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Estimating risks generated by multi-hazard scenarios remains a challenge for practitioners. Here we evaluate the efficacy of 

bivariate extreme modelling approaches by fitting six distinct stochastic models to synthetic datasets. The properties of the 

synthetic datasets (marginal distributions, tail dependence structure) are chosen to match bivariate time series of environmental 

variables. The six models are copulas (one non-parametric, one semi-parametric, four parametric). We build 60 distinct 10 

synthetic datasets based on different parameters of log-normal margins and two different copulas. We contrast the model 

strengths (model flexibility) and weaknesses (poorer fits to the data). We find that no one model fits our synthetic data for all 

parameters, but rather a range of models are more appropriate To highlight the benefits of the systematic modelling framework 

developed, we consider the following environmental data: (i) daily precipitation and maximum wind gust in London, UK; (ii) 

daily mean temperature and wildfire number in Porto district, Portugal. In both cases there is good agreement in the estimation 15 

of bivariate return periods between models selected from the systematic framework developed in this study. Within this 

framework, we have explored a way to model multi-hazard events and identify the most efficient models for a given set of 

synthetic data and hazard sets.  
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1 Introduction 20 

A multi-hazard approach considers more than one hazard in a given place and the interrelations between these hazard (Gill 

and Malamud, 2014). Multi-hazard events have the potential to cause damage to infrastructure and people that may differ 

greatly from the associated risks posed by a single hazard (Terzi et al., 2019). Here, we consider two main mechanisms in 

natural hazards interrelations defined in Tilloy et al. (2019): (i) cascade interrelations (i.e., when there is a temporal order and 

causality between natural hazards); (ii) compound interrelations (i.e., when several natural hazards are statistically dependent 25 

without causality).  

Meteorological phenomena such as mid-latitude cyclones or thunderstorms often influence cascading and compound 

interrelations between natural hazards (e.g., a storm can include rain, lightening, hail, with rain and hail both potentially 

triggering landslides). Case examples of meteorological phenomena influencing natural hazard interrelations include the 

following: 30 

(i)  In 2010, storm Xynthia hit the west coast of France. The storm itself was not particularly extreme for the season but 

the compound effect of extreme wind, high tides, storm surge, extreme rainfall and the fact that the soils were already 

saturated led to huge damage due to wind and flooding (CCR, 2019).  

(ii) In summer 2010, Russia experienced a heatwave. Low precipitation in spring 2010 led to a summer drought that 

contributed to the heatwave having a large magnitude (Barriopedro et al., 2011; Hauser et al., 2015; Zscheischler et 35 

al., 2018). The co-occurrence of extremely dry and hot conditions resulted in widespread wildfires, which damaged 

crops and caused human mortality (Barriopedro et al., 2011).  

(iii) Extreme thunderstorms occurred in the Paris region in 2001, involving lightning and extreme rainfall, with the rainfall 

triggering flooding, mudslides and ground collapse, with subsequent damage to railway networks (CCR, 2019). 

In this context, the quantification of interrelations between natural hazards can play an important role in risk mitigation and 40 

disaster risk reduction. Some of the natural hazards presented in the above examples are extreme occurrence of environmental 

variables (e.g. extreme temperature) which have different characteristics and statistical distributions (e.g., wind and landslides). 

Natural hazards are interrelated with different mechanisms (i.e. compound, cascade). For a given mechanism, interrelations 

also vary in strength and intensity. Additionally, as highlighted in Tilloy et al. (2019), different modelling approaches have 

been developed to quantify interrelations between variables. Here we focus on stochastic models that include copulas (Nelsen, 45 

2006; Genest and Favre, 2007; Salvadori et al., 2016), and multivariate models (Heffernan and Tawn, 2004), limiting our 

analysis to the bivariate case. The potential for misinterpretation of the dependence structure of two variables clearly presents 

a problem when end-users try to account for hazard interrelations. 

We choose six distinct bivariate models able to handle different types of tail (extreme) dependence: one non-parametric (JT-

KDE), one semi-parametric (Cond-Ex) and four different parametric copulas (GalambosCop, Gumbelcop, FGMcop, 50 

Normalcop) (see Sect. 2). We are interested in modelling interrelations between hazards in the extreme domain. This implies 

the use of methods and concepts coming from the broad area of Extreme Value Theory (EVT). Amongst the six models 

compared in this study, four are directly linked to EVT (JT-KDE, Cond-Ex, GalambosCop, Gumbelcop). We investigate the 

applicability different bivariate models have to a wide range of natural hazard interrelations. In order to reproduce the 

complexity and variety of natural hazard interrelations we use 60 synthetic datasets to compare the fitting performances of the 55 

models. In these synthetics datasets we vary two main attributes of the bivariate datasets: the dependence structure and the 

marginal (individual) distributions. Of these 60 different synthetic datasets, 36 datasets have asymptotically dependent 

variables and 24 have asymptotically independent variables (see Sect. 2.1 for a definition of these two concepts). The fitting 

capacities of each model are compared with the estimation of level curves. Level curves are extensively described in Sect. 2.3. 

However, these curves correspond to probabilities that can be related to compound and cascading hazard interrelations. 60 

Compound interrelations are represented with a joint probability while cascading (sequential) interrelations are represented 

with conditional probabilities. 
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Examples of joint and conditional probabilities are given in Fig. 1. A joint probability is the probability of two events occurring 

together (Fig. 1a) and a conditional probability is the probability of an event given that another has already occurred (Fig. 1b). 

Figure 1 illustrates the concepts of joint probability and conditional probability, with daily rainfall data from a high‐resolution 65 

gridded data set of daily climate over Europe (termed ‘E-OBS’) (Cornes et al., 2018) and daily maximum wind gust data at 

Heathrow airport provided by the Met Office (2019). A wind gust here is defined by the Met Office (2019) as the maximum 

3 s average wind speed occurring in any given period. These datasets and the interrelation between extreme rainfall and 

extreme wind are discussed in Sect. 4.1. 

 70 

Figure 1: Illustration of joint and conditional extremes with daily rainfall r (mm day–1) and daily maximum wind gust w (m s–1) data 

at Heathrow airport for the period 1971–2018: (a) joint extremes of rainfall and wind gust (blue circles); (b) conditional extremes of 

rainfall given that wind gust is extreme (yellow circles). Daily rainfall data from E-OBS (Cornes et al., 2018) and daily maximum 

wind gust (3 s period) data from the Met Office (2019). 

Joint and conditional probabilities are relevant metrics for practitioners and have been studied and used in several studies in 75 

the environmental sciences (e.g., Hao et al., 2017; Zscheischler and Seneviratne, 2017). However, as the most widely used 

level curve is the joint probability curve, we initially focus on it. 

To analyse our results and compare the performances of the models we designed diagnostic tools that are presented in Sect. 

3.2. The results of this study are presented as a map exhibiting the strength and weaknesses of our six models (Sect. 3.3). It 

aims to provide objective criteria to justify the use of one model rather than another for a given set of hazards as it is shown 80 

with two examples in Sect. 4. 

This article is organized as follows. We first (Sect. 2) provide a theoretical background on key concepts used in this study and 

present the models and methodology used. We then (Sect. 3) discuss the characteristics of our synthetic dataset and present 
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the results of simulation study. The diagnostic tools used to compare models are also discussed (i.e., joint return level curves 

and dependence measure). Two applications (Sect. 4) to pairs of natural hazard data are presented: (i) compound daily rainfall 85 

and wind in the United Kingdom and (ii) extreme hot temperatures and wildfires in Portugal. We finish (Sect. 5) with a 

discussion and conclusions. 

2 Methods 

As stated in the introduction, we are interested in modelling the dependence structure between variables in the tails or extreme 

domain. Extreme Value Theory has its roots in univariate studies (Coles, 2001) and has been extended to the multivariate 90 

framework (Pickands, 1981; Davison and Huser, 2015). In this study we mainly focus on modelling the dependence between 

two variables. Bivariate extreme value models developed within the statistical community (Resnick, 1987; Heffernan and 

Tawn, 2004; Cooley et al., 2019) have recently been used for environmental application and therefore natural hazard 

interrelations (De Haan and De Ronde, 1998; Zheng et al., 2014; Sadegh et al., 2017). A theoretical background on extreme 

value theory is given in Supplement S1.1. 95 

In this section, we first present the two types of asymptotic behaviour in bivariate extreme value statistics: asymptotic 

dependence and asymptotic independence and discuss different dependence measures for the estimation of the relationship 

between two variables (Sect. 2.1). The six bivariate models are then described (Sect. 2.2). Finally, we discuss the concept of 

the return level in the bivariate framework (Sect. 2.3). 

2.1 Bivariate extreme dependence 100 

2.1.1 Asymptotic dependence and asymptotic independence 

Let X1, …, Xn be n different variables, with each variable a vector that can take on multiple values. Assume that these vectors 

are random and independent and identically distributed (i.i.d). Then asymptotic dependence implies that if one variable Xk for 

k ϵ (1, n) has values Xk that are large it is possible for the other variables to take on values that are simultaneously extreme 

(Coles et al., 1999). One way to characterise extremal dependence structures is to split them into those with asymptotic 105 

dependence and those with asymptotic independence. In the bivariate case, for (X1, X2) random pair with joint distribution G, 

the random variables X1 and X2 are asymptotically dependent if the following conditional probability (Heffernan, 2000) 

𝑃 (𝑋1 > 𝑥 |𝑋2 > 𝑥)  → 𝑐 > 0 𝑎𝑠 𝑥 → 𝑥∗ (1) 

Where X1 > x are those values of variable X1 that are greater than a threshold x, the probability of both X1 > x and X2 > x is c ∈ 

(0,1] and x* is the upper end point (maximum) of the common marginal distribution. 

The variables X1 and X2 are asymptotically independent if (Heffernan, 2000)  110 

𝑃 (𝑋1 > 𝑥 |𝑋2 > 𝑥)  → 0 𝑎𝑠 𝑢 → 𝑥∗ (2) 

where u is a high threshold. In practice (Davison and Huser, 2015), extremal dependence is often observed to weaken at high 

levels (i.e., as u → ∞), and it can happen that dependence between variables is observed in the body of the joint distribution, 

but that the multivariate distribution is in fact in the max-domain of attraction of independence (Davison and Huser, 2015).  

Using models that take the assumption of asymptotic dependence (respectively independence) in the case of asymptotically 

independent (respectively dependent) variables can lead to a large overestimation (respectively underestimation) of the 115 

probability of joint extreme events (Ledford, 1996; Mazas and Hamm, 2017; Cooley et al., 2019).. Multivariate extreme value 

and regular variation theory presented in the Supplement S1.2 provides a rich theory for asymptotic dependence (De Haan 

and Resnick, 1977; Pickands, 1981) but are not able to distinguish between asymptotic independence and full independence. 
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2.1.2 Tail dependence measures 

A popular method to analyse hazard interrelationships is to compute dependence measures (Zheng et al., 2013; Petroliagkis, 120 

2018). Dependence measures aim to describe how two (or more) variables are correlated.  

When focusing on the dependence in the tails or extreme part of distributions, linear or rank dependence measures might not 

be accurate and other coefficients appear more relevant (Hao and Singh, 2016). Dependence between variables in the joint tail 

domain has been widely studied in the statistics community (Coles and Tawn, 1991; Ledford and Tawn, 1997; Coles et al., 

1999; Heffernan and Tawn, 2004; Zheng et al., 2014). As explained in Sect. 2.1.1, in the tails, two variables can be either 125 

asymptotically independent or asymptotically dependent; different diagnostics and coefficients previously developed are 

summarized in Heffernan (2000).  

In this study, we use the following tail dependence measures:  

• the extremal dependence measures χ and 𝜒 ̅ introduced by Coles et al. (1999);  

• the coefficient of tail dependence η, introduced by Ledford and Tawn (1996).  130 

These coefficients aim to measure the extremal dependence for bivariate random variables (X1, X2) and assume initially that 

(X1, X2) have a common marginal distribution. Coles et al. (1999) defined the extremal dependence measure: 

(𝑥) = 𝑃(𝑋2 > 𝑥|𝑋1 > 𝑥) with lim
𝑥→𝑥∗

(𝑥) =   (3) 

with x a sufficiently high threshold. A sufficiently high threshold x is a value that can be considered as extreme within a given 

distribution (corresponding to a high quantile); the value of the threshold depends on the marginal distribution. The extremal 

dependence measure (x) is the probability of one variable (X1 or X2) being extreme given the other is extreme (X2 or X1). This 135 

measure  varies in the range [0,1], where a value of χ = 0 means that the two variables are asymptotically independent and χ 

= 1 means that they are perfectly dependent. The extremal dependence measure  is only suitable for asymptotic dependence. 

In the case of asymptotic independence (χ = 0), Coles et al. (1999) introduced the measure 𝜒 ̅ which falls between the range [-

1,1], 1 being asymptotic independence. Ledford and Tawn (1996) defined their coefficient of tail dependence to be able to 

assess the strength of dependence between two asymptotically independent variables. They show that the joint survivor 140 

function for random variables (Z1, Z2) with common standard Fréchet margins (See Supplement S1.2): 

𝑃(𝑍1 > 𝑧, 𝑍2 > 𝑧) ~ ℒ(𝑧)(𝑃(𝑍1 > 𝑧))
1

𝜂⁄  (4)  

with ℒ(𝑧) a slowly varying function while u→∞ and η is the coefficient of tail dependence, lying in the range [0,1]. Different 

values of each coefficient and their implications are summarized in Fig. 2. For large z, the three tail dependence measures 

presented above are related in the following way (Ledford and Tawn, 2003): 

𝝌 ̅ =  𝟐𝜼 − 𝟏  

𝝌 =  {
𝟎

𝟏
 

(5) 

 145 

𝑖𝑓 𝜒 ̅ = 1 and ℒ(𝑧) → 𝑐 > 0 𝑎𝑠 𝑧 → 𝑧∗ 

𝑖𝑓 𝜒 ̅ < 1 
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Figure 2: The three coefficients used in this study to assess the dependence between two variables at an extreme level. In the upper 

part of the plot (blue), the coefficient 𝝌 varies between perfect asymptotic dependence (light blue, 𝝌 = 0) and asymptotic 

independence (dark blue, 𝝌 = 1). In the lower part of the plot (orange), which is in the asymptotic independence domain (in other 

words, 𝝌 = 0) the coefficients 𝝌 ̅𝐚𝐧𝐝 𝜼 both vary between negative association (light orange, 𝝌 ̅ = −𝟏;   𝜼 = 0) and positive association 150 
(dark orange, 𝝌 ̅ = 𝜼 = 1). 

 

2.2 Bivariate models 

Dependence measures are empirical measures which estimate the strength of the correlation, or dependence between two (or 

more) variables. Despite the fact that these measures provide crucial information, these do not allow to model joint (or 155 

conditional) exceedance probabilities. To model joint exceedance probabilities which represent the joint occurrence of hazards 

(here represented by extremes of environmental variables) in time and space, the use of stochastic models is required. In this 

section we present the three stochastic approaches for multivariate modelling that are used in the simulation study: parametric 

copulas, the semi-parametric conditional extremes model and a non-parametric approach based on multivariate extreme value 

theory (see Supplement S1.2) and kernel density estimation. 160 

2.2.1 Copulas 

In the bivariate case, a copula is a joint distribution function which defines the dependence between two variables 

independently from the marginal distributions of these variables (Heffernan, 2000; Nelsen, 2006; Genest and Favre, 2007; Hao 

and Singh, 2016). Let the random variables (X1, X2) be vectors of i.i.d. values with marginal distributions F1(x1) and F2(x2) and 

a joint cumulative distribution function F1,2(x1,x2). Any bivariate distribution function with marginal distribution functions 165 

FX1(x1) and FX2(x2)) can be expressed as a copula function as follows (Sklar, 1959; Nelsen, 2006): 

𝐹1(𝑥1, 𝑥2) =  𝐶{𝐹1(𝑥1), 𝐹2(𝑥2)}, (6) 

where C is the copula function. Copulas are not limited to two variables and Eq. 6 can be extended to higher dimensions. 

Several classes of copula with different properties are available, including Archimedean copulas, elliptical and extreme value 

copulas (Joe, 1997; Nelsen, 2006). Extreme value copulas have been used within various domains such as finance, insurance 

or hydrology because of their ability to model extremal dependence structures (Genest and Nešlehová, 2013).  170 

However, extreme value copulas are by definition asymptotically dependent as they follow the rules of multivariate extreme 

value theory (see Supplement S1.2). The two types of extremal dependence were presented in Sect. 2.1 and show that it is 

important to also consider asymptotic independence. Many copulas are asymptotically independent, including the normal 

copula and the Farlie-Gumbel-Morgenstern (FGM) copula (Heffernan, 2000). These two copulas will be used in the simulation 

analysis as asymptotically independent models (Sect. 3  175 
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Formally, the application of a copula model can be summarized in four main steps: 

(i) Fitting marginal distributions to the two variables and then an empirical cumulative distribution function below 

a threshold and generalised Pareto distribution (GPD) above this threshold. 

(ii) Transforming the variables to uniform margins. The transformed datasets no longer have information on the 

marginal distributions but keep the information about the joint distribution (Nelsen, 2006). 180 

(iii) Fitting the copula function to the pseudo-observations by estimating the copula parameter(s) with an estimator 

(Genest and Favre, 2007). 

(iv) Estimating the probability of joint events with the copula function previously fitted. 

2.2.2 Conditional extreme model 

The conditional extremes model (Heffernan and Tawn, 2004; Keef et al., 2013) is a semi-parametric model designed to 185 

overcome several limitations of copulas and other approaches such as the joint tail methods in which all variables must become 

large at the same rate. The aforementioned methods can typically handle only one form of extremal dependence, either 

asymptotic dependence or asymptotic independence. The conditional extremes model has the ability to be more flexible with 

asymptotic dependence classes; it can account for asymptotic independence and asymptotic dependence (Heffernan and Tawn, 

2004; Keef et al., 2013). It can also be used to analyse more than two i.i.d variables more easily than copula-based methods 190 

(Winter and Tawn, 2016); we restrict the theory provided here to the bivariate case.  The conditional model has been used for 

different purposes: spatial or temporal dependence between extremes (Winter and Tawn, 2016; Winter et al., 2016), 

dependence between extreme hazards (Zheng et al., 2014) and even financial purposes (Hilal et al., 2011). 

The conditional extremes model assesses the dependence structure between several variables conditioning on one being 

extreme and aims to model the conditional distribution. As in joint-tail models, the first step is to transform the marginal 195 

distributions; here the preferred marginal choice are Laplace (or Gumbel) margins (Heffernan and Tawn, 2004; Keef et al., 

2013). Let the random variables (Y1,Y2) be vectors of i.i.d. values with Laplace distributions. The conditional extremes model 

aims to identify normalizing two functions a(yi) and b(yi) such that a satisfies ℝ+  → ℝ and b satisfies ℝ+  → ℝ+, Both are 

defined such that for y > 0 (Winter, 2016): 

𝑃 (
𝑌2 − 𝑎[𝑌1]

𝑏[𝑌1]
≤ 𝑧, 𝑌1 − 𝑢 > 𝑦|𝑌1 > 𝑢) ⟶ 𝑒𝑥𝑝(−𝑦) 𝐺(𝑧)          

(7) 

as u → ∞, where G(z) is a non-degenerate distribution function. In the case of Laplace margins the normalising functions a 200 

and b are given by (Winter, 2016): 

𝑎[𝑦] = 𝛼𝑦   𝑎𝑛𝑑    𝑏[𝑦] = 𝑦𝛽  (8) 

where α ∈ [−1, 1] and  ∈ (−∞, 1). The different values of α and β characterise different forms of tail dependence. In the case 

where α = 1 and β = 0, variables (Y1, Y2) exhibit asymptotic positive dependence and the case of asymptotic negative 

dependence is given when α = −1 and β = 0 (Winter, 2016). 

Formally, the application of the conditional extreme model can be summarized in four main steps: 205 

(i) Fitting marginal distributions to the two variables; an empirical cumulative distribution function below a 

threshold and generalised Pareto distribution (GPD) above this threshold. 

(ii) Transforming those distributions onto Laplace (or Gumbel) margins. 

(iii) Estimating the dependence parameters using non-linear regression. 

(iv) Estimating the probability of joint events and extrapolate the conditional model to simulate new extreme data. 210 
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2.2.3 Joint tail KDE (kernel density estimation) approach 

The non-parametric approach used in this paper is an adaptation of the non-parametric approach presented by Cooley et al. 

(2019). Moreover, the dependence measures η is estimated to determine whether data are asymptotically dependent or 

asymptotically independent. This approach is based on the 2D kernel density estimator and the multivariate extreme value 

framework (see Supplement S1.2). 215 

The kernel density estimation (KDE) method has the advantage of being a non-parametric way to estimate the joint distribution 

of n variables. With KDE, we make no assumption about the underlying distribution of the margins or about the dependence 

structure. The KDE centres a smooth kernel at each observation. The choice of the bandwidth is very crucial when using this 

method (Duong, 2007; Hao and Singh, 2016). This selection was done automatically in our case within the kernel survival 

function estimation function from the R package ks (Duong, 2007, 2015).  220 

The kernel density estimator is used here to estimate an empirical density distribution 𝑓(𝑋) and a joint survival distribution 

𝐹̂(𝑋) of the bivariate dataset where X=(X1, X2). The joint survival distribution corresponds to the joint exceedance probability 

of the two variables (See Section 2.3). From the joint survival distribution, it is possible to estimate level curves which are 

isolines corresponding to given joint probabilities of exceedance (see Sect. 2.3).  

After estimating the joint survival distribution of the two variables with a kernel density estimator, the cumulative distributions 225 

𝐹 ̂ 𝑖
(𝑥) of the two random variables Xi  (i = 1, 2,…) are estimated empirically below a threshold and from a Generalized Pareto 

distribution above the threshold. The two marginal cumulative distribution functions are then transformed to Fréchet margins 

to allow the use of multivariate extreme value theory(Cooley et al., 2019): 

𝑇 ̂𝑖
(𝑥) =

−1

𝑙𝑛(𝐹̂𝑖(𝑥))
. 

(9) 

Therefore, 𝑍 = 𝑇 (𝑋) = (𝑇1(𝑋1), 𝑇2(𝑋2))  can be assumed to be regularly varying with an index of regular variation 1 (see 

Supplement S1). An extrapolation from a base probability pbase (blue area in Fig. 3) estimated with a kernel density to an 230 

objective probability pobj (purple area in Fig. 3) is then done on the transformed space. Thus, on the transformed scale, it is 

possible to construct 𝑙Z(obj)= 𝑡𝑙Z(base) (Cooley et al., 2019). To produce level curves on the original scale, the transformation 

in Eq. 11 is reversed: 𝑙obj = 𝑇−1𝑙Z(obj) . Figure 3 gives a graphical representation of the extrapolation done within the joint 

tail KDE approach.  

https://doi.org/10.5194/nhess-2020-28
Preprint. Discussion started: 28 February 2020
c© Author(s) 2020. CC BY 4.0 License.



9 

 

 235 

Figure 3: Extrapolation in a regularly varying tail for a distribution in the max-domain of attraction of some multivariate extreme 

value distribution. Black circles represent an asymptotically dependent bivariate dataset. In order to estimate the extreme joint probability 

P(tA) (where tA is an extreme set represented by the purple area), one can compute P(A) = Pr{Z ∈ A}, (where A is a less extreme set than tA 

represented by the light blue area) with t < 1. More data points are available in A than tA, Then, from the regular variation framework 

{t P(tA)} ≈ tP(A). Adapted from Huser (2013) 240 

The methodology presented above is only valid when the two variables X1, X2 are asymptotically dependent. In the asymptotic 

independence case, one needs to adjust the methodology. Two asymptotically independent variables follow the properties of 

hidden regular variation (Resnick, 2002; Maulik and Resnick, 2005) (see Supplement S1.2.3). Formally, the coefficient of 

tail dependence η is introduced such as (Cooley et al., 2019): 

𝑙𝑍(𝑜𝑏𝑗)= 𝑡
1

𝜂𝑙𝑍(𝑏𝑎𝑠𝑒) (10) 

The specificity of this approach (presented below) is that it combines a non-parametric estimation of the joint density and the 245 

framework of multivariate extreme value presented in the Supplement S1.2. It can deal with both asymptotic dependence and 

independence.  The coefficient of tail dependence has an influence on the extrapolation process in the asymptotic independence 

case. Here we used the one presented in Winter (2016) which is derived from the joint-tail model of Ledford and Tawn (1997). 

Formally, the application of the joint tail KDE model can be summarized in five main steps: 

(i) Estimating the joint cumulative distribution of the variables with a kernel density estimator. 250 

(ii) Fitting marginal distributions to the two variables; empirical below a threshold and General Pareto Distribution 

(GPD) above this threshold. 

(iii) Transforming those distributions onto Fréchet margins. 

(iv) Determining whether variables are asymptotically dependent or asymptotically independent by estimating the 

coefficient of tail dependence η. 255 

(v) Estimating the probability of joint events and extrapolate the base isoline to an objective isoline. 
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2.2.4 Summary 

In this section we have presented three modelling approaches: copulas, conditional extreme model and a non-parametric joint-

tail model. All of these different approaches aim to model and reproduce the behaviour of multivariate data with different 

dependence structures. In the next section we discuss the concept of return levels in the bivariate framework as an output 260 

measure of interest. 

2.3 Return levels in the bivariate framework: 

Studying natural hazards as multivariate — and particularly bivariate — events is a growing practice in multiple disciplines, 

including the following: coastal engineering (Hawkes et al., 2002; Mazas and Hamm, 2017); climatology Hao et al., 2017, 

2018; Zscheischler and Seneviratne, 2017); and hydrology (Zheng et al., 2014; Hao and Singh, 2016). There has been debate 265 

among scientists trying to define a “multivariate return period” (Serinaldi, 2015; Gouldby et al., 2017). Serinaldi (2015) defined 

seven different types of probabilities that can be considered as bivariate probabilities of exceedance. These can be expressed 

through copula notation.  

Let the random variables (X1, X2) be vectors of i.i.d. values with marginal distributions Fi(xi) with i=1,2, 𝐶 their copula function 

(Sect. 2.3.1) and 𝐹1,2,
(𝑥1, 𝑥2) =  𝐶{𝐹1(𝑥1), 𝐹2(𝑥2)} = 𝐶(𝑢, 𝑣) where  𝐹1,2 is the bivariate distribution function of X1 and X2, 270 

 𝑢 = 𝐹1and  𝑣 = 𝐹2 are standard uniform random variables. The seven types of probability and their equations are given in 

Table 1. 

Table 1: Types of probabilities for bivariate (X,Y) return period estimation. u and v are extreme thresholds. From (Serinaldi, 2015). 

Type of probability Equation Eq. # 

𝑷𝑨𝑵𝑫 
𝑃(𝑋 > 𝑢 ∩ 𝑌 > 𝑣) =  1 − 𝑢 − 𝑣 + 𝐶(𝑢, 𝑣) 

(11) 

𝑷𝑶𝑹 
𝑃(𝑋 > 𝑢 ∪  𝑌 > 𝑣) =  1 − 𝐶(𝑢, 𝑣) 

(12) 

𝑷𝑪𝑶𝑵𝑫𝟏 
𝑃(𝑋 > 𝑢 | 𝑌 > 𝑣) = ( 1 − 𝑢 − 𝑣 + 𝐶(𝑢, 𝑣))/(1 − 𝑢) 

(13) 

𝑷𝑪𝑶𝑵𝑫𝟐 
𝑃(𝑋 > 𝑢 | 𝑌 ≤ 𝑣) =  1 −

𝐶(𝑢, 𝑣)

𝑢
 

(14) 

𝑷𝑪𝑶𝑵𝑫𝟑 
𝑃(𝑋 > 𝑢 | 𝑌 = 𝑣) =  1 −

𝜕𝐶(𝑢, 𝑣)

𝜕𝑢
 

(15) 

𝑷𝑲 
𝑃(𝐶(𝑢, 𝑣) > 𝑡) =  1 − 𝐾𝐶(𝑡) 

(16) 

𝑷𝑺 
𝑃(𝑔(𝑈, 𝑉)) =  1 − 𝐹𝑍(𝑧) 

(17) 

 

The function Kc in Eq. 16 is the Kendall function and represents the distribution function of the copula (Salvadori and De 275 

Michele, 2010; Serinaldi, 2015). Equation 17 refers to the ‘structure-based’ return period introduced by Volpi and Fiori 

(2014). Among these seven types of probabilities, we selected the “AND” and the “COND1” probabilities (see Fig. 4) as these 

are commonly used in the literature (Chebana and Ouarda, 2011; Tencer et al., 2014; Sadegh et al., 2018) and correspond to 

the two types of interrelations we are interested in (i.e., compound and cascade). 
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 280 

Figure 4: Graphical representation of two bivariate (X1, X2) probabilities of exceedance: (a) PAND probability and (b) PCOND 

probability with level curves (blue in ‘a’ and orange in ‘b’) representing p = 0.01 (1000 data points on a Gumbel copula with log-

normal marginal distributions). Colours represent the domain on which the probabilities are computed while the areas with diagonal 

hatching represent the critical regions which are the regions corresponding to the given probabilities.  

In 2D space, probabilities of exceedance (or quantiles) are not represented by a single value but by a curve with an infinite 285 

amount of points with the same probability of exceedance. However, as shown in Fig. 4, these probabilities are defined by: (i) 

the domain where these are computed and (ii) the critical region corresponding to the probability type. For the AND probability, 

the computation domain remains similar when moving along the curve while the critical region evolves constantly. For the 

COND1 probability, both computation domain and critical region evolve when moving along the curve (see Fig. 4). Bivariate 

probabilities of exceedance are curves. These curves have been given various names in different research papers including the 290 

following:  

• isolines (Salvadori, 2004; De Michele et al., 2007; Salvadori et al., 2016; Sadegh et al., 2017, 2018)  

• level curves (Coles, 2001; Salvadori, 2004; De Michele et al., 2007; Volpi and Fiori, 2012; Serinaldi, 2015, 2016; 

Bevacqua et al., 2017).  

For the specific case of the AND probability, the following names have been used: 295 
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• joint exceedance curves (Hawkes et al., 2002; Hawkes, 2008; Mazas and Hamm, 2017). 

• quantile curves (De Haan and De Ronde, 1998; Chebana and Ouarda, 2011).  

3 Simulation study 

Here we are interested in comparing the abilities of six different models presented in Sect. 2.3 to reproduce a given dependence 

structure. Will create 60 different synthetic dataset types with varying marginal distributions and dependence structures. By 300 

doing this, we aim to produce bivariate synthetic datasets comparable to the ones studied in bivariate  hazard analysis (Zheng 

et al., 2014; Hendry et al., 2019). This will allow us to confront the six models against the synthetic datasets, as a reference for 

bivariate hazard interrelation analysis (See Sect. 4). The six models compared in this simulation study are:  

(i) the conditional extremes model (Cond-Ex) (Sect. 2.3.2);  

(ii) the non-parametric joint-tail model (JT-KDE) (Sect. 2.3.3);  305 

(iii) the Gumbel copula (Gumcop) (Sect. 2.3.1);  

(iv) the normal copula (Normalcop) (Sect. 2.3.1);  

(v) the Farlie-Gumbel-Morgenstern (FGMcop) copula (Sect. 2.3.1);  

(vi) the Galambos copula (Galamboscop) (Sect. 2.3.1).  

Among the four copulas used here, two are asymptotically dependent (Gumbel and Galambos) and two are asymptotically 310 

independent (normal and FGM). A description of the six models is given in Table 2. Table 2 synthetizes a range of information 

about all the six models used in this simulation study including their type (nonparametric, semiparametric, parametric), 

equation, parameter range (if there is a parameter) and asymptotic modelling domain. This latter information is important to 

interpret the result of the simulation study in Sect. 3.3. 

  315 
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Table 2: Description of the six statistical models compared in this article. The description includes the model name and acronym (used 

thorough the article), type of model (parametric, semi-parametric, non-parametric), the mathematical description, the parameter range 

(where relevant) and the asymptotic modelling domain (AI for asymptotic independence and AD for asymptotic dependence) 
Model name Model 

acronym  

Model type Mathematical description Parameter 

range 

Asymptotic 

modelling 

domain 

Joint tail KDE JT-KDE Non-

Parametric 

 

  AD 

Semi-

parametric 

   ∈ [0,1] AI 

Conditional 

Extremes 

Model 

Cond-Ex Semi-

Parametric 

 

 

for y> 0, as u → ∞ where G(z) is a non-degenerate 

distribution function. 

  AI and AD 

Gumbel copula GumCop Parametric 
  

AD 

Normal copula NormalCop Parametric  

 

 

With Φ(.) the standard Gaussian distribution function  

 

AI 

FGM copula FGMCop Parametric 
  

AI 

Galambos 

copula 

GalambosCop Parametric 
  

AD 

In this section, we first describe and display the synthetic data that have been generated to conduct this study. We shall then 

present the measures used in this study to compare the level curves and the dependence measures estimated from the six models 320 

presented in Table 2. Finally, results of the simulation will be displayed and analysed. 

3.1 Synthetic data 

Synthetic datasets are often used to confront or compare different statistical models (Chebana and Ouarda, 2011; Zheng et al., 

2014; Cooley et al., 2019). Here we generated 60 bivariate synthetic datasets representative of environmental data such as 

daily rainfall, daily wind gust and daily wildfire occurrences (see Sect. 4). The number of synthetic data points we use here 325 

have been fixed to 5000 for each dataset. For the asymptotic dependence case, 36 distinct datasets are generated from a Gumbel 

copula (see Supplement S1.3.1); for the asymptotic independence case, 24 datasets are generated from a normal copula (see 

Supplement S1.3.2). Each synthetic dataset set of parameters has been used to generate 100 realizations to produce confidence 

intervals. 

The synthetic datasets are generated from two marginal distributions and a dependence model (i.e., copula). Both marginal 330 

distributions are log-normal; the log-normal distribution has been used (among others) for the modelling of a wide range of 

natural hazards, including wind, flood and rainfall (Malamud and Turcotte, 2006; Clare et al., 2016; Loukatou et al., 2018; 

Nguyen Sinh et al., 2019).  

Random variables x with a log-normal distribution are governed by two parameters: the location parameter μ and the shape 

parameter σ which correspond respectively to the mean and the standard deviation of y, the variable’s natural logarithm, i.e., 335 

y = ln(x) (Aitchison, 1957). The parameter σ influences the shape of the distribution and the heaviness of the tail and the 

dispersion of a log-normal distribution mostly depends on the shape parameter (Koopmans et al., 1964)  

𝐶(𝑢, 𝑣) = exp {−[(− ln(𝑢))𝜃 + −(ln(𝑣))𝜃]
1/𝜃

} 

𝐶(𝑢, 𝑣) = 𝑢𝑣exp {−[(− ln(𝑢))−𝜃 + −(ln(𝑣))−𝜃]
−1/𝜃

} 

𝐶(𝑢, 𝑣) = 𝑢𝑣[1 + 𝜃(1 − 𝑢)(1 − 𝑣)] 

𝐶(𝑢, 𝑣) = ∫ ∫
1

2𝜋√1 − 𝜃2
exp (

2𝜃𝑥𝑦 − 𝑥2 − 𝑦2

2(1 − 𝜃2)
) 𝑑𝑥𝑑𝑦

𝛷−1(𝑣)

−∞

𝛷−1(𝑢)

−∞

 

𝑃 (
𝑌2 − 𝑎[𝑌1]

𝑏[𝑌1]
≤ 𝑧 ,  𝑌1 − 𝑢 > 𝑦| 𝑌1 > 𝑢) ⟶ exp(−𝑦) 𝐺(𝑧) 

𝜃 ∈ [1, ∞) 

𝜃 ∈ [0, ∞) 

𝜃 ∈ [−1,1] 

𝜃 ∈ [−1,1] 

𝑃(𝑍 ∈ 𝑠𝐴∗) ≈  𝑠−1𝑃(𝑍 ∈ 𝐴∗) 

𝑃(𝑍 ∈ 𝑠𝐴∗) ≈  𝑠−1/𝜂𝑃(𝑍 ∈ 𝐴∗) 
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We can characterize log-normal distributions with the coefficient of variation cv which is the ratio of the standard deviation s 

of the log-normally distributed variable x to its nonzero mean 𝑥 ̅(Malamud and Turcotte, 1999): 

𝑐𝑣  =  
𝑠

𝑥̅
 

(18) 

The standard deviation s and the nonzero mean 𝑥 ̅ are both related to the two parameters μ and σ of the log-normal distribution 340 

(see Table 3). The distribution used in the simulation study, the parameters and the relationship between these parameters and 

the different tail dependence measures are summarised in Table 3. 

Table 3: Marginal distributions and copula used for the synthetic dataset 

Distribution Cumulative density function  Parameters 
Parameter

s values 

Log-normal 
distribution  

  

μ, σ of y, where y = ln(x) 

𝑥̅ = 𝑒𝑥𝑝(𝜇 + 𝜎2/2) 

𝑠 = √(𝑒𝑥𝑝(𝜎2 − 1)𝑒𝑥𝑝(2𝜇 + 𝜎2)
 
 

 𝑐𝑣  =  𝑠/𝑥̅ 

A: cv =0.25 
B: cv =0.53 
C:  cv =2.91 

Gumbel 
copula 

 

 
𝜃 = 𝑙𝑜𝑔2(2 − 𝜒)  

 = 0.05, 
0.10, 0.30, 
0.50, 0.70, 
0.90 

Normal 
copula 

 

 
𝜃 = 2𝜂 − 1  

 = 0.25, 
0.50, 0.75, 
0.90 

where Φ  is the cumulative distribution function of the standard normal distribution 
 

We use three different coefficient of variations cv = 0.25 (labelled as A for the rest of this paper), 0.53 (labelled B) and 2.91 345 

(labelled C) (See Table 3). The log-normal distribution A (cv = 0.25) produces a distribution close to the normal distribution. 

The distribution C (cv = 0.2.91) is a highly right-skewed distribution. The distribution B (cv = 0.53) is intermediate skewness 

between A and B. In the bivariate context, there are six possible combinations of these distributions: AA, AB, AC, BB, BC, 

and CC.  

The dependence structure is represented by a Gumbel copula in the case of asymptotic dependence (AD) and a normal copula 350 

in the case of asymptotic independence (AI) as no copula can be both asymptotically independent and asymptotically 

dependent (Heffernan, 2000; Coles, 2001). The Gumbel copula is an extreme value copula, asymptotically dependent (see 

Supplement Eq. S19). The Gumbel copula function only has one parameter 𝜃 which can be related the extremal dependence 

measure χ. Here, we vary χ between 0.05 (very weak asymptotic dependence) and 0.9 (strong asymptotic dependence) (see 

Fig. 5). The Normal (or Gaussian) copula is asymptotically independent. Its unique parameter is related to the coefficient of 355 

tail dependence η (Heffernan, 2000). We vary η from η = 0.25 (negative sub-asymptotic dependence) to η = 0.9 (positive sub-

asymptotic dependence) (see Fig. 5). In total, ten different dependence structures were simulated for each of the six 

combinations of marginal distributions. The 60 bivariate synthetic datasets used in this study are displayed in Fig. 5.  

 

𝐹(𝑥) =  𝛷 (
(ln(𝑥) − 𝜇

𝜎
 ) 

𝐶(𝑢, 𝑣) = 𝑒𝑥𝑝 {−[(− ln(𝑢))𝜃 + −(ln(𝑣))𝜃]
1/𝜃

}  

𝐶(𝑢, 𝑣) = ∫ ∫
1

2𝜋√1 − 𝜃2
exp (

2𝜃𝑥𝑦 − 𝑥2 − 𝑦2

2(1 − 𝜃2)
) 𝑑𝑥𝑑𝑦

𝛷−1(𝑣)

−∞

𝛷−1(𝑢)

−∞
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 360 

Figure 5: The 60 different synthetic bivariate datasets used in our simulation study. On the y-axis: the dependence strength (a) χ (for 

asymptotic dependence) and (b) η (for asymptotic independence), vary from slightly negative association to heavily dependent (see 

also Fig. 2). On the x-axis AA to CC represent the marginal distributions that are part of the bivariate distributions (see Table 3) 

with A, B, C representing log-normal distributions with different coefficient of variations cv (A: cv = 0.25; B: cv = 0.47; C: cv = 0.95). 

 365 

To compare the fitting capabilities of the different models presented in Sect. 2.3, we vary several characteristics of the synthetic 

dataset: 
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(i) The shape of the marginal distributions. Natural hazards can exhibit very diverse statistical properties depending not 

only on their type but also on the location where they occur (Sachs et al., 2012).  

(ii) The strength of the dependence represented by the parameter of the copula function. The type and strength of the 370 

relationship between natural hazards can vary within a broad range depending on the natural hazard studied or the 

location (Gill and Malamud, 2014; Martius et al., 2016). In order to take into account both AD and AI cases, the two 

parameters χ and  (Sect. 2.2) are used. 

3.2 Diagnostic tools 

There are many diagnostic tools, to assess the goodness-of-fit of parametric bivariate models (Arnold and Emerson, 2011; 375 

Couasnon et al., 2018; Genest et al., 2009, 2011; Genest and Nešlehová, 2013; Sadegh et al., 2017). Amongst these, some of 

the most popular are the following:  

• Cramer–von Mises statistic (Arnold, Taylor and Emerson, John, 2011);  

• Kolmogorov-Smirnov test(Arnold, Taylor and Emerson, John, 2011);  

• Akaike information criterion (AIC) (Akaike, 1974);  380 

• Bayesian information criterion (BIC) (Schwarz, 1978).  

These measures have been developed in a univariate framework and then extended to the bivariate framework. Genest (2009) 

proposed several approaches for Cramer–von Mises and Kolmogorov-Smirnov goodness-of-fit tests for copulas. There are 

two issues we faced using these measures for our study:  

(i) these criteria are designed to fit on the dependence structure of the whole dataset and not the extreme dependence 385 

which can be different;  

(ii) in our study we aim to compare parametric and non-parametric models.  

To tackle the first issue, goodness-of-fit test have been developed for extreme value copulas (Genest et al., 2011). The latter 

issues is more complicated; each modelling approach has its own fitting methodologies, and although it is now possible to 

compare copulas against each other (Sadegh et al., 2017; Couasnon et al., 2018), it is more difficult to compare copulas against 390 

semi-parametric or non-parametric models. The measures mentioned above are not suitable as they imply parametric 

distributions to be compared against observations (Stephens, 1970; Arnold, Taylor and Emerson, John, 2011). It is then not 

possible to compare the goodness-of-fit on the whole range of the data.  

However, we are interested in fitting capabilities in the extremes. The models will then be compared on the estimation of two 

attributes of the synthetic data detailed below:  395 

(i) The PAND probability of exceedance (Sect. 2.3) represented by the level curve at p = 0.001. 

(ii) The tail dependence measures  and  (Sect. 2.2.2). 

We present here the diagnostic tools related to the level curve. The tools used to compare tails dependence measures can be 

found in Appendix A.Here we chose to compare our six models with respect to their ability to reproduce a reference level 

curve lobj (‘obj’ is again used to indicate objective) which corresponds to an extreme joint probability p = 0.001. For each 400 

model i a level curve lobj,i is computed. Several methods and criteria have been used in the literature to compare level curves 

to a reference including comparing the curves with a vertical point-wise distances between the underlying curves (Chebana 

and Ouarda, 2011). This approach finds it limitation when level curves do not share the same x-axis coordinate (X1 axis). In 

Fig. 6 is presented our procedure for computation of the goodness-of-fit indicators (described in further detail below). In Fig. 

6 the example modelled and reference curves do not reach the same coordinate on the X1 axis, making it impossible to compare 405 

these two level curves between X2=0.0 and X2=0.3. Cooley et al. (2019) divided level curves into two parts, comparing six x-

axis coordinates on one part and six y-axis on the other part, to overcome the aforementioned limitation. Here we chose to use 

a consistent criterion all along the curves to evaluate the distance between each modelled curve and the reference curve. The 

four steps we use are the following: 
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(i) Each modelled and reference level curve is normalized by dividing its coordinates by their maximum values. With 410 

that process, the curves are bounded in the [0,1] by [0,1] space. The different indicators are then computed in this 

normalized space. 

(ii) Cartesian coordinates (x,y) of the modelled and reference level curves are transformed to polar coordinates (θ, r). 

(iii) Each modelled and reference level curve is discretized via linear interpolation into points. Each point corresponds to 

an angle value (triangles and dots on the curves in Fig. 6). 415 

(iv) Points from both the modelled and reference level curves with the same angle are coupled. Indicators are computed 

at each of the 80 couples of points (see Fig. 6). 

The indicator designed in this study is derived from the distance between the two curves and are listed in Table 4:  

 
Figure 6: Procedure for computation of the goodness-of-fit indicators. Two variables are given, X2 as a function of X1. The 420 

red triangles and red curve represent the modelled level curve from a given model. The blue circles and blue curve are the 

reference level curve from the underlying bivariate (X1, X2) distribution of the data. Distance between the curves are calculated 

along the radius at 80 (X1, X2) coordinates (e.g., between the blue circles and the red triangles). 

 

We used a weighted euclidean distance (wd) as comparison criteria. The density of level curves (described in the Supplement 425 

S2) allows one to weight the Euclidean distance of each of the 80 points by the local density of the curve. By weighting the 

Euclidean distance according to the reference bivariate distribution probability density function, we give more importance to 

the proper part of curve where a bivariate event is more likely to occur, rather than the naïve part (where the naïve part is 

defined as where the bivariate event is less likely to occur) (Chebana and Ouarda, 2011; Volpi and Fiori, 2012).  

∑ 𝑤𝑖( 

𝑁

𝑖=1

√(𝑥𝑚𝑜𝑑,𝑖 − 𝑥𝑟𝑒𝑓,𝑖)2 + (𝑦𝑚𝑜𝑑,𝑖 − 𝑦𝑟𝑒𝑓,𝑖)2) 
(19) 

3.3 Results 430 

Two analyses are conducted in parallel, one for asymptotic dependence (AD) and one for asymptotic independence (AI). In 

the case of asymptotic dependence, the Gumbel copula is used with 5000 data points. The χ value is the one of interest under 

AD, values taken by χ have been presented in Sect. 3.1. For each χ value, we generated 100 realizations of the dataset from 
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the same underlying bivariate distribution. The 100 realizations generated have two purposes: (i) increase the robustness of 

the results and (ii) create a confidence interval around the median which was set at the 95% confidence level by taking the 435 

quantiles Q2.5 and Q97.5 of the 100 realizations. To confront this approach, we generated two sets of 100 realizations which 

showed very small variations in the values of Q2.5, Q50 and Q97.5 without impacting our interpretation of the results. In the 

case of asymptotic independence, the normal copula is used. The η value is the one of interest in the AI, values taken by η are 

displayed in Table 3. For each η value, we generated 100 realizations of the dataset. The 100 realizations generated allowed 

us to create a 95% confidence interval using the same approach as above.  440 

The marginal distributions do not have any impact on the dependence structure (Nelsen, 2006; Genest and Favre, 2007). We 

show in Appendix A that marginal distributions also have a very small impact on the estimation of dependence measures. All 

the methods used in this study include a transformation of marginal distributions and the fitting of a GPD above an extreme 

threshold (Sect. 2.3). By varying the marginal distribution of the variables of our synthetic dataset we aim to capture 

uncertainties and errors arising from both the fitting of the marginal distributions and the dependence structure. 445 

For both AD and AI, the objective level curve 𝑙obj to be compared has been fixed at the probability 𝑝obj = 0.001. For each of 

the 60 bivariate datasets, the six models presented are fitted to the 100 realizations. The dependence measures 𝜒̂ 𝑖 , 𝜂̂ 𝑖 as well 

as the level curve 𝑙 𝑜𝑏𝑗,𝑖  are estimated for each six model, with i⋲ (1:6) correspond to each model. We then use the diagnostic 

tool and criteria presented in Sect. 3.2 to compare the performance of the models. From the 100 realizations, 100 level curves 

𝑙 𝑜𝑏𝑗,𝑖 are generated for each model. Three curves are designed: (i) the 2.5% quantile level curve, (ii) The median level curve, 450 

(iii) the 97.5 % quantile level curve.  

In an analogous way, for each of the diagnostic tools presented in Sect. 3.2, three values are computed: (i) the 2.5% quantile, 

(ii) the median, (iii) the 97.5% quantile. Figure 7 displays the values of the wd for each model applied to each bivariate dataset. 

Squares are coloured according to the median of the wd and thickness of the edges is proportional to the size the confidence 

interval (i.e., the distance between the quantiles Q2.5 and Q97.5).  455 
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Figure 7: Weighted Normalized Euclidean Distance (wd) to the reference curve for all 60 different synthetic datasets. Fitting 

capacities of each model are represented. Values in cells and colours represent the median wd from low (dark green) to high (red). 

Thickness of borders represent the 95% uncertainty around the median value on a logarithmic scale. 

It is important here to note that we tested more AD (36) cases than AI (24) cases. From Fig. 7, we observe the following:  460 

• The Gumbel and normal copulas, which have been used to generate the synthetic datasets with AD and AI, outperform 

all the other models in AD and AI cases respectively. 

• The conditional extremes model and the joint-tail KDE model are the most flexible model tested here as the can 

handle respectively 98% [72–100%] and 97% [65–100%] of the situation with a wd < 0.1, these values reach 100% 

for the AI cases.  465 

• The normal copula, even if asymptotically independent, is the most flexible copula model with a wd < 0.1 in 76% 

[60–90%] of the cases.  

• Gumbel and Galambos copulas show very similar behaviours with respectively 68% [53–93%] and 68% [52–93%] 

cases with wd < 0.1. When only considering the 36 asymptotic independent cases, this value reaches 94%. It is 

important to note that both aforementioned copulas cannot handle complete independence (=0.5) or negative 470 

dependence ( = 0.25).  

https://doi.org/10.5194/nhess-2020-28
Preprint. Discussion started: 28 February 2020
c© Author(s) 2020. CC BY 4.0 License.

Administrator
Sticky Note
while the presented metrics are nice, it would be more desirable to show the p-value for each case, to examine whether the copula/any model is representative of the data, or not. Then the distances would help select the best model



20 

 

• The FGM copula can only handle one type of extremal dependence, which is asymptotic independence with =0.5. 

Consequently, it is the less flexible model in our results with a wd < 0.1 in only 41% [40–43%] of the cases.  

• All models have poorer goodness-of-fit while shape parameters are increasing. It is particularly striking with the 

conditional extremes approach which exhibits high uncertainty and high wd when both margins have a standard 475 

deviation σ=1.5.  

The Cond-Ex and JT-KDE provide similar results according to Fig. 7 despite adopting very different approaches. Thus, their 

flexibility arises from their semi parametric nature. Figure 7 also displays the uncertainty of the estimate of wd. For all models, 

a more accurate fit is accompanied with a reduction in uncertainties. However, both Cond-Ex and JT-KDE have on average 

more uncertainty around its wd despite their good fitting capabilities. On average, copulas tend to have less uncertainty due to 480 

their parametric nature.  

However, the copulas are penalized by the weighting function as they usually reproduce quite well the naïve part of the curve. 

By considering again the percentage of situations with a criterion below 0.1, the normal copula has its performances reduced 

by the weighting function (–6% compared to d). The JT-KDE model has its performance boosted by the weighting function 

(+7% compared to d). 485 

4 Application to natural hazards 

Results from the simulation study presented in the previous section (Sect. 3) can provide useful insights when modelling the 

interrelations between two natural hazards. In this section we will show how results previously presented can be useful to 

identify the most relevant models for a given dataset according to its visual characteristics. The concordance (or discordance) 

of the relevant models can also increase (decrease) confidence around the results.  490 

The methodology for model selection presented here is composed of five steps to select the most relevant models estimate 

joint exceedance probability level curves: 

(i) A scatterplot is compared visually to density plots for the 60 different datasets simulated in Sect. 3 and displayed in 

Fig. 6.  

(ii) From the aforementioned 60 datasets, a set of one to six analogous datasets (i.e. with similar bivariate distribution) is 495 

taken. 

(iii) A confidence score is used to compare the abilities of each models for the selected datasets in step (ii). For each 

model, the confidence score is 𝑤𝑑̅̅ ̅̅  the average of the computed weighted Euclidian distance wd for all datasets 

selected in step (ii). By taking the average of wd, a poor fit on one analogous dataset will have a high influence on 

the confidence score.  500 

(iv) Models are fitted on the bivariate hazard dataset and level curves from the most relevant models are kept. 

(v) Tail dependence measures are estimated using the most relevant model with a possible new iteration of the four 

previous steps according to the value of the dependence measures. 

To produce a confidence interval as was done in the simulation study (Sect. 3) and to visually measure the uncertainty 

associated to each level curve as in Sect. 3, we use a nonparametric bootstrap procedure. The function tsboot from the R 505 

package boot (Davison and Hinkley, 1997; Canty and Ripley, 2019) is used to generate 100 bootstrapped replicate datasets 

with the same number of observations as the original (but some are repeated). Our six models are then fitted to the original 

dataset and on the 100 bootstrapped replicates.  

4.1 Rain and wind gusts at Heathrow Airport (Asymptotic independence) 

Here we study the interrelation between daily extreme wind gusts (w) and extreme rainfall (r) at London Heathrow airport, 510 

UK for the period 1 January 1971 to 31 May 2018, both introduced in Fig. 1. The relationship between wind and rainfall has 
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been studied both globally (Martius et al., 2016) and locally (Johansson and Chen, 2003; Ming et al., 2015). These two hazards 

are often associated with different types of storms (Dowdy and Catto, 2017) and in particular cyclones (Ming et al., 2015; 

Raveh-Rubin and Wernli, 2016). In South England, these two hazards are mostly associated with mid-latitude cyclones in the 

winter season and thunderstorms in summer season(Hawkes, 2008; Anderson and Klugmann, 2014; Webb and Elsom, 2016; 515 

Hendry et al., 2019).  

The bivariate dataset used to study the interrelation between wing gusts and rainfall at Heathrow airport is composed of the 

following data: 

a) Daily Wind Gust (w): daily maximum wind gust at Heathrow airport (London, UK) weather station where a gust 

is the maximum 3 second average of wind speed. Wind gusts are short lived wind peaks in speed that can inflict 520 

great damage during a storm; however it might not capture the overall wind intensity (Met Office, 2019). The 

time range of the observations is 38 years, from 1 January 1971 to 31 May 2018 of which 74 days (0.4% of the 

data) had no values recorded and all other values in the dataset had w > 0 m s‒1. This observation data has been 

provided by the Met Office (2019).  

b) Daily Rainfall (r): daily total precipitation in a grid cell containing Heathrow airport. The data have been 525 

extracted from the E-OBS gridded database (Cornes et al., 2018) which is formed from the interpolation of 

observations from 18,595 meteorological stations through Europe and the Mediterranean (including Heathrow 

airport station). It has been shown that E-OBS has excellent correlation with other high-resolution gridded 

datasets even if this correlation tends to decrease for extremes (Hofstra et al., 2009). However, by selecting a 

grid containing a weather station we limit uncertainties arising from interpolation. The spatial resolution in the 530 

E-OBS dataset is 0.1° x 0.1° and the period covered is 1950 to 2019. Data from 1 January 1971 to 31 May 2018 

(38 years) in the cell containing Heathrow airport is used, with a total of 6074 days (35.1% of the dataset) having 

nonzero rainfall r > 0 mm d‒1.  

From 1 January 1971 to 31 May 2018 there are a total of 17,318 days (including leap years). Our bivariate wind gust-rainfall 

dataset is composed of those values where there is both non-zero rainfall r > 0 mm d‒1 and windgusts w > 0 m s‒1 recorded, 535 

resulting in a total of 6044 bivariate observations (34.9% of the days in our record). An overview of both daily rainfall and 

daily wind gust is displayed in Fig 8 in the form of monthly violin plots, where the probability density of w and r at different 

values are given, smoothed by a kernel density estimator.  
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540 
Figure 8: Violin plots of daily wind gust w (red) and daily non-zero rainfall r (blue) by month for the period 1 January 1971 to 31 

May 2018 at Heathrow airport weather station, UK. Diamonds represent the median of all values for that month from 1971-2018. 

Numbers at the top of the graph represent the average number of days per month where there is recorded both non-zero rainfall r 

> 0 mm d‒1 and windgusts w > 0 m s‒1. Daily rainfall data from E-OBS (Cornes et al., 2018) and wind gust data (maximum 3 s wind 

velocity in a day) from the Met Office (2019).  545 

From Fig. 8 we observe a seasonality in daily wind gust speed. January is the month with the highest median (diamond symbol) 

and range of most values in the violin plot while July is the month with the lowest median and range of most values in the 

violin plot. The daily non-zero rainfall median per month varies between 2.5 mm in February and 3.5 mm in June, with the 

highest individual daily values occurring in October (53.3 mm d‒1), May (49.6 mm d‒1) and June (49.2 mm d‒1). The dataset 

is also represented as a scatterplot in Fig. 9. The scatterplot will be used for the model selection methodology presented at the 550 

beginning of Section 4. 
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Figure 9: Days where there are recorded both daily wind gust (m s-1) w and nonzero daily rainfall (mm d-1) r > 0 mm d–1 at Heathrow 

airport (London, UK) for the period 1971–2018. Daily rainfall data from E-OBS (Cornes et al., 2018) and wind gust data (the 

maximum 3 s wind velocity in a day) from the Met Office (2019). Colours (legend) represent the bivariate density estimated from a kernel 555 
density estimator with higher values and lighter colours representing a higher density of points at that bivariate value (r, w). 

Extreme rainfall and extreme wind have a compound interrelation according to Tilloy et al. (2019). We then estimate the joint 

exceedance probability curve, corresponding to a PAND probability (Sect. 2.3).  

We now go through the four steps presented for rainfall and wind gusts in Heathrow. 

(i) From Figs. 9 and 6, we hypothesize that over our time range 1971-2018, daily rainfall and daily maximum wind 560 

gusts in Heathrow are asymptotically independent or weakly dependent (η = 0.5 / χ = 0.05) and that both marginal 

distributions have a small shape parameter (A-B, B-B).  

(ii) This then gives us four analogous datasets and it is then possible to visually infer from Fig. 6 which models are 

the most adapted to these conditions. The four analogous datasets are the following: 

• χ = 0.05 and A-B 565 

• χ = 0.05 and B-B 

• η = 0.5 and A-B 

• η = 0.5 and B-B 

(iii) The confidence score for each model is 𝑤𝑑̅̅ ̅̅  the average of the weighted Euclidean distance wd from the four 

situations above. For the Gumbel and Galambos copulas, the cases of independence or negative dependence 570 

between variables are outside the modelling range (Sect. 2.3.1), and thus the confidence score for these models 

has been penalized by putting wd =1.0 for η = 0.5 and η = 0.25. The conditional extremes model, normal copula 

and JT-KDE model all have a confidence score variable = 0.02. The FGM copula has a confidence score of 

variable = 0.03. Gumbel and Galambos copulas have a confidence score of variable = 0.5 due to their penalty 

(Table 4). 575 
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According to these three first steps, we can identify the four most relevant model for the bivariate dataset of daily rainfall and 

daily wind gust at Heathrow. The conditional extreme model, the JT-KDE model, the normal copula and the FGM copula are 

the most relevant models for our dataset as can be seen in Table 5. 

Table 4: Euclidian weighted distance (wd) for datasets 1 to 4 based on wind-rainfall and six models, along with confidence scores 

(average of the wd for dataets 1 to 4). In bold are highlighted the four models with confidence scores < 0.1. 580 

Dataset Cond-Ex JT-KDE Gumbelcop Normalcop FGMcop GalambosCop 

1 0.03 0.03 0.02 0.04 0.04 0.02 

2 0.02 0.02 0.01 0.03 0.04 0.02 

3 0.02 0.02 1.00 0.01 0.01 1.00 

4 0.01 0.01 1.00 0.01 0.01 1.00 

Average 0.02 0.02 0.51 0.02 0.03 0.51 

 

(iv) For illustration and/or confronting our models with the data, the six models are fit to the dataset and joint 

exceedance level cure are produced with a joint exceedance probability set at p = 0.001, corresponding to a 

bivariate return period of 8 years. However, another joint exceedance probability could have been chosen. 

In Fig. 10 are displayed the level curves produced from the four models that were selected after steps (i) to (iii) above 585 

(Cond-Ex, JT-KDE, NormalCop and FGMCop) and presented in bold numbers in Table 4. 

  

Figure 10: Level curves for a Pand joint probability p = 0.001 of daily wind gust and daily rainfall at Heathrow airport (London, UK). 

Level curves from the four models selected through the model selection methodology are displayed. 

From Fig. 10, we can observe that the conditional extremes model, the FGM and the normal copula all produce very similar 590 

joint exceedance curve and that their confidence intervals overlap. Table 5 displays the estimates (with bounds of the 95% 

confidence interval) of the two dependence parameters χ and η from the six models. These estimates converge toward a very 

weak asymptotic dependence. However, the estimation of dependence parameters in near independence is highly uncertain 

(Sect. 3.3.2).  
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Table 5: Estimates of dependence parameters χ and η for extreme rainfall and wind gust at Heathrow airport for the time range 595 
1971-2018 

Models Cond-Ex JT-KDE Gumcop Normalcop FGMcop GalambosCop 

χ 0.01 [0.00,0.02] 0.06[0.05,0.09] 0.04[0.01,0.06] 0[0,0] 0[0,0] 0.04[02,0.06] 

η 0.49[0.45,0.54] 0.54[0.49,0.59] 1[1,1] 0.52[0.51,0.54] 0.5[0.5,0.5] 1[1,1] 

 

4.2 Wildfire and extreme temperature in Portugal (Asymptotic dependence) 

It has been shown that dry and warm conditions increase the risk of wildfire (AghaKouchak et al., 2018; Zscheischler et al., 

2018). Witte et al. (2011) established a direct link between a persistent heatwave and wildfire outbreaks in Russia and Eastern 600 

Europe in 2010.  

The Northern Mediterranean countries (Portugal, Spain, France, Italy and Greece) are particularly affected by summer fires 

(Vitolo et al., 2019). Among these, Portugal holds the highest number of wildfires per land area (Pereira et al., 2011). There 

are many environmental and anthropogenic factors influencing the rural fire regime in Portugal and making its territory a fire 

prone area. However, the majority of rural fires are recorded during hot and dry conditions in the summer (Pereira et al., 2011). 605 

Here, we used the mainland continental Portuguese Rural Fire Database, that includes 450,000 fires and covers the period 

1980-2005 (Pereira et al., 2011), and includes data for all 18 districts in Portugal. This database is the largest such database in 

Europe in terms of total number of recorded fires in the 1980–2005 period (Pereira et al., 2011) and includes fires recorded 

down to a size of 0.001 ha. From the Portuguese Rural Fire database, we chose to focus on the Porto district, which was the 

worst affected in the period (out of the 18 Portugal districts) in term of number of wildfires with 21.6% of the total fire recorded 610 

in the dataset between 1980 and 2005. The Porto district is situated in the northern part of Portugal (see Fig. 11), has an area 

of 2395 km² and is one of the most populated districts of Portugal with an estimated population of 1,778,146 in 2018 (Instituto 

Nacional de Estatística Portugal, 2019). 
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 615 

Figure 11: Portugal study area for the interrelation between extreme hot temperature and wildfire burned areas. The red area 

represents the Porto district in Portugal containing studied wildfire burned areas. The blue tiles represent cells from the high‐
resolution gridded data set of daily climates over Europe (E-OBS) (Cornes et al., 2018) containing mean daily temperature data. 

Satellite image retrieved with ggmap (Kahle and Wickham, 2013). © Google Maps (2020). 

The bivariate dataset used to study the interrelation between extreme temperature and wildfire burned areas in the Porto district 620 

is composed of the following data: 

a) Daily number of wildfire (f). Daily number of wildfires for the 26-year period 1980–2005 for the Porto district 

were extracted from the Portuguese Rural Fire Database dataset from Pereira et al. (2011). To account for under 

sampling of smaller wildfires in earlier years, and as suggested by Pereira et al. (2011), we used only those fires 

with a burned area AF ≥ 0.1 ha, resulting in 59,522 fires, an average of 6.3 fires per day (for those days with at 625 

least one fire occurrence) over the Porto district in Portugal (2395 km2).  

b) Daily temperature data (t). Daily mean temperature was extracted from the E-OBS gridded dataset (Cornes et 

al., 2018). We approximate the area in red in Fig. 11 (Porto district) for each day with one temperature value by 

taking the average of daily temperatures in each of the six 0.25° x 0.25° cells represented by blue rectangles in 

Fig. 11. This assumption reduces the confidence in return level values and adds up with other interpolation 630 

uncertainties arising from the data (Hofstra et al., 2009). Moreover, the temperature in the six cells are strongly 

correlated (Pearson correlation coefficient ρ > 0.98) and variations in temperature are mostly due to the distance 

to the sea and altitude (Miranda et al., 2002). 

The 26 years from 1980–2005 have a total of 9496 days. Of these, a total of 3442 days (36% of the days) have both non-zero 

days for number of wildfires and a mean temperature value, which are used in our final bivariate dataset. An overview of both 635 

daily mean temperature and daily number of wildfires is displayed in Fig 12 in the form of monthly violin plots.  
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Figure 12: Violin plot of those days with both daily mean temperature (red, upper violin plots) t and daily number of wildfires (blue, 

lower violin plots) f ≥ 1 fire d–1, by month for the period 1980–2005 in Porto district (Portugal). Only those wildfires with burned 

area AF ≥ 0.1 ha are included. Diamonds for both temperature and wildfires represent the median of all values in that month over 640 
the period of record. Numbers at the top of the graph represent the average number of days per month where there are recorded 

both a temperature value t and at least one wildfire (f ≥ 1 fire d–1). Daily mean temperature data from E-OBS (Cornes et al., 2018) 

and wildfire data from Pereira et al. ( 2011). 

From Fig. 12 we observe the seasonality in daily mean temperature with January the coldest month (median = 8.3°C) and 

August the warmest (median = 21.0°C). Daily number of wildfires (with burned area AF ≥ 0.1 ha) per month varies between 645 

median of 1.0–2.5 fire d–1 in winter months (November to February) and 7.0–22.5 fire d–1 in summer months (from June to 

September). The dataset is also represented as a scatterplot in Fig. 13. The scatterplot will be used for the model selection 

methodology presented at the beginning of Section 4. 
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 650 

Figure 13: Scatter plot of temperature as a dependence of wildfire occurrence in Porto district, Portugal for the period 1980–2005, 

for those days where there are recorded both mean daily temperature (t) and at least one fire, with f the number of wildfires in one 

day. Only those wildfires with burned area AF ≥ 0.1 ha are included. Daily mean temperature data from E-OBS (Cornes et al., 2018) 

and wildfire data from Pereira et al. (2011). Colours represent the bivariate density estimated from a kernel density estimator.  

As discussed in the beginning of this section, extreme (hot) temperature and wildfire are interrelated. Indeed, extreme (hot) 655 

temperature may promote the development of wildfires (Witte et al., 2011; Sutanto et al., 2020) According to Tilloy et al. 

(2019), this is a change condition interrelation (i.e., one hazard changes environmental parameter that moves toward a change 

in the likelihood of another hazard). We then estimate the conditional exceedance probability curve (Sect. 2.3).  

We now go through the four steps introduced at the beginning of Sect. 4. 

(i) From Figs. 13 and 6, we can hypothesize that over our time range, the mean daily temperature and the number 660 

of wildfire per day are either asymptotically dependent (χ = 0.5) or asymptotically independent but with strong 

positive association (η = 0.9) and that one marginal distributions have a slightly small shape parameter and the 

other one is heavily right-skewed (AC, BC).  

(ii) This then gives us four analogous datasets and it is then possible to know from Fig. 8 which models are the most 

adapted to these conditions. The four datasets are the following: 665 

• χ = 0.5 and AC 

• χ = 0.5 and BC 

• η = 0.9 and AC 

• η = 0.9 and B-C 

(iii) The confidence score for each model is the average of the wd from the four aforementioned datasets, and are 670 

presented in Table 6. Again, we have two asymptotically dependent and two asymptotically independent 

datasets. Based on the Table 6, the normal copula and FGM copula do not seem suitable to model the joint 

occurrence of wildfire and extreme temperature as these poorly fit the four datasets. The Gumbel and Galambos 
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copula have a confidence score of respectively 0.05 and 0.06 even though these are asymptotically dependent. 

The joint tail-KDE model also has a confidence score of 0.05 while the conditional extremes model has a score 675 

of 0.04.  

 

According to these three first steps, we can identify the most relevant model for the bivariate dataset of daily maximum 

temperature and daily wildfire occurrence in Porto district: the Gumbel copula, Galambos copula, the JT-KDE model and the 

conditional extremes model are the most relevant models for our dataset. 680 

Table 6: Weighted Euclidian distance (wd) for datasets 1 to 4 based on extreme temperature-wildfire and six models, along 

with confidence scores (average of the wd for dataets 1 to 4). In bold are highlighted the four models with confidence scores < 

0.1. 

Dataset Cond-Ex JT-KDE Gumbelcop Normalcop FGMcop Galamboscop 

1 0.03 0.04 0.02 0.12 0.29 0.02 

2 0.05 0.06 0.04 0.18 0.42 0.04 

3 0.03 0.03 0.07 0.02 0.26 0.07 

4 0.05 0.05 0.07 0.14 0.37 0.10 

Average 0.04 0.05 0.05 0.12 0.34 0.06 

 

(iv) For illustration and/or confronting of the models with the data, the six models are fit to the dataset and the joint 685 

exceedance level curves are produced with a joint exceedance probability set at p = 0.001, corresponding to a 

bivariate return period of approximately 8 years. 

In Fig. 14 are displayed the conditional level curves produced from the four models that were selected after steps (i) to 

(iii) and shown in bold values in Table 6 (Cond-Ex, JT-KDE, Gumbelcop and GalambosCop). 

 690 

 

Figure 14: Level curves for a Pand joint probability p=0.001 of daily mean temperature and daily number wildfire occurrences in 

Porto district, Portugal, for the period 1980-2005. Level curves from the four models selected through the model selection 

methodology are displayed. 
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From Fig. 14, we can observe that the JT-KDE and the Gumbel copula produce very similar conditional exceedance curves 695 

and that their confidence intervals highly overlap. However, the conditional extreme model provides a lower estimate than the 

other approaches the number of wildfire conditioning on the temperature being above a given threshold.  

In Table 7, we present the estimates (with bounds of the 95% confidence interval) of the two dependence parameters χ and η 

from the six models provide a bit more insight about the dependence structure. These estimates converge toward a moderate 

asymptotic dependence varying from χ = 0.15 (Cond-Ex) to χ = 0.47 (GumCop). Even if all models tend to show asymptotic 700 

dependence between the two variables, estimates of η are less than 1.0 for the normal copula, the JT-KDE model and the Cond-

Ex with values varying between 0.67 and 0.79. This still implies a positive association between the two variables. 

Table 7: Estimates of dependence parameters χ and η for mean daily temperature and daily occurrences of wildfire in Porto district 

for the period 1980-2005 

Models Cond-Ex JT-KDE Gumcop Normalcop FGMcop GalambosCop 

χ 0.15 [0.06, 0.20] 0.26 [0.21, 0.30] 0.47 [0.45, 0.49] 0.00 [0.00, 0.00] 0.00 [0.00,0.00] 0.46 [0.44, 0.49] 

η 0.67 [0.59, 0.72] 0.67 [0.62, 0.71] 1.00 [1.00, 1.00] 0.79 [0.78,0.80] 0.50 [0.50, 0.50] 1.00 [1.00, 1.00] 

5 Discussion and Conclusions  705 

Quantifying and measuring the interrelations between different natural hazards is a key element when adopting a multi-hazard 

approach (Gill and Malamud, 2014; Leonard et al., 2014). In this study, we focused on statistical approaches that are often 

used to characterize and model interrelations between hazards. Another focus has been on modelling relationships between 

hazards at an extreme level. In total six statistical models with different characteristics (nature of asymptotic dependence, 

parametric/semi-parametric) were compared. Some of these models have already been used to study compound extremes in 710 

hydrology and climatology (Hao et al., 2018; Liu et al., 2018; Sadegh et al., 2018; Cooley et al., 2019). However, these have 

not been compared over a broad range of bivariate datasets and applied to the same natural hazards in the same location. 

This section will discuss the four following themes before a short conclusion: (a) choices influencing the results of the 

simulation study; (b) uncertainties at the interface between asymptotic dependence and asymptotic independence; (c) possible 

extensions of this approach to more than two hazards. 715 

Choices influencing the results of the simulation study. This study aimed to assess the fitting ability of several bivariate models 

to a broad range of datasets. In order to do so, models were compared on their ability to reproduce an extreme level curve (see 

Sect. 3.2.1). The extreme level curve probability was set at p = 0.001. The multivariate regular variation framework (Resnick, 

1987) provides evidence supporting the fact that the dependence structure remains identical in the whole extreme domain. 

However, some results shown in Sect. 3.3 might have been influenced by the value of the joint exceedance probability. In 720 

particular, it is likely that when decreasing the level curve probability (i.e., to more extreme values), the flexibility and abilities 

of the asymptotically independent normal copula will decrease. There are many copulas other than the four selected in this 

study (Nelsen, 2006; Sadegh et al., 2017) that have been developed. Nevertheless, we believe the four copulas used in this 

study are suitable for bivariate extreme value analysis and are amongst the most widely used in the literature (Genest and 

Favre, 2007; Genest and Nešlehová, 2013). Another influential choice in this study has been the number of synthetic data 725 

points generated in each realization of the dataset. The number of data points and data set size is an important influence on 

uncertainty in natural hazard modelling and probabilistic approaches (Frau et al., 2017; Liu et al., 2018). For each simulation, 

we simulated n = 5000 data points. Some other simulation studies took a higher number of data points (Zheng et al., 2014; 

Cooley et al., 2019); however, by we replicated 100 times and produced confidence intervals, thus ensuring consistency of our 

results. We also found that threshold selections, to fit the generalised Pareto distributions of the marginal distributions and to 730 

estimate the extremal dependence measures, also have an influence on our results. 

Uncertainties at the interface between asymptotic dependence and asymptotic independence. From the results of the simulation 

study (Sect. 3.3) and the two case study applications (Sect. 4), one can observe that the interface between asymptotic 
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dependence and asymptotic independence can be unclear. In Sect. 3.3, we discussed the decrease in model performance and 

the increase in uncertainty for low values of χ and high values of η. Taking the assumption of asymptotic independence or 735 

asymptotic dependence can have a significant impact on the estimation of joint return levels. We find that extra care is required 

when dealing with bivariate datasets which are near independence as in Sect. 4.1.  

Possible extension of the approaches to more than two hazards. As presented through this paper, the study of interrelations 

between natural hazards has primarily been done by hazard pairs (e.g., Gill and Malamud, 2014). Dependence measures and a 

variety of different models or level curves, all presented in this article, are powerful tools to assess, quantify and model 740 

interrelations between two hazards. However, in many cases, multi-hazard events include more than two hazards interacting 

in various ways (e.g., Gill and Malamud, 2014; Leonard et al., 2014). The use of models presented in this article can be 

extended to more than two variables, sometimes with disadvantages. One of these disadvantages is the that the parametric 

nature of copulas lead to a lack of flexibility while going to higher dimensionality (Bevacqua et al., 2017; Hao et al., 2018). 

The JT-KDE and Cond-Ex models are suitable for higher dimensions (Davison and Huser, 2015; Cooley et al., 2019), although, 745 

these have not been tested for high dimensional multi-hazard modelling yet (Tilloy et al., 2019). Recent research conducted 

suggest pair-copula construction (PCC, also known as vine copula) (Bedford and Cooke, 2002; Hashemi et al., 2016; Bevacqua 

et al., 2017, Lui et al., 2018) and non-parametric Bayesian networks (NPBN) (Hanea et al., 2015; Couasnon et al., 2018) can 

be used to model multi-hazard events with more than two hazards. The vine copula framework allows one to select different 

bivariate copulas for each pairs of variables, providing a great flexibility in dependence modelling (Brechmann and 750 

Schepsmeier, 2013; Hao and Singh, 2016). Non-parametric Bayesian networks, which are associated with the structure of 

Bayesian network and copulas (Hanea, 2010; Hanea et al., 2010, 2015), have been used to study multiple dependences between 

river discharge and storm surges in the USA during a hurricane (Couasnon et al., 2018).  

In conclusion, we have compared and examined the strength and weaknesses of six distinct bivariate extreme models in the 

context of hazard interrelations. These six models are grounded in multivariate extreme value theory and represent the diversity 755 

of approaches (e.g., non-parametric vs parametric) currently applied to hazard interrelation analysis. With this study we aimed 

to contribute to a better understanding on the applicability of bivariate extreme models to a wide range of natural hazard 

interrelations. The methodology developed in this article is aimed to be widely applicable to a variety of different hazards and 

different interrelations, here represented by the 60 synthetic datasets created. Abilities of each model have been assessed with 

two metrics: (i) dependence measure; (ii) bivariate return level (level curves). These two metrics and the different diagnostic 760 

tools developed in this study offer new intuitive ways to decipher the dependence between two variables. We recommend 

selecting a range of models rather than one when studying interrelations between two hazards. To highlight the benefits of the 

systematic framework developed, we studied the dependence between extremes (natural hazards) of the following 

environmental data: (i) daily precipitation accumulation and daily maximum wind gust (maximum over a period of 3 s) at 

Heathrow airport (UK) over the period 1971-2018; (ii) daily mean temperature and daily number of wildfires in Porto district, 765 

Portugal over the period 1980-2005. The two datasets represent different hazard interrelations: (i) compound interrelation 

between extreme wind and extreme rainfall and (ii) change condition interrelation where higher air temperature change 

condition for wildfire occurrence. In both cases, a sample of the most relevant model among the six used in this study have 

been selected and fitted to the bivariate datasets. The good agreement in the estimation of bivariate return period between 

models corroborate the relevance of the comparison metrics we developed. 770 
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Appendix A: Comparing model abilities through tail dependence measures 

A.1. Tail dependence measures estimations 

Tail dependence measures  and χ are estimated by each model. For copulas, these measures are related to the copula 

parameters. In our set of four copulas, two are asymptotically dependent (Gumbel and Galambos) with =1 and two are 775 

asymptotically independent (normal and FGM) with χ=0. 

For the nonparametric joint tail approach, the χ and  measures are estimated following the procedure used by Winter (2016). 

For the conditional model, both measures are estimated from the simulated points. Marginal distributions (X1, X2) are 

transformed to the uniform margins (U1, U2). The χ measure is estimated by calculating the probability 𝑃(𝑉 > 𝑢|𝑈 > 𝑢) (Eq. 

4). The η measure is estimated in two steps. First we estimate 𝜒 ̅(𝑢) as (Coles et al., 1999): 780 

̅(𝑢) =
2log 𝑃(𝑈>𝑢)

𝑙og 𝑃(𝑈>𝑢,𝑉>𝑢)
− 1 =  

2 log(1−𝑢)

log (𝜒(𝑢)(1−𝑢))
−  1, (A1) 

for 0 ≤ u ≤ 1 with u a sufficiently high threshold. Second, the η measure is estimated from 𝜒 ̅ (Eq. A1). 

To compare the estimated dependence measure to the reference value, the root-mean-square error (RMSE), a measure of 

efficiency that accounts for both the bias and variance of the estimates is used, similarly to Zheng et al. (2014).  

A.2. Comparison of model abilities 

The estimation of dependence measure is an important step in bivariate analysis (Coles et al., 1999; Heffernan, 2000; Zheng 785 

et al., 2013, 2014; Dutfoy et al., 2014). Models have also been compared on their ability to estimate the dependence measures 

 and  Results arising from this comparison provide a different perspective on the abilities of each models. Figure A1 

shows the RMSE of the dependence measures estimations for each of the 60 synthetic datasets. 
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 790 

Figure A1: RMSE (root-mean-square error) of the estimated dependence measures to the reference for all 60 different datasets. 

Fitting capacities of each model are represented. Values in cells and colours represent the median RMSE from low (dark green) to 

high (red). Thickness of cell borders represent the 95% uncertainty around the median value 

From Fig. A1, we observe the following: 

• Marginal distributions do not have a significant impact on the accuracy of the estimation of these measures for the 795 

copulas.  

• Marginal distributions have a small impact on estimation of the dependence measures for the conditional extremes 

model and the joint-tail model, however this impact is not as important as for the level curve estimation  

• All copulas estimate very accurately the dependence measure within their operating range (AI for normal copula, near 

independence for FGM copula and AD for Gumbel and Galambos copula). However, only the conditional extremes 800 

model and the joint-tail model can estimate both  and . 

• The dependence measure estimator used in the joint-tail KDE approach offers slightly more accurate estimation for, 

in particular for  . 

• Estimation performance of both joint tail KDE and condition extreme models decrease when approaching the 

interface between asymptotic dependence and asymptotic independence. The RMSE at =0.05 is close the 100% of 805 
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the value of  while the RMSE  =0.9 is at its highest for both Cond-EX and JT-KDE models. It is then hard to 

decipher with confidence the nature of the dependence in the asymptotic domain for low  values and high  values.  
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Code availability 810 
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