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ABSTRACT
Task allocation n-under uncertainty conditions is a key problem for agents attempting to achieve harmony in

disaster environments. Fhis-paper-presents-an-agent-based-simulation-to-investigateta allocation-through-th

operations-This paper presents an agent-based simulation to investigate task allocation considering appropriate

spatial strategies to manage uncertainty in urban search and rescue (USAR) operations. The proposed method_is

based on the contract net protocol (CNP) and implemented is-presented-inover five phases: ordering existing tasks

considering intrinsic interval uncertainty, finding_a coordinating agent, holding an auction, applying allocation
strategies_ (four _strategies), and implementing implementation—and ebservation—ofobserving the real
environmenttal—uncertainties. Applying allocation strategies is the main innovation of the method. —The

methodology was evaluated in Tehran’s District 1 for 6.6, 6.9, and 7.2 magnitude earthquakes. The simulation
started-began by calculating the numbers of injured individuals, which was-were 28,856, 73,19528856,73195,
and 111,463111463 people for each earthquake, respectively. Fhe-Simulations were performed for each scenario
for a variety of rescuers (1000, 1500, and 2000 rescuers). In comparison with the eontract-netprotocel-{CNP}, the
standard duration time-of rescue operations #-with the proposed approach exhibited includes-at least 13% of
improvement-, with a maximal improvement and-the-best-percentage-of recoverywas-21%. Interval uncertainty
analysis and the-comparison of the proposed strategies showed that an-irerease-inincreased uncertainty has-leads
to increased an-inerease-isd-rescue time for the CNP-ef-67.7-heurs; and for-strategies ene-1 to fourd-an-increased

4632637, . ; i . The time increase was less with #a-the uniform
distribution_strategy (Sstrateqy 4) wasless-than with the other strategiesrest. The Considering-consideration of
strategies in the task allocation process, especially spatial strategies, resulted-facilitated both resulting—in-the
optimization and increased flexibility of the allocation. It also improved -as-weH-as-conditions for fault tolerance

and agent-based cooperation stability in the USAR simulation system.

Keywords: USAR operations; Agent-based simulation; Disaster Environments; Task allocation; Interval
uncertainty; Spatial strategies.

1. Introduction
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Preparation to manage deal-with-an earthquake crisis requires by-an-optimal and appropriate eerrect-management
is-abselutely-necessary. Agent-b-based modeling of search and rescue {SAR)-operations after an earthquake is a
good eheice-model for decision making, compared te-with traditional computational approaches (Hooshangi and
Alesheikh, 2018). Multi-Multi-agent systems (MASs)-consist of several automatic and autonomous agents which
that coordinate their activities to achieve a target (Crooks and Wise, 2013;Sabar et al., 2009). Multi-agent
systemsMASs are suitable for the modeling and simulation of complex systems (Mustapha et al., 2013). They
allow the division of divide-the system into subdivisions (agents) and the modelling of the relationships among

these agentsmedel-the-relationship-between-them (Uno and Kashiyama, 2008). The utilization-use of multi-agent
systems is necessary in—for disaster management (Hawe et al., 2015;Grinberger and Felsenstein, 2016).

Importantly, multi-agent systemsMASs can be used to implement various scenarios of search and rescue SAR
operations, as well as distributions of —and-facilities, —distribution-in the crisis area (Crooks and Wise, 2013).
Task allocation is one of the main coordination challenges issues-in-coordinating-among a-set-efsets of agents in
a multi-agent system (MAS)-(Liu and Shell, 2012;Nourjou et al., 2011;Chen and Sun, 2012). Agents fail to reach
their ultimate goal without the-proper assignment of tasks (Reis and Mamede, 2002). In disaster environments, urban

search and rescue (USAR) and the assignment of tasks are dynamic processes_occurring under uncertain conditions
uneertainty—(Hooshangi and Alesheikh, 2017). Generally, task allocation on a large scale is influenced by
uncertainties and various factors (Cai et al., 2014). Uncertain conditions eireumstances-have a major impact on the
initial planning and results of rescue operations planning-(Hooshangi and Alesheikh, 2018). Despite the-findings-of
various investigations, an optimal task allocation solution has not been established projectsthese-projectscould-not
find-an-optimal-selution-(Olteanu et al., 2012).

In many instanceseases, the initial allocation may result in face-problems; or new tasks may be added to the

work-list; therefore, replanning—and-reallocation is necessaryreguired. Reallocation is an effective reaction to
environmental uncertainties and changes-in-the-envirenments, and it-has an-important roles in_both reducing the
wasted time during an operation and increasing operation profitability (Zhang et al., 2014). Presenting-strategies

(Olteanu et al., 2012). Fherefore-itisbetterto-planfor-the-process

conditions—Because Since-tasks might-may not be performed well for various reasons, strategies—{e-g-;_such as
minimum location displacement} should be applied to initial responses in-orderto merepreserve additional save

more-time in-during reallocation or future task allocation. H-is-net-enough-to-only-considerthe-uncertainty-in-the

in-assigning-tasks—This approach to task allocation optimizes planning performance in-erder-to achieve better
performance time providingand provides as-weH-as-providing-conditions for fault tolerance.
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The present article is the final part of a research project in Iran. This research project inwas carried out over three

phases. In the first phase, uncertainty in task allocation among agents was considered and task allocation denewas

performed only by considering the proximity (spatial distance) to the tasks. The developed method was evaluated

in a square-shaped random environment newithout a sensitivity analysis (Hooshangi and Alesheikh, 2017). In the

second phase, the feasibility of the developed method was investigated in a simulated environment using real

regional data. In this phase, the operational environment of a crisis was simulated and the developed method was

examined in a real environment. In the simulated system, thedamage for a 6.8 Richtermagnitude earthquake

damage was calculated for District 3 of Tehran, and rescue operations were modeled (Hooshangi and Alesheikh,

2018). In the third phase using the concepts of previous articles (Hooshangi and Alesheikh, 2018, 2017), spatial

strategies were included in task allocation among agents and simulated with real-environment data. The present

paper is the output of the third phase of the research project, which aimed
Fhe—present—study—aims—to improve task allocation in crisis-ridden conditions for agent-based groups by
considering proper strategies to manage dealwith-the-available-uncertainties. This paper firsthy develops an agent-

based simulation system for USAR operations, then applies uncertainties in agents> decision-making phase-by
improving an interval VIKOR method in-erderto perform task allocation, and alse-defines strategies for conditions
#-under which the initial assignment has encountered faced-a problem and requires reallocation (i.e., managing
availability dealing-with-avatable-uncertainty in-during implementation). The main innovation of the study is that
itthe establishment of presents-an approach to improve conditions during reallocations; or future allocations; when
initial allocations faceencounter face-problems due either to availableavailability avaHable-uncertainties; or the
addition of a new task. In general, strategies are selected in such a waymanner way-that the final cost of the system

will not increase abnormally if the initial allocations encounter problems. face-a-problem—

4.2. Literature review and background

4121 Agent-Agent-based USAR simulation
An agent-based model is a class of computational models for simulating the actions and interactions of

aAgent-based simulations perfermed—in—previous
researches-have been used in various investigations including crisis-management/disaster management (Wang et

al., 2012;Hooshangi and Alesheikh, 2018), emergency supply chains (Ben Othman et al., 2017), tsunamis (Erick

etal., 2012), and collective behavior (Welch et al., 2014). These simulations can be effective in both planning and

policymaking (Fecht et al., 2014). Simulation of the operating system involves a simplified real environment,

which is used to model a wide range of agents in complex systems. Various researchers have modeled a partportion
of the behavior of agents in epvirenmentsimulated environments -(Erick et al., 2012;Wang et al., 2012;Matari¢ et
al., 2003)_and demonstrated collaboration among agents. However, agent cooperation in catastrophic

environments has been less extensively studied, ;such that uncertainty in collaboration among agents has generally

not been considered. In previous researchesstudies, a geospatial information system platform was used when




preparing the environment and creating a simulation base map (Welch et al., 2014). Spatial analysis and tools

related are used in most research endeavors in USAR operations after an earthquake.
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Multi-robet-task-allocation (MRTA he of gene ocation-problem{(TARPHnwhichresources-and

tasks—are—distributed—in—pre-defined—areas—[10}—Agents should include environmental uncertainties in their
performance with respect to regarding—planning goals. There are four common approaches to considering
uncertainty:—ineluding: probabilistic, fuzzy logic, rough set and interval set (Hooshangi and Alesheikh, 2017). UL
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interval-algerithm-(Liu and Shell, 2011;Bertuccelli et al., 2009;Matari¢ et al., 2003);-and-consensus-based-bundie
algorithm-(CBBA)-methods, -
Aan Accidental-accidental event irndurinq -execution —mmls%lass—m»demevent—preven%s%exeeuwm

algemhm—GNJl(Lee and al-yafl 2010;Li and Cruz Jr, 2005)and—M94eveHue¥a¥ehJeaLalgemhm—have—beerkused
to-copsidorihion

TFthe Oceurrence-occurrence of new tasks —M%hese—stu&es—th&emwmem—r&dynamlear@arnewtaslemay—be

baseeLen—learmngautemat&(Qumonez etal., 2011;Dahl et al., 2009), -

Fthe Relanensm& elationship among the-agents_TFhis-group-of studies-has-been-conducted-in-assigning-tasks
A—(Choi et al., 2009;Su et al., 2016)and

me%%%%@%@%@ed&m&[%]%g@mﬂeﬂg@n%[%]m

The mentioned methods have been used in various applications such as multi-_JAVMunmanned aerial

vehiclesdAV (Bertuccelli et al., 2009), supply chains (Dahl et al., 2009), moving plants (Tan and Barton, 2016),
and disaster environments (Su et al., 2016). There is no dominant wayapproach way-to model uncertainty for all
phenomena. The appropriate method is determined based on the characteristics of the phenomenon and the

purpose of the study. In crisis environments, there is uncertainty in all decision parameters. In the uncertainty in
decision parameters category, which is suitable for MASsmulti-agent systems, uncertainties are inassociated with

the decision parameters for assigning tasks. Therefore, all information needed for task allocation is considered

uncertain. Various methods such as the contract net protocol (CNP) (Hooshangi and Alesheikh, 2017), stochastic

scheduling (Tan and Barton, 2016), and genetic algorithms (He et al., 2014) have been used—A/e in these contexts.
Here, we Thisstudy\We presentspresent an approach that includes unecertaiatyuncertainties uneertainty-in decision
parameters—alse_and includes-strategies in the eentract-net-protocol(CNP). The CNP produces local optimal
solutions which-that are abundantly used in multi-agent systems (Choi et al., 2009). This method is simple,
practical, and peputarpopularly used peputar-in agent-based modeling._
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In USAR operations, the-complete_individual expertise ef-the—individuals—is impossible due to a lack of
environmental knowledge; therefore, determining membership function and_the probability distribution is a

complex and time-censumingtime-consuming step. ta-this-study;We used interval analysis has-been-taken-into
account-in-order-to overcomemanage evercome-these shortcomings and to consider the intervallic nature of

available data within the-a rescue operations.

—iln the interval set thismethod,
due to the uncertainty in thea parameter’s value-of-a-parameter, that parameter is specified #aas an interval regardless

of the probabilistic distribution (unlike in probabilistic theory) or membership function (unlike in fuzzy logic)

4-472.3 _ Reallocation and reassigning methods

DifferentDistinct Bifferent-algorithms have been proposed for scheduling and task reallocation in accordance
with the required-tasks and available conditions within the-an environment (Gokilavani et al., 2013). Some
reallocation methods_(e.g., data envelopment analysis (Barnum and Gleason, 2010)) and exact algorithms (e.g., a

branch-and-bound algorithm with column generation) resolve problems on a smaller scale (e.g., 10 jobs and three

vehicles). -are-apphied-to-thereassignment-of-individualsin-organizations-[37]—In such methods, the-solution’s
run-time-is-not-impertantthe process is time-consuming and slow for resolving large-scale problems (Cai et al.,
2014). Therefore, they are not suitable for the allocation of tasks that should be performed dynamically and

instantaneously in large-scale problems.

In some research, such as addressingthe investigation of these-addressing-gate reassignment problems{GAR),
initial assignment tables were-have been created using heuristic methods in such a waymanner way-that a

succession delay is minimized (Cheng, 1997). The incidence of adverse events may disrupt the original table.
areNotably, this method is Fhese-methods-are-not respensivesuitable responsive-for a greatlarge great-number of
tasks._Some other task allocation methods are interdependent with the plan’s ongoing tasks, such as isthe-case-in
construction operations (Olteanu et al., 2012). In suehthose mathematical calculations, when a task fails, all other
tasks whichthat were based on theits correct implementation efthattask-sheuldmust be replanned.
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an-An appropriate_reallocation method must be applied with respect to regarding-the nature and scale of the
problem._In USAR, a rescue process generally independentoccurs independently of any other rescue processes,

and only partsa portion of the workflow is ready to be implemented and assigned. aMoreover, because of the

Due-to-the-a-large number of rescue groups in USAR operations, as well as the available uncertainties and the
dynamic nature of multi-agent systems in disaster environments, the concept of general planning is
cemmenuncommon net-very-cemmen-and i-planappropriate plans the-plan-should beis-better-that-theplan-is
produced both locally and cross- sectlonally Manmn&r&apprepnateiepease&mwmehﬁeﬂumbepeﬁmmhasks

Wgu available methods to resolve the problem o

assigning tasks cannot be developed for uncertain conditions and restrictions such as in critical rescue

environments (e.g., USAR after earthquakes).
RegardingWith respect to Regarding-USAR operations, task allocation methods sheutd-mustinclude different
strategies for all conditions and be dynamlcally generated in a real-time environment. Bespi

USAR-In-earthguakesy—Unlikeln contrast to Unlike-previous studies, we define an approach based on spatial

strategies-se, such that se-that-the results of the initial task allocation are used in-thefor future forothertask
allocations; and are appropriate in the rescue environment. Time limitations areconstitute are-another issue in_the

replanningreallocation and tareassignment of reassigning—regardingreallocation-in-rescue teams. Therefore, the
present study aims to expand the CNP method as-afor rapid method-forresohving-the-problem_resolution.

6.3. Case study and data
The proposed approach can be implemented in differentvarious different-study areas. H-tThis study used a part

of Tehran (District 1 in the capital of Iran); in-erderto evaluate the feasibility of the proposed method and
according-toon the_basis of available data;a—part-of Fehran(District One-in-the-capital-of lran)-was-selected.
District One-1 is one of 22 central districts of Tehran Province, IranTehran-Provincetran. The-dDistrict One-1

has aan area ofa 210 square-km-{km?)-area,which and square-km-(km?)-area-which-is located in the northernmost
part of the city of Tehran (Figure 1). Its population is 433,500.
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Figure 1 Location of case study: (a) peak ground acceleration map of Iran for a return period of 2475
years and approximate location of Tehran, (b) location of District 1 and active faults in Tehran (c)
Map of District One-1 (study area) and active faults, Tehran.

The Reeent-recent Tehran earthquake (5.2 RichtermagnitudeRichter) en-in December 2017 attracted the
attention of many urban planning organizations. Fhis-metropeolis-is-one-of the-vulnerable-areas-to-earthquakes.

[39]-Tehran is a highly seismic area asbecauseas it is surrounded by the Ray, Masha-Fasham, and North Tehran
faults (Figure 1(b)). Seismologists have statedreported stated-that a severe earthquake expeetedmay occur eould
be-expeeted-in Tehran in the future (Hosseini et al., 2009). The North_Tehran fault is the city's biggestlargest
biggest-fault and is abeutapproximately abeut-35 km long. It -and-has the potential for a 7.2 magnitude earthquake.

For this purpose, the North Tehran fault scenario, with the capacity to cause the most destructive potential

earthquake in Tehran, is-was selected—_in the present study. Various scenarios can be implemented. teln

accordance with Aceording-te-the suggestions of theseismologist the-experts, we simulated the-magnitude-6.6,
6.9, and 7.2 magnitude earthquakes._The basic data used in environment simulation arewere block maps,

population, distance from the fault, building material, agent> location, 2year of building construction, and building
height.
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8.4. Materials and Methods
In this section, the simulated scenario and the-proposed method are described.

814.1  FhesScenario of proposed agent-based USAR simulation

the-environment—events-are-unecertain)}—\We assume the presence of a disaster environment in which events are

uncertain. In this scenario, athea crisis is assumed to be an earthquake. The injured individuals are trapped under

the-rubbles and the number of themsuch individuals them-in each building block is uncertain. Rescuing injured

people is the main goal. Saving each person is a task that must be performed through the cooperation of rescue
agents. After an earthquake, the numbers of injured and deaddeceased dead-people can be estimated by using

different formulas by determining the magnitude and the-location of the earthquake, as well as the urban context
data of the buildings (Kang and Kim, 2016). alseFurthermorealse, Saving-each-persenisa-task-thatmust-be-dene:
Fthe possible locations of injured individuals can be predicted using buildings damage assessment models.
Therefore, the simulation inputs are the injured individualsindividuals’ locations and their characteristics, which
are available with some uncertainty. unecertainby-accessible-The rescue agents are tryingattempting trying-to save
the-injured enesindividuals eres-by moving up-toward to the task location. Given the results of previous studies
(He et al., 2014;Hooshangi and Alesheikh, 2017;Sang, 2013;Chen et al., 2012) and expertsin accordance with
expert opinion aceording-to-experts-on USAR operations, the uncertainties include the number of injuries, the

severity of the victims’ injuries, duration of the operation, infrastructure priorities, agent energy, route status, task
runtime by an agent, and risk level for theeach agent. These are important uncertainties in task allocation. All
these-parameters are specified intervalas intervals by-aninterval-during the task allocation process. After taskstask
identificationdetermining-the-tasks, an agent is assigned a task and pursues it. Fhen—f an agent fails to complete
his-an assigned task tebecause of due-te-any existing disruptions, the task is updated with-respect-to concerningwith

respect to eencerning-uncertainties and reported to the central agent, resulting in the restartingre-initiation

restarting-of the task allocation process. In this process, task allocation strategies are applied to minimize the cost
of the system.

In this studyscenariostudy, there is a central agent-, as well as and-several coordinators, rescuers, and injured
agents in the environment. These independent agents are rational and can communicate with each other. hasThe
agents have Each-efwhich-has-the following roles and characteristics:

- Central agent: This agent is responsible for sorting the tasks, specifying the coordinators, determining the

results, and-announcing rescuers, and applying allocation strategies.

- CoordinaterCoordinating Ceerdinator-agent: Coordinater-The coordinator is a rescue agent who is

responsible for sending the-characteristic-of-work details to rescuers, receiving their proposalse (bids),

holding auctions, and submitting the results and reseuersrescuer reseuers-prioritization_data to the central
agent.

- Rescue agent: ReseuerThis agent Reseuer-identifies and moves to the task location, searches for the
injured individuals, —and-sends the tasks uncertainty to the central agent,_and rescues injuriesinjured

individualsinjuries from the debris.
- Injured agent: This agent exists in the environment and hishas a his—critical condition_that changes
continuously. HeThis agentHe has no activity or communication with other agents.

4.2 USAR simulation
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In preparingpreparation for the USAR operation simulation, there are three main_parts: 1) calculating the

damage rate of the area and people (simulating an earthquake-damaged environment), 2) defining agents and their

characteristics, and 3) implementing the suggested method for task allocation between agents.

To simulate an earthquake-damaged environment, an earthquake risk assessment model was developed based

upon the Japan International Cooperative Agency (JICA) model. The JICA model is the output of cooperation

between the Center for Earthquake and Environmental Studies of Tehran and the JICA. The results of this project
and hew-to-implementitareits implementation have been presented inpreviously (Mansouri et al., 2008) and used
in various researchesstudies (Hooshangi and Alesheikh, 2018;Vafaeinezhad et al., 2009). This model can calculate
the buildings' level of destruction and the number of injured people based on the earthquake intensity, earthquake

location, building vulnerability, and the population in themthese buildings.
In this-studyour scenariothis-study, we haveincluded have-four types of agents: injured_individual, rescuer,
coordinator, and central agent. The tasks described in the previous section arewere are-implemented for each

agent. The initial locations of injured agents were based on building damage and the locations of rescue groups

waswere randomly generated in the environment. The definitions of agents and their characteristics ef-agents

arewere described in detail in our previous article (Hooshangi and Alesheikh, 2018).

824.3  The proposed method
The proposed model for task allocation with uncertainties in earthquake USAR operation is givea-shown in
Figure 2.
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Figure 2 Task allocation flowchart in the proposed approach, separated into five steps within an environmental

simulationTa aHoecation-HoewenRa r-the-proposed-approach-by-five steps-and-environmenta mHabion
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The five steps of the proposed approach are the ordering of existing werksworkwerks, specifying the
coordinators, holding an auction, applying reassigringreassignment reassigning-strategies (the innovation of this

paper), and implementing and observing environmental uncertainties (performed by thean agent.).by-the-agent:
The proposed method is presented below.as-foHows:-

8.2.14.3.1 Ordering existing tasks

In crisis-ridden areas, there are differentvarying always-different-degrees of urgency (Chen et al., 2012). Tasks
with a higher priority temust need-to-be deneperformed dene-first. Four parameters were-are used to prioritize

tasks: the —{number of victims, the-severity of the-injuries, the-time required for a rescue operation, and
infrastructure priorities). The initial tasks with their uncertainties in the environment (four priority parameters)
are available to the central agent. The-interval VHKOR method-isdeseribedinf35]—Therefore, for each task feature,
an interval such as that expressed in Table 2-1 is specified.

Table 2-1 Tasks characteristics based on intervals

X Y Fhe-SSeverity-
Task Infrastructure Number of ] o Duration of
Coordinate  Coordinate o o everity of victim )
NOno. ) ) priorities injuries L operation
coordinate  coordinate injuries
1 X1 Y1 [, lua] [Niz, Nu1] [Si, Su1] [Di1, Du1]
2 X2 Y2 [z, 1u2] [Niz, Nu2] [Si2, Su2] [Di2, Du2]
i Xi Yi [, lui] [N, Nui] [Sti, Sui] [Dii, Dui]
n Xn Yn [lln, |un] [Nln, Nun] [Slnl Sun] [Dln, Dun]

To withmanage deal-with—interval data in the CNP, differentvarious different—multi-criteria decision—-
makingtMCEDBM)-—multi-criteria—decision—making(MCDM) methods are proposed. The interval-based VIKOR
method wasis used extensively to coordinate agents ferin the assignment of tasks with interval data (Hooshangi and
Alesheikh, 2017). The interval-based VIKOR method ishas been previously is-described #-(Sayadi et al., 2009).
Ordering is performed by the central agent.

8.2.24.3.2 Finding_the coordinating agent

For each task indefined by in-the central agent, the most appropriate agent will-be-determinedis identified wiH
be-determined-as the coordinating agent. The coordinating agent is an agent that-who is elese-tolocated near elose
te-that task and is not currently working. SheesingThe selection ofGheesing a coordinating agent and creating
groups to execute any task can be achieved through different methods and is based on various criteria (Chen and
Sun, 2012;Su et al., 2018). In this study,—in-erder to simplify the calculations, only the criterion of proximity
(spatial distance) has-beenis used to determineidentify determine-the coordinating agent. Therefore, the nearest
agent to the task is selected as the coordinator and is responsible for the auction. Selection of a Cheesing-the

coordinating agent leads to the_performance of calculations being-performed-at a distributed point. By selecting
the-coordinating agents, the computational overhead of the central agent wit-beis reduced.

8.2.34.3.3Holding an auction

Coordinating agents hold auctions after receiving the task characteristics and the list of agents in the subgroup.
In the CNP, agents bid for tasks, and the persen-agent who offers the highest value for the task is the winner.

During the auction, rescue agents offer intervalintervals (rather than values) an-interval-for the route conditions,
the time needed-required for the agent needed-to execute the task-by-the-agent, the_ agent’s possible risk level, and
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their energy—instead-ef-a-value. AccordinglyFerthis, the agent calculates numbers for each of the four decision-
making criteria, such as a-variable X, based on the-following-eEquations 1. In Equations 1, the distance istmeasured
(in meters.the) distance-is-measured-in-meters-the severity of vietimsthe victims’ injuriesvietims, and task priority
isare based on the-values declared by the central agent. Based on the rate of uncertainty presumed thatis-considered

for thea given the-environment (for example, 30%), an interval for this number is estimated. The first number of
this interval wit-beis in the range between [X, X + 30%X] and the second number is in the range [X -— 30X%—-
30%X, X].

Agent energy (Energy-energy Levellevel, Bistancedistance, Numbernumber of people) = Energy
Levellevel — Distance/500 — Number of —people rescued*0.3

Task runtime by an agent (Bistancedistance, Number—number of people, Sewverityseverity) =
Distance/150 + Number of people rescued number-ofpeople*15 + severitySeverity*2 Q)
FheRisk+Risk level for an agent (Erergy-energy Levellevel, Rrioritypriority) = Priority — Energy
Level

Route status (Bistaneedistance) = Distance

In the real world, each person can introduce intervals according to their experience and their knowledge of the
environment. In this researchstudyresearch, we used the above equations thebased on with-respect-to-the-expert
opinions to simulate the real environment. The coordinating agent applies the interval-based VIKOR method to
order the agents' bids. The coordinating agent sends the results to the central agent after ordering the agents. The
use of a central agent in this phase provides the opportunity to make the best decision considering the task priorities
capacityand capacities as-weH-as-the-capacity-of other agents.

8.2.44.3.4 Applying allocation strategies

In operations where there is uncertainty, i-is-net-pessible-to-definitivelyresohve-the issue of task allocation-
zcannot be definitively resolved. In this phase, the initial allocation should be i-is-betterfor-the-initial-allocation
to-be-done in such a waymanner way-that if-a potential reallocation wasteswould waste is-needed;-it-wastes-the

feastsmallest feast-amount of time. Based on different strategies in-at this stage, the central agent begins to assign
tasks after obtaining all lists from coordinating agents. In each strategy, a priority is givenassigned given-to
specific tasks. In this section, four different strategy-based approaches are described, as follows:

Task allocation higheraccording to with-higherpriority (strategy 1): In this strategy, task allocation begins
with tasksthe assignment assigring-tasks-of higher--priority encetasks, following establishment ofhigherpriority
onece the task order and the—priorities of the rescue team have—been—established—in the previous stage
(prioritizingprioritization prieritizing-and auction). Therefore, the agent with the best performance is selected for
high priority tasks and is thensubsequently then—excluded from the lists of agents with no tasks.

theSubsequentlytater, the tasks of lower priority are assigned in the same order. The telimitation of preblem

related-to-this strategy is that_it may cause some agents may-be-left-with-no-tasks-to-de-in-the-last-stages-of-this
process-may-be leftwith-noto not receive tasks-to-do-in-the last stages-of this-process.

Assigning tasks to all agents, preferably agentto specific agents the-agent-with eutcomeoptimal outcomes
the-best-outcome-(strategy 2): This strategy is based on eptimaty-usingthe optimal use of eptimalhy-using-all
rescue teams. In this strategy, all agents are assigned a task. For this purpose, the-a task is first assigned to an

agent who has applied for the minimum number of tasks. FhentThe agent and the-task are then eliminated from
the agent and task lists, and the allocation continues with the next agent who has made few requests. erUsing
Based-en-this strategy, a task will be assigned to all agents.
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Task allocation on AHecation-by-keeping-a strategic spatial agentbasis agent-(strategy 3): erUsing Based
on this strategy, the-strategic-agents who play an-important and strategic roles in the task allocation process are
excluded in-erder-to help-withensure their availability for help-with-the implementation of the-tasks if there-are
problems_are encountered during the task allocation process. Agents with strategic roles may be defined
differently. Agents who participatedparticipate participated-in the auctionauctions auction-of more tasks are the
agentsthose the-agents-with strategic locations. In agentissuch instances, these agents are this-situationthis-agent
is—close to many tasks (has-havea strategic spatial locations) and can be used i-when these tasks are not
implemented. Figure 3 shows the difference between the task allocation results for strategy-strategies 2 and
strategy-3._In Figure 3, a the-rescue agent located partcentrallyin-the-central-part has a strategic position and will
try to maintain this position. Although the total movement may increase, if there problemare problems isaproblem
in performing other tasks, this agent can help all other groups.

\%% ~¢ X

Strategic agent A

> P
%&‘\\\% %/ \;\ PRescue agent

%Injured agent

Figure 3 strategicStrategic agent;-the-blue-arrow shows illustration. Blue arrows show the final
resultresults for strateqy 2; and the-red arrow-indicatingarrows show the winningsuccessful rescuers in
strategy Shews-the ategic-agent—the blue-arrow-shows-the-final resultfo DLOER Ao rne ey,

Assigning tasks by creating the best density in the environment (strategy 4): This strategy is based on the
optimal density of rescue agents. With-Using this strategy, thetask the-assignments of-the-tasks-are made in such
a manner that ensures the way-as-te-ensure-a-uniform distribution of the-agents in the environment. Generally, no

exact information is available abeutconcerning abeut-the conditions of the tasks; therefore, this strategy aims to
ensure the-a uniform distribution of rescue teams within the environment if the uncertainty is high. In disaster
environments likesuch as lke-earthquakes, the incident placeoccurs takes-place-over a wide area-and, such that
and-the damage and injured population distributienare uniformly distributed have-uniform-distribution-due to the
texture of the area. Therefore, the highest number of injured people is not accumulated in any one spot.
BesidesFurthermoreBesides, tn-addition,—applying this strategy prevents the convergence of rescue teams. To

apply this strategy, the tasks of the highest priority in the task lists should be given to the available agents andwhere
and-the environmental density sheuld-beis the highest. The issueconcept issue-of the-optimal density can be solved
through innovative algorithms. In our study, the simulated annealing{(SA) -method was used to finddetermine

find-uniform density. The implementation stages of simulated annealing SA-have been described apreviously are
deseribed-in-(Sabar et al., 2009). Figure 4 shows the difference between task allocation outcomes for strategy 2
and strategy 4.
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8.2.54.3.5 Implementation and observation of real values in the environment

FheDuring the Fhe-implementation phase, —of-the-tasks is-are _implemented by the-agents in a dynamic
environment where there are always uncertainties during the-task execution-efthe-tasks. The rescuer observes the
difference between his—predicted values and the actual environment after working.the work beginshe—starts
working. In this researchto-modelthereal-envirenmentstudy, a random number in_the [X — 30%X, X + 30%X]
interval is-was chosen—_to model the real environment. In the real world, the difference between the predicted

environment (through building vulnerability estimation models) and the real environment will determine the
agent’s performance-efthe-agent.

If the agent observes a biglarge big-difference between the auction information and the real environment, he
the agent abandons the-that task. In this easeinstanceease, the agent he-updates the task's values and uncertainties

and sendsreturns sends-the work to the central agent._ The new uncertainty interval will be 80% smaller than the

original interval. There differentare various can-be-different-conditions n-under which agents will reallocate a

task if the environment differentdiffers is-different-from the expected enescenarioene. For example, the agent can
abandon the task if three eut-of eight decision-making parameters are out of range by 5%. Otherwise, the
reseueragent reseder-finishes the rescue work by accepting the new conditions.

The central agent assigns newly added tasks within the reallocation framework. When a new task is assigned,
the task allocation is-mixed mixedcombined with that of both new tasks-aswel-asand incomplete enestasks. mixed
8:34.4  Evaluation Methed-method

AssessingAssessment of Assessing-a task allocation algorithm is usually-denetypically performed usualhy-done
in the first phase through modeling and simulation due to the dynamic and heterogeneous nature of different

environments (Olteanu et al., 2012). Simulating-Simulation is a suitable approach for the implementation and
validation of a proposed method (Nourjou et al., 2011). In a real testing situation, the situations and conditions of
the implementation scenario are very-difficult to reproduce. In thisthe present studyta-this-study, we simulated

three scenarios for the-earthquakes in Tehran’s District 1 with magnitudes_of 6.6, 6.9, and 7.2. We also estimated
the numbers of deaddeceased dead-and injured individuals who were-are distributed in-in the centers of the-relevant
building blocks and_need to be rescued by 1000, 1500, and—or 2000 rescue agents._ —Adse—iln the
wheertainuncertainty uneertain-analysis of the suggested method, the lower and upper bounds of uncertain values

arewere also are-calculated. The proposed method was compared with the traditional CNP. The intended task
allocation iswas considered is—efficient if profitability parameters are-were maximized. teln accordance with
According-to a-number-of-several recent studies (Liu and Shell, 2012;Sang, 2013;Hooshangi and Alesheikh,
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2017), three criteria were used to evaluate the performance of the proposed method-—Fhese-criteria-are-: the number
of deceased victims, the-number of incorrect allocations, and the-rescue time. Results were-achieved-with-1000
opdemizodrns,

Some of the major problems in replanningreallocation and in the task allocation environment include
scalability, reliability, performance, and the-dynamic resource reallocation efreseurces-(Gokilavani et al., 2013).
In this study, the results of the-two analyses (scalability of the proposed method and interval uncertainty analysis)
were-are presented.

The first analysis focused on the evaluation of the proposed approach en-at different scales and for different
criteria. Comparison and assessment were carried out en-at different scales in-erder-to recegnizemeasure recegnize

the effectiveness of the proposed approaches in USAR operations. Nine scenarios were applied in this study and
compared with traditional the CNP.

The second analysis focused on interval uncertainty analysis and studyingstudied studying-the rescue operation
timeduration time-in_the 6.9 Riehtermagnitude Richter-earthquake for-at different levels of uncertainty. In this
analysis, time changes ef-in rescue operations enwere investigated according to based-en-different levels of
uncertainties-are-tvestigated. The duration of the-a rescue operation in the simulatedsimulation simutated-model
depends-depended on two main components: 2-Pprioritization of tasks and, outputs 2-Outputs-of each operation
at-in each phase (Hooshangi and Alesheikh, 2018). Equation 132 defines the final model for calculating the

operation timeduration time-based on these two components.
T(Xl, X2, X3, X4, X5, Xg) X7, x8) = Zzi% [¢4% (xl' X2, X3, x4) + Z&ttt w(x5t Xer X7, xs) (4-3_2)

FhevVariables x1 to x8 areconstitute are-the number of injuries, the-severity of-the-detims> injuries, duration

of the operation, —and-infrastructure priorities, energy, route status, task runtime by agents, and risk level for
agents, respectively. a,, is the function of tasks> prioritization and f3,, is the function of bidding.

IntervalTo our knowledge, interval taterval-uncertainty analysis has rarely been employedinvestigated—in
previous—researches. The method used in this research is-was adapted from researchprevious literature research
(Lan and Peng, 2016). In researchour analysisthis-research, Chebyshev points are used. Equation 2-43 isdepicts a

is-Chebyshev formula te-generatefor generating m collocation points ena-in the interval [0, 1] (Lan and Peng,
2016):

n(i-1) o
number; = { 0.5 % [1 —cos (ﬁ)] for j=1if m=1 }
0.5 for j=1,if m=1
(243)

Equation 2-3 is-was used to create different numbers for the decision-making parameters. The output of the
model is-was then calculated for various numbers awithin #-the intervals. This technique ereatescreated ereates

different values for the output of the model.

9.5. Results
DifferentMultiple Different-scenarios and experiments were designed in—order-to evaluate the proposed

methods and strategies. The results are presented in this section.
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this-projectis-are-presented-in-[43]-And-and-has-have been-used-in-variousresearches-[1, 44]-In accordance with
515  Aeccording-to-expert opinions, three probable earthquakes were simulated with magnitudes of 6.6, 6.9, and 7.2.

Figure 5 shows the wulnerabilityvulnerabilities vulnerability—of buildings in these scenarios in the ArcGIS
environment.
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Figure 5 Vulnerability maps infor District 1, an-earthguakebased on earthquakes with magnritude:magnitudes
of a) 6.6-entheRichterseale, b) 6.9-enthe Richterseale;, and c) 7.2 on the Richter scale. Mutnerabiity-maps-




Based on buildingsthe level of building destruction, the aumbernumbers of injured and deaddeceased people
can be calculated byusing the JICA model. The numbers of injured and deaddeceased people in scenarios with
520 6.6, 6.9, and 7.2 magnitude earthquakes are demenstratedlisted in Table 2.

525 Table 3-2 Results from-implementing-a-6.6 Richter sealeof earthquake simulations Resultsfrom-implementinga

6.6-Richter scale-earthguake
NumberNumbers of affected
) populatiensindividualsNumber-of-
Severity level affected populations
6.6 Richter 6.9 Richter 7.2 Richter

Uninjured 374,295 270,455 182,340
Injured 28,856 73,195 111,463
Deceased 30,349 89,850 139,697

The computational scale of the JICA model isuses is-urban blocks. Therefore, the numbers of deaddeceased
dead-and injured_individuals in each urban block was-were calculated. The locatienlocations tecation-of the-injured
individuals consideredwere presumed to be was-censidered-in the centers of the bleckrespective blocksblock.

530 The_environmental simulation ef-the-envirenment-and the-proposed method were performedimplemented
performed-in AnyLogic software. This software has-the-ability-to-enter GlScan process geospatial information

system data. has-the-ability-to-enter-GIS-data—To simplify the environment and reduce the_calculation volume-of
caleulations, each agent was censideredregarded eonsidered-as a group in the real world. Figure 6 shows the

simulated environment.

535



540

545

550

555

&l - m]

00 vpl | & @[ 1t |& G | @ @ G [root:Main v|® | p ¥ Anylogic

5 s . Selected population § S
USAR Operation Simulation e WL‘“_“:‘: i,
X:ES1°24'50" X:E51°2415.3" ok
Definition Responsibilities Y:N35°48'41.4" Y:N35°48'43.5"
. I . . . Rotation:0 Rotation:0
Population: Distbuted populasionin the area thatis vulnerable fo rubble. Heading:0° N Heading:0° N
Rescuer: Velocity:10.0mJs Velocity:10.0m/s
’ ’ Is moving:no Is moving:no
= g C Y
)
D

_t
/“V’X\‘ :
'.i“".f‘i"’)‘\"\\“'\’.‘ © X
AN B S0
;“‘§‘i\?'w§:§
DAL e
S '\\}\\\i'“‘\\g\\q\}\}\\\%\ ;
W ﬂ'\‘\\““\&:\\"‘»
R

Al ;s g 4 %
s BES Seoon o)

Map
Panning
Run: 0 (3 Running | Time: 758.10 | Simulation: Stop time ot set | Date: Feb 4, 2018 7:15:25AM | ) | Memory: | oF 22701 o

Figure 6 An-eQverview of the USAR simulator.

There are many injuries in the environment. The central agent first sorts the tasks according to their prierity
and-after- determiningpriorities. After the coordinating agent; has been determined, the central agent prierity-and
after-determining-the-coordinating-agent-sends the task properties to the coordinating agent. The coordinator holds
an auction. Rescue agents are-bidding in accordance with their environmental and working conditions. Rescuers

are in a ready state at the start of the operation. Each winningsuccessful winniag-rescue agent moves to the task's
location. After reaching the task position, startsthe rescue agent begins he-starts-rescuing the injured agents. During
the execution of thetheir assigned the-work, the agents may find differenceconsiderable differences a-significant
difference—between the real-world information and the expressed—information_expressed in the auction. In
situationsuch instancesthis-situation, the agentagents agent-may stop performing tasktheir tasksthe-task and report
the disputediscrepancies existing-dispute-to the central agent.

Table 4-3 shows the timedurations time-of the-USAR operations inas estimated using in-scalability analysis of
with the proposed method. In creating this table, an uncertainty of 30% was considered. For this purpose, the
range of tasks characteristics trused was-made-in-the intervals [X, X + 30%X] and [X—-30%X, X].-AlsoAt —at
each stage, thata given agent participatesparticipated participates-in the auction;-. for-For that agent’s his-decision-
making parameters, the rumbernumbers were agent-converts-s-numberrandomly converted into an interval. The
average range of agent tasks and decision-making was used for the-implementation of the CNP-, rather than instead
of-interval values.

Table 4-3 comparisonComparison of operation duration in hours between the suggestedproposed method
withand the CNP (based on 30% uncertainty)cemparison-of the-suggested-method-with-CNP{based-6n-309

No. of agentsAgents 1000 1500 2000

Simulated earthquake

magnitude Simulated- | 6.6 R 6.9 R 72R 6.6 R 6.9 R 72R 6.6 R 6.9 R 72R
earthguake-
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No. of tasksFasks 28856 73,195 111463 | 28856 73,195 111,463 | 28,856 73,195 111,463
CNP 53.16 169.03  282.76 32.83 94.24 174.19 22.6 68.95 127.47
Strategy 1 45.37 14247 24181 25.22 74.91 13575 | 19.643 59.36 108.56
Strategy 2 44.87 137.30  234.92 26.02 76.41 138.52 | 19.097 58.21 105.58
Strategy 3 43.75 133.76  230.12 25.75 74.33 132.75 | 18.332 56.33 101.77
Strategy 4 41.63 130.41  222.18 23.89 71.14 127.87 | 17.013 53.91 97.73

The operational time decreasesdecreased decreases-when the number of agents in rescue operations increased

with inerease-but-the number of tasks remainsremaining remains-fixed. The reduction rate betweenranged from
ranges-between-54% and-to 60% when the number of agents is-was doubled. The timeduration time-of a USAR
operation inereasesincreased inereases-when the number of tasks inereasesincreased inereases-for a eertain-given

number of agents. Therefore, the timeduration time-of the rescue operation is-was related to the number of rescue
agents and the number of available tasks in a scenario. There iswas is-an inverse relationship between the
timeduration time-of the USAR operation and the number of reseuerrescue reseuer-agents, and a direct relationship
between the timeduration time-of the operation and the number of tasks.

The inclusion of uncertainty in any allocation strategy provideprovided ecould—provide-better results, as
compared te-with the CNP method. Using the proposed strategies, the Fhe-smallest improvement in the-results
with uncertainty using-the-proposed-strategies-was 2.9 h (13%) heurs-for a scenario with 2000 agents and 28,856
tasks (6.6 Richtermagnitude Richter-earthquake). The maximum improvement was 60.6_h (21%) hours for 1000
agents and 111,463 tasks. The-worst-improvement-wasfound-for-2000-agents-with-28856-t3 0%)the-be
Tor-1000-agents;-and-111463tasks-(21%)-

Among the task allocation strategies-Strategy in this study, strategy 1 presentedproduced the worst response.
OnAt each scale effor the discussed scenarios, Strategystrateqy 1 presented-the-highest-timefoerresulted in USAR
operations with the longest durations, compared tewith other strategies. StrategyStrategies 1 and Strategy-2
indicatedprovided similar results enat different scales, although strategy 2 achieved better results-were-ebtained
for-Strategy-2.. Strateqy 4, invelvingwhich involved spatial information in task allocation, indicatedproduced
better results enat all scales and-presents-an-improvementincluding improvements of 21%, 24%, and 23% en-the
seale-efwith 1000 agents for a 6.6 magnitude earthquake-measuring-6-6-on-RichterSeale, 1500 agents for a 6.9
Richtermagnitude earthquake, and 2000 agents for a 7.2 Richtermagnitude earthquake, respectively, as-compared

towith the CNP. The average improvement for Strategystrateqy 4 was 26.6 heursh in rescue operations. The use
of Strategiesstrategies 3 and 4 is more evidentsuitable in a larger environment in-which-the-distribution-ofwith
high numbers of both injured people and rescue agents-is-high—since, because controlling the-agent distribution

with respect to the-expansion of the environment and the uneertaintyuncertain environmental conditions in-the
environment-can be effective in future task allocations-efthe-tasks.. In a real-world crisis-ridden environment, the
wheleoverall environment is damaged and the injured people are well- distributed. Fhis—is—why
controllingTherefore, the spatial distribution of the-agents playsis an important releparameter to control in USAR
operations.Ameng-the-task-aHocation-strategies—Strategy1-presented-the-worst-response—On-each-scale-of th




The simulation results in terms of deceased people for 1000, 1500, and 2000 agents with different numbers of

tasks are shown in Figure 7. In these figures, for each of the four priority parameters and decision parameters
600  theassociated with efthe agents, a 30% uncertainty level was considered.
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Figure 7 The-numberNumbers of deceased people:a) with a) 1000-rescue-agents, b) with-1500-rescue—
agents;, and ¢) with-2000 rescue agents.Fhe-number-of-deceased-peoplea)with-1000-rescue-agents-h)-wi

Figure 7 illustrates the aumbernumbers of deceased people in the rescue process with different numbers of
agents and tasks. Based on Figure 7, an inerease—in-theincreased number of tasks feadsled to an inerease—in
theincreased number of deceased people, while-inereasing-thebut an increased number of rescue agents results-in

605  decreasingtheled to a decreased number of deceased people. Regarding the aumbernumbers of deceased people
onat all three scales, the CNP method presentedproduced the worst response. FheAn average number-of 7253
people were deceased peeple-in the CNP model en-a-seale-efwith 1000 agents-is-7253. Conversely, 5853 people:
Fhe-number-of were deceased peeple-in the model employing Strategystrategy 1 en-a-seale-efwith 1000 agents
equals-5853-people—On-the-whele—with-respect-to—. Overall, when all strategies—Strategy were considered,

610 strategies 4 and Strategy-1 presentedresulted in the best and worst respenseresponses, respectively. As illustrated
in Figure 7, the aumbernumbers of deceased people iswere approximately equivalent in Strategystrategies 1 and

615
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Figure 8 illustrates the simulation results for the incorrect allocation of the-1000, 1500, and 2000 agents with
number-ofseveral different tasks.
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Figure 8 Fhe-numberNumbers of incorrect aIIocatlons—a) with a) 10004eseueaqems b) Mm15004eseueaqen%&

and c) with-2000 rescue agents.

The overall trend in iseach chart was the-figures-is-approximately samesimilar the-same-if all arecharts were
figures-are-considered simultaneously. FheAny Fhe-incorrect allocation is-netrelatedwas unrelated is-hot-related

625  to the number of rescue agents, because since-there are-were no changes when in-inereasing-the number of agents
was _increased. The number of incorrect allocations changeschanged echanges—with the number of tasks,
tnereasessuch that it increased and—inereases—with the—an increasing the-number of tasks. This increase is
observedevident ebserved-in all efthe-above figures—The-incorrectpanels in Figure 8. Incorrectefthe-above
figures—The-incorrect allocations usually placeoccurredtake-place with-at a nearly an-almest-fixed rate.

630 Based on the figuresresults, the traditional CNP_model presentsproduced the worst response. The total
incorrect allocations in the CNP en-the-seale-efmodel with 1000 agents for28856and 28,856 tasks, 1500 agents
for73195and 73,195 tasks, and 2000 agents fer-111463and 111,463 tasks arewere 3780, 18062710,027, and
1460414604 tasks, respectively. The numbernumbers of incorrect allocations assigned by Strategystrateqy 1
iswere 3174, 8014, and 1245512455 tasks, respectively. FurtherFurthermore, the evaluation eriterion—does

635  showcriteria showed the advantages of including uncertainty in task allocation. Therefore, the proposed

approaches for all three evaluation parameters indicated-aresulted in better performance-when, compared tewith

the traditional CNP_method-ef-CNP. The results indicatedindicate that the reallocation of tasks through the

proposed approaches and strategies effersoffered a better response, which-is-better-observed-usingbased on the

scale development-sinceof the event, because their differencedifferences from the CNP_inereases-with-model
640 increased at a larger scale-development.
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The results of interval uncertainty analysis were achieved with 1000 randomized runs of each scenario (Figure

9).
70 230 400
=5 T 210 B
£ w0 £ Tw [ E w0 |
x @ x
< T a < 170 I ; < 300 I
o 50 %) ) [ 71
5 i 3 150 ; I S 50 N
5 40 [ 5 130 l T T 5 0 l ! !
S Il S 110 T 5 | 1
=30 = 0 = 150
5 CNP S1 S2 S3 S4 5 CNP S1 S2 S3 S4 5 CNP S1 S2 S3 S4
a a a
1000 agent- 28856 task 1000 agent- 73195 task 1000 agent- 111463 task
45 130 280
£ a £ 10 E 20
s | : :
T T
ST NN g SN 3 i1
S T T S 0 T 5 130 T T
§ 2 ! 5 5 I T
= 15 = 50 = 80
5 CNP S1 S2 S3 S4 5 CNP S1 S2 S3 S4 £ CNP S1 S2 S3 S4
a a
1500 agent- 28856 task 1500 agent- 73195 task © 1500 agent- 111463 task
32 100 170
£ 5 T E % E 150 ﬁ
x x 80 x
130
& 2 N ; S 70 i & I ;
> T = ; S 110 ]
5 17 ! 5 5 ! n
s = 50 T c 90 i
o o
s 1 =40 270
g CNP S1 S2 S3 S4 5 CNP S1 S2 S3 S4 5 CNP S1 S2 S3 S4
a a
2000 agent- 28856 task 2000 agent- 73195 task 2000 agent- 111463 task

Figure 9 Uncertainty analysis of the proposed method in-for USAR operations, for 9-nine simulated scenarios

As shown in Figure 9, there is a direct relatienrelationship relatien-between interval length and operational
time. accordingAccording to FermulaEquation 2Because-according-to-Formula-13, assigning fewer tasks leads to
less operating time; and as-weH-as-causes less uncertainty in the simulated environment.

As mentioned in section 4.3.3, the rescuers use [X, X + 30%X] and [X- —-30%X, X] to determine the intervals.
Another analysis was performed for different—values ofother than instead—ef—30% in the
estimatingestimationsestimating. The results are shown in Figure 10. An average theevent ef-the-scale studies
(1500 agents and 73,195 tasks) was used and a-set-ef-different levels of uncertainty (uncertainty between 5% and

55% at five-unit intervals) were randomly generated, investigated, and evaluated. This realistic test aimsaimed to

provide-an-assessment-efassess Thisrealistic-test-aims-to-provide-an-assessment-of the proposed scenarios for each

uncertainty value.
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Figure Figure-10 Uncertainty analysis ferwhen fer-different values were used in determining intervals
Figure 10 indicates a relationship between irincreased an-inerease-in uncertainty (from 5% to 55%) and an
increased-in-the rescue time. The differentincreases differed among increase-is-differentfor-different-strategies.
The increase is-was 67.7 heurs-h for the CNP (from 66.8 hoursh to 134.4 hours)-hours)}-while-it-ish), whereas
increases of 63.4, 63.2, 61.7, and 56.5 heursh were obtained for Strategiesstrategies 1-2-3-—and—4, while-itis
63:4-63.2,-61-7-and-56.5-hoursfor the Strategies1-2,-3-and-4; respectively. Based on the evaluation results, the

proposed methods are more efficient and present better responses in the presence of differentvarious different

uncertainties. Therefore, nincreased an-inerease—of-in uncertainty leads to a delay in USAR operations and
topossible even-te-task elimination. resultAccordingly,As-a-result; delaying rescue operations or removing tasks

from the rescue list will increase USAR time.

10-6. Conclusion
Providing a suitable method for assigning tasks irunder #r-uncertain conditions aris plays-an-important-+ele-in

role-in-, according to the results of simulated the-USAR operations-simutation-result. This study presented a task
allocation approach that aimed to better assign the-initial tasks—in—erder—have, thus ensuring te—have-better
conditions for potential reallocations of the-the-tasks; and to-wastinge the shertestleast shortest-time possible for
the-rescue teams if problems were encountered during the initial allocations face-a-preblem-or a new task emerges.

Some of the characteristics and advantages of the study include thed focusing on the necessity of task reallocation
in disaster environments, previdingthe provision of previding-an innovative approach withfor managing to-deat
with—-uncertainties that cause non-performance of the-tasks in the CNP method (the most widely used task
allocation method in MASsmulti-agent systemsMASSs), and definingthe definition of defining-spatial strategies
for better tasks reallocation. The proposed approach can be used in combination with a wide range of algorithms

for assigning tasks in accordance with the structure of the system.
The results obtained from—the—simulation—of simulations with the proposed approach indicatedrevealed
indicated-that the timeduration time-of rescue operations #-when the proposed strategies were implemented was

always lessshorter less—than the time required in—using the CNP method. The worst improvement was
foundidentified found-for 2000 agents with 28,856 tasks (13%)_and; the best for 1000 agents—and with 111,463
tasks (21%).-ln-addition BesidesFurthermoreBesides, the results fer-at different scales showed that the application
of applying-uncertainty in the-task allocation could improve the timeduration time-of the-USAR operations. There
is a relationship between an-increased in uncertainty and an-increased in-the-rescue operation Furtherdurationtime.

he in aasa is Q no a NP whila it i 2 4 b 2 alalal 2 no a ne Atagie aTala B/
a S od S \ A O 7O 7O o O o S atey O A

respectively-FurthermoreFurther, the results indicatedrevealed indicated-a significant decrease in the numbers of
deceased people and wrong allocations due to uncertainties, which arddemonstrated demenstrates-the-sighificance
of-uncertainty-and-the importance of itsuncertainty is-inclusion in task allocation. The implemented method can
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be used for cooperation differentamong between-different-agents. In an earthquake-stricken environment, rescuers

can use assistant agents (devices such as mobile phones and tablets) to implement this methodology.
handHowever,On—the—other—hand; regarding cemparisoncomparisons the—comparison—of the proposed
strategies, it is insufficient to consider only uncertainty is-net-enough-in initial decision-making concerning task

allocation sineebecause sinece-the working environment is quite dynamic and the assigned tasks may ferencounter

face-problems-for-various reasensproblemsreasens. An effective assigningassignment assigning-approach should
consider both uncertainties in decision-making and strategies for replanningreallocation in-orderto waste the least

time during system disruptions. This optimizes planning to achieve better implementation time and forallows
provides-conditions—for-fault tolerance. The strategies for applying uncertainty_induring #-the implementation
process-of task allocation improve the efficiency, performance, and stability of agent-based cooperation. Task
allocation strategies lead to flexibility in decision-making and decrease the system's overall costs. Furthermore,
spatial task allocation strategies can propose a specific arrangement of the rescue team within the-an environment
in-order-to prevent time-waste-when-faced-with-wasting in the event of waste-when-faced-with-environmental
uncertainties or task reallocation.

Additional research H-is recommended that-furtherresearch-could-be-undertaken-to provide new strategies and
combine the proposed task allocation strategies of the present study with the-a coalition--forming eealitionferming
method to select thean appropriate the-coordinating agent in the-our proposed approach. futureFuture ta-future

studies eeuldshould eould-also consider the-other groups; and; other uncertainties differentwithin a range of
different-dynamic simulations.
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