reduces the confidence in return level values and adds up with other interpolation 

uncertainties arising from the data (Hofstra et al., 2009). Moreover, the temperature in the six cells are strongly 655 

correlated (Pearson correlation coefficient ρ > 0.98) and variations in temperature are mostly due to the distance 

to the sea and altitude (Miranda et al., 2002). 

The 26 years from 1980–2005 have a total of 9496 days. Of these, a total of 3442 days (36% of the days) have both non-zero 

days for number of wildfires and a mean temperature value, which are used in our final bivariate dataset. An overview of both 

daily mean temperature and daily number of wildfires is displayed in Fig 12 in the form of monthly violin plots.  660 

 

Figure 12: Violin plot of those days with both daily mean temperature (red, upper violin plots) t and daily number of wildfires (blue, 

lower violin plots) f ≥ 1 fire d–1, by month for the period 1980–2005 in Porto district (Portugal). Only those wildfires with burned 

area AF ≥ 0.1 ha are included. Diamonds for both temperature and wildfires represent the median of all values in that month over 

the period of record. Numbers at the top of the graph represent the average number of days per month where there are recorded 665 
both a temperature value t and at least one wildfire (f ≥ 1 fire d–1).). Daily mean temperature data from E-OBS (Cornes et al., 2018) 

and wildfire data from Pereira et al. ( 2011). 

From Fig. 12 we observe the seasonality in daily mean temperature with January the coldest month (median = 8.3°C) and 

August the warmest (median = 21.0°C). Daily number of wildfires (with burned area AF ≥ 0.1 ha) per month varies between 

median of 1.0–2.5 fire d–1 in winter months (November to February) and 7.0–22.5 fire d–1 in summer months (from June to 670 

September). The dataset is also represented as a scatterplot in Fig. 13. The scatterplot will be used for the model selection 

methodology presented at the beginning of Section 4. 
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Figure 13: Scatter plot of temperature as a dependence of wildfire occurrence in Porto district, Portugal for the period 1980–2005, 675 
for those days where there are recorded both mean daily temperature (t) and at least one fire, with f the number of wildfires in one 

day. Only those wildfires with burned area AF ≥ 0.1 ha are included. Daily mean temperature data from E-OBS (Cornes et al., 2018) 

and wildfire data from Pereira et al. (2011). Colours represent the bivariate density estimated from a kernel density estimator.  

As discussed in the beginning of this section, extreme (hot) temperature and wildfire are interrelated. Indeed, extreme (hot) 

temperature may promote the development of wildfires (Witte et al., 2011; Sutanto et al., 2020) According to Tilloy et al. 680 

(2019), this is a change condition interrelation (i.e., one hazard changes environmental parameter that moves toward a change 

in the likelihood of another hazard). We then estimate the conditional exceedance probability curve (Section 2.3).  

We now go through the four steps introduced at the beginning of Section 4. 

(i) From Figs. 5 and 13, along with empirical estimates of χ and η, we hypothesize that over our time range, there is 

asymptotic dependence for the mean daily temperature and the number of wildfire per day are asymptotically 685 

dependent (χ = 0.5 - χ = 0.3) and that one marginal distributions have a slightly small shape parameter and the 

other one is heavily right-skewed (AC, BC).  

(ii) This then gives us four analogous datasets and it is then possible to know from Fig. 8 which models are the most 

adapted to these conditions. The four datasets are the following: 

1. χ = 0.5 and AC 690 

2. χ = 0.5 and BC 

3. χ = 0.3 and AC 

4. χ = 0.3 and BC 

(iii) The confidence score for each model is the average of the wd from the four aforementioned datasets. Based on 

the Table 6, the normal copula and FGM copula do not seem suitable to model the joint occurrence of wildfire 695 

and extreme temperature as these poorly fit the four datasets. The Gumbel and Galambos copula (𝑤𝑑̅̅̅̅  = 0.02) 
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and the conditional extremes model (𝑤𝑑̅̅̅̅  = 0.04) are representative for the four analogous datasets. The joint tail-

KDE model has a confidence score 𝑤𝑑̅̅̅̅  = 0.05 and is representative for two analogous datasets. 

 

According to these three first steps, we can identify the most relevant model for the bivariate dataset of daily maximum 700 

temperature and daily wildfire occurrence in Porto district: the Gumbel copula, Galambos copula, the JT-KDE model and the 

conditional extremes model are the most relevant models for our dataset. 

Table 6: Weighted Euclidian distance (wd) for datasets 1 to 4 based on extreme temperature-wildfire and six models, along 

with confidence scores (average of the wd for datasets 1 to 4). ). In blue bold are highlighted the values below the naïve approach 

wd and the average values of the four models with confidence scores < 0.1 are highlighted in bold. 705 

Dataset Cond-Ex JT-KDE Gumcop Normalcop FGMcop Galamboscop 

1 0.03 0.04 0.02 0.12 0.29 0.02 

2 0.05 0.06 0.04 0.18 0.42 0.04 

3 0.03 0.05 0.02 0.13 0.2 0.02 

4 0.06 0.07 0.04 0.19 0.28 0.04 

Average 0.04 0.05 0.03 0.15 0.30 0.03 

 

(iv) For illustration and/or confronting of the models with the data, the six models are fit to the dataset and the joint 

exceedance level curves are produced with a joint exceedance probability set at p = 0.001, corresponding to a 

bivariate return period of approximately 8 years. 

In Fig. 14 are displayed the conditional level curves produced from the four models that were selected after steps (i) to 710 

(iii) and shown in bold values in Table 6 (Cond-Ex, JT-KDE, Gumbelcop and GalambosCop). 
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Figure 14: Level curves for a Pand joint probability p=0.001 of daily mean temperature and daily number wildfire occurrences in 

Porto district, Portugal, for the period 1980-2005. Level curves from the four models selected through the model selection 715 
methodology are displayed. 

From Fig. 14, we can observe that the JT-KDE and the Gumbel copula produce very similar conditional exceedance curves 

and that their confidence intervals strongly overlap. However, the conditional extreme model provides a lower estimate than 

the other approaches the number of wildfire conditioning on the temperature being above a given threshold.  

In Table 7, we present the estimates (with bounds of the 95% confidence interval) of the two dependence parameters χ and η 720 

from the six models provide a bit more insight about the dependence structure. These estimates converge toward a moderate 

asymptotic dependence varying from χ = 0.15 (Cond-Ex) to χ = 0.47 (GumCop). Even if all models tend to show asymptotic 

dependence between the two variables, estimates of η are less than 1.0 for the normal copula, the JT-KDE model and the Cond-

Ex with values varying between 0.67 and 0.79. This still implies a positive association between the two variables. 

Table 7: Estimates of dependence parameters χ and η for mean daily temperature and daily occurrences of wildfire in Porto district 725 
for the period 1980-2005 

Models Cond-Ex JT-KDE Gumcop Normalcop FGMcop GalambosCop 

χ 0.15 [0.06, 0.20] 0.26 [0.21, 0.30] 0.47 [0.45, 0.49] 0.00 [0.00, 0.00] 0.00 [0.00,0.00] 0.46 [0.44, 0.49] 

η 0.67 [0.59, 0.72] 0.67 [0.62, 0.71] 1.00 [1.00, 1.00] 0.79 [0.78,0.80] 0.50 [0.50, 0.50] 1.00 [1.00, 1.00] 

5 Discussion and Conclusions  

Quantifying and measuring the interrelations between different natural hazards is a key element when adopting a multi-hazard 

approach (Gill and Malamud, 2014; Leonard et al., 2014). In this study, we focused on statistical approaches that are often 

used to characterize and model interrelations between hazards. Another focus has been on modelling relationships between 730 

hazards at an extreme level. In total six statistical models with different characteristics (nature of asymptotic dependence, 

parametric/semi-parametric) were compared. Some of these models have already been used to study compound extremes in 
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hydrology and climatology (Hao et al., 2018; Liu et al., 2018; Sadegh et al., 2018; Cooley et al., 2019). However, these have 

not been compared over a broad range of bivariate datasets and applied to the same natural hazards in the same location. 

This section will discuss the following three themes before a short conclusion: (a) choices influencing the results of the 735 

simulation study; (b) uncertainties at the interface between asymptotic dependence and asymptotic independence; (c) possible 

extensions of this approach to more than two hazards. 

Choices influencing the results of the simulation study. This study aimed to assess the fitting ability of several bivariate models 

to a broad range of datasets. In order to do so, models were compared in their ability to reproduce an extreme level curve (see 

Section 3.2.1). The level curve corresponding to the PAND probability has been selected as a comparison point because it is 740 

commonly used in the literature and is relevant for practitioners. The choice of this level curve, and its shape could influence 

our results. The extreme level curve probability was set at p = 0.001. The multivariate regular variation framework (Resnick, 

1987) provides evidence supporting the fact that the dependence structure remains identical in the whole extreme domain. 

However, some results shown in Section 3.3 might have been influenced by the value of the joint exceedance probability. In 

particular, it is likely that when decreasing the level curve probability (i.e., to more extreme values), the flexibility and abilities 745 

of the asymptotically independent normal copula will decrease. There are many copulas other than the four selected in this 

study (Nelsen, 2006; Sadegh et al., 2017) that have been developed. Nevertheless, we believe the four copulas used in this 

study are suitable for bivariate extreme value analysis and are amongst the most widely used in the literature (Genest and 

Favre, 2007; Genest and Nešlehová, 2013). Another influential choice in this study has been the number of synthetic data 

points generated in each realization of the dataset. The number of data points and data set size is an important influence on 750 

uncertainty in natural hazard modelling and probabilistic approaches (Frau et al., 2017; Liu et al., 2018). For each simulation, 

we simulated n = 5000 data points. Some other simulation studies took a higher number of data points (Zheng et al., 2014; 

Cooley et al., 2019); however, we replicated 100 times and produced confidence intervals, thus ensuring consistency of our 

results. We also found that threshold selections, to fit the generalised Pareto distributions of the marginal distributions and to 

estimate the extremal dependence measures, also have an influence on our results. 755 

Uncertainties at the interface between asymptotic dependence and asymptotic independence. From the results of the simulation 

study (Section 3.3) and the two case study applications (Section 4), one can observe that the interface between asymptotic 

dependence and asymptotic independence can be unclear. In Section 3.3, we discussed the decrease in model performance and 

the increase in uncertainty for low values of χ and high values of η. Taking the assumption of asymptotic independence or 

asymptotic dependence can have a significant impact on the estimation of joint return levels. We find that extra care is required 760 

when dealing with bivariate datasets which are near independence as in Section 4.1.  

Possible extension of the approaches to more than two hazards. As presented through this paper, the study of interrelations 

between natural hazards has primarily been done by hazard pairs (e.g., Gill and Malamud, 2014). Dependence measures and a 

variety of different models or level curves, all presented in this article, are powerful tools to assess, quantify and model 

interrelations between two hazards. However, in many cases, multi-hazard events include more than two hazards interacting 765 

in various ways (e.g., Gill and Malamud, 2014; Leonard et al., 2014). The use of models presented in this article can be 

extended to more than two variables, sometimes with disadvantages. One of these disadvantages is that the parametric nature 

of copulas leads to a lack of flexibility when going to higher dimensionality (Bevacqua et al., 2017; Hao et al., 2018). The JT-

KDE and Cond-Ex models are suitable for higher dimensions (Davison and Huser, 2015; Cooley et al., 2019), although, these 

have not been tested for high dimensional multi-hazard modelling yet (Tilloy et al., 2019). Recent research conducted suggest 770 

pair-copula construction (Bedford and Cooke, 2002; Hashemi et al., 2016; Bevacqua et al., 2017, Lui et al., 2018) and non-

parametric Bayesian networks (NPBN) (Hanea et al., 2015; Couasnon et al., 2018) can be used to model multi-hazard events 

with more than two hazards. The vine copula framework allows one to select different bivariate copulas for each pair of 

variables, providing a great flexibility in dependence modelling (Brechmann and Schepsmeier, 2013; Hao and Singh, 2016). 

Non-parametric Bayesian networks, which are associated with the structure of Bayesian network and copulas (Hanea, 2010; 775 



32 

 

Hanea et al., 2010, 2015), have been used to study multiple dependences between river discharge and storm surges in the USA 

during a hurricane (Couasnon et al., 2018).  

In conclusion, we have compared and examined the strength and weaknesses of six distinct bivariate extreme models in the 

context of hazard interrelations. These six models are grounded in multivariate extreme value theory and represent the diversity 

of approaches (e.g., non-parametric vs parametric) currently applied to hazard interrelation analysis. With this study we aimed 780 

to contribute to a better understanding on the applicability of bivariate extreme models to a wide range of natural hazard 

interrelations. The methodology developed in this article is aimed to be widely applicable to a variety of different hazards and 

different interrelations, here represented by the 60 synthetic datasets created. Abilities of each model have been assessed with 

two metrics: (i) dependence measure; (ii) bivariate return level (level curves). These two metrics and the different diagnostic 

tools developed in this study offer new intuitive ways to decipher the dependence between two variables. We recommend 785 

selecting a range of models rather than one when studying interrelations between two hazards. To highlight the benefits of the 

systematic framework developed, we studied the dependence between extremes (natural hazards) of the following 

environmental data: (i) daily precipitation accumulation and daily maximum wind gust (maximum over a period of 3 s) at 

Heathrow airport (UK) over the period 1971-2018; (ii) daily mean temperature and daily number of wildfires in Porto district, 

Portugal over the period 1980-2005. The two datasets represent different hazard interrelations: (i) compound interrelation 790 

between extreme wind and extreme rainfall and (ii) change condition interrelation where higher air temperature change 

condition for wildfire occurrence. In both cases, a sample of the most relevant model among the six used in this study have 

been selected and fitted to the bivariate datasets. The good agreement in the estimation of bivariate return period between 

models corroborate the relevance of the comparison metrics we developed. 

  795 
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Appendix A: Comparing model abilities through tail dependence measures 

A.1. Tail dependence measures estimations 

Tail dependence measures  and χ are estimated by each model. For copulas, these measures are related to the copula 

parameters. In our set of four copulas, two are asymptotically dependent (Gumbel and Galambos) with =1 and two are 

asymptotically independent (normal and FGM) with χ=0. 800 

For the nonparametric joint tail approach, the χ and  measures are estimated following the procedure used by Winter (2016). 

For the conditional model, both measures are estimated from the simulated points. Marginal distributions (X1, X2) are 

transformed to the uniform margins (U1, U2). The χ measure is estimated by calculating the probability 𝑃(𝑉 > 𝑢|𝑈 > 𝑢) (Eq. 

4). The η measure is estimated in two steps. First we estimate 𝜒 ̅(𝑢) as (Coles et al., 1999): 

̅(𝑢) =
2log 𝑃(𝑈>𝑢)

𝑙og 𝑃(𝑈>𝑢,𝑉>𝑢)
− 1 =  

2 log(1−𝑢)

log (𝜒(𝑢)(1−𝑢))
−  1, (A1) 

for 0 ≤ u ≤ 1 with u a sufficiently high threshold. Second, the η measure is estimated from 𝜒 ̅ (Eq. A1). 805 

To compare the estimated dependence measure to the reference value, the root-mean-square error (RMSE), a measure of 

efficiency that accounts for both the bias and variance of the estimates is used, similarly to Zheng et al. (2014). Similarly to 

the metrics used in Section 3, the RMSE is calculated from 100 realizations of the 60 datasets. 

A.2. Comparison of model abilities 

The estimation of dependence measure is an important step in bivariate analysis (Coles et al., 1999; Heffernan, 2000; Zheng 810 

et al., 2013, 2014; Dutfoy et al., 2014). Models have also been compared on their ability to estimate the dependence measures 

 and . Results arising from this comparison provide a different perspective on the abilities of each models. Figure A1 

shows the RMSE of the dependence measures estimations for each of the 60 synthetic datasets. 
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 815 

Figure A1: RMSE (root-mean-square error) of the estimated dependence measures to the reference for all 60 different datasets. 

Fitting capacities of each model are represented. Values in cells and colours represent the median RMSE from low (dark green) to 

high (red). Thickness of cell borders represent the 95% uncertainty around the median value 

From Fig. A1, we observe the following: 

• Marginal distributions do not have a significant impact on the accuracy of the estimation of these measures for the 820 

copulas.  

• Marginal distributions have a small impact on estimation of the dependence measures for the conditional extremes 

model and the joint-tail model, however this impact is not as important as for the level curve estimation  

• All copulas estimate very accurately the dependence measure within their operating range (AI for normal copula, near 

independence for FGM copula and AD for Gumbel and Galambos copula). However, only the conditional extremes 825 

model and the joint-tail model can estimate both  and . 

• The dependence measure estimator used in the joint-tail KDE approach offers slightly more accurate estimation for, 

in particular for  . 

• Estimation performance of both joint tail KDE and condition extreme models decrease when approaching the 

interface between asymptotic dependence and asymptotic independence. The RMSE at =0.05 is close the 100% of 830 
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the value of  while the RMSE  =0.9 is at its highest for both Cond-EX and JT-KDE models. It is then hard to 

decipher with confidence the nature of the dependence in the asymptotic domain for low  values and high  values.  
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