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ABSTRACT 

Task allocation in under uncertainty conditions is a key problem for agents attempting to achieve harmony in 

disaster environments. This paper presents an agent-based simulation to investigate tasks allocation through the 

consideration of appropriate spatial strategies to deal with uncertainty in urban search and rescue (USAR) 

operations.This paper presents an agent-based simulation to investigate task allocation considering appropriate 20 

spatial strategies to manage uncertainty in urban search and rescue (USAR) operations. The proposed method is 

based on the contract net protocol (CNP) and implemented is presented inover five phases: ordering existing tasks 

considering intrinsic interval uncertainty, finding a coordinating agent, holding an auction, applying allocation 

strategies (four strategies), and implementing implementation and observation ofobserving the real 

environmenttal uncertainties. Applying allocation strategies is the main innovation of the method.  The 25 

methodology was evaluated in Tehran’s District 1 for 6.6, 6.9, and 7.2 magnitude earthquakes. The simulation 

started began by calculating the numbers of injured individuals, which was were 28,856, 73,19528856, 73195, 

and 111,463111463 people for each earthquake, respectively. The Simulations were performed for each scenario 

for a variety of rescuers (1000, 1500, and 2000 rescuers). In comparison with the contract net protocol (CNP), the 

standard duration time of rescue operations in with the proposed approach exhibited includes at least 13% of 30 

improvement , with a maximal improvement and the best percentage of recovery was 21%. Interval uncertainty 

analysis and the comparison of the proposed strategies showed that an increase inincreased uncertainty has leads 

to increased an increase isd rescue time for the CNP of 67.7 hours, and for strategies one 1 to four4 an increased 

rescue time of 63.4, 63.2, 63.7, and 56.5 hours, respectively. The time increase was less with in the uniform 

distribution strategy (Sstrategy 4) was less than with the other strategiesrest. The Considering consideration of 35 

strategies in the task allocation process, especially spatial strategies, resulted facilitated both resulting in the 

optimization and increased flexibility of the allocation. It also improved  as well as conditions for fault tolerance 

and agent-based cooperation stability in the USAR simulation system. 

 

Keywords: USAR operations; Agent-based simulation; Disaster Environments; Task allocation; Interval 40 

uncertainty; Spatial strategies. 

1. Introduction 
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Preparation to manage deal with an earthquake crisis requires by an optimal and appropriate correct management 

is absolutely necessary. Agent b-based modeling of search and rescue (SAR) operations after an earthquake is a 

good choice model for decision making, compared to with traditional computational approaches (Hooshangi and 45 

Alesheikh, 2018). Multi Multi-agent systems (MASs) consist of several automatic and autonomous agents which 

that coordinate their activities to achieve a target (Crooks and Wise, 2013;Sabar et al., 2009). Multi-agent 

systemsMASs are suitable for the modeling and simulation of complex systems (Mustapha et al., 2013). They 

allow the division of divide the system into subdivisions (agents) and the modelling of the relationships among 

these agentsmodel the relationship between them (Uno and Kashiyama, 2008). The utilization use of multi-agent 50 

systems is necessary in for disaster management (Hawe et al., 2015;Grinberger and Felsenstein, 2016). 

Importantly, multi-agent systemsMASs can be used to implement various scenarios of search and rescue SAR 

operations, as well as distributions of  and facilities,  distribution in the crisis area (Crooks and Wise, 2013). 

Task allocation is one of the main coordination challenges issues in coordinating among a set ofsets of agents in 

a multi-agent system (MAS) (Liu and Shell, 2012;Nourjou et al., 2011;Chen and Sun, 2012). Agents fail to reach 55 

their ultimate goal without the proper assignment of tasks (Reis and Mamede, 2002). In disaster environments, urban 

search and rescue (USAR) and the assignment of tasks are dynamic processes occurring under uncertain conditions 

uncertainty (Hooshangi and Alesheikh, 2017). Generally, task allocation on a large scale is influenced by 

uncertainties and various factors (Cai et al., 2014). Uncertain conditions circumstances have a major impact on the 

initial planning and results of rescue operations planning (Hooshangi and Alesheikh, 2018). Despite the findings of 60 

various investigations, an optimal task allocation solution has not been established projects, these projects could not 

find an optimal solution (Olteanu et al., 2012).  

In many instancescases, the initial allocation may result in face problems, or new tasks may be added to the 

work list; therefore, replanning and reallocation is necessaryrequired. Reallocation is an effective reaction to 

environmental uncertainties and changes in the environments, and it has an important roles in both reducing the 65 

wasted time during an operation and increasing operation profitability (Zhang et al., 2014). Presenting strategies 

for allocation is one of the approaches to improve flexibility against disorder in natural disaster environments. 

Reallocation after an instantaneous disruption is very important, especially in large-scale distributed systems on 

large scales (such ase.g., USAR operations) (Olteanu et al., 2012). Therefore, it is better to plan for the process 

and plan strategies to deal with future situations from the beginning. Presenting strategies for allocation is one of 70 

the approaches to improve flexibility against disorder in natural disaster environments. 

Task allocation does not take place in only one stage of USAR operations [9]. In natural disaster conditions, 

uncertainties should be taken into account while making decisions about the assignment of tasks, just as planners 

should be prepared to deal with task non-compliance.An effective task allocation approach in USAR operations 

should include strategies for replanning to manage deal with future situations.  In natural disaster conditions, 75 

uncertainties should be taken into account while making decisions about the assignment of tasks, just as planners 

should be prepared to deal with task non-compliance. In other words In natural disaster conditions, , the results of 

the initial task allocation should be changed through by applying uncertainties to reassign tasks in crisis-driven 

conditions. Because Since tasks might may not be performed well for various reasons, strategies (e.g., such as 

minimum location displacement) should be applied to initial responses in order to morepreserve additional save 80 

more time in during reallocation or future task allocation. It is not enough to only consider the uncertainty in the 

initial decision-making process, since the working environment is completely dynamic and there may be problems 

in assigning tasks. This approach to task allocation optimizes planning performance in order to achieve better 

performance time providingand provides as well as providing conditions for fault tolerance.  



 

The present article is the final part of a research project in Iran. This research project inwas carried out over three 85 

phases. In the first phase, uncertainty in task allocation among agents was considered and task allocation donewas 

performed only by considering the proximity (spatial distance) to the tasks. The developed method was evaluated 

in a square-shaped random environment nowithout a sensitivity analysis (Hooshangi and Alesheikh, 2017). In the 

second phase, the feasibility of the developed method was investigated in a simulated environment using real 

regional data. In this phase, the operational environment of a crisis was simulated and the developed method was 90 

examined in a real environment. In the simulated system, thedamage for a 6.8 Richtermagnitude earthquake 

damage was calculated for District 3 of Tehran, and rescue operations were modeled (Hooshangi and Alesheikh, 

2018). In the third phase using the concepts of previous articles (Hooshangi and Alesheikh, 2018, 2017), spatial 

strategies were included in task allocation among agents and simulated with real-environment data. The present 

paper is the output of the third phase of the research project, which aimed  95 

The present study aims to improve task allocation in crisis-ridden conditions for agent-based groups by 

considering proper strategies to manage deal with the available uncertainties. This paper firstly develops an agent-

based simulation system for USAR operations, then applies uncertainties in agents’ decision-making phase by 

improving an interval VIKOR method in order to perform task allocation, and also defines strategies for conditions 

in under which the initial assignment has encountered faced a problem and requires reallocation (i.e., managing 100 

availability dealing with available uncertainty in during implementation). The main innovation of the study is that 

it the establishment of presents an approach to improve conditions during reallocations, or future allocations, when 

initial allocations faceencounter face problems due either to availableavailability available uncertainties, or the 

addition of a new task. In general, strategies are selected in such a waymanner way that the final cost of the system 

will not increase abnormally if the initial allocations encounter problems. face a problem.  105 

 

The paper is organized in the following way. literature review and background are provided in Section 2. The 

characteristics of the study area are described in Section 3. Section 4 is dedicated to the description of the research 

scenario and explains the proposed method in five sub-steps. In section 5, some tests are developed and also the 

results of the simulations of USAR operation are presented. Finally, in section 6, the conclusions of this research 110 

along with future directions are summarized. 

4.2. Literature review and background 

4.12.1 Agent Agent-based USAR simulation 

An agent-based model is a class of computational models for simulating the actions and interactions of 

autonomous agents. Simulation has been used in various sciences including disaster management, emergency 115 

supply chains, and tsunami. Table 1 presents some of the aAgent-based simulations performed in previous 

researches.have been used in various investigations including crisis management /disaster management (Wang et 

al., 2012;Hooshangi and Alesheikh, 2018), emergency supply chains (Ben Othman et al., 2017), tsunamis (Erick 

et al., 2012), and collective behavior (Welch et al., 2014). These simulations can be effective in both planning and 

policymaking (Fecht et al., 2014). Simulation of the operating system involves a simplified real environment, 120 

which is used to model a wide range of agents in complex systems. Various researchers have modeled a partportion 

of the behavior of agents in environmentsimulated environments  (Erick et al., 2012;Wang et al., 2012;Matarić et 

al., 2003) and demonstrated collaboration among agents. However, agent cooperation in catastrophic 

environments has been less extensively studied, ,such that uncertainty in collaboration among agents has generally 

not been considered. In previous researchesstudies, a geospatial information system platform was used when 125 



 

preparing the environment and creating a simulation base map (Welch et al., 2014). Spatial analysis and tools 

related are used in most research endeavors in USAR operations after an earthquake. 

Simulation has been used in various sciences including disaster management, emergency supply chains, and 

tsunami. 
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Application 

area 
Obvious point Objective Result Ref. 

Disaster 

management 

Developed a dynamic agent-based 

model (ABM) in USAR operations 

propose an approach for 

dynamic collaboration 

among agents 

Considering uncertainty in 

collaboration among agents can be  a 

highly advantageous in 

[1] 

An agent-based model to simulate the 

emergency medical response to a mass 

casualty incident was built 

Modeling an emergency 

medical response 

Simulated model builds intuition and 

understanding in advance of facing 

actual incidents that are rare in 

operating experiences. 

[16] 

Emergency 

supply 

chains 

An architecture based on zoning for the 

management of emergency supply 

chains is proposed. 

Resources scheduling 

Considering agents’ cooperation, the 

DSS provides a scheduling plan that 

guarantees an effective response to 

emergencies. 

[17] 

Tsunami 

By analyzing images of the real-world 

video, the proposed model provides the 

ability to examine people and output 

Combined evacuation 

model with a tsunami 

simulation model 

An agent-based model was created to 

define specific features for each of the 

agents and observe individuals’ 

behavior in the complex process of a 

tsunami evacuation. 

[18] 

Collective 

behavior 

Combining General-Purpose 

Computing on Graphics Processing 

Units (GPCPU) and Geospatial 

information system (GIS) computing in 

the form of expanding agent simulation 

A better understanding of 

the old-world screwworm 

risks 

A tool was created for decision 

support for policy makers in order to 

analyze the spatial distribution of 

OWS and its effects on livestock. 

[19] 

Distribution 

of seeds 

Investigating the effect of diffusion 

factors on different species and 

different competitive societies with and 

without destructive factors 

Simulation of the 

distribution of seeds 

A GIS prototype was created to 

simulate the distribution of seeds, 

which are modified by various factors. 

[22] 

Agent-based systems have been used as simulation tools in various studies. Agent-based simulation models can 

be used as an effective approach in planning and policy making [20]. Simulation of the operating system involves 

a simplified real environment, which is used to model a wide range of agents in complex systems. Simulation 

models can be used as an effective approach in planning and policy making [20]. In the studies presented in Table 

1, researchers modeled a part of the behavior of agents in the simulation environment and collaboration among 135 

agents. However, the agent's cooperation in catastrophic environments has been less studied, generally, 

uncertainty in collaboration among agents has not been taken into account. In previous researches, a Geospatial 

information system (GIS) platform were was used when preparing the environment and creating a base map. Spatial 

analysis and tools are used in most research endeavors in USAR operations after an earthquake.  

4.462.2 Approaches to applying uncertainties in task allocation  140 

Multi-robot task allocation (MRTA) is a type of general task allocation problem (TAP) in which resources and 

tasks are distributed in pre-defined areas [10]. Agents should include environmental uncertainties in their 

performance with respect to regarding planning goals. There are four common approaches to considering 

uncertainty:, including: probabilistic, fuzzy logic, rough set and interval set (Hooshangi and Alesheikh, 2017). U 1) 



 

Probabilistic, this method uses different probability distribution functions and statistical parameters such as the mean 145 

and standard deviation for modeling. 2) Fuzzy logic, this theory is based on imprecise and non-numerical 

information (linguistic ambiguities) concepts. 3) Rough set, which is an approximation of a crisp set by lower and 

the upper approximation of the original set. It completes fuzzy logic. 4) Interval set, in this method, due to the 

uncertainty in the value of a parameter, that parameter is specified in an interval regardless of the probabilistic 

distribution (unlike probabilistic theory) or membership function (unlike fuzzy logic) [12]. Uncertainty in tasks 150 

allocation has been investigated in various studies that can be categorized as follows: 

Ssensors' noise : In this category, uncertainty in the input information of tasks such as noise in operating sensor, 

agent's location, and noise in measurement sensor has been considered using auction auction-based, Hungarian 

interval algorithm (Liu and Shell, 2011;Bertuccelli et al., 2009;Matarić et al., 2003), and consensus-based bundle 

algorithm (CBBA) methods, . 155 

Aan Accidental accidental event induring in execution : In this class, a random event prevents the execution of 

tasks, so while assigning tasks, the uncertainty of not performing tasks must be taken into account. Hill climbing 

algorithm – CNP (Lee and al-yafi, 2010;Li and Cruz Jr, 2005)and two-level hierarchical algorithm have been used 

to consider this.,  

Tthe Occurrence occurrence of new tasks : In these studies, the environment is dynamic and a new task may be 160 

created at any time. Therefore, the assignment of tasks is always done with the possibility of entering a new job. The 

predominant method used in these studies is Q learning [27].(Xiao et al., 2009;Kayır and Parlaktuna, 2014),  

Tthe Number number of groups: In this category, the number of individuals or groups whom tasks are assigned 

between them is not known. The methods used in these studies are machine learning and probabilistic algorithm 

based on learning automata (Quiñonez et al., 2011;Dahl et al., 2009), . 165 

Tthe Relationship relationship among the agents : This group of studies has been conducted in assigning tasks 

that require several groups to work together to perform the tasks. CBBA (Choi et al., 2009;Su et al., 2016)and 

dynamic weighted task allocation are the methods used in this field., and  

Ddecision parameters (Hooshangi and Alesheikh, 2017).: 

 In this category, which are is suitable for MASs, uncertainties are included in the decision parameters for 170 

assigning tasks. Therefore, all the information needed to for tasks allocation is considered uncertain. Various 

methods such as CNP [12], stochastic scheduling [33], and genetic algorithm [34] have been used. 

The mentioned methods have been used in various applications such as multi- UAVunmanned aerial 

vehiclesUAV (Bertuccelli et al., 2009), supply chains (Dahl et al., 2009), moving plants (Tan and Barton, 2016), 

and disaster environments (Su et al., 2016). There is no dominant wayapproach way to model uncertainty for all 175 

phenomena. The appropriate method is determined based on the characteristics of the phenomenon and the 

purpose of the study. In crisis environments, there is uncertainty in all decision parameters. In the uncertainty in 

decision parameters category, which is suitable for MASsmulti-agent systems, uncertainties are inassociated with 

the decision parameters for assigning tasks. Therefore, all information needed for task allocation is considered 

uncertain. Various methods such as the contract net protocol (CNP) (Hooshangi and Alesheikh, 2017), stochastic 180 

scheduling (Tan and Barton, 2016), and genetic algorithms (He et al., 2014) have been used. We in these contexts. 

Here, we This studyWe presentspresent an approach that includes uncertaintyuncertainties uncertainty in decision 

parameters, also and includes strategies in the contract net protocol (CNP). The CNP produces local optimal 

solutions which that are abundantly used in multi-agent systems (Choi et al., 2009). This method is simple, 

practical, and popularpopularly used popular in agent-based modeling.  185 

https://en.wikipedia.org/wiki/Crisp_set


 

In USAR operations, the complete individual expertise of the individuals is impossible due to a lack of 

environmental knowledge; therefore, determining membership function and the probability distribution is a 

complex and time consumingtime-consuming step. In this study,We used interval analysis has been taken into 

account in order to overcomemanage overcome these shortcomings and to consider the intervallic nature of 

available data within the a rescue operations.  190 

1) Probabilistic, this method uses different probability distribution functions and statistical parameters such as the 

mean and standard deviation for modeling. 2) Fuzzy logic, this theory is based on imprecise and non-numerical 

information (linguistic ambiguities) concepts. 3) Rough set, which is an approximation of a crisp set by lower and 

the upper approximation of the original set. It completes fuzzy logic. 4) Interval set, iIn the interval set this method, 

due to the uncertainty in thea parameter’s value of a parameter, that parameter is specified inas an interval regardless 195 

of the probabilistic distribution (unlike in probabilistic theory) or membership function (unlike in fuzzy logic) 

(Hooshangi and Alesheikh, 2017).In order to deal with interval data in CNP, different multi criteria decision making 

(MCDM) methods are proposed.The interval- based VIKOR method was used extensively to coordinate agents for 

the assignment of tasks with interval data [12]. The interval VIKOR method is described in [35].  

4.472.3 Reallocation and reassigning methods  200 

DifferentDistinct Different algorithms have been proposed for scheduling and task reallocation in accordance 

with the required tasks and available conditions within the an environment (Gokilavani et al., 2013). Some 

reallocation methods (e.g., data envelopment analysis (Barnum and Gleason, 2010)) and exact algorithms (e.g., a 

branch-and-bound algorithm with column generation) resolve problems on a smaller scale (e.g., 10 jobs and three 

vehicles).  are applied to the reassignment of individuals in organizations [37]. In such methods, the solution’s 205 

run time is not importantthe process is time-consuming and slow for resolving large-scale problems (Cai et al., 

2014). Therefore, they are not suitable for the allocation of tasks that should be performed dynamically and 

instantaneously in large-scale problems. 

; therefore, they are mostly used in concepts of industries and for the assignment of resources such as the re-

engineering of the organization in order to rearrange organization members. They do not assign tasks which that 210 

should be performed dynamically and instantaneously.  

In some research, such as addressingthe investigation of those addressing gate reassignment problems (GAP), 

initial assignment tables were have been created using heuristic methods in such a waymanner way that a 

succession delay is minimized (Cheng, 1997). The incidence of adverse events may disrupt the original table. 

areNotably, this method is These methods are not responsivesuitable responsive for a greatlarge great number of 215 

tasks. Some other task allocation methods are interdependent with the plan’s ongoing tasks, such as is the case in 

construction operations (Olteanu et al., 2012). In suchthose mathematical calculations, when a task fails, all other 

tasks whichthat were based on theits correct implementation of that task shouldmust be replanned.  

In USAR, any rescue process is generally independent of any other rescue processes.  

 Creating the initial table and revising it for any disruption or new input is impossible in disaster environments, 220 

considering the scale of space and the nature of the assignment, and because the input task rate and uncertainty 

are not specified at all and the time table needs to be constantly edited. .On the other hand, i In disaster 

environments, only some parts of the workflow are ready to be implemented and assigned. Maximizing the 

number of survivors in the possible shortest time is the purpose of rescue operations. Therefore, there exists 

nothing like the concept of delay, but only the implementation or non-implementation of a specified task. The 225 

concept of prioritizing the tasks is the most important in USAR operations and the concept of delay is not 

acceptable. 



 

Some task allocation methods are interdependent with the plan’s ongoing tasks, as is the case in construction 

operations [14]. In such mathematical calculations, when a task fails, all other tasks which were based on the 

correct implementation of that task should be replanned. In USAR, any rescue process is generally independent 230 

of any other rescue processes.  

Methods such as simulated annealing (SA) and the ant colony optimization algorithm cannot find a global 

optimization of the problem and provide local solutions instead [13]. In contrast, the exact algorithms like the 

branch-and-bound with column generation (BBCG) algorithm resolve the problems on a smaller scale (e.g., 10 

jobs and three vehicles) but it is very time-consuming and slow in resolving large-scale problems [13]. Therefore, 235 

an An appropriate reallocation method must be applied with respect to regarding the nature and scale of the 

problem. In USAR, a rescue process generally independentoccurs independently of any other rescue processes, 

and only partsa portion of the workflow is ready to be implemented and assigned. aMoreover, because of the  

Due to the a large number of rescue groups in USAR operations, as well as the available uncertainties and the 

dynamic nature of multi-agent systems in disaster environments, the concept of general planning is 240 

commonuncommon not very common and it planappropriate plans the plan should beis better that the plan is 

produced both locally and cross-sectionally. Planning is appropriate for cases in which the number of initial tasks 

is fixed and the changes are minimal. There are several methods to resolve the problem of assigning tasks, but 

most of these algorithms cannot be developed for uncertain conditions and restrictions, as is the case for USAR 

operations. Despite the application of reallocation methods in other studies, this issue has been rarely applied to 245 

critical rescue environments (such as USAR in earthquakes). Most available methods to resolve the problem of 

assigning tasks cannot be developed for uncertain conditions and restrictions such as in critical rescue 

environments (e.g., USAR after earthquakes).  

RegardingWith respect to Regarding USAR operations, task allocation methods should mustinclude different 

strategies for all conditions and be dynamically generated in a real-time environment. Despite the application of 250 

reallocation methods in other studies, this issue has been rarely applied to critical rescue environments (such as 

USAR in earthquakes). UnlikeIn contrast to Unlike previous studies, we define an approach based on spatial 

strategies so, such that so that the results of the initial task allocation are used in thefor future for other task 

allocations, and are appropriate in the rescue environment. Time limitations areconstitute are another issue in the 

replanningreallocation and inreassignment of reassigning regarding reallocation in rescue teams. Therefore, the 255 

present study aims to expand the CNP method as afor rapid method for resolving the problem resolution.  

 

 

 

6.3. Case study and data 260 

The proposed approach can be implemented in differentvarious different study areas. In tThis study,  used a part 

of Tehran (District 1 in the capital of Iran), in order to evaluate the feasibility of the proposed method and 

according toon the basis of available data, a part of Tehran (District One in the capital of Iran) was selected. 

District One 1 is one of 22 central districts of Tehran Province, IranTehran Province, Iran. The dDistrict One 1 

has aan area ofa 210 square km (km2) area, which and square km (km2) area, which is located in the northernmost 265 

part of the city of Tehran (Figure 1). Its population is 433,500. 



 

 

 

(a) (b) 

 

(c) 

Figure 1 Location of case study: (a) peak ground acceleration map of Iran for a return period of 2475 

years and approximate location of Tehran, (b) location of District 1 and active faults in Tehran (c) 

Map of District One 1 (study area) and active faults, Tehran. 

The Recent recent Tehran earthquake (5.2 RichtermagnitudeRichter) on in December 2017 attracted the 

attention of many urban planning organizations. This metropolis is one of the vulnerable areas to earthquakes. 

The rapid growth of urbanization and the vulnerability of structures have increased the potential risk of the city 

[39]. Tehran is a highly seismic area asbecauseas it is surrounded by the Ray, Masha-Fasham, and North Tehran 270 

faults (Figure 1(b)). Seismologists have statedreported stated that a severe earthquake expectedmay occur could 

be expected in Tehran in the future (Hosseini et al., 2009). The North Tehran fault is the city's biggestlargest 

biggest fault and is aboutapproximately about 35 km long. It  and has the potential for a 7.2 magnitude earthquake. 

For this purpose, the North Tehran fault scenario, with the capacity to cause the most destructive potential 

earthquake in Tehran, is was selected.  in the present study. Various scenarios can be implemented. toIn 275 

accordance with According to the suggestions of theseismologist the experts, we simulated the magnitude 6.6, 

6.9, and 7.2 magnitude earthquakes. The basic data used in environment simulation arewere block maps, 

population, distance from the fault, building material, agent’ location, ’ year of building construction, and building 

height.  

 280 



 

8.4. Materials and Methods  

In this section, the simulated scenario and the proposed method are described. 

8.14.1 The sScenario of proposed agent-based USAR simulation 

 The proposed methodology is a general approach to various phenomena. In this study, it is assumed that there 

is a disaster environment, and detailed information on the characteristics of the environment is not available (in 285 

the environment, events are uncertain). We assume the presence of a disaster environment in which events are 

uncertain. In this scenario, athea crisis is assumed to be an earthquake. The injured individuals are trapped under 

the rubbles and the number of themsuch individuals them in each building block is uncertain. Rescuing injured 

people is the main goal. Saving each person is a task that must be performed through the cooperation of rescue 

agents. After an earthquake, the numbers of injured and deaddeceased dead people can be estimated by using 290 

different formulas by determining the magnitude and the location of the earthquake, as well as the urban context 

data of the buildings (Kang and Kim, 2016). alsoFurthermorealso, Saving each person is a task that must be done. 

Tthe possible locations of injured individuals can be predicted using buildings damage assessment models. 

Therefore, the simulation inputs are the injured individualsindividuals’ locations and their characteristics, which 

are available with some uncertainty. uncertainly accessible. The rescue agents are tryingattempting trying to save 295 

the injured onesindividuals ones by moving up toward to the task location. Given the results of previous studies 

(He et al., 2014;Hooshangi and Alesheikh, 2017;Sang, 2013;Chen et al., 2012) and expertsin accordance with 

expert opinion according to experts on USAR operations, the uncertainties include the number of injuries, the 

severity of the victims’ injuries, duration of the operation, infrastructure priorities, agent energy, route status, task 

runtime by an agent, and risk level for theeach agent. These are important uncertainties in task allocation. All 300 

these parameters are specified intervalas intervals by an interval during the task allocation process. After taskstask 

identificationdetermining the tasks, an agent is assigned a task and pursues it. Then, iIf an agent fails to complete 

his an assigned task tobecause of due to any existing disruptions, the task is updated with respect to concerningwith 

respect to concerning uncertainties and reported to the central agent, resulting in the restartingre-initiation 

restarting of the task allocation process. In this process, task allocation strategies are applied to minimize the cost 305 

of the system. 

In this studyscenariostudy, there is a central agent , as well as and several coordinators, rescuers, and injured 

agents in the environment. These independent agents are rational and can communicate with each other. hasThe 

agents have Each of which has the following roles and characteristics: 

- Central agent: This agent is responsible for sorting the tasks, specifying the coordinators, determining the 310 

results, and announcing rescuers, and applying allocation strategies. 

- CoordinatorCoordinating Coordinator agent: Coordinator The coordinator is a rescue agent who is 

responsible for sending the characteristic of work details to rescuers, receiving their proposalse (bids), 

holding auctions, and submitting the results and rescuers'rescuer rescuers' prioritization data to the central 

agent. 315 

- Rescue agent: RescuerThis agent Rescuer identifies and moves to the task location, searches for the 

injured individuals,  and sends the tasks uncertainty to the central agent, and rescues injuriesinjured 

individualsinjuries from the debris. 

- Injured agent: This agent exists in the environment and hishas a his critical condition that changes 

continuously. HeThis agentHe has no activity or communication with other agents. 320 

4.2 USAR simulation 



 

In preparingpreparation for the USAR operation simulation, there are three main parts: 1) calculating the 

damage rate of the area and people (simulating an earthquake-damaged environment), 2) defining agents and their 

characteristics, and 3) implementing the suggested method for task allocation between agents.  

To simulate an earthquake-damaged environment, an earthquake risk assessment model was developed based 325 

upon the Japan International Cooperative Agency (JICA) model. The JICA model is the output of cooperation 

between the Center for Earthquake and Environmental Studies of Tehran and the JICA. The results of this project 

and how to implement it areits implementation have been presented inpreviously (Mansouri et al., 2008) and used 

in various researchesstudies (Hooshangi and Alesheikh, 2018;Vafaeinezhad et al., 2009). This model can calculate 

the buildings' level of destruction and the number of injured people based on the earthquake intensity, earthquake 330 

location, building vulnerability, and the population in themthese buildings. 

In this studyour scenariothis study, we haveincluded have four types of agents: injured individual, rescuer, 

coordinator, and central agent. The tasks described in the previous section arewere are implemented for each 

agent. The initial locations of injured agents were based on building damage and the locations of rescue groups 

waswere randomly generated in the environment. The definitions of agents and their characteristics of agents 335 

arewere described in detail in our previous article (Hooshangi and Alesheikh, 2018).  

8.24.3 The proposed method  

The proposed model for task allocation with uncertainties in earthquake USAR operation is given shown in 

Figure 2.  
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  Figure 2 Task allocation flowchart in the proposed approach, separated into five steps within an environmental 

simulationTask allocation flowchart in the proposed approach by five steps and environmental simulation 



 

The five steps of the proposed approach are the ordering of existing worksworkworks, specifying the 

coordinators, holding an auction, applying reassigningreassignment reassigning strategies (the innovation of this 

paper), and implementing and observing environmental uncertainties (performed by thean agent.).by the agent. 

The proposed method is presented below.as follows:  

8.2.14.3.1 Ordering existing tasks  345 

In crisis-ridden areas, there are differentvarying always different degrees of urgency (Chen et al., 2012). Tasks 

with a higher priority tomust need to be doneperformed done first. Four parameters were are used to prioritize 

tasks: the  (number of victims, the severity of the injuries, the time required for a rescue operation, and 

infrastructure priorities). The initial tasks with their uncertainties in the environment (four priority parameters) 

are available to the central agent. The interval VIKOR method is described in [35].  Therefore, for each task feature, 350 

an interval such as that expressed in Table 2 1 is specified. 
 

Table 2 1 Tasks characteristics based on intervals 

 

To withmanage deal with interval data in the CNP, differentvarious different multi-criteria decision -355 

making(MCDM) multi-criteria decision making (MCDM) methods are proposed. The interval-based VIKOR 

method wasis used extensively to coordinate agents forin the assignment of tasks with interval data (Hooshangi and 

Alesheikh, 2017). The interval-based VIKOR method ishas been previously is described in (Sayadi et al., 2009). 

Ordering is performed by the central agent.  

8.2.24.3.2 Finding the coordinating agent 360 

For each task indefined by in the central agent, the most appropriate agent will be determinedis identified will 

be determined as the coordinating agent. The coordinating agent is an agent that who is close tolocated near close 

to that task and is not currently working. ChoosingThe selection ofChoosing a coordinating agent and creating 

groups to execute any task can be achieved through different methods and is based on various criteria (Chen and 

Sun, 2012;Su et al., 2018). In this study, in order to simplify the calculations, only the criterion of proximity 365 

(spatial distance) has beenis used to determineidentify determine the coordinating agent. Therefore, the nearest 

agent to the task is selected as the coordinator and is responsible for the auction. Selection of a Choosing the 

coordinating agent leads to the performance of calculations being performed at a distributed point. By selecting 

the coordinating agents, the computational overhead of the central agent will beis reduced. 

8.2.34.3.3 Holding an auction 370 

 Coordinating agents hold auctions after receiving the task characteristics and the list of agents in the subgroup. 

In the CNP, agents bid for tasks, and the person agent who offers the highest value for the task is the winner. 

During the auction, rescue agents offer intervalintervals (rather than values) an interval for the route conditions, 

the time needed required for the agent needed to execute the task by the agent, the agent’s possible risk level, and 

Task 

NOno. 

X 

Coordinate

coordinate 

Y 

Coordinate

coordinate 

Infrastructure 

priorities  

Number of 

injuries  

The SSeverity 

everity of victim 

injuries  

Duration of 

operation  

1 X1 Y1 [Il1, Iu1] [Nl1, Nu1] [Sl1, Su1] [Dl1, Du1] 

2 X2 Y2 [Il2, Iu2] [Nl2, Nu2] [Sl2, Su2] [Dl2, Du2] 

... ... ... ... ... ... ... 

i Xi Yi [Ili, Iui] [Nli, Nui] [Sli, Sui] [Dli, Dui] 

... ... ... ... ... ... ... 

n Xn Yn [Iln, Iun] [Nln, Nun] [Sln, Sun] [Dln, Dun] 



 

their energy, instead of a value. AccordinglyFor this, the agent calculates numbers for each of the four decision-375 

making criteria, such as a variable X, based on the following eEquations 1. In Equations 1, the distance is measured 

(in meters, the),distance is measured in meters, the severity of victimsthe victims’ injuriesvictims, and task priority 

isare based on the values declared by the central agent. Based on the rate of uncertainty presumed that is considered 

for thea given the environment (for example, 30%), an interval for this number is estimated. The first number of 

this interval will beis in the range between [X, X + 30%X] and the second number is in the range [X - 30X - 380 

30%X, X]. 
 

Agent energy (Energy energy Levellevel, Distancedistance, Number number of people) = Energy 

Level level - Distance/500 - Number of  people rescued*0.3 

(1) 

Task runtime by an agent (Distancedistance, Number number of people, Severityseverity) = 

Distance/150 + Number of people rescued number of people*15 + severitySeverity*2 

The Risk rRisk level for an agent (Energy energy Levellevel, Prioritypriority) = Priority - Energy 

Level 

Route status (Distancedistance) = Distance 

 

In the real world, each person can introduce intervals according to their experience and their knowledge of the 

environment. In this researchstudyresearch, we used the above equations thebased on with respect to the expert 385 

opinions to simulate the real environment. The coordinating agent applies the interval-based VIKOR method to 

order the agents' bids. The coordinating agent sends the results to the central agent after ordering the agents. The 

use of a central agent in this phase provides the opportunity to make the best decision considering the task priorities 

capacityand capacities as well as the capacity of other agents. 

8.2.44.3.4 Applying allocation strategies 390 

In operations where there is uncertainty, it is not possible to definitively resolve the issue of task allocation.  

.cannot be definitively resolved. In this phase, the initial allocation should be it is better for the initial allocation 

to be done in such a waymanner way that if a potential reallocation wasteswould waste is needed, it wastes the 

leastsmallest least amount of time. Based on different strategies in at this stage, the central agent begins to assign 

tasks after obtaining all lists from coordinating agents. In each strategy, a priority is givenassigned given to 395 

specific tasks. In this section, four different strategy-based approaches are described, as follows:  

Task allocation higheraccording to with higher priority (strategy 1): In this strategy, task allocation begins 

with tasksthe assignment assigning tasks of higher -priority oncetasks, following establishment ofhigher priority 

once the task order and the priorities of the rescue team have been established in the previous stage 

(prioritizingprioritization prioritizing and auction). Therefore, the agent with the best performance is selected for 400 

high priority tasks and is thensubsequently then excluded from the lists of agents with no tasks. 

theSubsequentlyLater, the tasks of lower priority are assigned in the same order. The tolimitation of problem 

related to this strategy is that it may cause some agents may be left with no tasks to do in the last stages of this 

process.may be left with noto not receive tasks to do in the last stages of this process. 

 405 

Assigning tasks to all agents, preferably agentto specific agents the agent with outcomeoptimal outcomes 

the best outcome (strategy 2): This strategy is based on optimally usingthe optimal use of optimally using all 

rescue teams. In this strategy, all agents are assigned a task. For this purpose, the a task is first assigned to an 

agent who has applied for the minimum number of tasks.  Then, tThe agent and the task are then eliminated from 

the agent and task lists, and the allocation continues with the next agent who has made few requests. onUsing 410 

Based on this strategy, a task will be assigned to all agents.  



 

Task allocation on Allocation by keeping a strategic spatial agentbasis agent (strategy 3): onUsing Based 

on this strategy, the strategic agents who play an important and strategic roles in the task allocation process are 

excluded in order to help withensure their availability for help with the implementation of the tasks if there are 

problems are encountered during the task allocation process. Agents with strategic roles may be defined 415 

differently. Agents who participatedparticipate participated in the auctionauctions auction of more tasks are the 

agentsthose the agents with strategic locations. In agent issuch instances, these agents are this situation, this agent 

is close to many tasks (has havea strategic spatial locations) and can be used if when these tasks are not 

implemented. Figure 3 shows the difference between the task allocation results for strategy strategies 2 and 

strategy 3. In Figure 3, a the rescue agent located partcentrallyin the central part has a strategic position and will 420 

try to maintain this position. Although the total movement may increase, if there problemare problems is a problem 

in performing other tasks, this agent can help all other groups. 

 

 

Figure 3 strategicStrategic agent, the blue arrow shows illustration. Blue arrows show the final 

resultresults for strategy 2, and the red arrow indicatingarrows show the winningsuccessful rescuers in 

strategy Shows the strategic agent, the blue arrow shows the final result for strategy 2the red arrow 

indicating the winning searchers in strategy 2, and the red arrow indicating the winning rescuers in strategy 

3and the blue arrow shows the final result for strategy 3. 

Assigning tasks by creating the best density in the environment (strategy 4): This strategy is based on the 

optimal density of rescue agents. With Using this strategy, thetask the assignments of the tasks are made in such 425 

a manner that ensures the way as to ensure a uniform distribution of the agents in the environment. Generally, no 

exact information is available aboutconcerning about the conditions of the tasks; therefore, this strategy aims to 

ensure the a uniform distribution of rescue teams within the environment if the uncertainty is high. In disaster 

environments likesuch as like earthquakes, the incident placeoccurs takes place over a wide area and, such that 

and the damage and injured population distributionare uniformly distributed have uniform distribution due to the 430 

texture of the area. Therefore, the highest number of injured people is not accumulated in any one spot. 

BesidesFurthermoreBesides, In addition, applying this strategy prevents the convergence of rescue teams. To 

apply this strategy, the tasks of the highest priority in the task lists should be given to the available agents andwhere 

and the environmental density should beis the highest. The issueconcept issue of the optimal density can be solved 

through innovative algorithms. In our study, the simulated annealing (SA)  method was used to finddetermine 435 

find uniform density. The implementation stages of simulated annealing SA have been described inpreviously are 

described in (Sabar et al., 2009). Figure 4 shows the difference between task allocation outcomes for strategy 2 

and strategy 4. 



 

 

Figure 4 tBest density strategy, the blue arrow indicating the winning illustration. Blue arrows indicate the 

successful rescuers in strategy 2 and the red arrow showsarrows indicate the final resultresults for strategy 

4.Shows the best density strategy, the blue arrow indicating the winning rescuers in strategy 2 and the red 

arrow shows the final result for strategy 4. 

8.2.54.3.5 Implementation and observation of real values in the environment  

TheDuring the The implementation phase,  of the tasks is are implemented by the agents in a dynamic 440 

environment where there are always uncertainties during the task execution of the tasks. The rescuer observes the 

difference between his predicted values and the actual environment after working.the work beginshe starts 

working. In this research, to model the real environmentstudy, a random number in the [X - 30%X, X + 30%X] 

interval is was chosen.  to model the real environment. In the real world, the difference between the predicted 

environment (through building vulnerability estimation models) and the real environment will determine the 445 

agent’s performance of the agent. 

If the agent observes a biglarge big difference between the auction information and the real environment, he 

the agent abandons the that task. In this caseinstancecase, the agent he updates the task's values and uncertainties 

and sendsreturns sends the work to the central agent. The new uncertainty interval will be 80% smaller than the 

original interval. There differentare various can be different conditions in under which agents will reallocate a 450 

task if the environment differentdiffers is different from the expected onescenarioone. For example, the agent can 

abandon the task if three out of eight decision-making parameters are out of range by 5%. Otherwise, the 

rescueragent rescuer finishes the rescue work by accepting the new conditions. 

The central agent assigns newly added tasks within the reallocation framework. When a new task is assigned, 

the task allocation is mixed mixedcombined with that of both new tasks as well asand incomplete onestasks. mixed 455 

with new tasks as well as incomplete ones.  

8.34.4 Evaluation Method method  

AssessingAssessment of Assessing a task allocation algorithm is usually donetypically performed usually done 

in the first phase through modeling and simulation due to the dynamic and heterogeneous nature of different 

environments (Olteanu et al., 2012). Simulating Simulation is a suitable approach for the implementation and 460 

validation of a proposed method (Nourjou et al., 2011). In a real testing situation, the situations and conditions of 

the implementation scenario are very difficult to reproduce. In thisthe present studyIn this study, we simulated 

three scenarios for the earthquakes in Tehran’s District 1 with magnitudes of 6.6, 6.9, and 7.2. We also estimated 

the numbers of deaddeceased dead and injured individuals who were are distributed in in the centers of the relevant 

building blocks and need to be rescued by 1000, 1500, and or 2000 rescue agents.  Also, iIn the 465 

uncertainuncertainty uncertain analysis of the suggested method, the lower and upper bounds of uncertain values 

arewere also are calculated. The proposed method was compared with the traditional CNP. The intended task 

allocation iswas considered is efficient if profitability parameters are were maximized. toIn accordance with 

According to a number of several recent studies (Liu and Shell, 2012;Sang, 2013;Hooshangi and Alesheikh, 



 

2017), three criteria were used to evaluate the performance of the proposed method. These criteria are : the number 470 

of deceased victims, the number of incorrect allocations, and the rescue time. Results were achieved with 1000 

randomized runs. 

 

Some of the major problems in replanningreallocation and in the task allocation environment include 

scalability, reliability, performance, and the dynamic resource reallocation of resources (Gokilavani et al., 2013).  475 

In this study, the results of the two analyses (scalability of the proposed method and interval uncertainty analysis) 

were are presented.  

 The first analysis focused on the evaluation of the proposed approach on at different scales and for different 

criteria. Comparison and assessment were carried out on at different scales in order to recognizemeasure recognize 

the effectiveness of the proposed approaches in USAR operations. Nine scenarios were applied in this study and 480 

compared with traditional the CNP.  

The second analysis focused on interval uncertainty analysis and studyingstudied studying the rescue operation 

timeduration time in the 6.9 Richtermagnitude Richter earthquake for at different levels of uncertainty. In this 

analysis, time changes of in rescue operations onwere investigated according to based on different levels of 

uncertainties are investigated. The duration of the a rescue operation in the simulatedsimulation simulated model 485 

depends depended on two main components: 1- Pprioritization of tasks and, outputs 2- Outputs of each operation 

at in each phase (Hooshangi and Alesheikh, 2018). Equation 1 32 defines the final model for calculating the 

operation timeduration time based on these two components. 

𝑇(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8) = ∑ 𝛼𝑛(𝑥1, 𝑥2, 𝑥3, 𝑥4)𝑛+1
𝑛=1 + ∑ 𝛽𝑤(𝑥5, 𝑥6, 𝑥7, 𝑥8)𝑛+𝑡

𝑤=𝑡     (132) 

The vVariables x1 to x8 areconstitute are the number of injuries, the severity of the victims’ injuries, duration 490 

of the operation,  and infrastructure priorities, energy, route status, task runtime by agents, and risk level for 

agents, respectively. 𝛼𝑛 is the function of tasks’ prioritization and 𝛽𝑤 is the function of bidding.  

IntervalTo our knowledge, interval Interval uncertainty analysis has rarely been employedinvestigated in 

previous researches. The method used in this research is was adapted from researchprevious literature research 

(Lan and Peng, 2016). In researchour analysisthis research, Chebyshev points are used. Equation 2 43 isdepicts a 495 

is Chebyshev formula to generatefor generating m collocation points on in the interval [0, 1] (Lan and Peng, 

2016): 

𝑛𝑢𝑚𝑏𝑒𝑟𝑖 = {
0.5 × [1 − cos (

𝜋(𝑖−1)

𝑚−1
)]       𝑓𝑜𝑟 𝑗 = 1, 𝑖𝑓 𝑚 = 1

                     0.5                             𝑓𝑜𝑟 𝑗 = 1, 𝑖𝑓 𝑚 = 1
}         

(243) 

Equation 2 3 is was used to create different numbers for the decision-making parameters. The output of the 500 

model is was then calculated for various numbers inwithin in the intervals. This technique createscreated creates 

different values for the output of the model.   

9.5. Results  

DifferentMultiple Different scenarios and experiments were designed in order to evaluate the proposed 

methods and strategies. The results are presented in this section.  505 

5.1 Simulation 

Simulation of the agent-based USAR operation includes calculating the damage rate of the area, specifying 

the initial location of agents, specifying the agents’ characteristics, and, finally, implementing the suggested 



 

method for task allocation. It is necessary to know the seismic resistance and vulnerability of existing buildings. 

The most obvious use of earthquake risk assessments with different scenarios is to help in planning, preparedness, 510 

and providing response instructions to the public. An earthquake risk assessment model has been developed based 

upon the JICA model. The JICA model is the output of cooperation between the Center for Earthquake and 

Environmental Studies of Tehran (CEST) and the Japan International Cooperative Agency (JICA). The results of 

this project is are presented in [43], And and has have been used in various researches [1, 44]. In accordance with 

According to expert opinions, three probable earthquakes were simulated with magnitudes of 6.6, 6.9, and 7.2. 515 

Figure 5 shows the vulnerabilityvulnerabilities vulnerability of buildings in these scenarios in the ArcGIS 

environment. 

  

(a) (b) 

 

(c) 

Figure 5 Vulnerability maps infor District 1, an earthquakebased on earthquakes with magnitude:magnitudes 

of a) 6.6 on the Richter scale, b) 6.9 on the Richter scale,, and c) 7.2 on the Richter scale.Vulnerability maps 

in District 1, an earthquake with magnitude: a) 6.6 on the Richter scale, b) 6.9 on the Richter scale, c) 7.2 on 

the Richter scale 
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Based on buildingsthe level of building destruction, the numbernumbers of injured and deaddeceased people 

can be calculated byusing the JICA model. The numbers of injured and deaddeceased people in scenarios with 

6.6, 6.9, and 7.2 magnitude earthquakes are demonstratedlisted in Table 2. 520 

Based on buildings destruction, the number of injured and dead people can be calculated. Equation 1 2 is the 

output of the JICA model for calculating the human vulnerability in earthquakes [47]: 

..[
𝑈𝑛𝑖𝑛𝑗𝑢𝑟𝑒𝑑

𝐼𝑛𝑗𝑢𝑟𝑒𝑑
𝐷𝑒𝑎𝑑

] = (
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠
) [

−0.073     
0.071
1.001

1.040    
0.047  
−0.087

     0.650
     0.062

      0.289
] [

𝑆𝑙𝑖𝑔ℎ𝑡
𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒

𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑣𝑒 + 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒
]  (12) 

JICA model calculations were performed in ArcGIS software. The number of injured and dead people in scenarios 

6.6, 6.9, and 7.2 earthquakes are demonstrated in Table 3.  

Table 3 2 Results from implementing a 6.6 Richter scaleof earthquake simulations Results from implementing a 525 

6.6 Richter scale earthquake 

Severity level 

NumberNumbers of affected 

populationsindividualsNumber of 

affected populations 

6.6 Richter 6.9 Richter 7.2 Richter 

Uninjured 374,295 270,455 182,340 

Injured 28,856 73,195 111,463 

Deceased 30,349 89,850 139,697 

The computational scale of the JICA model isuses is urban blocks. Therefore, the numbers of deaddeceased 

dead and injured individuals in each urban block was were calculated. The locationlocations location of the injured 

individuals consideredwere presumed to be was considered in the centers of the blockrespective blocksblock. 

The environmental simulation of the environment and the proposed method were performedimplemented 530 

performed in AnyLogic software. This software has the ability to enter GIScan process geospatial information 

system data. has the ability to enter GIS data. To simplify the environment and reduce the calculation volume of 

calculations, each agent was consideredregarded considered as a group in the real world. Figure 6 shows the 

simulated environment. 

 535 



 

 

Figure 6 An oOverview of the USAR simulator. 
 

There are many injuries in the environment. The central agent first sorts the tasks according to their priority 

and after determiningpriorities. After the coordinating agent, has been determined, the central agent priority and 

after determining the coordinating agent, sends the task properties to the coordinating agent. The coordinator holds 

an auction. Rescue agents are bidding in accordance with their environmental and working conditions. Rescuers 540 

are in a ready state at the start of the operation. Each winningsuccessful winning rescue agent moves to the task's 

location. After reaching the task position, startsthe rescue agent begins he starts rescuing the injured agents. During 

the execution of thetheir assigned the work, the agents may find differenceconsiderable differences a significant 

difference between the real-world information and the expressed information expressed in the auction. In 

situationsuch instancesthis situation, the agentagents agent may stop performing tasktheir tasksthe task and report 545 

the disputediscrepancies existing dispute to the central agent. 

Table 4 3 shows the timedurations time of the USAR operations inas estimated using in scalability analysis of 

with the proposed method. In creating this table, an uncertainty of 30% was considered. For this purpose, the 

range of tasks characteristics inused was made in the intervals [X, X + 30%X] and [X-30%X, X]. AlsoAt , at 

each stage, that a given agent participatesparticipated participates in the auction, . for For that agent’s his decision-550 

making parameters, the numbernumbers were agent converts its number randomly converted into an interval. The 

average range of agent tasks and decision-making was used for the implementation of the CNP , rather than instead 

of interval values.  

Table 4 3 comparisonComparison of operation duration in hours between the suggestedproposed method 

withand the CNP (based on 30% uncertainty)comparison of the suggested method with CNP (based on 30% 555 

uncertainty) 

No. of agentsAgents 1000 1500 2000 

Simulated earthquake 

magnitude Simulated 

earthquake  

6.6 R 6.9 R 7.2 R 6.6 R 6.9 R 7.2 R 6.6 R 6.9 R 7.2 R 



 

No. of tasksTasks 28,856 73,195 111,463 28,856 73,195 111,463 28,856 73,195 111,463 

CNP 53.16 169.03 282.76 32.83 94.24 174.19 22.6 68.95 127.47 

Strategy 1 45.37 142.47 241.81 25.22 74.91 135.75 19.643 59.36 108.56 

Strategy 2 44.87 137.30 234.92 26.02 76.41 138.52 19.097 58.21 105.58 

Strategy 3 43.75 133.76 230.12 25.75 74.33 132.75 18.332 56.33 101.77 

Strategy 4 41.63 130.41 222.18 23.89 71.14 127.87 17.013 53.91 97.73 

The operational time decreasesdecreased decreases when the number of agents in rescue operations increased 

with increase but the number of tasks remainsremaining remains fixed. The reduction rate betweenranged from 

ranges between 54% and to 60% when the number of agents is was doubled. The timeduration time of a USAR 

operation increasesincreased increases when the number of tasks increasesincreased increases for a certain given 560 

number of agents. Therefore, the timeduration time of the rescue operation is was related to the number of rescue 

agents and the number of available tasks in a scenario. There iswas is an inverse relationship between the 

timeduration time of the USAR operation and the number of rescuerrescue rescuer agents, and a direct relationship 

between the timeduration time of the operation and the number of tasks. 

The inclusion of uncertainty in any allocation strategy provideprovided could provide better results, as 565 

compared to with the CNP method. Using the proposed strategies, the The smallest improvement in the results 

with uncertainty using the proposed strategies was 2.9 h (13%) hours for a scenario with 2000 agents and 28,856 

tasks (6.6 Richtermagnitude Richter earthquake). The maximum improvement was 60.6 h (21%) hours for 1000 

agents and 111,463 tasks. The worst improvement was found for 2000 agents with 28856 tasks (13%), the best 

for 1000 agents, and 111463 tasks (21%). 570 

 Among the task allocation strategies, Strategy in this study, strategy 1 presentedproduced the worst response. 

OnAt each scale offor the discussed scenarios, Strategystrategy 1 presented the highest time for resulted in USAR 

operations with the longest durations, compared towith other strategies. StrategyStrategies 1 and Strategy 2 

indicatedprovided similar results onat different scales, although strategy 2 achieved better results were obtained 

for Strategy 2.. Strategy 4, involvingwhich involved spatial information in task allocation, indicatedproduced 575 

better results onat all scales and presents an improvementincluding improvements of 21%, 24%, and 23% on the 

scale ofwith 1000 agents for a 6.6 magnitude earthquake measuring 6.6 on Richter Scale, 1500 agents for a 6.9 

Richtermagnitude earthquake, and 2000 agents for a 7.2 Richtermagnitude earthquake, respectively, as compared 

towith the CNP. The average improvement for Strategystrategy 4 was 26.6 hoursh in rescue operations. The use 

of Strategiesstrategies 3 and 4 is more evidentsuitable in a larger environment in which the distribution ofwith 580 

high numbers of both injured people and rescue agents is high, since, because controlling the agent distribution 

with respect to the expansion of the environment and the uncertaintyuncertain environmental conditions in the 

environment can be effective in future task allocations of the tasks.. In a real-world crisis-ridden environment, the 

wholeoverall environment is damaged and the injured people are well- distributed. This is why 

controllingTherefore, the spatial distribution of the agents playsis an important roleparameter to control in USAR 585 

operations.Among the task allocation strategies, Strategy 1 presented the worst response. On each scale of the 

discussed scenarios, Strategy 1 presented the highest time for USAR operations compared to other strategies. 

Strategy 1 and Strategy 2 indicated similar results on different scales, although better results were obtained for 

Strategy 2. Strategy 4, involving spatial information in task allocation, indicated better results on all scales and 

presents an improvement of 21%, 24%, and 23% on the scale of 1000 agents for earthquake measuring 6.6 on 590 

Richter Scale, 1500 agents for 6.9 Richter and 2000 agents for 7.2 Richter, respectively, as compared to CNP. 

The average improvement for Strategy 4 was 26.6 hours in rescue operations. The use of Strategies 3 and 4 is 



 

more evident in a larger environment in which the distribution of injured people and rescue agents is high, since 

controlling the agent distribution with respect to the expansion of the environment and the uncertainty conditions 

in the environment can be effective in future allocations of the tasks. In a real-world crisis-ridden environment, 595 

the whole environment is damaged and the injured people are well-distributed. This is why controlling the spatial 

distribution of the agents plays an important role in USAR operations. 

The simulation results in terms of deceased people for 1000, 1500, and 2000 agents with different numbers of 

tasks are shown in Figure 7. In these figures, for each of the four priority parameters and decision parameters 

theassociated with of the agents, a 30% uncertainty level was considered. 600 

   

(a) (b) (c) 

Figure 7 The numberNumbers of deceased people: a) with a) 1000 rescue agents, b) with 1500 rescue 

agents,, and c) with 2000 rescue agents.The number of deceased people: a) with 1000 rescue agents, b) with 

1500 rescue agents, c) with 2000 rescue agents. 

 

Figure 7 illustrates the numbernumbers of deceased people in the rescue process with different numbers of 

agents and tasks. Based on Figure 7, an increase in theincreased number of tasks leadsled to an increase in 

theincreased number of deceased people, while increasing thebut an increased number of rescue agents results in 

decreasing theled to a decreased number of deceased people. Regarding the numbernumbers of deceased people 605 

onat all three scales, the CNP method presentedproduced the worst response. TheAn average number of 7253 

people were deceased people in the CNP model on a scale of with 1000 agents is 7253. Conversely, 5853 people. 

The number of were deceased people in the model employing Strategystrategy 1 on a scale of with 1000 agents 

equals 5853 people. On the whole, with respect to . Overall, when all strategies, Strategy were considered, 

strategies 4 and Strategy 1 presentedresulted in the best and worst responseresponses, respectively. As illustrated 610 

in Figure 7, the numbernumbers of deceased people iswere approximately equivalent in Strategystrategies 1 and 

Strategy 2.  

Figure 7 illustrates the number of deceased people in the rescue process with different numbers of agents and 

tasks. Based on Figure 7, an increase in the number of tasks leads to an increase in the number of deceased people, 

while increasing the number of rescue agents results in decreasing the number of deceased people. Regarding the 615 

number of deceased people on all three scales, the CNP method presented the worst response. The average number 

of the deceased people in the CNP model on a scale of 1000 agents is 7253 people. The number of deceased 

people in the model employing Strategy 1 on a scale of 1000 agents equals 5853 people. On the whole, with 

respect to all strategies, Strategy 4 and Strategy 1 presented the best and worst response, respectively. As 

illustrated in Figure 7, the number of deceased people is approximately equivalent in Strategy 1 and Strategy 2.  620 
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Figure 8 illustrates the simulation results for the incorrect allocation of the 1000, 1500, and 2000 agents with 

number ofseveral different tasks. 

   

(a) (b) (c) 

Figure 8 The numberNumbers of incorrect allocations: a) with a) 1000 rescue agents, b) with 1500 rescue agents,, 

and c) with 2000 rescue agents.The number of incorrect allocations: a) with 1000 rescue agents, b) with 1500 

rescue agents, c) with 2000 rescue agents. 

The overall trend in iseach chart was the figures is approximately samesimilar the same if all arecharts were 

figures are considered simultaneously. TheAny The incorrect allocation is not relatedwas unrelated is not related 

to the number of rescue agents, because since there are were no changes when in increasing the number of agents 625 

was increased. The number of incorrect allocations changeschanged changes with the number of tasks, 

increasessuch that it increased and increases with the an increasing the number of tasks. This increase is 

observedevident observed in all of the above figures. The incorrectpanels in Figure 8. Incorrectof the above 

figures. The incorrect allocations usually placeoccurredtake place with at a nearly an almost fixed rate. 

Based on the figuresresults, the traditional CNP model presentsproduced the worst response. The total 630 

incorrect allocations in the CNP on the scale ofmodel with 1000 agents for 28856and 28,856 tasks, 1500 agents 

for 73195and 73,195 tasks, and 2000 agents for 111463and 111,463 tasks arewere 3780, 1002710,027, and 

1460414,604 tasks, respectively. The numbernumbers of incorrect allocations assigned by Strategystrategy 1 

iswere 3174, 8014, and 1245512,455 tasks, respectively. FurtherFurthermore, the evaluation criterion does 

showcriteria showed the advantages of including uncertainty in task allocation. Therefore, the proposed 635 

approaches for all three evaluation parameters indicated aresulted in better performance when, compared towith 

the traditional CNP method of CNP. The results indicatedindicate that the reallocation of tasks through the 

proposed approaches and strategies offersoffered a better response, which is better observed usingbased on the 

scale development sinceof the event, because their differencedifferences from the CNP increases with model 

increased at a larger scale development.  640 

Based on the figures, the traditional CNP model presents the worst response. The total incorrect allocations in 

CNP on the scale of 1000 agents for 28856 tasks, 1500 agents for 73195 tasks, and 2000 agents for 111463 tasks 

are 3780, 10027, and 14604 tasks, respectively. The number of incorrect allocations assigned by Strategy 1 is 

3174, 8014, and 12455 tasks, respectively. Further, the evaluation criterion does show the advantages of including 

uncertainty in task allocation. Therefore, the proposed approaches for all three evaluation parameters indicated a 645 

better performance when compared to the traditional method of CNP. The results indicated that reallocation of 

tasks through the proposed approaches and strategies offers a better response, which is better observed using scale 

development since their difference from CNP increases with scale development.  
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The results of interval uncertainty analysis were achieved with 1000 randomized runs of each scenario (Figure 

9). 650 

   

   

   

Figure 9 Uncertainty analysis of the proposed method in for USAR operations, for 9 nine simulated scenarios 

As shown in Figure 9, there is a direct relationrelationship relation between interval length and operational 

time. accordingAccording to FormulaEquation 2Because according to Formula 13, assigning fewer tasks leads to 

less operating time, and as well as causes less uncertainty in the simulated environment. 

As mentioned in section 4.3.3, the rescuers use [X, X + 30%X] and [X-  -30%X, X] to determine the intervals. 

Another analysis was performed for different values ofother than instead of 30% in the 655 

estimatingestimationsestimating. The results are shown in Figure 10. An average theevent of the scale studies 

(1500 agents and 73,195 tasks) was used and a set of different levels of uncertainty (uncertainty between 5% and 

55% at five-unit intervals) were randomly generated, investigated, and evaluated. This realistic test aimsaimed to 

provide an assessment ofassess This realistic test aims to provide an assessment of the proposed scenarios for each 

uncertainty value. 660 
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Figure Figure 10 Uncertainty analysis forwhen for different values were used in determining intervals 

Figure 10 indicates a relationship between inincreased an increase in uncertainty (from 5% to 55%) and an 

increased in the rescue time. The differentincreases differed among increase is different for different strategies. 

The increase is was 67.7 hours h for the CNP (from 66.8 hoursh to 134.4 hours) hours) while it ish), whereas 

increases of 63.4, 63.2, 61.7, and 56.5 hoursh were obtained for Strategiesstrategies 1, 2, 3, and –4, while it is 

63.4, 63.2, 61.7, and 56.5 hours for the Strategies 1, 2, 3, and 4, respectively. Based on the evaluation results, the 665 

proposed methods are more efficient and present better responses in the presence of differentvarious different 

uncertainties. Therefore, inincreased an increase of in uncertainty leads to a delay in USAR operations and 

topossible even to task elimination. resultAccordingly,As a result, delaying rescue operations or removing tasks 

from the rescue list will increase USAR time. 

10.6. Conclusion  670 

Providing a suitable method for assigning tasks inunder in uncertain conditions anis plays an important role in 

role in , according to the results of simulated the USAR operations simulation result. This study presented a task 

allocation approach that aimed to better assign the initial tasks in order have, thus ensuring to have better 

conditions for potential reallocations of the the tasks, and to wastinge the shortestleast shortest time possible for 

the rescue teams if problems were encountered during the initial allocations face a problem or a new task emerges. 675 

Some of the characteristics and advantages of the study include thed focusing on the necessity of task reallocation 

in disaster environments, providingthe provision of providing an innovative approach withfor managing to deal 

with uncertainties that cause non-performance of the tasks in the CNP method (the most widely used task 

allocation method in MASsmulti-agent systemsMASs), and definingthe definition of defining spatial strategies 

for better tasks reallocation. The proposed approach can be used in combination with a wide range of algorithms 680 

for assigning tasks in accordance with the structure of the system. 

The results obtained from the simulation of simulations with the proposed approach indicatedrevealed 

indicated that the timeduration time of rescue operations in when the proposed strategies were implemented was 

always lessshorter less than the time required in using the CNP method. The worst improvement was 

foundidentified found for 2000 agents with 28,856 tasks (13%) and, the best for 1000 agents, and with 111,463 685 

tasks (21%). In addition BesidesFurthermoreBesides, the results for at different scales showed that the application 

of applying uncertainty in the task allocation could improve the timeduration time of the USAR operations. There 

is a relationship between an increased in uncertainty and an increased in the rescue operation Furtherdurationtime. 

The increase is 67.7 hours for CNP while it is 63.4, 63.2, 61.7, and 56.5 hours for the Strategies 1, 2, 3, and 4, 

respectively. FurthermoreFurther, the results indicatedrevealed indicated a significant decrease in the numbers of 690 

deceased people and wrong allocations due to uncertainties, which anddemonstrated demonstrates the significance 

of uncertainty and the importance of itsuncertainty its inclusion in task allocation. The implemented method can 
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be used for cooperation differentamong between different agents. In an earthquake-stricken environment, rescuers 

can use assistant agents (devices such as mobile phones and tablets) to implement this methodology. 

handHowever,On the other hand, regarding comparisoncomparisons the comparison of the proposed 695 

strategies, it is insufficient to consider only uncertainty is not enough in initial decision-making concerning task 

allocation sincebecause since the working environment is quite dynamic and the assigned tasks may forencounter 

face problems for various reasonsproblemsreasons. An effective assigningassignment assigning approach should 

consider both uncertainties in decision-making and strategies for replanningreallocation in order to waste the least 

time during system disruptions. This optimizes planning to achieve better implementation time and forallows 700 

provides conditions for fault tolerance. The strategies for applying uncertainty induring in the implementation 

process of task allocation improve the efficiency, performance, and stability of agent-based cooperation. Task 

allocation strategies lead to flexibility in decision-making and decrease the system's overall costs. Furthermore, 

spatial task allocation strategies can propose a specific arrangement of the rescue team within the an environment 

in order to prevent time waste when faced with-wasting in the event of waste when faced with environmental 705 

uncertainties or task reallocation.  

Additional research It is recommended that further research could be undertaken to provide new strategies and 

combine the proposed task allocation strategies of the present study with the a coalition -forming coalition forming 

method to select thean appropriate the coordinating agent in the our proposed approach. futureFuture In future 

studies couldshould could also consider the other groups, and, other uncertainties differentwithin a range of in 710 

different dynamic simulations. 
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