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Abstract.

Assessing the risk of a historical-level flood at a large scale is essential for regional flood protection and resilience estab-

lishment. Due to limitations on the
:::::::
However,

::::
due

::
to

:::
the

::::::
limited

:
spatiotemporal coverage of observations, the risk assessment

relies on model simulations thus is
:::
and

::
is

::::
thus subject to uncertainties from various physical processesin the chain of the flood

frequency analysis (FFA)
:::::::
cascade

:::::::
physical

::::::::
processes. This study assessed the FFA performance as well as

:::::::
assesses

:::
the

:::::
flood5

:::::
hazard

::::
map

:::
and

::::
also

:
the uncertainties with different combinations of FFA variables (river water depth and water storage), fitting

distributions and runoff inputs based on the flood characteristics estimated by a
:::::
runoff

::::::
inputs,

:::::::
variables

:::
for

:::::
flood

:::::::::
frequency

:::::::
analysis,

:::
and

::::::
fitting

::::::::::
distributions

:::::
based

:::
on

::::::::::
estimations

::
by

:::
the

:::::::::::
CaMa-Flood

:
global hydrodynamic modelCaMa-Flood. Results

show that fitting performance is better if FFA is conducted on river water depth and if Wakeby function is selected as the

fitting distribution. Deviations
:
.
:::
Our

::::::
results

:::::
show

::::
that

::::::::
deviation

:
in the runoff inputs are the main source of the

:
is

:::
the

:::::
most10

::::::::
influential

::::::
source

::
of

:
uncertainties in the estimated flooded water depth based on point analysis. This deviation is relevant to

the model ability to reproduce the mean state of annual maximum flood extent and it is almost homogeneous for different

flood return period . The uncertainty resulted from fitting distributionsincreases
:::
and

:::::::::
inundation

:::::
area,

::::::::::
contributing

:::::
more

::::
than

::::
80%

::
of

:::
the

::::
total

::::::::::::
uncertainties.

::::::
Global

:::
and

::::::::
regional

:::::::::
inundation

:::::
maps

:::
for

:::::
floods

::::
with

::::::::
1-in-100

::::
year

:::::
return

::::::
period

:::::
show

:::::
large

:::::::::
uncertainty

::::::
values

:::
but

:::::
small

:::::::::
uncertainty

:::::
ratios

:::
for

::::
river

::::::::
channels

:::
and

:::::
lakes,

:::::
while

:::
the

::::::::
opposite

:::::
results

:::
are

::::::
found

::
for

::::
dry

:::::
zones15

:::
and

:::::::::::
mountainous

:::::::
regions.

::::
This

:::::::::
uncertainty

::
is
::
a

:::::
result

::
of

:::
the

:::::
fitting

:::::::::::
distributions.

::
In

::::::::
addition,

:::
the

:::::::
selected

::::::::
variables

:::
are

::::::
limited

:::
but

:::::::
increase from the regular period to the rarer floods

:
,
::::
both

:::
for

:::
the

:::::
water

::::
depth

::
at
::::::
points

:::
and

:::
for

:::::::::
inundation

::::
area

::::
over

:::::::
regions.

:::
The

:::::::::::
uncertainties

::
in

:::::::::
inundation

::::
area

:::
also

::::
lead

::
to

:::::::::::
uncertainties

::
in

::::::::
estimating

:::
the

:::::::::
population

::::
and

:::::::
economy

::::::::
exposure

::
to

:::
the

::::::
floods.

::
In

::::
total,

::::::::::
inundation

:::::::
accounts

:::
for

:::::
9.1%[

:::::::::
8.1–10.3%]

::
of

:::
the

::::
land

::::
area

:::
for

::
a

:::::::
1-in-100

::::
year

::::::
flood,

::::::
leading

::
to
::::::

13.4%[
::::::::
12.1–15%]

::
of

:::::::::
population

::::::::
exposure

:::
and

::::::
13.1%[

:::::::::
11.8-14.7%]

:
of

:::::::::
economic

::::::::
exposure

:::
for

:::
the

::::::
globe.

:::
The

:::::
flood

::::::::
exposure

::::
and

:::::::::::
uncertainties20

::::
vary

::
in

::::::::
continents

::::
and

:::
the

::::::
results

::
in

::::::
Africa

::::
have

:::
the

::::::
largest

:::::::::
uncertainty

::::::::
probably

::::
due

::
to

:::
the

::::::
limited

:::::::::::
observations

::
to

::::::::
constrain

:::::
runoff

::::::::::
simulations,

:::::::::
indicating

::
a
::::::::
necessity

::
to

:::::::
improve

::::
the

:::::::::::
performance

::
of

:::::::
different

:::::::::::
hydrological

:::::::
models

:::::::::
especially

:::
for

::::
data

::::::
limited

::::::
regions. The regional investigation of high-resolution inundation area over the lower Mekong River basin shows similar

statistics as the point analysis, implying a large uncertainty with 20% deviation in the total inundation area between different

runoff inputs. Regional validation of the CaMa-Flood with two other floodhazard maps proves the reliability of the inundation25
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in space and values. Global analysis on the floodplain water depth implies an increasing contribution of uncertainties in fitting

distribution to the total uncertainties for rarer floods in almost all land grids. While the changes in contribution of uncertainties

in runoff inputs differentiates in regions. The much higher contribution of runoff uncertainty for rarer floods in wet/flat regions

necessitates special attention on rainfall-runoff model calibration (or runoff bias correction) if gauge discharge observations

are available. Different adaptions to the large floods are needed for regions with different flood water depth and with different5

inundation agreements among simulations.

1 Introduction

:
A
:::::

flood
::::::
hazard

::::
map

:::::::
(FHM)

::
is

:
a
::::
map

::
of
:::::

flood
:::::
water

:::::
depth

:::
or

:::::::::
inundation

::::
area

::
at

:
a
:::::::

specific
::::::
return

:::::
period

:::::
(e.g.,

::::::::
1-in-100

::::
year

:::::
return

:::::::
period).

:::::
FHM

:::::::
provides

::::::::::
information

:::
for

:::::
flood

:::
risk

::::::::::
assessment.

:::::
which

::
is
:::::::
helpful

::
for

:::::::::::
stakeholders

:::
and

:::::::::
insurance

:::::::
services

:::
(??)

:
.
::::::::
However,

:::::
FHM

:
is
::
a
:::::::::
theoretical

::::
map

::
of

:
a
:::::::::::::
global-identical

:::::::::::
reoccurrence

::::
(e.g.,

::::::::
1-in-100

:::
year

::::::
return

::::::
period),

::::
and

:::
thus

::
it
::
is

:::
not10

:::::::::
observable.

:::::::::
Production

:::
of

:::
the

:::::
FHM

::
is

:::::
based

::
on

:::::
flood

::::::::
frequency

:::::::
analysis

::::::
(FFA)

::::
with

::::::::::
simulations

::
of

::::
flow

::::::::::::
characteristics

:::::
(e.g.,

::::::::
discharge,

:::::
water

:::::
stage,

:::::
water

:::::::
volume)

::::
from

:::::
flood

::::::
models

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Liscum and Massey, 1980; Wiltshire, 1986; Hamed and Rao, 2019)

:::
and

:
a
::::::
fitting

::::::::
regression

::
to

::
a
::::::
specific

::::::::::::
reoccurrence.

Flood frequency analysis (FFA) is one way of finding the occurrence and identification of large floods based on limited length

of dataset (Hamed and Rao, 2019).It is of vital importance for the analysis of
:::::::::::::::::::
Winsemius et al. (2013)

:::::::::
established

::
a

:::::::::
framework15

::
for

::::
river

:
flood control and design of many mitigation projects. The result of FFA can be also used in flood risk assessment which

is helpful for stakeholders and insurance services. FFA was introduced more than 30 years ago (Liscum and Massey, 1980; Wiltshire, 1986)

, and has been applied to multiple regions in different continents and climates where gauge observations of river status (e. g.

, river discharge, river water depth) are available
::::
with

::::::::
cascaded

:::::
global

::::::
forcing

::::::::
datasets,

:
a
::::::
global

:::::::::::
hydrological

::::::
model,

:
a
::::::
global

:::::::::::
flood-routing

:::::
model,

::::
and

::
an

:::::::::
inundation

::::::::::
downscaling

:::::::
routine.

:::::
These

::::::
authors

:::::
used

:
a
:::::
single

::::::::::
hydrological

::::::
model

:::::::::::::::
(PCR-GLOBWB)20

::
to

:::::::
evaluate

:::::
flood

::::
risk

::
in

:::::
south

:::::
Asia.

::::::::
However,

:::::
they

::::::::::
recommend

::::
that

:::
the

:::::::::
framework

::::::
should

:::
be

::::::::
extended

::
to
::

a
:::::::::::
multi-model

:::::::
approach

::
to

:::::::
address

:::
any

:::::::::::
uncertainties.

::::::::::::::::
Trigg et al. (2016)

:::::::
analyzed

::::
eight

::::::
global

::::
flood

::::::
hazard

::::::
models

::::
over

::::::
Africa

:::
and

:::::
China

::::
and

::::
show

::::
that

:::::
there

:::
was

::::
only

::::::::
30–40%

:::::::::
agreement

::
in

:::
the

:::::
flood

:::::
extent

::::
and

:::::::::::
significantly

::::
large

:::::::::
deviations

::
in

:::::
flood

:::::::::
inundation

:::::
area,

::::::::
economic

:::
loss

::::
and

:::::::
exposed

:::::::::
population

:::::::::
estimates.

::
A

::::::
similar

::::::::::
multi-model

::::::::
approach

::::
was

::::::
applied

::
in

::::::::::::::::::::
Bernhofen et al. (2018)

:::
and

:::::::::::::::
Aerts et al. (2020).

::::::::
However,

:::::::
because

:::
the

:::::
eight

:::::
global

:::::
flood

::::::
hazard

::::::
models

:::
use

::::::::
different

::::::
forcing

::::::
inputs,

:::::::::::
hydrological

:::::::
models,25

::::
river

::::::
routing

::::::
models

::::
and

:::::
spatial

::::::::::
resolutions,

:
it
::
is
:::::::::
impossible

::
to
::::::::
attribute

:::
how

:::::
much

::::
each

:::::::
process

:::::::::
contributes

::
to

:::
the

:::::::::::
uncertainties

::
in

:::
the

::::
final

::::::
results

::
or

::::::
which

:::::::
process

::
is

:::::::::
dominant.

:::::
These

:::::::
authors

::::::::
suggested

::::
that

::::::::::::::
component-level

:::::::::::
comparisons

::::
with

:::::::
limited

:::::::
variables

:::::
could

::
be

::::::
better

:::
able

::
to
:::::::
attribute

:::
the

::::::::::::
uncertainties.

::::::::::::::::::::
Schellekens et al. (2017)

::::::::
therefore

::::::::
controlled

:::
the

::::::
forcing

::::::
inputs

:::
but

::::::::::
investigated

::
10

:::::
global

:::::::::::
hydrological

::::::
models

::
in
:::::
terms

::
of

::::::::::::::::
evapotranspiration,

::::::
runoff

:::
and

:::
soil

::::::::
moisture.

::::::::
However,

:::
the

:::::
flood

::::::
hazard

:::
was

:::
not

::::::::::
investigated

:::::::
because

:::
the

:::::
river

::::::
routing

::::::
model

:::
was

::::
not

:::::::
applied.

:::::::::::::::
Zhao et al. (2017)

::::::
further

::::::::
evaluated

::::::
routing

:::::::
models

::
in30

::::::::::
reproducing

:::
the

::::
peak

::::
river

:::::::::
discharge,

:::::
while

::::::::::
uncertainties

::::
and

:::::
results

:::
of

:::::::::
inundation

:::
are

:::
not

::::::::
discussed.
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Because most of the gauge observations have been collected for periods of time significantly less than 100 years in GRDC

(Global Runoff Data Centre) , the estimation of the "design discharge" (design stage, or water level at a high flood-frequency)

necessitates a degree of
:::::::
Running

:
a
:::::
flood

:::::
model

:::::::
requires

:
a
::::
large

:::
set

::
of

::::::
model

:::::
inputs,

::::::
model

:::::::::
parameters,

::::::::::
topographic

:::::::::::
information,

:::
and

::
so

:::
on.

:::::::::
Therefore,

::::::::::::
implementing

::::
flood

:::::::
models

::
at

:
a
::::
local

:::
or

:::::::
regional

::::
scale

::
is

:::::
much

:::::
easier

::::
than

::::::
global

::::::::::::::
implementations.

::::
The

::::::
variety

::
of

::::::::::
uncertainties

:::
has

::::
been

::::::::
discussed

:::
for

:::::::
specific

::::
flood

::::::
events

:
at
::
a

::::
local

::
or

:::::::
regional

::::
scale

::
in

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Merwade et al., 2008; Bales and Wagner, 2009; Beven et al., 2015)

:
.
:::
The

:::::::::
sensitivity

::
of

::
the

:::::::::
inundation

::
to

::::::::
selection

::
of

::::::
forcing

:::::
inputs

::::::::::::::::
(Ward et al., 2013),

::::::
Digital

::::::::
Elevation

::::::
Models

:::::::
(DEM)

::::::::::::::
(Tate et al., 2015)5

:
,
::::::::
roughness

::::::::::::::::::::::
(Pappenberger et al., 2008)

:
,
:::::
spatial

:::::::::
resolutions

:::::::::::::::::::
(Merwade et al., 2008),

::
or

::::::
fitting

:::::::
functions

::::::::::::::::::::::::
(Kidson and Richards, 2005)

:::
has

:::
also

:::::
been

::::::::
analyzed.

::::::::
However,

:::::::
because

:::
the

:::::::
regional

::::::
analysis

::
is
::::::
highly

:::::::::
dependent

::
on

:::
the

:::::::::
availability

::
of

:::::
local

::::
data,

:::
the

::::::
results

:::
and

::::::::::
conclusions

:::
are

:::
not

::::::::::
necessarily

:::::::::
applicable

::
to

:::::
other

:::::::
regions

::
or

::
to
::::

the
:::::
global

:::::
scale.

::::::::::
Therefore,

:::
we

:::
are

::::::
curious

::::::
about

:::
the

::::::::
magnitude

::::
and

:::
the

:::::
spatial

:::::::
patterns

::
of
:::
the

:::::::::
sensitivity

::
of

::::::
FHMs

::
to

::::::
various

::::::
factors

::
at

:::
the

::::::
global

:::::
scale.

:::::::::::::::
Zhao et al. (2017)

::::::::
suggested

:::
that

::::::
runoff

:::::::::
differences

::::
will

:::
lead

::
to
:::::
wide

:::::
ranges

:::
of

::
the

::::::::::
uncertainty

::
in

::::
peak

:::::::::
discharge.

:::::::::
Therefore,10

:::::
runoff

::
is

:::::::
selected

::
as
:::

an
::::::::::
uncertainty

::::::
source

::
to

:::
the

::::::
FHMs

::
to

:::
be

::::::::::
investigated

::
in

::::
this

:::::
study.

::::::::
Because

:::::
length

:::
of

::::::::::
observations

:::
or

::::::
forcing

::::
data

:
is
:::::::

limited,
::::::::
obtaining

::
a

:::::
FHM

::::
with

:
a
::::::::::::
low-frequency

:::::
(e.g.,

:::::::
1-in-100

::::
year

:::::
return

:::::::
period)

:::::::
requires extrapolation based

on curve-fitting to the existing data
::
or

::::::::::
simulations (Kidson and Richards, 2005). The limitation of FFA is therefore apparent

as the fitting requires
:::::
based

::
on

:
a priori assumption about the underlying distribution generating flood events. Though, because

::::::::
However,

:::::::
because

:::
the

:
limited length of observational records cannot represent

::
the

:::::::
records

::::::
hardly

::::::::
represents

:
the complete15

characteristicsof floods, a range of more-or-less skewed, relatively complex distributions is always together considered to

account for the uncertainties. Typical distributions that are used include Pearson III type
::::
type

::
III, Log-Pearson, Gauss, Gumbel

and Log-normal distribution (Radevski and Gorin, 2017; Drissia et al., 2019). However, no conclusion is found whether any

::
to

::::::
support

::::::
which of the fitting distributions is preferable for most of the regions (Drissia et al., 2019). Different distributions

are recommended to test
::::::::
Therefore,

::
it

::
is

::::::::::::
recommended

:::
that

::::::::
different

:::::::::::
distributions

::::::
should

::
be

:::::
tested

:
with local recordsbefore20

selecting the one with the best performance.

FFA is generally performed for gauge records, while there are many data-poor regions or ungauged regions that also suffering

floods disasters, such as the Indus floods in Pakistan (2010) and recent floods in Sri Lanka (2020 May). The characterization of

flood behaviour in data-poor regions has received considerable attention (Blazkova and Beven, 2002; Bernhofen et al., 2018)

while the flood estimations in these ungauged catchments are challenging without enough records (Salinas et al., 2013; Trigg et al., 2016)25

. There are two families of solutions emerging to facilitate discharge estimation in data-poor regions (Smith et al., 2015)

. The first is to relate flood-frequency behaviour in similar catchments with observational records. The second comprises

rainfall-driven model cascades that attempt to estimate the river flow through hydrological processes, which is regarded as

"continuous simulation" (Bras et al., 1985; Beven and Hall, 2014).

Continuous simulation is defined as a methodology being developed for estimating flood frequencies where no flood30

records exist (Kjeldsen et al., 2014). The results of FFA based on continuous simulations are therefore subject to uncertainties

propagated from the rainfall, rainfall-runoff models and the routing process which routes the generated runoff to river flow at

river profiles of interest (Trigg et al., 2016; Bernhofen et al., 2018). Together with the uncertainties resulting from the fitting

distribution, the flow magnitude at the specific "design discharge" will be uncertain. The uncertainties in the FFA are calculated

3



to be the most important source of uncertainty in flood risk assessments which relate the inundation estimations (Merz and Thieken, 2009)35

.

Associating the FFA analysis and inundation area provides the way to evaluate the potential flood damages for a given

magnitude of flood. This first requires a method to estimate the inundation area and links it to the water level. Qi et al. (2009)

connected the Poyang Lake area extracted from Landsat images and in-situ water level measurements. The relation was then

extrapolated to obtain the inundation area according to the frequency of water level. Though, this is only valid for large open5

water bodies rather for floodplains where inundation is not frequent. Alternatively, the inundation area can be estimated by

statistical models (Sarhadi et al., 2012; Odunuga and Raji, 2014) or physical-based models Merwade et al. (2008) which relate

the inundation area with calculated floods. The global hydrodynamic river model CaMa-Flood (Catchment-based Macro-scale Floodplain, Yamazaki et al., 2011, 2012)

is able to route estimated runoff from various rainfall-runoff models to provide the estimates of flow characteristics (e.g.,

discharge, water level, water storage in a river channel or floodplain) at all the model points. The inundation area corresponding10

to a given level of flood (e.g., 100 years return period) can be achieved by downscaling the FFA results to high-resolution maps

with bias-corrected topography data.

FFA can be
:::
The

::::
FFA

::::
can

::
be

:
conducted on any characteristics of river flow, but mainly with

:
is
::::::
mainly

:::::
used

:::
for river dis-

charge and water stage (or named water level or similarly water depth) because they are normally
:::
can

::
be

:
recorded as gauge

observations (Radevski and Gorin, 2017). There is no preference of
::
for

:
these two variables and the selection is determined only15

by the
:::
only

::::::::::
determined

::
by

:
data accessibility. The results of

::
the

:
FFA based on the discharge will

::
be

:
slightly different from the

results with the
:
a water stage because of the loop rating curve relationship between discharge and water stage (Domeneghetti

et al., 2012; Alvisi and Franchini, 2013). In additionto the aforementioned uncertainty sources from rainfall, rainfall-runoff

model, routing processes, fitting and downscaling, the uncertainties of the inundation area corresponding to a certain level of

floods will be complex and remain un-investigated.
:
,
::::::::::::::::::::::
Pappenberger et al. (2012)

:::
uses

::::
river

::::::
water

::::::
storage

::::::::
provided

::::
from

:::::
flood20

::::::
models,

::::::
which

::
is

::::
then

::::::::
remapped

:::
the

:::::
fitted

::::
water

:::::::
storage

::
to

:::::::::
inundation

::::::
extent.

:::
The

:::::::
increase

:::
of

:::::
water

::::::
storage

:::
and

:::::
water

:::::
stage

::
is

::::::::
non-linear

:::::::
because

::
of

:::
the

::::::::::::
topographical

::::::
variety

::
in

::::
river

:::::::
channels

::::
and

:::::::::
floodplains.

:::::::::
Therefore,

::::::::
selection

::
of

:::::::
different

::::::::
variables

:::
for

::
the

::::::
fitting

::
is

::::::
another

::::::
source

::
of

:::::::::
uncertainty

:::
for

:::::
flood

::::::::::
estimations.

In
:::::
There

:::
are

:::::
many

:::::
other

:::::::::::
uncertainties

::::
that

::::
can

::::
lead

::
to

:::::::::
deviations

::
in

::::::::
mapping

:::
the

::::::
floods,

:::::::::
including

:::::::
forcing,

::::::
routing

::::
and

:::::::::::
downscaling.

::::::::
However,

:::
we

::::
need

::
to
:::::

limit
:::
the

::::::
factors

::
to

:::::
avoid

::::::
adding

:::
too

::::::
much

:::::::::
complexity

::
to

:::
the

::::::::
analysis.

:::::::::
Therefore,

::
in

:
this25

study, Flood Frequency Analysis is applied to the flow estimation by CaMa-Flood and the resulting uncertainties are assessed at

various spatial scales on different flood characteristics. Methodologies are introduced in section 2. In section
::
we

::::
will

:::::::::
investigate

::
the

::::::
FHMs

::::::
along

::::
with

:::::::::::
uncertainties

:::
due

:::
to

:::::::
selected

::::::
factors

::::
(i.e.,

::::::
runoff

:::::::::
generation

:::::::
models,

::::
the

:::::
fitting

:::::::::::
distributions

::::
and

:::
the

:::::::
variables

::
to
:::
be

::::::
fitted).

::::::
Section

::
2
::::::::
describes

:::
the

::::::::
methods

:::
and

::::
data

::::
that

:::
we

::::
used.

:::
In

::::::
Section

:
3, the

:::
we

:::::
assess

:::
the

::::::
fitting perfor-

mance of FFA is compared among the
::
for

:::
all

::::::::::
combination

:::
of

::::::::::
experiments

:::::
with

:::::::
different

:
flow variables used for FFA, the30

fitting distributionsas well as
::::
fitting

:::::::::::
distributions,

::::
and the runoff that drives CaMa-Flood. Uncertainties resulted from different

sources are quantified in the Mekong deltas, with the spatial characteristics shown and agreement of different settings over the

inundation estimation evaluated in section 4. A global overview of the uncertainties in floodplain water depth and
:::
We

::::
then

::::::
present

:::
the

:::::
flood

:::::
water

:::::
depth

:::
and

::::::::::::
contributions

::::
from

::::::::
different

::::::
factors

::::
over

:::
the

:::::
globe

::::
and

:::::::
regional

:::::
cases

:::
for

:
a
::::::::
1-in-100

::::
year
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:::::
return

::::::
period.

::::
The

::::
flood

:::::
water

:::::
depth

:::
for

:::::::
specific

:::::
points

::::
and

:::
the

:::::::::
inundation

::::
area

:::
for

::::::
specific

:::::::
regions

::
at

:::::::
multiple

:::::
return

:::::::
periods

::
are

:::::::::
discussed,

:::::::
together

::::
with

:::::
their

:::::::::::
uncertainties.

::::
The

:::::::
potential

::::::
impact

:::::::::
(exposure)

:::
of the contribution from sources is provided

in section 5. The discussions and conclusions are followed in the end.

2 Methodologies5

1.1 CaMa-Flood

The CaMa-Flood (Catchment-based Macro-scale Floodplain) model is designed to simulate the hydrodynamics in continental-scale

rivers. The entire river networks are discretized to irregular unit-catchments with the sub-grid topographic parameters of

the river channel and floodplains. The river discharge and other flow characteristics can be calculated with the local inertial

equations along the river network map. Water storage of each unit-catchment is the only prognostic variable that to be solved10

with the water balance equation. The water level and flooded area are diagnosed from the water storage at each unit-catchment

using the sub-grid topographic information. Detailed descriptions of the CaMa-Flood can be referred to the original papers by

Yamazaki et al. (2011, 2012, 2014).

The major advantage of the CaMa-Flood simulations is the explicit representation of flood stage (water level and flooded

area) in addition to river discharge. This facilitates the comparison of model results with satellite observations, either the15

altimeters by SAR or inundation images by optical or microwave imagers. The estimation of
:::::
floods

::
on

:::
the

:::::::::
population

::::
and the

flooded area is helpful for assessment of flood risk and flood damages by overlaying it with socio-economic datasets.

Another apparent advantage of the CaMa-Flood is its high computational efficiency of the global river simulations.
::::::::
economy

::
are

:::::::::::
investigated

:::
on

:::::::
different

::::::::::
continents.

:
The CaMa-Flood utilizes a diagnostic scheme at the scale of unit-catchment to

approximate the complex floodplain inundation processes. The prognostic computation for water storage is optimized by20

implementing the local inertial equation and the adaptive time step scheme. The high computational efficiency is beneficial for

implementations at a global scale. This is critically important as ensemble simulations are frequently applied to account for

uncertainties but computation time will be multiplied manyfold.
:::::::::
discussions

:::
and

::::::::::
conclusions

::::::
follow

::
in

::::::
Section

::
4.
:

2
:::::::
Methods

::::
and

::::::::
datasets

2.1
::::::::::

Experiment
::::::
design25

:::
The

:::::::
cascade

:::
of

:::::::::
generating

:::
the

::::::
global

:::::
flood

:::::::
hazards

::::
maps

:::::::::
comprises

::::
the

::::::::
following

:::::
steps:

:::
1.

:::::
global

:::::::
forcing

:::::
data;

::
2.

::::::
global

::::::::::
hydrological

:::::::
models;

:::
3.

:::::
global

:::::
river

::::::
routing

:::::::
models;

:::
4.

::::
FFA

::::::::::::::::::::
(Winsemius et al., 2013)

:
.
:
In this study, the CaMa-Flood was

driven by the various runoff inputs to achieve the flow characteristics at each unit-catchment at the global scale.

2.2 Experiments design

5



::
we

:::::
limit

:::
the

::::::
factors

::
to

:::
be

::::::::::
investigated

:::
on

:::
the

:::::
global

:::::::::::
hydrological

:::::::
models

:::
and

:::
the

:::::
FFA.

:
The uncertainties to be investigated30

in this study are attributed to three major sourcesas (1) ,
:::

as
:::::::
follows:

::::
first,

:
the variables used for the FFA, (2)

:
;
:::::::
second, the

fitting distributions used for FFAand (3)
:
;
:::
and

:::::
third, the runoff inputs to the

::::
river

::::::
routing

::::::::::::::::::::
model–Catchment-based

:::::::::::
Macro-scale

::::::::
floodplain

::::::
model

:
(CaMa-Flood.

:
).
:::::
Each

:::::::::
experiment

::
is

::::::::
therefore

:
a
:::::::::::
combination

::
of

:::
the

::::
three

:::::::
sources

:::::
(Table

:::
1).

For the variables selection, V1 _(rivdph) represents the
:::::::::
represents

:::
that

:
FFA is based on the numeric results of "river water

depth" provided by CaMa-Flood. In V2_(sto2dph), the FFA was first conducted on the estimated water storage,
:
which is the5

only prognostic variable in the CaMa-Flood. Then,
:
at each return period (e.g., 100 yrs, 50 yrs

:::::::
1-in-100

::::
year), the river water

depth was estimated based on the storage-water depth relation and the corresponding water storage. Because of the non-linear

relation between water level and storage, the fitting will lead to different results. The differences between experiment V1 and V2

denote the uncertainty resulted
:::
that

::::::
results from the selection of target variables used for FFA

::
the

:::::
target

::::::::
variables

::::
that

:::
we

::::
used

::
for

:::
the

:::::
FFA.

:::::::
Despite

::::
river

:::::
water

:::::
depth

:::
and

:::::
water

:::::::
storage,

::::::::
discharge

::
is

:::
the

:::::::
variable

:::
that

::
is
:::::
most

::::::::
frequently

:::::
used

::
in

::::::::::
engineering10

:::::
design

:::::::
because

::::::::
discharge

::
is
:::::::::
frequently

:::::::::
measured.

::::::::
However,

::::
with

::::
only

::::::::
discharge

:::
we

::::::
cannot

:::::::
estimate

:::
the

:::::
water

:::::
level

:::
(or

:::::
water

::::::
storage)

:::::::
because

::::
the

::::::::::
relationship

:::::::
between

::::::::
discharge

::::
and

:::::
water

::::
level

::
is
::::

not
:::::::::
one-to-one

:::::::::
consistent

:::::::
because

::
of

:::
the

::::
loop

::::::
rating

:::::
curve.

:::::
While

::::
with

:::::
either

:::::
river

::::
water

:::::
depth

::
or
:::::
water

:::::::
storage,

:::
we

:::
can

:::::::
estimate

:::
the

:::::
flood

:::::
extent

::::
and

::
the

:::::::::
floodplain

:::::
water

:::::
depth

:::
for

:::
any

:::::
target

:::::
region

:::::
using

:::::::::::
CaMa-Flood.

The uncertainty

Table 1.
::::::::::
Experiments

:::
used

::
in

:::
this

:::::
study

::
for

:::::::::
uncertainty

::::::
analysis.

:::::
There

:::
are

::::
three

::::::
groups,

:
as
:::::::

follows:
:::
(A)

::
the

:::::::
variables

:::
for

:::
FFA

:::
(B)

:::
the

:::::
fitting

:::::::::
distributions

:::
and

:::
(C)

:::
the

:::::
runoff

:::::
inputs.

:::::::
Different

::::::
runoffs

:::
are

:::::::
generated

:::
by

::::
using

:::
the

::::
same

::::::
forcing

:::::::
(WFDEI)

:::
but

::::
with

::::::
different

::::
land

::::::
surface

:::::
models

::
or

:::::
global

::::::::::
hydrological

:::::
models

:::
(as

:::::::
specified

::
in

::
the

::::::::
brackets).

:
A
: :::::::

Variables
:
B
: :::::

fitting
::::::::
distribution

: :
C
: :::::

Runoff
:

::
V1

: ::::::
rivdph

::
F1

: ::::
GEV

::::::::::
(Generalized

::::::
Extreme

:::::
Value)

: ::
R1

: ::::::
e2o_anu

:::::
(W3)

::
V2

: ::::::
storage

: ::
F2

: ::::
GAM

::::::::
(Gamma)

::
R2

: :::::::
e2o_cnrs

::::::::::
(ORCHIDEE)

:

::
F3

: :::
PE3

:::::::
(Pearson

:::
type

:::
III)

: ::
R3

: ::::::
e2o_jrc

:::::::
(Lisflood)

:

::
F4

: ::::
GUM

::::::::
(Gumbel)

::
R4

: :::::::::
e2o_ecmwf

:::::::::
(HTESSEL)

::
F5

: ::::
WEI

:::::::
(Weibull)

::
R5

: :::::::
e2o_nerc

:::::::
(JULES)

::
F6

: ::::
WAK

::::::::
(Wakeby)

::
R6

: ::::::::
e2o_univk

::::::::::
(WaterGAP3)

:

::
R7

: ::::::::
e2o_univu

::::::::::::
(PCR-GLOWB)

15

:::::::::
Uncertainty

:
due to the fitting distributions used for FFA was evaluated as the resulting differences by applying various fitting

functions (i.e., F1 – F6). These distributions are generally used in FFA but for different variables in different fields, and they

were treated without priorities in this study. The samples were fitted automatically
:::::::::::
automatically

:::::
fitted

:
without any manual

modifications in their parameters with L-moments optimization.

The results of
:::
the FFA were based on the output of CaMa-Flood which is associated with the

::::::::
associated

::::
with

:::::::
different

:
runoff20

inputs. In this
:::
our case, the CaMa-Flood were

:::
was driven by seven different kinds of runoff forcing (i.e., R1 – R7

::::::
R1–R7)

from eartH2Observe (e2o) category (?). The runoff
:::::::::::::::::::::
(Schellekens et al., 2017).

::::
The

::::::
runoffs

:
were driven by the same WFDEI
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(WATCH Forcing Data methodology applied to ERA-Interim data, Weedon et al., 2014)
:::::::
WATCH

:::::::
Forcing

::::
Data

::::::::::::
methodology

::::::
applied

::
to

:::::::::::
ERA-Interim

::::
data

:::::::::::::::::::::::::
(WFDEI, Weedon et al., 2014) but with different land surface and hydrological models, therefore,

::
or

::::::::::
hydrological

:::::::
models.

:::::::::
Therefore, the runoff inputs have already contained

::::::
contain the uncertainties in the forcing and that in

the rainfall-runoff model processes (model structures and model parameters). The
::::::::
Therefore,

:::
the

:
deviation of the results in the

FFA among the seven inputs was , therefore, the uncertainty caused by
::
the

:
runoff inputs.

Various experiments used in this study for uncertainty analysis. There are three groups as (A) the variables for FFA (B)5

the fitting distributions and (C) the runoff inputs. Different runoff are generated by same forcing (WFDEI) but different land

surface models or global hydrological models (specified in the bracket). A Variables B fitting distribution C Runoff V1 rivdph

F1 GEV (Generalized Extreme Value) R1 e2o_anu (W3) V2 sto2dph F2 GAM (Gamma) R2 e2o_cnrs (ORCHIDEE) F3 PE3

(Pearson III) R3 e2o_jrc (Lisflood) F4 GUM (Gumbel) R4 e2o_ecmwf (HTESSEL) F5 WEI (Weibull) R5 e2o_nerc (JULES)

F6 WAK (Wakeby) R6 e2o_univk (WaterGAP3) R7 e2o_univu (PCR-GLOWB)10

2.2
:::::

Global
:::::
river

:::::::
routing

:::::
model

:::::::::::::
(CaMa-Flood)

:::
The

:::::::::::
CaMa-Flood

::
is

::::::::
designed

::
to

:::::::
simulate

:::
the

:::::::::::::
hydrodynamics

::
in

::::::::::::::
continental-scale

::::::
rivers.

:::::
Entire

:::::
river

:::::::
networks

:::
are

::::::::::
discretized

::
to

:::::::
irregular

:::::::::::::
unit-catchments

::::
with

:::
the

:::::::
sub-grid

::::::::::
topographic

::::::::::
parameters

::
of

:::
the

::::
river

:::::::
channel

:::
and

::::::::::
floodplains.

:::
The

:::::
river

::::::::
discharge

:::
and

::::
other

::::
flow

::::::::::::
characteristics

:::
can

:::
be

::::::::
calculated

::::
with

:::
the

:::::
local

::::::
inertial

::::::::
equations

:::::
along

:::
the

::::
river

:::::::
network

::::
map.

::::
The

:::::
water

::::::
storage

::
of

::::
each

::::::::::::
unit-catchment

::
is

:::
the

::::
only

:::::::::
prognostic

:::::::
variable

:::
that

::
is
::
to

:::
be

:::::
solved

::::
with

:::
the

:::::
water

:::::::
balance

::::::::
equation.

:::
The

:::::
water

::::
level

::::
and15

::::::
flooded

::::
area

:::
are

::::::::
diagnosed

:::::
from

:::
the

::::
water

:::::::
storage

::
at

::::
each

::::::::::::
unit-catchment

:::::
using

:::
the

:::::::
sub-grid

::::::::::
topographic

::::::::::
information.

::::::::
Detailed

::::::::::
descriptions

::
of

:::
the

::::::::::
CaMa-Flood

::::
can

::
be

:::::
found

::
in
:::
the

:::::::
original

::::::
papers

::
by

:::::::::::::::::::::::::::::
Yamazaki et al. (2011, 2012, 2014).

:

:::
The

:::::
major

:::::::::
advantage

::
of

:::
the

:::::::::::
CaMa-Flood

::::::::::
simulations

::
is

::::
their

::::::
explicit

::::::::::::
representation

::
of

:::::
flood

:::::
stage

:::::
(water

:::::
level

:::
and

:::::::
flooded

::::
area)

::
in

::::::::
addition

::
to

::::
river

:::::::::
discharge.

:::::
This

::::::::
facilitates

:::
the

::::::::::
comparison

:::
of

::::::
model

::::::
results

::::
with

:::::::
satellite

:::::::::::
observations,

::::::
either

:::
the

::::::::
altimeters

:::
by

:::::::::::::::
Synthetic-aperture

:::::
radar

::::::
(SAR)

::
or

:::::::::
inundation

:::::::
images

::
by

::::::
optical

:::
or

:::::::::
microwave

::::::::
imagers.

:::
The

:::::::::
estimation

:::
of

:::
the20

::::::
flooded

::::
area

::
is

::::::
helpful

::
in

:::
the

:::::::::
assessment

::
of

:::::
flood

:::
risk

::::
and

::::
flood

::::::::
damages

::
by

:::::::::
overlaying

::
it
::::
with

:::::::::::::
socio-economic

::::::::
datasets.

:::::::
Another

:::::::
apparent

:::::::::
advantage

::
of

:::
the

:::::::::::
CaMa-Flood

::
is
:::

its
::::
high

::::::::::::
computational

:::::::::
efficiency

::
of

:::
the

::::::
global

::::
river

:::::::::::
simulations.

::::
The

::::::::::
CaMa-Flood

:::::::
utilizes

:
a
:::::::::
diagnostic

:::::::
scheme

::
at

:::
the

:::::
scale

::
of

:::::::::::::
unit-catchment

::
to

:::::::::::
approximate

:::
the

::::::::
complex

::::::::
floodplain

::::::::::
inundation

::::::::
processes.

::::
The

:::::::::
prognostic

:::::::::::
computation

:::
for

:::::
water

:::::::
storage

::
is

::::::::
optimized

:::
by

::::::::::::
implementing

:::
the

:::::
local

::::::
inertial

::::::::
equation

::::
and

:::
the

:::::::
adaptive

::::
time

::::
step

:::::::
scheme.

::::
The

:::::
high

::::::::::::
computational

::::::::
efficiency

::
is
:::::::::

beneficial
:::
for

::::::::::::::
implementations

:::
at

:
a
::::::
global

:::::
scale.

:::::
This

::
is25

:::::::
critically

:::::::::
important

:::::::
because

::::::::
ensemble

::::::::::
simulations

:::
are

:::::::::
frequently

::::::
applied

:::
to

:::::::
account

:::
for

:::::::::::
uncertainties

:::
but

::::::::::
computation

:::::
time

:::
will

:::
be

::::::::
multiplied

:::::::::
manyfold.

::
In

::::
this

:::::
study,

:::::::::::
CaMa-Flood

:::
was

::::::
driven

::
by

::::::::
different

:::::
runoff

::::::
inputs

:::
(see

::::
next

:::::::
section)

::
to

:::::::
achieve

:::
the

::::
flow

::::::::::::
characteristics

::
at

::::
each

::::::::::::
unit-catchment

:::
at

:::
the

:::::
global

:::::
scale.

::::
The

::::
FFA

::
is

:::::::::
conducted

:::::
based

:::
on

:::
the

::::
flow

::::::::::::
characteristics

:::::
using

:::::::::::
CaMa-Flood.

2.3 Flood frequency analysis (FFA)30

The runoff inputs are available from 1980 to 2014 (35 years in total)with a spatial resolution of 0.25o (⇠25km at the equator).

For a specific unit-catchment defined in the CaMa-Flood, the maximum value of the daily river water depth or catchment
:::::
water
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storage was obtained for each year and
:::
was

::::
then

:
sorted. The frequency as the return period (Pm) was calculated with the

following equation:

Pm =
m

N +1
, (1)

where m is the sorted ranking, N denotes the number of total years (herein 35).

Then the
:::
The

:
parameters of the fitting distributions were calculated with the basis

::::
then

::::::::
calculated

::::::
based on these sorted5

annual values with the L-moment method (Hosking, 2015; Drissia et al., 2019). It
:::
This

:
is defined as a linear combination

of probability-weighted moments of the time series. The parameters estimation
::::::::
parameter

::::::::::
estimations

:
using L-moment and

quantile functions used for different distributions have been described in detail in Hosking (1990). The computation of the

parameters was done in
::
the

:
Python lmoments3 Library. Note that only the Wakeby (WAK) is a 5-parameters functionwhile

the others are all 3-parameters functions
::::::::::::
five-parameter

::::::::
function;

:::
the

::::
GEV,

::::
PE3

::::
and

::::
WEI

:::
are

:::::::::::::
three-parameter

:::::::::
functions;

:::::
while10

:::::
GAM

:::
and

:::::
GUM

:::
are

::::::::::::
two-parameter

::::::::
functions.

2.4 Criterion

Akaike Information Criterion (AIC, Sakamoto et al., 1986; Mutua, 1994) was used to evaluate the performance of the FFA

against the annual values. aic is calculation as
::::::::
calculated

:::
as

aic= 2k+n · log(
P

(S�O)2

n
), (2)15

where k is the number of parameters needed for the fitting distribution, S represents the simulated values, O represents the

observed values, n denotes the number of samples. The performance of fitting is better when the
:::::::
Smaller aic value is lower

::::::
denotes

::::::
higher

:::::
fitting

:::::::::::
performance

:
because of smaller deviations between simulations and observations.

::::::::
Although

:::::
there

:::
are

::::::
various

:::::::::::
performance

::::::
metrics

:::
to

:::::::
measure

:::
the

:::::::::::::
goodness-of-fit,

::::
the

:::
aic

::
is

::::
used

:::
in

:::
our

:::::
study

:::::::
because

::
it
::::
will

::::::
enlarge

::::
the

:::::
small

::::::::
difference

:::::::
between

:::::::
samples

::::
and

::::::::::
estimations.

:::
We

::::
only

::::
have

:::
35

:::::::
samples

:::
and

:::::
these

:::
are

::::::
sorted,

::::::::
therefore

:::
the

:::::
fitting

:::::::::::
performance20

:::::
should

:::
be

::::
very

::::
high

:::
and

:::
the

:::::
fitting

::::::
results

::::::
should

:::
not

::::
have

:::::
large

::::::::::
differences.

2.4 Study area and downscaling
:::::::::::
Downscaling to high-resolution inundation map

To reduce the computation cost due to high-resolution simulations, the CaMa-Flood was run globally at a 0.25o spatial resolu-

tion, which means
:::
that

:
only one unit-catchment was assigned for each 25 km by 25 km grid. The evaluation

::::::::::
performance

:
of

the FFA performance
:::
was

::::::::
evaluated with aic was conducted at the global scale to capture the overall features , corresponding25

to the results in section 3.
:::
(see

:::::::
Section

::::
3.1).

It
:::::::
However,

::
it
:
is difficult to characterise the river water depth or inundation area in detail with local topography at a low

resolution (0.25o), and it is difficult to visualize the inundation map at a high resolution (<100m) for the globe. Therefore,

high-resolution (3 arcsec, ⇠90 m at the equator) regional analysis related to the floodplain
::::
flood

:
water depth and inundation

area with their uncertainties was conducted regionally over the lower Mekong River basin
:::::
Basin, where the delta is vulnerable30
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to floods (Shin et al., 2020). Corresponding results from point analysis to regional analysis on the uncertainties in water depth

and inundation area,
::
as

::::
well

:::
as

::
the

:::::
flood

:::::
water

:::::
depth

::
at

:::::::
specific

:::::
points will be presentedin section 4.

:
.

The estimated low-resolution storage was downscaled to the high-resolution inundation map with the topography map

MERIT (Multi-Error-Removed Improved-Terrain DEM, Yamazaki et al., 2017)
:
–
::::::::::::::::::
Multi-Error-Removed

:::::::::::::::
Improved-Terrain

:::::
DEM

:::::::::::::::::::::::::::
(MERIT, Yamazaki et al., 2017) at 90 m. The fundamental assumption is that the water

:::::::::
movement

::
of

:::::
water

::::::
within

::
a
::::
unit

::::::::
catchment

::
is

:::::::::::
instantaneous

::::
and

:::
that

:::
the

:::::
water surface is flat within each unit-catchment and the

::
the

::::
unit

:::::::::
catchment

::
at

::::
each

::::
time

:::
step

::::::::::::::::
(Zhou et al., 2020).

::::
The total water storage under the identical water level should be equal to the water storage estimated in5

this unit-catchment (see Figure 1-a). The
::::
area

::
of

::::::
lowest

:::::::
elevation

::
is
:::::::::
inundated

::::
first,

::::
until

:::
the

::::
total

:::::
water

::::::
volume

::::::::::::
approximates

::
the

:::::::::
estimated

:::::
water

::::::
storage

::
of

:::
the

::::
unit

:::::::::
catchment.

::::
The

:
relationship between the water level and water storage or the flooded

area should be similar to
:
is

:::::::::
illustrated

::
in

:
Figure 1-b, as when

:
.
:::::
When

:
the floodplain has been inundated, the small increases

of water level is corresponding
::::::::::
corresponds

:
to large changes in the water storage as well as

:::
and the flooded area. River water

depth can be saturated after inundation (it does not react significantly to the increase of storage after flooding), and this might10

cause the
::
an

:
error in function fitting. The assumption of the

:
a flat water surface is not valid for long river sections or large

water bodies (e.g., large lakes or reservoirs with water surface gradient) and rivers with large slopes
::::
steep

::::
river

::::::::
segments

:
(e.g.,

mountainous area). However, the impact of violation is limited at the catchment scale with a grid size of 25 km (in consistency

:::::
which

::
is

::::::::
consistent

:
with the global scale). Inundation

:::
The

:::::::::
inundation

:
area over the mountainous area is also limited compared

to that in the floodplains.15

:::
The

:::::
flood

::::::::
exposure

::
of

:::
the

:::::::::
population

::::
and

:::::::
economy

::
is
:::::::::

estimated
:::::
based

::
on

:::
the

::::::::::
inundation

::::
map

:::
and

:::::::::
population

:::::::
density

::::
map

:::::::
(Gridded

:::::::::
Population

:::
of

:::
the

:::::
World

::
–

:::::
GPW)

:::
in

::::
year

::::
2015

:::
(?),

:::
as

::::
well

::
as

:::
the

:::::
Gross

::::::::
Domestic

::::::::::
Production

::::
map

::
in

::::
year

::::
2015

:::
(?)

:
.

:::
The

::::
two

::::
maps

:::
are

::
in

:::
30

::::::
arcsec,

::::::::
therefore

::
the

::
3
:::::
arcsec

::::::::::
inundation

:::
map

::::
was

:::::::::
aggregated

::
to

:::
the

:::
30

::::::
arcsec.

3 Comparisons among different experiments

In this section, the performance of the FFA will be inter-compared among different experiments given in Table 1. The lower

aic indicates the better fitting performance. Comparisons are conducted in three groups. In the first variables group, the two

variables on which the FFA was based are compared. In the second group, the fitting performance is compared among using5

different fitting distribution. In the last group, the FFA performance determined by different runoff inputs is compared.

3
::::::
Results

3.1 Comparison between using different Variables

Water storage is the prognostic variable in the CaMa-Flood that transfers water from the upstream to the downstream. It

is estimated by the inflow to this catchment, added runoff within the catchment and outflow to the downstream catchment.10

Whereas, river water depth is co-determined by the river water storage, river channel cross-section and floodplain topography

9
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(a) Illustration of a river channel reservoir and a floodplain reservoir defined in each unit-catchment. The water level for the river channel

and floodplain is assumed to be the same in each unit-catchment. The denotation of each parameters and its calculation can refer to

(Yamazaki et al., 2011). (b) The relationship between the water level and water storage as well as the flooded area for a specific

unit-catchment. The shape of the curve within the river channel is determined by the profile of the river channel and the curve above the

river channel is mainly affected by floodplain topography.

Figure 1.
::
(a)

::::::::
Illustration

::
of
::

a
::::
river

::::::
channel

:::::::
reservoir

::::
and

:
a
::::::::
floodplain

:::::::
reservoir

::::::
defined

::
in

::::
each

::::::::::::
unit-catchment.

:::
The

:::::
water

::::
level

:::
for

:::
the

:::
river

::::::
channel

::::
and

::::::::
floodplain

:
is
:::::::
assumed

::
to

::
be

:::
the

::::
same

::
in
::::
each

::::::::::::
unit-catchment.

:::
The

::::::::
denotation

::
of
::::

each
:::::::::
parameters

:::
and

::
its

:::::::::
calculation

:::
can

:::
refer

::
to
::::::::::::::::::

(Yamazaki et al., 2011).
:::
(b)

:::
The

:::::::::
relationship

:::::::
between

:::
the

::::
water

::::
level

::::
and

::::
water

::::::
storage,

::
as
::::

well
::
as

:::
the

::::::
flooded

::::
area

::
for

::
a
::::::
specific

:::::::::::
unit-catchment.

:::
The

:::::
shape

::
of

:::
the

::::
curve

:::::
within

:::
the

:::
river

::::::
channel

::
is

::::::::
determined

:::
by

::
the

:::::
profile

::
of
:::
the

::::
river

::::::
channel

:::
and

::
the

:::::
curve

::::
above

:::
the

::::
river

::::::
channel

:
is
::::::
mainly

::::::
affected

::
by

::::::::
floodplain

:::::::::
topography.

profile. Estimating the river water depth hence includes extra information as well as the uncertainty from the topography. This

section evaluates how the fitting distributions work for the two different variables. Because

3.1
:::::

Fitting
::::::::::::
performance

::
In

:::
this

:::::::
section,

::
we

::::
will

:::
first

:::::::
analyze

:::
the

:::::
fitting

::::::::::
performance

:::::
using

:::
aic

:::
for

::
all

::::::::
different

::::::::::
experiments

::::
listed

::
in
:::::
Table

::
1.

::::
Note

::::
that the15

river water depth and the river water storage are not in the same unit or same magnitude, they were normalized to the range of
::
in

:::::::
different

::::
units

::
or

:::::::::::
magnitudes.

:::
aic

::
is

:::::::
therefore

::::
only

:::::::
applied

::
to

:::
the

:::::::::
normalized

::::::
values

::
of

:::::
water

:::::
depth

::
or

:::::
water

::::::
storage

:
([0,1]

:
) for

each grid (divided by the maximum value for each unit-catchment. The fitting distributions (i.e., F1 – F6, Table 1)were applied

to fit the modelled time series
::
of

::::
each

::::
grid). The fitting performance was evaluated by the aic value . The estimated

:::
(Eq.

:::
2).

::
A

:::::
lower aic values for the two variables were compared and one sample

:::::::
indicates

::
a
:::::
better

:::::
fitting

::::::::::::
performance.

::::::
Figures

:::
2-a

::::
and20

:
b
::::::
display

::
a
::::::
sample

:::::
result for e2o_ecmwf and GEV function is shown in

::::
(R4)

:::
and

:::::
GEV

:::::
fitting

::::::::::
distribution

::::
(F1)

::
for

:::::
water

:::::
level

:::
and

:::::::
storage,

::::::::::
respectively.

::::
The

::::::::
difference

:::::::
between

:::
the

::::
two

:::::
maps

:
is
::::::
shown

::
as

:
Figure 2

::
-c.

Because the time series were normalized to ranges of 0 and 1, the
:::
The

:
fitting performance is relatively high with low aic

(<-50) in most of the unit-catchments. Low
::::
This

::
is

:::::::
happens

:::::::
because

::
we

:::::
have

::::
only

:
a
::::
few

:::::::
samples

::::
(35)

:::
and

:::
the

::::
time

:::::
series

::::
was

:::::::::
normalized

::
to

::
a

:::::
range

:::::::
between

:
0
::::

and
::
1.

::::
The

::::::::
advantage

:::
of

:::
the

:::
aic

::
is

:::
that

::
it
:::::::
enlarges

:::
the

:::::
small

:::::::::
difference

::
so

::::
that

:::
we

:::
can

:::
see

::
a25

10



(a) For V1_rivdph (b) For V2_sto2dph

(c) Di!erence (V1-V2)

Figure 2. Performance
:::::
Fitting

::::::::::
performance

:
of flood frequency analysis

:::
FFA

:
for (a) V1 _rivdph

::::
(river

::::
water

::::::
depth)

:
and (b) V2

_sto2dph
:::::
(water

::::::
storage). The performance was quantified with aic and (c) is the aic difference of (a) and (b). Negative difference indicates

better performance of FFA for V1_rivdph. This is only an example for e2o_ecmwf and GEV fitting distribution.

::::
large

::::::::
deviation

:::::::
between

:::::::
different

:::::::::::
experiments.

:::::::::
Relatively

:::
low

:
fitting performance is found in the Greenland area and those dry

areas in the Sahara, Mongolia and middle Australia (Figure 2-a). The area with low fitting performance (high aic) increases

when dealing with the storage, typically in Mongolia, Australia, South Africa, south Latin America and in the west
::::::
western

part of North America. These regions are mainly dominated by dry climate or mountainous topography. The relatively low

river discharge could be the reason for low model performance in the fitting
::::::::::
accumulative

:::::
river

::::::::
discharge

::::
over

::::
those

:::::::
regions

::
is30

:::::
small.

::::
The

:::::::::
magnitude

:
is
::::

thus
::::::
highly

::::::::
depended

:::
on

:::::
single

:::::::::::
precipitation

::::::
events,

:::::::
leading

::
to

::
an

:::::::
unstable

::::::::::
relationship

::::::::
between

:::
the

::::
high

:::::
floods

::
in

:::::::
different

:::::
years.

The difference of the aic values for the river water depth and that for the storage is mapped as Figure 2-c. In which,

negative
:::::::
Negative

:
values indicate that the fitting performance is better for water depth than for that for the water storage.

Despite the near-zero values, negative values (red scatters) are distributed in the main parts of the world. The places with the

largest differences are distributed in the northern and southern Africa, Australia, Northern China, Western America, in high

consistency
:::::
which

::
is

::::::::
consistent

:
with the high values in Figure 2-b. Although positive values are also found, the values are not

large. The results indicate that for most of the lands, the fitting on the data of river water depth is better than the fitting on the5

water storage. Though
::::::::
However,

:
this is only the results

:::::
result of a case with e2o_ecmwf runoff input and GEV distribution.

An overall evaluation on all
:
of

:::
all

::
of

:::
the distributions and runoff inputs are

:
is shown in Figure 3. The probability distribution

of the aic values for all the global grids are plotted in Figure 3-a and 3-b for V1_rivdph and V2_sto2dph
:
b

:::::
using

::::
water

:::::
river

::::
depth

::::
and

::::::
storage, respectively. We found that the fitting distribution determines the aic values as the pdf curves for the same

11



(a) For V1_rivdph (b) For V2_sto2dph

aic (V1-rivdph) aic (V2-sto2dph) aic (V1-V2)

(c) Di!erence (V1-V2)

Figure 3.
::::::
Overall

:::::::::
performance

::
of

::::
FFA

::
for

:::
(a)

::
V1

:::::
(river

::::
water

:::::
depth)

:::
and

:::
(b)

::
V2

:::::
(water

:::::::
storage).

:::
The

::::::::::
performance

:::
aic

:::
over

:::
all

::
the

::::
land

::::
grids

::
are

:::::::
collected

:::
and

::::::::
displayed

::
as

::
the

::::::::
histogram.

:::
(c)

::
is

::
the

:::
aic

::::::::
difference

::::::
between

:::
(a)

:::
and

:::
(b).

:::::::
Negative

::::::::
difference

:::::::
indicates

::::
better

::::::::::
performance

:
of
::::

FFA
:::
for

:::
V1.

:::::::
Different

:::::
colors

:::::::
represent

::::::
different

:::::
fitting

::::::::::
distributions,

:::
and

:::
the

::::::
multiple

::::
lines

::
in

:
a
::::::
specific

:::::
color

:::::::
represents

:::::
results

:::::
driven

:::
by

::::::
different

:::::
runoff

:::::
inputs.

::::
The

::::
types

::
of

::
the

:::::
runoff

:::::
inputs

:::
are

:::
not

::::::
specified

::
in
::::
these

:::::
three

:::::::
graphics.

distribution always gather together. This is more distinguishable for the water depth than that for the water storage. The pdf10

curves have two peaks, one is normally distributed with mean values around -200 (or -220) and the other one is near zero. The

later peak
::
is

::::
near

::
0.

:::
The

:::::
latter

::::
peak

:::::::
around

:
0
:
corresponds to the red scatters in Figure

::::::
Figures 2-a ,

:::
and b, showing poor fitting

performance of the distributions over the coastal regions.
:::
The

:::::::::
difficulties

:::
in

::::::::::
representing

::::::
coastal

:::::
rivers

::
in

:::::::::::
CaMa-Flood

::::::
should

::
be

:::
the

::::::
reason

::
or

::::
this.

:::::
From

:::
the

::::::::
variations

:::
of

:::::
curves

:::
in

:::::::
different

:::::
curve

::
in

:::
the

:::::
same

:::::
color,

:::
we

::::
find

:::
that

:::
the

:::::::::::
performance

::::::
metric

:::
aic

::
is

:::
not

:::
too

::::::::
sensitive

::
to

:::
the

::::::
runoff.

:
Regarding the differences among different distributions, WAK (yellow lines) have the15

smallest
:::::
lowest

:
aic values with the best performance while GAM (red lines) and GUM (black lines) have the largest values

with the poorest performance in Figure 3-a. The other three distributions (GEV, PE3 and WEI) have a similar and moderate

performance for the water depth. Although the lines
:::
The

:::::::::
differences

:::
of

:::
the

:::::
fitting

:::::::::::
performance

:::
are

::::::
mainly

::::
due

::
to

:::
the

::::::
degree

::
of

:::::::
freedom

::
of

::::
each

::::::
fitting

:::::::::
distribution

:::::::
because

:::
the

:::::
WAK

::::
has

:::
five

::::::::::
parameters,

:::::
GAM

:::
and

::::::
GUM

::::
have

:::
two

::::::::::
parameters

:::::
while

:::
the

:::::
others

::::
have

:::::
three.

::::
With

::
a
:::::
higher

::::::
degree

::
of

::::::::
freedom,

:::
the

:::::
fitting

:::::::::::
performance

:::
will

:::
be

:::::
better.

::::::::::
Meanwhile,

::::::::
compared

::
to
::::::
fitting

::::
with20

::
the

:::::
river

::::
water

::::::
depth,

:::
the

:::::
curves

:
were not so distinguishable in Figure 3-b, the sequence of the fitting performance for different

distributions is the same as for the water depth
:
.
::::
This

::::::::
indicates

:::
that

:::
the

::::::
results

:::
are

:::
not

::::::::
sensitive

::
to

:::
the

::::::
fitting

::::::::::
distribution.

:::
As

:::::
shown

::
in
::::::

Figure
::::

1-a,
:::
the

:::::
water

:::::
level

::
is

:::::::::
calculated

:::
by

::::::::
allocating

:::
the

:::::
water

:::::::
storage

::
to

:::
the

:::::
river

:::::::
channel

:::
and

:::::::::
floodplain

:::::
from

::
the

:::::::
bottom

::
to

:::
the

::::
top.

::
In

:::
the

::::::::
channel,

:::
the

::::::::::
relationship

:::::::
between

:::::
water

:::::
level

:::
and

:::::::
storage

::
is

:::::
linear,

:::::
while

::
it
::
is
::::::::
nonlinear

:::
in

:::
the

:::::::::
floodplains.

::::
So,

:
if
::::

the
::::::::
maximum

:::::
water

:::::
level

:::
for

:::
the

:::::::
different

:::::
years

::::::
locates

::
in
:::::

both
:::
the

::::
river

:::::::
channel

:::
and

:::
the

::::::::::
floodplain,

::::
then25

:::::
fitting

:::
the

:::::
water

::::
level

::::::::
becomes

:::::
more

:::::::
difficult;

:::::::::
especially

::
for

::::::
GAM

:::
and

:::::
GUM

:::::::
because

::::
they

:::::
have

::::
only

:::
two

::::::::::
parameters.

::::::
Given

:::
that

:::
the

::::::
storage

::
is
::::
not

::::::
affected

:::
by

:::
the

:::::::
channel

::::::
shape,

:::::
fitting

:::
the

:::::
water

::::::
storage

:::::
with

:::::::
different

:::::
fitting

::::::::
functions

::::
will

:::
not

:::::
make

::
a

::::
large

:::::::::
difference.

Overall performance of flood frequency analysis for (a) V1_rivdph and (b) V2_sto2dph. The performance aic over all the

land grids are collected and displayed as the histogram. (c) is the aic difference of (a) and (b). Negative difference indicates30
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better performance of FFA for V1_rivdph. Different colors represent different fitting distributions, and the multiple lines in a

specific color represents results driven by different runoff inputs. The type of the runoff inputs are not specified in these three

graphics.

Figure 3-c shows the difference of fitting performance for water depth and water storage (corresponding to Figure 2-c if

e2o_ecmwf and GEV is specified). Same as
:::
As

::
in Figure 2-c, negative values indicate that the fitting performance for water35

depth
::::
(V1) is better than that for the water storage . For

::::
(V2).

:::::
More

:::::::
negative

::::::
values

::::
were

::::::
found

:::
for the distributions of WAK,

GEV, PE3 and WEI, more negative values were found especially within the range of [-50, 0]. While for GAM and GUM, more

positive values are found within the range of [0, 25], showing better performance for water storage than that for water depth.

But
::::::::
However,

:
as we see from Figure 3-a and 3-b, the fitting performance of GAM and GUM is not as good as other functions.

We, therefore, can conclude that the fitting is better applied to the water depth (V1_rivdph) rather than the water storage5

(V2_sto2dph). Since the
::::::
Because

:::
the

:
normalization did not change the relative magnitude of different values, the difference

between fitting river water depth and water storage results from their relationship (Figure 1). For the floods (tails of the fitting

distribution), the changes in water storage should be larger than that changes in the water level if given a shift of the flood

frequency. This causes
::::
leads

::
to the resulting difference in the fitting performance.

3.2 Comparison between different Fitting distributions
:::::
Flood

::::::
water

:::::
depth

::
at

::::::::
1-in-100

::::
year

::::::
return

::::::
period10

In order to find the better fitting distribution for FFA, we ranked the fitting performance by in distributions according to the aic

values at each unit-catchment. The distribution with the best performance (the smallest aic value) was scored 6 and the function

with the worst performance (the largest aic value)was scored 1. The other distributions were scored from 2 to 5 according to

the sequences of aic values. The scoring results for runoff e2o_ecmwf with V1_rivdph are discussed in this subsection as an

example15

3.2.1
::::::
Global

:::::
flood

:::::
depth

::::
This

::::::
section

:::::::::
summaries

:::
the

:::::
mean

::::
flood

:::::
water

:::::
depth

::::
and

:::
the

::::::
related

::::::::::
uncertainties

::::
over

:::
the

:::::
globe

::
at
::::::::
1-in-100

::::
year

:::::
return

::::::
period

::::::
(Figure

:::
4).

:::
The

::::::
results

:::
are

:::::
based

::
on

:::
the

:::::::
original

::::::::::
estimations

::
of

:::
the

::::
FFA,

:::::
rather

::::
than

:::
the

::::::
results

::::
after

::::::::::::
normalization

::::::::
presented

::
in

::
the

::::::::
previous

:::::::
section.

:::
For

:::
the

:::::
mean

:::::
values

:::::::
(Figure

::::
4-a),

:::
the

:::::::::
floodplain

:::::
water

:::::
depth

:::
will

:::::
only

::::::
exceed

::
10

::
m
::
in
:::::

most
::
of

:::
the

:::::
main

:::::::
channels

::
of

:::::
large

::::::
rivers,

::::::::
especially

::
in
:::

the
::::::::

Amazon
:::::
River,

:::::
large

:::::
rivers

::
in

::::::::
southern

::::::
China,

::::::::::
southeastern

:::::
Asia

:::
and

:::::::
Siberia.

::::
The20

:::::::
standard

::::::::
deviation

::
of

:::
the

::::
flood

:::::
water

:::::
depth

:
(Figure ??) .

The type of fitting distribution corresponding to (a) the top ranking and (b) the lowest ranking of the FFA performance

according to the aic criterion.

The WAK is scored as the best function in most of the global grids (Figure ??-a) except the dry areas in
::::
4-b)

:::::
shares

:::
the

:::::
same

:::::
spatial

:::::::
patterns

::::
with

:::
the

:::::
mean

::::::
values.

::::
The

::::::::
deviation

::
in
:::::

large
:::::
rivers

:::
can

:::::
reach

::
5
::
m

::
or

::::::
more,

:::::
which

::::::::
indicates

:
a
:::::
high

:::::
degree

:::
of25

:::::::::
uncertainty

::
in

:::::::::
estimating

:::
the

:::::
water

:::::
depth.

::::::::
However,

:::
the

::::::
spatial

:::::::
patterns

::
of

:::
the

::::::::
coefficient

:::
of

:::::::
variation

::::
(Cv,

::::
ratio

:::
of

::
the

::::::::
standard

:::::::
deviation

::
to
:::
the

::::::
mean)

:::
are

:::::::
opposite

::::::
because

::::
Cv

:
is
:::::
lower

::::::
where

::
the

:::::
mean

::
or

::::::::
deviation

::
is

::::::
higher,

:::
and

::::
vice

:::::
versa.

:::
The

:::::::
regions

::::
with

::::
high

:::
Cv

::
are

:::::
likely

::
to
:::
be

:::
the

:::
dry

:::::
zones

::::
(e.g.,

:
Sahara, Central Asia

::::::::
Australia,

::::
and

::::::
Central

:::::
Asia)

:::
and

:::
the

:::::::::
originating

::::
river

::::::
basins

::
in

13



::::::::::
mountainous

:::::::
regions

::::
(e.g.,

:::
the

::::::
Rocky

::::::::::
Mountains,

:::
the

::::::
Andes, and middle southern Australia.This is mainly because WAK is a

5-parameters function and might be overfitted while all other functions only have three parameters.Despite the best distribution,30

the PE3, GEV and WEI are marked as the second-best functions in different parts of the globe. While the GAM and GUM are

generally ranked the last implying that the two functions are not suitable for FFA on the water depth (Figure ??-b). The same

results have been shown in Figure 3, as aic for GAM and GUM are in a large probability higher than aic with other fitting

distributions.
::
the

:::::::
Tibetan

:::::::
Plateau).

:

The average score for all the global catchments shows the same results
::::
This

::::::::
deviation

::
in

:::
the

:::::
flood

:::::
water

::::::
depth

:::
can

:::
be

:::::
caused

:::
by

::::::
various

:::::::
factors,

::::::::
including

:::
the

::::
used

:::::::::
variables,

::::::
runoffs

:::
and

:::
the

::::::::
functions

:::::
listed

::
in
:::::

Table
::
1.
:::::::

Figures
::::
4-d,

:
e
::::
and

:
f
:::::
show

::
the

::::::::::
proportion

::
of

:::
the

:::::::
standard

::::::::
deviation

::::
due

::
to

::::
each

::::::
factor

::
to

:::
the

::::
total

::::::::
standard

::::::::
deviation

::
in

::::::
Figure

:::
4-b.

::
A
::::::

larger
:::::::::
proportion

:::::::
indicates

:::
the

::::::::
deviation

:::
due

::
to

::
a

::::::
certain

:::::
factor

:::::::::
contributes

:::::
more

::
to

:::
the

::::
total

:::::::
standard

::::::::
deviation.

:::::::::
Therefore,

:::
for

::::
most

::
of

:::
the

::::::
global5

:::::
grids,

::::::
runoff

::::::::
deviation

:::::
from

:::::::
different

:::::
land

::::::
surface

::::::
models

:::
or

::::::
global

::::::::::
hydrological

:::::::
models

::
is

:::
the

:::::
major

::::::::::
contributor,

::::::
taking

::
a

::::::::
proportion

::::::
larger

::::
than

::::
80%

:
(Figure ??). No matter the average water depth (rivdph) is, the WAK ranks the first.WAK, PE3

and WEI have similar performance when the river water depth is less than 1.0m, corresponding to the land grids where this is a

low probability to suffer heavy floods.For the grids with average river water depth larger than 1.0m, the performance becomes

more distinguishable as WAK outperforms other functions but the differences among GEV, PE3 and WEI become small. The10

GAM and GUM always have the worst performance for all ranges of the water depth.
:::
4-e).

:::::::::::::::::::::
Schellekens et al. (2017)

::::::::
evaluated

::
the

::::::::
monthly

::::::::
anomalies

:::::
with

:::
the

::::::::::::
signal-to-noise

::::
ratio

::::::
(SNR)

::::::
among

:::
all

::::::
runoff

:::::
inputs

::::
that

:::
are

::::
used

::
in

::::
this

:::::
study.

:::::
Their

::::::
results

::::::::
suggested

:::
that

:::
the

::::::
runoff

:::
has

:
a
:::::
larger

::::::
spread

::::
over

::::
cold

::::::
regions

:::::
(e.g.,

::::
high

:::::::
latitudes

::
in

::::
Asia

::::
and

:::::
North

::::::::
America,

:::
and

:::
the

:::::::
Tibetan

:::::::
Plateau)

:::
and

::::
dry

:::::
zones

:::::
(e.g.,

::::::
Sahara,

::::
and

::::::
Central

::::::
Asia).

::::::::
However,

::::
the

::::::
spatial

:::::::
patterns

::
of

::::::
runoff

::::::
spread

:::
are

:::
not

::::
seen

:::
in

:::
the

:::::::
deviation

:::::
ratio

::
of

:::
the

::::
flood

:::::
water

:::::
depth

::::::
Figure

::::
4-e).

::::
This

:::::::
suggests

:::
the

::::::
spread

::
of

:::::
flood

:::::
water

:::::
depth

:::
due

::
to

:::::
runoff

::
is
:::
not

::::::::
sensitive15

::
to

:::
the

:::::::
climate

:::::
zones.

:

The same comparison is not conducted for other runoff inputs or V2_sto2dph because from Figure 3 we can conclude that

the performance is mainly determined by the fitting distribution. The differences between different runoff will not change the

fitting performance, so the ranking scores.

3.3 Comparison between different Runoff inputs20

In the aforementioned analysis,
:::
The

::::::::
deviation

::::::
among

::::::::
different

:::::::
variables

:::::::
(Figure

::::
4-d)

:::
or

::::::::
functions

::::::
(Figure

::::
4-f)

::::::::::
contributes

:::::::
similarly

::::
with

::
a
::::
very

:::::
small

:::::::::
proportion

::
to

:::
the

::::
total

:::::::::
deviation.

:::
The

:::::::::
difference

::
is

:
the

:::::::
deviation

::::
due

::
to

::::::::
variables

::
is

:::::::
scattered

::::
and

:::::
likely

::
to

::::
have

:::::
larger

:::::
values

::
in
::::
dry

::::::
regions

::
or

::::::
coastal

:::::
areas.

:::::
While

::
a
:::::
larger

::::::::
deviation

::::::
among

:::::::
different fitting distributions mainly

associate the shape of the distribution of high values. While the runoff inputs mainly determine the average states and have

small impact on the fitting performance.Figure ?? shows the ranking of runoff inputs in terms of the mean values of the annual25

maximum river water depth in the original CaMa-Flood outputs. The spatial variation of the ranks is more complicated than

Figure ??, thus the coverage of each runoff input is displayed besides the map in the unit of percentage
::::::::
functions

::
is

::::::::
primarily

:::::
found

:::::
along

:::
the

::::
large

:::::
rivers.

::
A
:::::::::
difference

::::::::
indicates

:::
that

:::
the

:::::
flood

::::
water

:::::
depth

::::
will

::
be

:::::
more

:::::::
sensitive

::
to
:::
the

::::::::
functions

:::::
while

::::
less

14



The averaged ranking among the different fitting distributions. The results are grouped by grids with different river water depth.

Figure 4.
::
The

:::::
mean

:::
and

::::::::::
uncertainties

::
of

:::
the

::::
flood

:::::
water

::::
depth

:::
for

:::
the

:::::::
1-in-100

:::
year

:::::
return

::::::
period.

:::
The

:::::
mean

::::::::
floodplain

::::
water

:::::
depth

:::
(a),

::
the

:::::::
standard

:::::::
deviation

:::
(b)

:::
and

::
the

::::::::
coefficient

::
of
:::::::

variation
:::
(c)

::
are

::::::::
estimated

:::::
based

::
on

::
all

::
of

:::
the

::::::::::
experiments.

:::
The

:::::::
deviation

::::::::
proportion

::
to

:::
the

:::::
overall

::::::
standard

::::::::
deviation

::
(b)

::
is

:::::::
displayed

::
in

:::::
(d)–(f)

:::
for

::::::
different

::::::::
variables,

:::::
runoffs

:::
and

:::::
fitting

::::::::
functions,

:::::::::
respectively.

:
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:::::::
sensitive

::
to

:::::::
selected

:::::::
variables

:::
in

::::
large

:::::
rivers

::::::
(higher

:::::
water

::::
level

::
or

::::::
larger

::::
water

::::::::
storage).

:::::::::
Therefore,

::::
more

::::::::
attention

::
is

::::::
needed

::
to

:::::
select

::
the

::::::
fitting

:::::::
function

:::::
when

:::::::::
evaluating

::
the

:::::
flood

::::
risks

:::
for

:::::
large

::::
river

::::::
basins.30

3.2.1
::::::::
Regional

::::
flood

::::::
water

:::::
depth

:::
The

::::::
global

:::::::
analysis

::
is

::
at

:::
the

::::::
spatial

::::::::
resolution

:::
of

:::::
0.25o,

::::::
which

::
is

:::::::::
insufficient

:::
to

::::
show

:::::::
enough

::::::
spatial

::::::
details.

::
In

::::
this

:::::::
section,

::
we

::::::::
evaluate

:::
the

:::::::::
uncertainty

:::::
range

::
in
:::
the

:::::
water

:::::
level

:::
and

::::::::::
inundation

::
at

:
a
::::::
higher

::::::
spatial

::::::::
resolution

::::
(i.e.,

:::::::
⇠90m)

::::
after

::::::::
applying

::
the

:::::::::::
downscaling

::::
(see

:::::::
Section

::::
2.4).

::::
The

:::::::
analysis

::::::::
presented

:::
in

:::
the

::::
main

::::
text

::
is

:::
for

:::
the

:::::
lower

::::::::
Mekong

:::::
region

::::::
where

:::
the

:::::
delta

:
is
:::::::::
vulnerable

::
to
::::::

floods.
::::
We

:::
also

:::::::
provide

::::::
results

:::
and

::::::::
analyses

:::
for

::::
other

:::::
large

::::
river

::::::
basins

::::
(e.g.,

::::::::
Amazon,

::::::::
Yangtze,

::::::::::
Mississippi,

::::
Lena,

::::
and

::::
Nile)

:::
in

::
the

::::::::::
supporting

:::::::
material.

:::::
Figure

:::
5-a

:::::::
displays

:::
the

:::::
flood

:::::
water

:::::
depth

:::
for

:::
the

:::::::
1-in-100

::::
year

::::
flood

::
at
:::
90

::
m

:::
for

:::
the

:::::
lower

:::::::
Mekong.

::::
The

::::::
largest

:::::
water

:::::
depth5

:::::
(>10.0

:::
m)

::
is

:::::
found

:::
in

:::
the

:::::
centre

:::
of

:::::
Tonle

:::
Sap

:::::
Lake

:::
and

::::
the

::::
main

:::::::
channel

::
of

:::
the

::::::::
Mekong

:::::
River.

::
A

:::::
large

:::::
extent

::
in
::::

the
:::::
lower

:::::::
Mekong

::::
delta

::::::
suffers

::::::::
relatively

:::
low

:::::::::
inundation

:::::
water

:::::
depth

:::
(in

::::
dark

::::
red).

::::
Low

:::::
water

:::::
depth

::::
also

:::::
occurs

:::::
along

:::
the

::::::::::
boundaries

::
of

::::
lakes

:::
and

:::::
main

::::::::
channels.

::::
The

::::
river

::::::::
tributaries

:::::
have

:::
low

:::::::
average

:::::
water

:::::
depth

::
in

::
all

::
of

:::
the

:::::::::::
experiments.

:::::
Figure

::
5-b , e2o_cnrs (48.9%) provides the largest value for most of

:::::
shows

:::
the

:::::::::::
uncertainties

:::::::
resulted

::::
from

:::::::
different

::::::::::
experiments

::::
listed

:::
in

:::::
Table

::
1.

::
In

:::::::
general,

:::
the

::::::::::
uncertainty

:::::
range

::
is

:::::
higher

::::::
where

:::
the

::::::::
estimated

:::::
water

:::::
depth

::
is
::::::

deeper
:::::::

(Figure
::::
5-a)

:::::::
because10

::
the

:::::::
largest

:::::::::::
uncertainties

:::
are

:::::
found

:::
in

:::
the

:::::
main

:::::::
channel

:::
of

:::::::
Mekong

::::
with

::::::::::
magnitude

::::::
higher

::::
than

:::
2.0

:::
m,

:::::
while

::::
the

::::::
lowest

::::::::::
uncertainties

:::
are

::::::
found

::
in

:
the land in North America, high latitudes in Europe and Asia, southeast Asia, central Africa and

southeastern Australia. Then e2o_univk (24.9%) is the highest in the regions around the Mediterranean Sea and central

Australia. e2o_ecmwf (6.2%) provides the highest floodplain water depth in the Amazon River basin. Regarding
:::::
deltas.

::::
The

:::::::::
uncertainty

::
in

:::
the

:::::
Tonle

::::
Sap

::::
Lake

::
is
::::::::::::

homogeneous
::::
with

::
a
:::::::::
magnitude

::::::
around

:::
1.0

:::
m.

:::
The

:::::::::
coefficient

:::
of

:::::::
variation

:::::::
(Figure

::::
5-c)15

:
is
::::::

higher
::::::
where

:::
the

:::::
mean

:::::
flood

:::::
water

:::::
depth

::::
and

:::
the

::::::::
deviation

::
is
:::::::

smaller.
::::

The
::::::
overall

:::::::::::
uncertainties

:::::::
mainly

:::::
result

:::::
from the

runoff inputs ranking in the middle
::::::
(Figure

::::
5-e)

::::
and

::::
from

:::
the

::::::
fitting

::::::::::
distributions

:
(Figure ??-c) , the variety increases as no

runoff input is
:::
5-f)

:::
and

:::
the

::::::::
variables

:::::::
(Figure

::::
5-d).

:::::
This

::
is

::::::::
consistent

:::::
with

:::
the

::::::::::
conclusions

::::
from

:
the middle one for a large

extent. The coverage of different runoff inputs ranges from 6.2% to 19.7% with a smaller variation than that for the lowest or

highest estimates. In regional scale, the e2o_anu and e2o_cnrs are in the middle for most of the river channels in the Northern20

Hemisphere and south of the 10oS. In the low latitudes in the Northern Hemisphere and the tropical regions, the e2o_univu

and e2o_ecmwf are probably being in the middle.
:::::
global

::::::::
analysis.

Therefore, for global-scale studies, there is no preference of runoff selection. Ensemble simulation is suggested to account

for the different ability of the land surface or hydrological models in different climates or topographic conditions. While

for regional studies, observations are recommended to validate the simulations. Ensemble simulations driven by all
:::
We

::::
also25

::::::::::
investigated

::
the

:::::
flood

:::::
water

:::::
depth

:::
for

::::
other

::::::
rivers,

::::::::
including

:::::::
Amazon,

::::::::
Yangtze,

::::::::::
Mississippi,

:::::
Lena,

:::
and

::::
Nile

::::
(see

:::::
Figure

:::::::
S1-S5).

:::::
Floods

::::
will

:::::
cause

:
a
:::::
large

::::::::
inundation

::::
area

::
in

:::
the

:::::
deltas

::::::::
although

::
the

:::::
flood

:::::
water

:::::
depth

:
is
::::::
small.

::::::
Higher

:::::::::
uncertainty

::
in

:::::
water

:::::
depth

::::
with

:::::
lower

::::::::
coefficient

::
of

::::::::
variation

::
is

:::::
found

::
in

:::
the

::::
river

::::::::
channels.

:::::
While

:::::
lower

:::::::::
uncertainty

:::
of

::::
water

:::::
depth

::::
with

::::::
higher

:::::::::
coefficient

::
of

:::::::
variation

::
is

:::::
found

:::
for

:
the

:::
delta

::::::
plains.

::::
The

:::::::::::
uncertainties

::
are

::::
still

::::::
mainly

::::::
caused

::
by

:::
the

:
runoff inputsare also preferable if the

observation is lack. Otherwise, selecting the runoff inputs which provides the estimation of water level in the middle would be30
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The types of runoff inputs corresponding to (a) the lowest, (b) the highest and (c) middle estimates of the mean annual maximum river water

depth. The coverage of each runoff corresponding to each map is shown in the right in unit of percentage.

Large variations are found among different runoff inputs in a different ranking. In Figure ??-a, e2o_anu and e2o_univu provide the lowest

estimation of the maximum water depth in most regions in the world, except North America, the southeastern Asia and the Green Land

(where e2o_ecmwf is the lowest). The regions with the two runoff account for 33.7% and 26.3% of the total continental grids, respectively.

In Figure ??

Figure 5.
::

The
:::::

mean
:::
and

::::::::::
uncertainties

::
of

:::
the

::::
flood

::::
water

:::::
depth

:::
for

::
the

:::::::
1-in-100

::::
year

:::::
return

:::::
period

::
in

:::
the

::::
lower

:::::::
Mekong

::::
River

:::::
Basin.

::::
The

::::
mean

::::::::
floodplain

::::
water

:::::
depth

:::
(a),

:::
the

::::::
standard

:::::::
deviation

:::
(b)

:::
and

:::
the

::::::::
coefficient

::
of

:::::::
variation

:::
(c)

::
are

::::::::
estimated

::::
based

:::
on

::
all

:::
the

::::::::::
experiments.

:::
The

:::::::
deviation

::::::::
proportion

::
to
:::
the

::::::
overall

::::::
standard

::::::::
deviation

::
(b)

::
is
::::::::
displayed

::
in

:::::
(d)–(f)

:::
for

:::::::
different

:::::::
variables,

::::::
runoffs

:::
and

:::::
fitting

::::::::
functions,

:::::::::
respectively.

::::
Area

::::
with

::::::::
floodplain

:::::
water

::::
depth

::::
less

::::
than

:::
0.01

::
m
:::

are
:::::::

masked
:::
out.

:::
We

:::
use

:::::::::::::::::
Multi-Error-Removed

:::::::::::::
Improved-Terrain

:::::
DEM

::::::
(MERIT

:::::
DEM)

::
as

:::
the

:::::
terrain

:::::
model.

::::
The

::::
cross

::
in

:::::
yellow

::
in

::
(a)

::
is

:::
the

::::::::::
representative

:::::
GRDC

:::::
gauge

::
to

::
be

:::::::
analyzed

::
in

:::
the

:::
next

:::::::::
subsection.
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recommended to reduce the risk of large deviation in one single runoff input.
:::
The

:::::::
selected

:::::::
variables

::::
and

:::::
fitting

::::::::
functions

::::
will

:::
not

:::
lead

::
to
:::::
large

:::::::::
deviations

::::::::
compared

::
to

:::
the

:::::
runoff

::::::
inputs.

:

4 Regional uncertainties analysis

3.1
::::

Flood
::::::
water

:::::
depth

:::
for

::::::::
multiple

::::::
return

:::::::
periods

In this section, the uncertainty range in the water level and inundation due to the selection of investigated variables, fitting

distributions and runoff inputs will be discussed. Different from the previous analysis, the results in this sectionare based on

the original results on the FFA, rather than the results after normalization. The uncertainty analysis is concentrated on the lower5

Mekong region, where the delta is vulnerable to floods. Point analysis and analyses on regional maps are combined to better

illustrate the uncertainties from various sources.

3.2 Point analysis

A specific point (105.00oE, 11.54oN located one grid after the confluence of the main Mekong River and the outflow from

Tonle Sap Lake, see the yellow cross point10

3.1.1
:::::
Point

:::::::
analysis

::
In

:::::::
addition

::
to

:::
the

:::::
global

:::
and

:::::::
regional

:::::::
pattern

:
at
::
a
:::::
single

:::::
return

::::::
period

::::::::
(1-in-100

::::
year

::
as

::::::
shown

::
in

:::::::
previous

:::::::
section),

:::
we

:::
are

::::
also

::::::
curious

::
to

:::::::::
understand

::::
how

:::
the

::::::::::
uncertainty

:::::
varies

::
at

::::::::
different

:::::
return

:::::::
periods.

:::
We

:::::::
selected

:::
the

::::::
Phnom

:::::
Penh

::::::::
(Latitude:

::::::::
11.5617,

:::::::::
Longitude:

::::::::
104.9317,

::::::
yellow

:::::
cross in Figure 5-a)was selected to analyze the uncertainties in the floodplain water depth. ,

::::::
which

:
is
::
a
:::::::::::
representative

::::::
GRDC

::::::
gauge

::
at

:::
the

:::::::::
confluence

::::
point

::
of

:::
the

:::::
outlet

:::
of

:::
the

:::::
Tonle

::::
Saple

:::::
Lake

:::
and

:::
the

:::::
main

:::::::
Mekong

:::::
River.

:
The15

estimated mean water depth as well as
::
and

:
the uncertainty range (doubled standard deviation) among

::
for

:
different conditions

are shown
:::::
plotted

:
as the solid line and shaded area, respectively, in Figure 6. The overall mean value of the estimated water

depth is shown in Figure 6-a. The water depth at 50% is 6.6
:::::
1-in-2

::::
year

::::::
return

::::::
period

::
is

::::
8.14 m and it is 7.9

:::
9.58

:
m for the

100-year return period flood(hereafter 100-yr flood)
:::::::
1-in-100

::::
year

:::::
flood. The overall uncertainty range

:::::::
standard

::::::::
deviation is

large up to 1.3
::::
0.69 m and it is generally the same for different return period frequency (from 0.1% to 99.9%)

:::::
periods.20

In Figure 6-b, the differences between mean floodplain water depth using river depth (V1_rivdph) and storage (V1_sto2dph
:::
V2)

is very small. The uncertainty range is still as large as that in Figure 6-a, indicating .
::::
This

::::::::
indicates that the uncertainty is little

contributed by
::::::
receives

::::
little

:::::::::::
contribution

:::::
from the variables for FFA but

::
is

::::
large

:::
for

:
other sources. Similarly, subtracting

the uncertainty from fitting distributions does not apparently decrease the uncertainty range (Figure 6-c), indicating
:::
-d).

::::
This

:::::::
indicates

:
that the uncertainty

:::
that resulted from the selection of fitting distribution is still small. Particularly

::
In

::::::::
particular, the25

mean value for GUM function in the tails of the floods (more than 20-yr
::::::
1-in-20

::::
year flood) is higher thaV2_n

::::
than results of

other functions, indicating that GUM may provide a relatively deviated estimate of mean floodplain water depth for the extreme

flood events. The
:::
This

:::::::::
difference

::
of

:::::
GUM

::::::
mainly

::::::::
happens

::::::
because

::::::
GUM

::::
only

:::
has

::::
two

::::::
degrees

:::
of

:::::::
freedom.

::::
The

::::::::::
uncertainty
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Figure 6.
:::::::::
Uncertainties

::
in
:::
the

::::::::
estimated

:::::::
floodplain

:::::
water

:::::
depth

:
at
::::::

Phnom
::::
Penh

:::::::::::
(104.9317oE,

:::::::::
11.5617oN)

::
in

:::
the

:::::::
Mekong

::::
River

:::::
Basin

::
in

::::::
different

::::::
groups.

::
a)

::
the

:::::
mean

::::::::
floodplain

::::
water

::::
depth

:::
and

::::::
overall

:::::::::
uncertainty;

::
b)

:::
the

::::
mean

:::
and

:::::::::
uncertainty

:
in
::::::
groups

::
of

::::::
different

:::::::
variables

:::
for

::::
FFA,

::
the

:::::::::
uncertainty

:
is
::::
then

:::
not

:::::
related

::
to

:::
the

::::::
selected

::::::
variable;

::
c)
:::
the

::::
mean

:::
and

:::::::::
uncertainty

::
in

:::::
groups

::
of

:::::::
different

::::
runoff

::::::
inputs;

::
d)

::
the

:::::
mean

:::
and

::::::::
uncertainty

::
in

:::::
groups

::
of

:::::::
different

:::::
fitting

::::::::::
distributions.

ranges of other uncertainties in GUM is still similarto the magnitude of uncertainties for other fitting distributions, indicating

:::::
except

:::::
GUM

:::
are

:::::::
similar,

:::::
which

::::::::
indicates

:
that the uncertainty from experiments other than

::::::::
excluding the fitting distribution is30

still large.

Figure 6-d
::
-c

:
separates the uncertainties of the runoff inputs from the overall uncertainties. It is notable that the mean

values significantly vary from different runoff inputs (solid linesin Figure 6-d). For the 100-yr
:::::::
1-in-100

::::
year flood, the mean

water depth ranges from 6.9
:::
8.57

:
m in e2o_univk to 9.8

:::::
10.58

:
m in e2o_cnrs (2.9

:::
2.01

:
m in difference). As for each of the

runoff
::::::
runoffs, the uncertainty caused by other sources (variables and fitting distributions; the shaded area in Figure 6-d

:
-c) is

now very small,
:
especially within the normal period (5-yr flood and 5-yr drought) covered by the modelled simulations (35

years in this study). While
::::::::::
Meanwhile, the uncertainty range starts to increase for the extreme floods. The uncertainty range5

increases to 0.3-0.5 m for 100-yr
:::::::
1-in-100

::::
year

:
flood (on average 25

:
5% of the total uncertainty) and 0.8-1.0 m for 200-yr

flood(on average 33.3% of the total uncertainty). Though,
:::::
0.4-0.6

:::
m

::
for

::::::::
1-in-200

::::
year

:::::
flood,

::::::::
although

:
the uncertainty range

is still much smaller than the deviations of the mean values. The increasing uncertainty is similar at the other end of the
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tails.
::::::
Similar

::::::
results

:::
are

:::::
found

:::
for

:::::
other

::::::
specific

::::::
points

::
in

:::::
other

::::
river

:::::
basins

::::
and

::::::
further

::::::
details

:::
can

::
be

::::::
found

::
in

:::
the

:::::::::
supporting

::::::::::
information.10

The above results

3.1.2
::::::::::
Inundation

::::
area

:::
The

:::::::::::
uncertainties

:::
are

::::
also

:::::::
reflected

::
in

:::
the

:::::::::
inundation

::::
area

:::::
which

::::
can

::
be

::::
used

:::
for

::::::::
assessing

:::
the

:::::
flood

:::::::
exposure

::
of
::::::::::
population

::
or

::::::::
economic

::::::
losses.

:::::
Figure

::
7
:::::::
displays

:::
the

::::::
results

:::
for

:::
the

:::::
lower

:::::::
Mekong

:::::
River

:::::
Basin

::
at

::
all

::::::
return

:::::::
periods.

:::
The

:::::
mean

::::::
values

:::::
(solid

::::
line)

:::
and

::::
also

:::
the

:::::::::
uncertainty

::::::::
(standard

:::::::::
deviation,

::::::
colored

:::::::
shades)

::
are

:::::::::
displayed

::
in

:::::::
different

::::::
groups.

::::
The

:::::
mean

:::::::::
inundation

::::
area

:::::::
increases

:::::
from

:::::
52098

::::
km2

:::
for

::
a

::::::
normal

::::
flood

::::::
(1-in-2

::::
year

::::::
return

::::::
period)

::
to

:::::
59330

::::
km2

::::::::::::
corresponding

::
to
::
a
:::::::
1-in-100

::::
year

:::::
flood5

::::::
(Figure

::::
7-a).

:

Figure 7.
:::
The

::::::::::
uncertainties

:
in
:::
the

:::::::
estimated

::::::::
inundation

::::
area

::
for

:::
the

::::
study

::::
area:

::
a)

:::::
shows

::
the

:::::
mean

::::::::
inundation

:::
area

:::
and

:::
the

:::::
overall

:::::::::
uncertainty,

:::::
(b)-(d)

::::
show

:::
the

::::
mean

:::
and

:::::::::
uncertainty

:
in
:::::::
different

:::::
groups

:::
by

:::::::
variables,

:::::
runoff

:::::
inputs

:::
and

::
the

:::::
fitting

::::::::
functions,

:::::::::
respectively.

:

::::::
Similar

::
to

:::
the

::::::::
features

::
of

:::::::::
floodplain

:::::
water

:::::
depth

::
at
:::::::

Phnom
:::::
Penh

::::::
(Figure

:::
6),

::::
the

:::::::::
magnitude

::
of

::::::::::
uncertainty

:::::
range

:::
in

:::
the

:::::::::
inundation

:::
area

::
is
:::::::

similar
:::
for

::
all

:::
the

::::::
return

::::::
periods

:::::::
(Figure

::::
7-a).

::::
The

:::::::::
uncertainty

:::::
range

:::
for

:::
the

::::
two

::::
ends

::
of

::::
tails

::
is
::
a
::::
little

:::
bit

:::::
larger.

::::
The

::::::::::
uncertainties

::::
also

::::::
mainly

:::::::
resulted

::::
from

:::
the

::::::::
deviation

::
of

::::::
means

::::::
values

::
in

:::::::
different

::::::
runoff

:::::
inputs

::::::
(Figure

:::::
7-c),

:::::
rather

:::
than

::::
the

:::::::
variables

:::::::
(Figure

::::
7-b)

::
or

:::
the

::::::
fitting

::::::::
functions

::::::
(Figure

:::::
7-d).

::::
The

::::::::
predicted

:::::::::
inundation

::::
area

:::
for

:
a
::::::::
1-in-100

::::
year

:::::
flood10
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:::::
ranges

:::::
from

:::::
54000

::::
km2

::
to

::::::
64000

::::
km2

::
in

:::::::
different

:::::::::::
experiments,

::::::::
indicating

::
a

::::
20%

::::::::
difference

::
to
:::
the

::::::
largest

::::::
extent.

:::
The

::::::::
standard

:::::::
deviation

:::
of

:::
the

:::::::::
inundation

::::
area

:::
for

:
a
::::::::
1-in-100

::::
year

:::::
flood

::
is

::::::
around

::::
2000

:::::
km2,

::::::
which

::::::::
increases

::
to

::::
3000

:::::
km2

:::
for

:
a
::::::::
1-in-200

:::
year

::::::
flood.

::
In

:::::::
general,

:::
the

:::::::::::
uncertainties

:::
for

:::
the

:::::::::
inundation

::::
area

:::::
share

::::::
similar

:::::::
patterns

::
to
::::

the
::::::
results

:::
for

::::::
specific

::::::
points.

::::::
These

::::::
results

demonstrate that runoff input is the primary source of uncertainty to the
::
in river water depth simulation. The

::::
This uncertainty is

mainly due to the systemic bias in the runoff inputs. While for a specific runoff input, the uncertainty is small
:
, especially during

the normal period when the estimated values are available (35 years simulation in our case). In the tails that
::::
That extrapolation

is applied to FFA ,
:
in

:::
the

::::
tails,

::::::
where the uncertainty range gets increasing

:
is

::::::::
increased,

:
mainly due to the different tail shape

of various fitting distributions. But
::::::::
However. the uncertainty range is still smaller than the deviation between results driven by5

different runoff inputs. Therefore, for impact assessment over the extreme events, the runoff inputs or the average state of the

extremes should be evaluated first with observed information,
:
if allowed. Then attention can

::::::::
Attention

:::
can

::::
then

:
be given to

the selection of different fitting distributions if observations of large floods can be used to optimize the fitting performance
:
,

especially in the tails.

Uncertainties in the estimated floodplain water depth at a specific point (105.00oE, 11.54oN) in different groups. a) the10

mean floodplain water depth and overall uncertainty; b) the mean and uncertainty in groups of different variables for FFA, the

uncertainty is then not related to the selected variable; c) the mean and uncertainty in groups of different fitting distributions,

d) the mean and uncertainty in groups of different runoff inputs.

3.1.3
:::::::::
Population

::::
and

:::::::::
economic

::::::::
exposure

::
to

:::::
floods

3.2 Regional analysis – floodplain water depth15

The floodplain water depth at a 100-yr flood was first downscaled to high-resolution map (90 m) to show
:::::::
Previous

::::::
results

::::
show

::::
that

:::
the

:::::::::
inundation

::::
area

:::::
varies

::
in

:::::
floods

::::
with

::::::::
different

:::::
return

::::::
periods

::
in
:::
the

::::::
Lower

:::::::
Mekong

:::::
River

::::::
Basin.

::::
This

:::::::::
inundation

:::
will

::::
lead

::
to

:::::::::
migration

:::
and

:::::::::
economic

::::::
losses,

:::::::
although

::::
the

::::::
impact

::::::
should

::
be

::::
with

::::::::::
uncertainty

:::::::
because

::
of
::::

the
::::::::::
uncertainties

:::
in

:::::::::
inundation

::::::::::
estimations.

::
In

:::
this

:::::::
section,

::
we

:::::::
evaluate

:::
the

::::::::
exposure

::
of

:::::::::
population

:::
and

::::::::
economy

::
to

:::
the

::::::
floods

:
at
::
a
:::::
global

:::::
scale.

::::
The

:::::
results

:::
are

:::::::::::
summarized

:::
for

::::
each

::::::::
continent

::::
(see

:::::
Figure

::::
S11

:::
for

:::::::
location

:::::
map).

::::
The

::::::
global

:::::::::
population

::::::
density

::::::
(period

::::
per

::::
km220

:::
and

:::
the

::::::::
economic

:::::::::::
development

:::::
(GDP,

:::::
USD

:::
per

::::
km2)

::::
can

::
be

:::::
found

::
in

::::::
Figure

::::
S12

:::
and

::::
S13.

:::::
Given

::::
that

:::::
runoff

::
is

:
the details with

topography and the mean floodplain water depth for the lower Mekong is shown as Figure 5-a. The largest water depth (>10.0

m) is found in the centre of Tonle Sap Lake and the main channel of the Mekong River
::::
major

::::::
source

::
of

:::::
these

:::::::::::
uncertainties,

:::
we

:::
did

:::
not

::::
show

::::::::::
uncertainty

::::::
ranges

:::
due

::
to

::::::
sources

:::::
other

::::
than

:::
the

:::::
runoff

::
in
::::::
Figure

::
8,

::::::::
although

:::
the

:::::::::
uncertainty

::::::
ranges

:::
can

:::
be

:::::
found

::
in

:::::
Figure

::::
S14.

:
25

::
In

::::
total,

:::
the

:::::::::
inundation

::::
area

:::
for

:::::
floods

::
at

:::::::
1-in-100

::::
year

:::::
return

::::::
period

:::::::
reaches

:::::::::::
13⇥106km2,

:::::::::
accounting

:::
for

::::
9.1%

::
of

:::
the

::::::
global

:::
area

:::::::::
(excluding

::::::::::
Antarctica).

::::
The

::::
ratio

:::
for

:::::::
different

::::::
runoff

:::::
inputs

::::::
ranges

::
in

:::::::::
8.1–10.3%. Large extent in the lower Mekong delta

is suffering relatively low inundation water depth (in dark red). The low water depth is also occurring along the boundaries of

lakes and main channels. The river tributaries are also with low average water depth among all the experiments. In summary
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(Table ??),
::::::::
Regarding

:::
the

:::::::::
population

::::::::
exposure,

:
the inundation area (water depth >0.01 m) of the study area during 100-yr flood30

is 68809.1 km2. Among which 22.2% of the area is with high water depth (>5.0 m, 15129.5 km2). 33.1% of the inundation

area is with water depth less than 1.0 m and 8.8% with water depth under 0.1 m.

(a) Ensemble mean water depth among all the experiments for 100-yr flood and (b) the overall uncertaint (standard deviation)

for all experiments. (c) and (d) illustrate the average uncertainty for fitting distributions and runoff inputs, respectively. Area

with floodplain water depth less than 0.01 m are masked out.

Inundation area with the floodplain water depth corresponding to 100-yr floods (Figure 5-a) with different water depth

categories. all 0.01-0.1 0.1-0.3 0.3-0.5 0.5-1.0 1.0-5.0 >5.0 all
:::::
gross

::::::
number

::
is

::::
1.17

::::::
billion,

:::::::::
accounting

:::
for

:::::
13.4%

:
[km2

::::::::::
12.1%–15%]

68809.16078.3 5030.6 3707.9 7976.1 30886.7 15129.5 percentage to all
::
of

:::
the

::::
total

::::::::::
population.

:::
The

::::::::
potential

::::::
impact

:::
on

:::
the5

::::
GDP

::::
will

::::
reach

:::
up

::
to

::::
14.9

::::::
trillion

:::
US

::::::
dollars

::::::
(USD)

::
in

::::::
average

::::
with

:::
the

:::::::::
proportion

::
of

::::::
13.1%[

:::
11.8%

::::::
–14.7%] 100.0 8.8 7.3 5.4

11.6 44.922.0
:

of
:::
the

::::
total

::::::
values.

:

Figure 5-b shows the uncertainties resulted from different experiments listed in Table 1 except for fitting distributions of

GAM and GUM because of their poor fitting performance. In general,
::::::
Among

::
all

:::
the

::::::::::
continents,

::::
Asia

::::
will

:::::
suffer

:::
the

::::::
largest

::::
flood

::::::
extent

:::
and

::::
also

:::
the

::::::
largest

:::::::::
population

::::::::
exposure

::::::
(above

:::
0.6

::::::::
million)

:::
and

:::::::::
economic

:::::::
exposure

::::::
(above

::
6
::::::
trillion

::::::
USD)

::
to10

the uncertainty range is higher where the estimated water depth is higher (Figure 5-a) as the lowest uncertainties are found

in the lower Mekong delta and largest uncertainties in the main channel of Mekong with magnitude higher than 2.0 m. The

uncertainty in the Tonle Sap Lake is homogeneous with a magnitude around 1.0 m.

The overall uncertainties mainly result from the fitting distributions (Figure 5-c)and
:::::
floods.

::::::::
Although

:::::
these

::::::
values

:::
are

:::
not

the runoff inputs (Figure 5-d) . Whilst the uncertainties from runoff inputs contributed the most because the magnitude in15

Figure 5-d is very similar to the overall uncertainties (Figure 5-b). This is consistent with the conclusion from point analysis

in the previous subsection. It further strengthens the point analysis and makes it valid over the entire region. The uncertainties

of fitting distributions are small in the lower deltas, but it gets larger when the water depth increases. The largest uncertainty

is approaching 1.0 m in the upper Mekong reaches of the study area. Though, the increases in water depth will not lead to

significantly increase inundation area.20

3.2 Regional analysis – inundation agreement

Despite the uncertainties with estimated mean floodplain water depth,
:::
final

:::::
flood

::::::::
damages,

:
the agreement on the prediction

of inundation among different FFA settings might be more important because the inundation will cause damages regardless

of the water depth. High inundation agreement will provide the confidence of adapting corresponding actions, for example,

evacuation in the most serious condition. Figure ?? illustrates the inundation agreement among all the experiments in the study25

area. In general, the agreement is high for the lakes, river channels and the lower Mekong deltas (coloured in dark blue, ⇠100%

), indicating that if suffering a 100-yr flood, all these regions will be inundated regardless of different runoff inputs and used

fitting distributions. Lower agreement is generally with lower estimated water depth around the boundaries of lakes and other

inundation areas. Particularly, the large area of the Krong Prey Veng (white square in Figure ??)is with inundation agreement

22



around 50%, indicating that the resulting inundation is not highly consistent, which means selection of different runoff input30

and fitting distributions will lead to big differences (inundation or non-inundation).

Inundation agreement of the estimated inundation (>0.01 m) for the ensemble 100-yr flood. It is calculated as the ratio of

the number of experiments which predict the inundation to the total number of experiments. The white square represents the

region of Krong Prey Veng.

Figure ?? shows the inundation area in different categories of mean floodplain water depth. Meanwhile, the inundation area

is separated according to the level of inundation agreement, with �50%as high agreement and <50% as low agreement. For the

regions with high predicted inundated water depth (>1.0 m), different experiments are highly consistent as all the inundation

area is with agreement larger than 50%. In other words, more than 50% of the experiments predict inundation at this location.5

On the contrary, the agreement is low for inundation area with mean floodplain water depth less than 0.1 m, as 83.8% of the

area has a agreement less than 50%. The percentage of area with low inundation agreement decreases from 83.8%for low mean

water depth 0.01 – 0.1 mto 5.1% for the area with water depth 0.5 – 1.0 mand to 0% for the area with water depth larger than

1.0 m.

Area (km2) and proportions (%) of the inundation with different uncertainty in different categories of the ensemble mean10

floodplain water depth for the ensemble 100-yr flood. For each water depth category, low agreement and high agreement are

divided by criterion of 50%. The labels for each bar is the inundation area (km2, up) and the percentage of the area (%, low) in

each category of floodplain water depth.

To conclude, for a potential 100-yr flood, 13.4% of the predicted inundation area (9239.1 km2) is with low model agreement

less than 50% as half of the experiments/FFA settings predict non-inundation for this location. Selection of the appropriate15

experiments will become more important for flood prediction and risk analysis. For regions with high model agreement (>50%),

the adaptions to the predicted floods have to be taken in high confidence. However, the required actions can be different for

different flood water depth.

3.2 Regional analysis – inundation area

In addition to the 100-yr flood, the predicted inundation area, as well as the uncertainty for all the return periods, are investigated20

in this subsection. The mean inundation area averaged over the estimated inundation area in each experiment and
:::::::
potential

:::::
impact

:::
of the uncertainty of the inundation area are plotted as Figure 7. The mean inundation area increases from a normal

flood (return period as 50%, 52135.2 km2) to 62234.8 km2 corresponding to a 100-yr flood (Figure 7) . However, it is notable

that the inundation area for 100-yr flood is 68809.1 km2 (10.6% higher) in Table ?? if inundation is calculated according to

the mean floodplain water depth averaged over different experiments. This difference is mainly caused by the different ways25

of estimations, as in this subsection, the inundation area is estimated first for each experiment and then they are averaged to

reach the mean value. While for the previous estimates in Table ??, the inundation area is calculated by the averaged floodplain

water depth over multiple experiments. In that case, one single experiment with very high floodplain water depth can lead to

high mean water depth (>0.01 m) even if the other experiments do not predict inundation in the same location. This is why, in
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the Figure ??, the model agreement is very low especially for the area with the ensemble mean floodplain water depth less than30

0.1 m.

Similar to the features of floodplain water depth at the selected point (Figure 6), the magnitude of uncertainty range in the

inundation area is similar for all the return periods (Figure 7-a) . The uncertainty range for the two ends of tails is a little bit

larger. The uncertainties are also mainly resulted from the deviation of means values in different runoff inputs (Figure 7-b).

The predicted inundation area for a 100-yr flood ranges from 56000 km2 to 70000 km2 in different experiments, indicating a

20% difference to the largest extent.

The uncertainties in the estimated inundation area for the study area. a) shows the mean inundation area and the overall

uncertainty, b) shows the mean and uncertainty related to runoff inputs.5

3.2 Validation with other results

In this subsection, the inundation map is compared to two flood hazard maps from different sources. The first source of

the flood hazard map is from GAR (Global Assessment Report on Disaster Risk Reduction, GAR, 2015). This dataset was

observation-based for large rivers. Quantiles of the river discharge were estimated based on the collected stream-flow or proxy

data from homogeneous regions. The calculated quantiles were then introduced to river sections with topographic data (SRTM)10

and a simplified approach based on Manning’s equation to model the water levels (Rudari et al., 2015). The second source is

JRC (Joint Research Centre Data Catalogue) data based on streamflow data from the European and Global Flood Awareness

System (EFAS and GloFAS) and computed using two-dimensional hydrodynamic models-CA2D (Alfieri et al., 2014; Dottori et al., 2016)

.Though, it was already mentioned in the references that there are limitations in the model and the maps might differ from

official flood hazard maps. The two maps are plotted as Figure ??-a and ??-b.15

Comparison of inundation map with other flood hazard map for 100-yr flood (a) GAR, (b) JRC, (c) CaMa-Flood. The three

maps are all at 30 arcsec spatial resolution. Pakse is one of the GRDC gauges just upstream of the study area of the lower

Mekong River.

The spatial resolution of the GAR dataset and JRC dataset is 30 arcsec. It is recommended that the comparisons are conducted

on the same spatial resolution. We therefore downscaled the original CaMa-Flood results to 30 arcsec (Figure ??-c) . Large20

differences of the inundation area in the tributaries can be seen by comparing the three maps in the lower Mekong River, as

almost all the tributaries are inundated in GAR dataset, while very few tributaries are in high risk in JRC dataset. The risk

of inundation in tributaries is in the middle for CaMa-Flood result. Flood extent simulation in tributaries is affected by many

factors including model’s spatial resolutions, model parameters such as channel cross-section, and also flood frequency analysis

in observation based product. The other difference is
::::
flood

::
in

::::
Asia

::::
(AS)

::
is
:
the floodplain water depth: both the two model-based25

results (JRC and CaMa-Flood) predict similar but much higher water depth (>10 m) along the main river channels.While the

water depth in the GAR data is only around 5 m.The water depth in the Tonle Sap lake is probably not considered as flood

hazard in GAR and JRC. The third difference is related to the topography. Stripes are found in the lower Mekong delta regions

in JRC, which is caused by the biases of the topography (this has been well explained and addressed by the MERIT dataset,

see reference of (Yamazaki et al., 2017)) . In GAR, the spatial distribution of the water depth over the delta regions are also not30
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vary realistic. The accuracy of the topography (DEM) is of vital importance for inundation calculation especially for the lower

flat regions. The flood extent with water depth between 0.01m-1.0m is the most sensitive to the topography (grey areain Figure

??). Corresponding extent in GAR is mainly over the Tonle Sap lake, where the underwater bathymetry is not accessible and

the backwater effect is difficult to accurately modelled; the corresponding extent in the CaMa-Flood is mainly distributed in the

coastal deltas because of the bifurcation channels (Yamazaki et al., 2014) and around the boundaries of the flood extent which

seems more realistic. Despite of the differences, CaMa-Flood hazard map (Figure ??-c) is reasonable since its extent is almost

within range of existing hazard maps (Figure ??-a,b) even though the baseline topography or methodology are different. The

floodplain water depth in CaMa-Flood also exhibits similar spatial patterns especially with the JRC flood hazard map, despite of

the values in the Tonle Sap lake
:::::::
highest.

:::
The

::::
area

::::
with

::::
high

:::::::::
population

::::::
density

::::
and

::::::::
economic

:::::::::::
development

::
is

:::::
highly

:::::::::
consistent5

::::
with

:::
the

::::::::::
flood-prone

::::
area

::::
(e.g.,

:::
the

::::::::
Yangtze,

::::::::
Mekong,

:::::::
Ganges

:::
and

::::::
Indus).

:::::::::
Compared

:::
to

:::
AS,

::::::
North

:::::::
America

:::::
(NA)

::::
will

::::
also

:::::
suffer

::::
large

:::::
flood

:::::
extent,

:::::
while

:::
the

:::::::::
population

::::
and

::::::::
economic

::::::::
exposure

:
is
::::::::
relatively

:::::
small

:::::::
because

:::
the

::::
area

::::
with

::::
high

:::::::::
population

::::::
density

::
or

::::::::
economic

:::::::::::
development

::::
(i.e.,

:::
the

:::::::
eastern

::::::
coastal

::::
area

::
of

:::
the

::::
US)

:
is
::::

not
::::::::
consistent

::::
with

:::
the

::::::::::
flood-prone

::::
area

:::::::
(central

::::
plain

::
or

::::::::::
Mississippi

::::
area).

::::
The

::::
other

:::::::::
continents

::::
will

:::::
suffer

::::::
smaller

:::::::::
inundation

::::
area

::::
and

:::::
lower

::::
total

:::::::
exposure

:::
of

:::
the

:::::::::
population

:::
and

::::::::
economy

::
to

:::
the

::::::
floods.

::::::::
However,

:
it
::
is

:::::
better

::
to

::::::::
compare

::
the

:::::::
relative

:::::
values

:::::::::
(compared

:::
to

::
the

:::::::
specific

:::::::::
continent)

:::::
rather

::::
than10

:::::::
absolute

:::::
values

:::::::
because

::
of

:::
the

::::
area

:::::::::
difference.

:

A summary of the total inundation area based on the three maps is provided as Figure??-a, with two different threshold for

inundation as 0.01 m (left panel)and 1.0 m (right panel), respectively. For either of the criterion, the sum of the inundation area

in CaMa-Flood (averaged of different experiments) is within the value range of GAR and JRC. The flood extent with 0.01-1.0

m water depth accounts for around 25%for the three products and contributes the most to the overall deviation. While for15

larger flood with flood water depth larger than 1.0 m, the three products provide similar total inundation area . The remaining

differences can be explained by the runoff uncertainty because the deviation of results driven by different runoff inputs exceeds

the difference among the mean value of the three products (right panel of Figure ??-a).

The variation of the inundation area is closely related to the variation of the predicted discharge at Pakse which represents

most the river discharge to the lower Mekong from upstream (Figure ??-c). The discharge driven by R2 (e2o_cnrs) is the20

highest and R6 (e2o_univk) is the lowest in both the inundation area and the discharge (Figure ??-b), while the real discharge

(GRDC) is among the spread ranges of all the seven different runoff inputs. It is also notable that the inundation area for

CaMa-Flood at 3 arcsec is 68809.1 km2 and 46016.2 km2 (Table ??) for area with water depth larger than 0.01 m and 1.0

m, respectively. The total inundation area is around ⇠20%lower than the results based on 30 arcsec resolution shown in

(Figure ??-a, 79791.9 km2 and 60073.7km2, respectively). The difference at the two spatial resolution is resulted from the25

ability to describe the heterogeneity in topography with the high-resolution topography data. This large difference indicates

that the current assessment on the flood risk/impact could have been overestimated and it requires a necessity to apply a much

higher-resolution topography to the current methodologies.

4 Overview of uncertainties for different floods at a global scale
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Figure 8. (a) shows
::::::::
Population

:::
and

::::::::
economic

:::::::
exposure

::
to

:::::
floods

::
in

:::::::
different

:::::
return

::::::
periods

:::
and

:
the uncertainties of CaMa-Flood total

inundation area driven by different
:::
due

::
to runoff(boxplots.

:::
The

::::
first

:::
row

:::::
shows

:::
the

:::::::
absolute

:::::
values, from R1

::::
while

::
the

::::::
second

:::::
shows

:::
the

::::::::
proportion to R7, Table 1) and

:::
total

:::::
values

::
in

:
the comparisons of average area with other two maps (blue dashed and red dashed line)

::::::
specific

:::::::
continent. The sum of

::::::
left-hand

::::::
column

:::::
shows the inundation area is counted by area with floodplain water depth higher than 0.01 m (left

panel) and 1.0 m (right panel)
::::::::
population, respectively

::::
while

:::
the

::::::::
right-hand

::::::
column

:::::
shows

:::
the

:::::
Gross

:::::::
Domestic

::::::
Product. (b) Comparison of

:::::::
Different

::::
colors

:::::::
represent

:::::::
different

::::::::
continents

:::
and the estimated annual maximum discharge at Pakse gauge by CaMa-Flood driven by

:::::
values

::
for

:::
four

:
different runoff inputs. Pakse gauge

::::
return

:::::
periods

:
(105.8oE

::
i.e., 15.1167oN

:::::
1-in-2,

::::::
1-in-10,

:::::
1-in-50

:::
and

:::::::
1-in-100

:::
year) is located right

up to
::
are

:::::::
marked.

:::::::
Different

:::::
curves

::
in the edge of

::::
same

::::
color

:::::::
represent the upper reaches

::::
results

:
for the study area (see Figure ??-c)

::::::
various

::::
runoff

:::::
inputs. The plot is only for the annual maximum daily discharge covering 1980-1993 determined by the available period

:::::
names of

GRDC
::::::
different

:::::
runoff

:::::
inputs

:::
are

::
not

:::::::
specified.
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Figure 4 summaries the mean floodplain water depth and the related uncertainties over the globe in order to have a broader30

view of FFA above regional results. Results corresponding to floods in two different return period (i.e., 100 year and 20 year)

were compared. 20-yr flood is within the computation period (35 years in this study) while the water depth for 100-yr floods

has to be obtained through extrapolation.

For the mean values, the floodplain water depth will exceed 10 m in most of the main channels of large rivers if suffering

a 100-yr flood (Figure 4-a). The risk is especially high
::::::::
Regarding

:::
the

::::::
relative

:::::::::
inundation

::::
and

:::::
flood

:::::::
exposure

::::
(the

::::::
second

::::
row

::
in

:::::
Figure

:::
8),

:::
the

:::::::::
inundation

::::
area

::::::::
accounts

::
for

:::::::::
12.5–15%

::
of

:::
the

::::::::::
continental

::::
area

::
in

:::
NA

:::::
while

:::
the

:::::
flood

:::::::
exposure

:::
of

:::::::::
population

:::
and

::::::::
economy

::
is

::::::
around

::::::
7–9%.

::
In

::::::::::
comparison,

:::
the

::::::::::
inundation

::::
area

:::::::
accounts

:::
for

:::::
3–8%

:::
of

:::
the

:::::::::
continental

::::
area

:
in the Amazon

River, Congo River, large rivers in southern China, southeastern
:::::
Africa

:::::
(AF),

:::
the

:::::::::
population

::::::::
exposure

:::::
ratio

::
is

::::::
7–13%

::::
and5

::::::::
economic

::::::::
exposure

::
is

:::::::
10–18%,

:::::::::
indicating

::
a
::::
high

:::::::::::
vulnerability

::
in

:::
AF

:::
to

:::
the

::::::
floods.

:::
The

:::::
ratio

::
of

:::::::::
population

::::::::
exposure

::
in
::::

AS

::::::::
(12–19%)

::
is

::::::
higher

::::
than

:::
that

::
in
::::

AF
:::
due

::
to

:::
the

:::::
high

:::::::::
consistency

:::
of

:::::::::
population

::::::::::
distribution

::
in

::::::::
Southern Asia and the rivers in

Siberia. The spatial patterns of the floodplain water depth for 20-yr flood are very similar to the 100-yr flood but with lower

magnitudes (Figure 4-b) . The total uncertainties, including different fitting distributions and multiple runoff inputs are shown as

Figure 4-c,d for 100-yr and 20-yr flood, respectively. In general, high uncertainties are along with high predicted water depths.10

What needs to be noticed is the higher uncertainties tend to occur in mountainous regions rather than the flat regions, typically

in the rivers originating from the Tibetan Plateau and Siberia. The uncertainties in the lower Yangtze, Mekong, Salween rivers

are much lower than estimated uncertainties in their upstreams while the mean water depths are higher in the lower reaches.

High uncertainties are also found in the Congo River. Although it is not surrounded by high mountains, its main channel is

relatively short compared to its drainage area. The fluctuation in the river discharge will lead to high gradients in the water15

level which could be associated with its high uncertainties shown in (Figure 4-c and d
::::::::::
flood-prone

:::::
areas.

::::
The

:::::::
economy

:::
in

:::
AS

::::::::
(12–20%)

::
is

:::
less

::::::
fragile

::::
than

:::
that

:::
in

:::
AF

::::
given

::
a
::::::::
relatively

:::::
larger

:::::
flood

:::::::::
inundation

::::::::
(7.5–10%). The uncertainties in the Amazon

is relatively low compared to the high mean water depths, this could result from the higher consistency of modelled runoff or

fitting distributions and its relatively flat topography. The uncertainties in 20-yr show relatively lower values than that in the

100-yr flood
:::::::::
inundation

:::::
ratios

:::
and

:::::
flood

:::::::
exposure

:::::
ratios

::
in
:::::
other

:::::::::
continents

:::
are

::::::
similar,

::::::
which

:::::::
suggests

:::
an

::::
even

::::::::::
distribution

::
of20

:::::::::
population

:::
and

::::::::
economy

::
in

:::
the

::::::::::
flood-prone

:::
and

:::::
other

::::::
regions.

The mean floodplain water depth and uncertainties over the globe for 100-yr flood (left column) and 20-yr flood (right

column). The first row is the mean floodplain water depth. The other three rows are the total uncertainties and uncertainties

from fitting distribution (with e2o_ecmwf runoff) and runoff inputs (with GEV fitting function).

As stated in the regional studies, the uncertainties of predicted water depth are mainly contributed by the deviations
:::
The25

::::::::
deviations

::
of
::::::

curves
:::
in

:::
the

::::
same

:::::
color

::::::
reflect

:::
the

:::::::::::
uncertainties.

::
It
::
is

:::::::
notable

:::
that

:::
the

:::::::::::
uncertainties

:
in

:::
AF

:::
for

:::
the

::::::::
economy

::
is

::
the

:::::::
largest.

:::
For

::::::::
instance,

:::
the

::::::
highest

::::::::
economic

::::::::
exposure

::
to

::::::::
1-in-100

::::
year

:::::
floods

::::::::::
approaches

::::
19%

:::
for

:
a
::::::
certain

::::::
runoff,

:::::
while

::
it

:
is
:::::
13%

:::
for

:::
the

:::::
lowest

:::::
with

:
a
:::
up

::
to

:::
6%

:::::::::
difference.

::::
The

::::::::
economic

::::::::
exposure

:::
for

::
a
:::::
1-in-2

::::
year

:::::
flood

:::
for

:
the runoff inputs. At a

global scale, the same results are found that the uncertaintiesresulted from fitting distributions contribute much less than that

from the runoff. Figure 4-e and f show the uncertainties due to selections of the fitting distributions in the experiments of group30

driven by e2o_ecmwf. Very small values are found in the same scale of colours for the total uncertainties. On the contrary,
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the uncertainties due to runoff inputs (within experiments group fitted by GEV distribution as an example, Figure 4-g,h) have

similar magnitude of the total uncertainties, indicating that most of the uncertainties can be attributed to the deviations in runoff

inputs.

The other finding is for the flood within the period of simulations (20-yr flood in the case of 35-years’ simulation in this35

study), the uncertainties due to fitting distribution is nearly zero for the globe (Figure 4-f) . While, higher uncertainties can be

visualized for the 100-yr flood(Figure 4-e) especially in the Amazon, Indus and rivers in the southeast Asia, southern China and

the Siberia. The differences tell that the uncertainties due to fitting distribution are mainly because of the extrapolation out of

the period with simulated or observed data. While within the period of available data, uncertainties due to fitting distributions

will be efficiently constrained.5

Figure ?? shows the changes in contribution of uncertainties in fitting distribution (and runoff inputs) to the total uncertainties

from 20-yr flood to 100-yr flood. Positive values show that the uncertainty contribution is higher in 100-yr flood than that

in 20-yr flood. Figure ??-a indicates that for almost all the global grids, the contribution of the uncertainties due to fitting

distribution increases. This is mainly
::::::
former

:::::
runoff

::::::::
(>15%)

::
is

::::::
already

::::::
higher

:::::
than

:::
that

:::
for

::::
the

::::
latter

::::::::
1-in-100

::::
year

::::::
flood.

::::
This

::::::::
deviation

:
is
::::::::

primarily
:::::::

caused
::
by

:::
the

:::::::
various

::::::::
processes

::
in

:::
the

::::
land

::::::
surface

:::::::
models

::
or

:::::::::::
hydrological

::::::
models.

:::::::::
However,

:::
the10

:::::::::::::
parameterization

:::
in

:::
AF

::
is

:::
not

::::
well

::::::
solved

::::::
among

::::::::
different

::::::
models

:::::::::
compared

::
to

:::::
other

:::::::::
continents,

::::::
which

::
is

::::::::
probably

:
due to

the extrapolation of fitting and larger uncertainties occur in the fitting tails. Although the uncertainties in runoff inputs are

still the dominant, we need to pay more attention to the selection of fitting distribution for the rarer floods .
:::::::::
complexity

:::
of

::
the

::::::::::
topography

::::
and

::::::
climate

:::::
zones

::
in

::::
AF.

::::
This

::::
high

::::::
degree

::
of

::::::::::
uncertainty

:::::
makes

::
it
:::::::
difficult

::
to

:::::::::
accurately

:::::
assess

:::
the

:::::::::
economic

:::::
impact

:::
of

:::
the

:::::
floods

::
in

:::
the

::::::
current

:::::::
situation

::::
and

::::
also

::
for

:::
the

::::::
future

::::::::::
projections.15

Changes in the contribution of uncertainties to the full uncertainties for 20-yr flood and 100-yr flood. a) represents the

contribution of uncertainties among fitting distributions and b) represents the contribution of uncertainties among runoff inputs.

The contribution is calculated as the ratio of standard deviation to the total uncertainties of multiple experiments, corresponding

to the third (and fourth) row and the second row, respectively.

Figure ??-b indicates the changes in contribution of uncertainties from runoff inputs. Obvious deviations are found between20

the mountainous/dry regions (e.g., The Rocky Mountains, Sahel, Central Australia, Central Asia) and floodplain/wet regions

(e.g., Amazon, Congo, Ganges, Indonesia). The change means, for the rare floods (100-yr flood), the contribution of uncertainties

from runoff inputs increases for the wet regions. Selection of the appropriate runoff becomes more important as well in this

case. Note that the total uncertainty is not equal to the sum of the uncertainties from runoff and fitting distributions, the increases

of both contributions indicate higher necessity of accounting for the uncertainties especially in the wet regions.25

4 Discussion
:::::::::
Discussions

:
and Conclusion

:::::::::
conclusion

4.1 Discussion
:::::::::
Discussions

This study assesses the flood risk based on pure
:::::::
assessed

:::
the

:::::
FHM

:::::
based

:::
on

:
simulations with a global hydrodynamic model

(CaMa-Flood). Due to
:::
The

:::::::
analysis

::
of

:::::
flood

::::::
hazards

::::
can

::
be

::::::::
uncertain

:::::::
because

::
of

:
the multiple choices of runoff inputs, fitting
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distributions for flood frequency analysis (FFA )
:::
FFA

:
and the variables for FFA, the analysis of flood risk can be uncertain. The30

performance of the FFA is also varying in experiments with various combination of the above conditions. We conclude from

the analysis with a performance metric aic that the river water depth (V1_rivdph) is more suitable for the FFA than converting

the river storage to river depth (V2_sto2dph). Applying F2-GAM and F4-GUM is not suitable for the FFA because it leads to

low fitting performance at a global scale through a ranking approach. F6-WAK performs the best mainly because it has five

parameters while other 3-parameters fitting distributions (F1-GEV, F3-PE3 and F5-WEI) are in the middle. The fundamental

limitation of this study is that the conclusion is based on uncalibrated simulations rather than observations and conclusions can

differ if different routing method (rather than CaMa-Flood) is used. However, the attempts to assess the flood risk at a large

scale provide reference information and routines for similar analysis. Moreover, FFA at the global scale based on observations5

is not feasible because of the lack of long-term observations on the water level or water storage and the difficulty to reach all the

existing data. Model simulation has its advantage as it covers a larger areaand longer period because the forcing variables are

much better in temporal and spatial coverage (Jones and Kay, 2007). Simulations can also estimate the high floods while the

in-situ measurement for the large discharge can be with high uncertainty as well (Di Baldassarre and Montanari, 2009). Thus

at the current stage model estimations are still important and can be relied on as a good reference data to conduct the flood10

frequency analysis if the uncertainties are properly treated.
:::
Our

::::::
results

::::
show

::::
that

:::::::
variation

::
in
::::::
runoff

::::::
derived

:::::
from

:::::::
different

::::
land

::::::
surface

::::::
models

::::
and

::::::::::
hydrological

::::::
model

::
is

:::
the

::::::
primary

::::::
factor

::::::
behind

:::
the

::::::::::
uncertainties

:::
in

::::
flood

:::::
water

:::::
depth

::::
and

:::
the

:::::::::
inundation

::::
area,

::
as

::::
well

::
as

:::
the

:::::
flood

::::::
impact

::
on

:::::::::
population

::::
and

::::::::
economy.

The uncertainties in the estimated floodplain water level can be derived from multiple sources. Trigg et al. (2016); Bernhofen et al. (2018)

compared the flood hazard maps (inundation area) over Africa with multiple products from six different institute. Large15

diversity is found in the inundation area among different model products, however, they have difficulties to attribute the

variations or explain the behind reasons because different products use different forcing input, different model, different

topography and different frequency analysis. They suggested rather than the product-level comparisons, component-level

comparisons with limited variables could be better to attribute the uncertainties. In this study, by fixing the hydrodynamic

model (CaMa-Flood), other uncertainties can be more easily quantified and attributed. Runoff inputs are regarded as the largest20

contributor to the final uncertainty. Because the runoff inputs are driven by the same WFDEI forcing, the differences in the

output therefore explicit the difference of land surface models or hydrological models (?). Moreover,
:::::
FHM

:::
and

:
FFA only

uses the
:::::
annual

:
maximum water level (or water storage)

:
;
::::::::
therefore, the variety in the FFA only demonstrate the performance

::::
only

:::::::::::
demonstrates

:::
the

::::::::::
performance

::
of

:
rainfall-runoff models in reproducing the discharge peaks

::::
peak

::::::::
discharge. Separation of

surface runoff and subsurface runoff,
:
and the evaporation rate during the extreme raining events can lead to the differences25

::::::::
deviations

:
in total runoff and the hydrodynamic processes during routing. Among the different runoff inputs, the e2o_ecmwf

by HTESSEL stands in the middle according to the point analysis in Figure 6-d. However, the runoff input providing the middle

estimation of water depth varies for the world (Figure ??). This shows no runoff input is preferable
::::::::::
hydrography

::::
after

:::::::
routing.

::
In

:::
this

:::::
study,

:::
the

::::::
runoff

:::
and

:::
the

::::
river

::::::::
discharge

::::::::
estimated

:::
by

:::::::::::
CaMa-Flood

:::
are

:::
not

:::
yet

::::::::
calibrated

::::::
against

:::::::::::
observations,

::::::::
although

:::::::::
calibration

:::
will

::::
ruin

:::
the

:::::::
designed

:::::::::
sensitivity

:::
test

::::
with

::::::::
different

:::::::
runoffs.30
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:::::
There

::
is

:
a
::::
lack

::
of

::::::
studies

::::
that

::::
have

:::::::
assessed

:::
the

::::::::::
sensitivities

:::
of

:::::
runoff

::::::::
selection

::
to

:::
the

:::::
flood

:::::::::
inundation at a global scalefor

estimating the high water states, nor the land surface or hydrological models. Either the estimation needs validation with

observations (Lin et al., 2019), or ensemble simulation is needed at a large scale (Warszawski et al., 2014; ?). For specific

regions, Figure ??-c can be used as a reference for selecting a runoff input in the middle to reduce the risk of large uncertainty

in floods if conducting all the runoff inputs consumes a large amount of computation.35

The agreement on the inundation prediction is assessed for the lower Mekong basin. In general, the agreement is high

(>50% ) for most of the inundation area (86.6%), and approaching 100%if the predicted mean floodplain water depth is

larger than 0.5 m. Despite the highly certain inundation area, attention should be also paid to regions where the inundation

is predicted while the model agreement is relatively low (<50%) because the uncertainty from multiple sources will cause

different consequences (inundation or non-inundation), especially the low human habits as shown in Figure ??.
::::::::
Although

::
?5

:::::::
assessed

:::
the

:::::
global

:::::::::
inundation

::::
and

:::::::::
population

::::::::
exposure

::::
with

:::::::
multiple

:::::
runoff

::::::
inputs,

::::
their

::::::
results

:::
are

::::::::::
simulations

:::
for

::::
each

::::
year

:::
(not

:::
for

::
a
::::::::::::
low-frequency

:::::
flood)

:::::
with

:::::
much

:::::
wider

::::::::::
uncertainty

:::::
range.

::::
For

:::::::
regions,

:::
the

::::::::
estimated

:::::::::
inundation

::::
area

::::::
ranges

:::::
from

::::::::
3.5%–9%

:::
for

:::
the

:::::::
1-in-100

::::
year

:::::
return

::::::
period

::
in

::::::
Africa

:::::::::::::::
(Trigg et al., 2016)

:
.
:::::
While

::
it

:
is
:::::
4.5%

:::
for

:::::::::
experiment

::::::::::
"GloFRIS",

::::::
which

:
is
:::
the

:::::
same

::
as

:::
our

::::::::::
experiment

:::
R7

:::
but

::::
with

:::::::
different

:::::::
routing

::::::::
DynRout,

::::::::::::
approximating

:::
our

::::::
results

::
in

::::::
Africa

:::::
4.4%[

::::::::::
3.5%–5.2%]

:
.

::::
This

:::::::
suggests

::::
that

:::
the

::::::::
deviation

::::
due

::
to

::::::
routing

:::::::
models

::::
(i.e.,

::::::::
DynRout

::::
and

::::::::::::
CaMa-Flood)

::
is

:::::::
limited,

:::::
while

::::::::
deviation

:::
due

:::
to10

::::::
forcing

:::
can

::::
lead

::
to

::::::::::
comparable

:::::::::
deviations

::::
from

:::
the

:::::::::::
hydrological

:::::::
models. However, both the regions with different inundation

agreement are in high risk if suffering large floods, different reactions should be taken in different priority according to the

water depth and agreement on inundation as well as the local conditions regarding population and property. Inundation area

is also calculated. We would like to note that, because of the different ways of estimating the inundation area, there is a

10%difference in the total inundation area for a 100-yr flood. The difference is mainly due to the low model agreement over15

the regions with the low predicted floodplain water level.The variations of the inundation area by different experiments can be

as large as 20%
:
in
:::::::::::::::

Zhao et al. (2017)
:
,
:::::::
different

:::::::
routing

:::::
model

:::::
leads

::
to

:::::::::
34%–85%

::
in
::::

bias
:::
of

:::::
annual

:::::
peak

::::::::
discharge

:::
for

::::::
global

::::::
GRDC

::::::
gauges.

::::::::::
Meanwhile,

:::::
when

::::
using

::
a
:::::
single

::::::
routing

::::::
model

::::
(i.e.,

:::::::::::
CaMa-Flood),

:::
the

::::
bias

::::::::
decreases

::
to

:::::::::
39%–50%.

::::
This

::::::
shows

:::
that

:::
the

::::::::
selection

::
of

::::::
routing

::::::
model

::::
may

:::
also

::::
lead

::
to

::::::::
deviation

::
of

:::
the

::::::::::
inundation

::::
area,

:::::::
although

:::
the

:::::::::
magnitude

::::::::
deserves

::::::
further

::::::
studies. The ratio can be higher if excluding permanent water bodies such as the lakes and river channels. This necessitates20

large effort to decreases the uncertainties related to the FFA. Assimilation of the altimetry data (Revel et al., 2018) or inundation

area(Hostache et al., 2018) from satellites can be a solution to evaluate model results at a large scale especially in regions where

ground observations are not available.

Two other sources of flood hazard maps are utilized to validate the results from CaMa-Flood. However, because the two

maps are also generated by models to some degree, we cannot quantitatively evaluate the CaMa-Flood performance from25

the comparison. The differences are mainly in inundation area with shallow water depth and in the tributaries. While for

larger floods (water depth >1.0 m),
::::::::
Although

:::
the

:::::::::
uncertainty

:::::::
sources

::::
have

::::
been

:::::::::
discussed

::
in

:::
this

::::::
study,

::::
there

:::
are

:::::
some

:::::
other

:::::
factors

::::
that

:::
are

:::::::::
associated

::::
with

:::::::::
inundation

:::::::::
estimation.

::::::::::::::::
(Tate et al., 2015)

::::::
revealed

:::
the

::::::
choice

::
of

::::::
digital

::::::::
elevation

::::
data

::
to

::
be

:::
an

::::::::
important

:::::
factor

::
as

:::
for

:::
the

::::::
whole

:::::::
Amazon

:::::
River

::::::
basin,

:::::::::
vegetation

:::::::
removal

::::
from

:::::
DEM

::::::
results

::
in

:::
an

:::::::
increase

::
in

:::::::
flooded

::::
area

::
of

::::::
27.5%,

:::
and

:::::
9.3%

:::
for

:::
the

::::::
Congo

:::::
basin,

:::::
while

:::
the

::::::
impact

::
is
:::
not

::::::::
effective

::
in

:::::
other

::::::
basins.

:::::
There

:::
are

::::
also

:::::::
regional

:::::::::
sensitivity30
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::::
tests

::
of the differences among three products are much smaller and the variation of CaMa-Flood results from the variations

of runoff inputs. The variation is related to the discharge estimation at the upper gauge. However, the proper validation of the

inundation at a theoretical level (100-yr flood) is still not feasible because of the lack of spatial observations for the equivalent

flood. Comparison with other products only increases the credibility of estimations but helps to identify the discrepancies

among different products.To some degree, CaMa-Flood is superior in describing the spatial patterns and is more flexible in the35

selection of different spatial resolution. The variation between results driven by different runoff inputs requires an improvement

of runoff estimation through bias correction or data assimilation.

During the validation, we found a ⇠20%
::::::::
inundation

::
to

:::::::::
roughness

:::::::::::::::::::::::::
(Pappenberger et al., 2008; ?)

:::
and

:::::
spatial

:::::::::
resolution

::::
(??)

:
,
:::::::
although

:::::
their

:::::
results

::::::
needs

::::::::
validation

::::
over

::
a
::::::
global

:::::
scale.

::
?

:::::::::::
systematically

:::::::::::
investigated

:::
the

::::::::::
sensitivities

::
of

:::::::
various

::::::
factors

::::
(e.g.,

::::::
inflow

::::::::::
hydrograph,

:::::::
channel

:::::::
friction

:::::::::
parameter,

:::::::::
floodplain

::::::
friction

:::::::::
parameter,

::::::
spatial

::::::::::
resolution)

::
in

:::::::
different

::::::
phases

:::
of5

::::
flood

::::::
events

:::
and

:::::::::
concluded

::::
that

:::
the

:::::::
channel

:::::::
friction

:::::::::
parameter

::
is

:::
the

::::
most

:::::::::
influential

::::::
factor

::::::
during

::::
peak

:::::
flood

::::::::::
inundation.

::::::::
However,

:::::::
because

:::
the

::::::
ranges

::
of

::::::::::
uncertainty

:::
are

:::::::::
determined

::::::
within

::
a

:::::::
standard

:
deviation of the inundation area between two

different spatial resolution (3 arcsec and 30 arcsec). Similar result is found in Hinkel et al. (2014) as they evaluated the coastal

flood damages by using two kinds of topography data GLOBE (30 arcsec) and SRTM (1 arcsec). The exposed area, population

and assets were lower by 50% to 70% in assessment with high-resolution topography (SRTM) than the low-resolution GLOBE.10

Therefore studies with 30 arcsec (1km) (Jongman et al., 2012; Ward et al., 2013; Jongman et al., 2015) could provide overestimated

results for this end. This difference requires us the ability to have higher resolution topography and corresponding technologies

to obtain the results with more spatial details.

The floodplain water depth and its uncertainties are investigated at a global scale . The conclusions are similar to regional

studies as that
:::::
mean

::::::
values,

::::
they

::::::
cannot

::::::
reflect

:::
real

:::::::::
sensitivity

::
if
:::::
using

:::::::
entirely

:::::::
different

:::::::
forcing.

:::::
With

:::::::::::
improvement

:::
of

:::
the15

::::::::::
computation

:::::::::
capability, the major contribution to the final uncertainties resulted from the deviations of runoff inputs. Although

the uncertainties in the inundation area is yet investigated, the results will be in the same direction since the inundation area

is highly associated with the floodplain water depth. Comparisons of the contribution of uncertainties from fitting distribution

and runoff inputs to different floods
::::::::
sensitivity

:::::::
analysis

::::
over

:::
the

::::::
global

::::
scale

::::::::
becomes

:::::
much

:::::
easier.

:

:::
One

:::::::::
limitation

::
of

:::
our

:::::
study

::
is

:::
that

:::
we

::::
lack

::::::::
validation

:::::::
because

:::
the

::::::
FHMs

:::
are

:::
not

::::::::::
measurable.

::::::::
However,

:::::
from

::::::::::
comparison

::
of20

::::::::
long-term

:::::
water

::::::::
frequency

::::
with

:::::::
Landsat

:::
and

:::::::
GIEMS

::::
data,

:::
we

::::::
noticed

:::
that

:::::
there

:::
are

::::
some

:::::::::
limitations

::
in

:::
the

::::::
current

:::::::::::
CaMa-Flood

:::
that

::::
will

:::
lead

::
to

:::::::
different

::::::
results

::
in

:::
the

:::::::::
uncertainty

:::::::::
evaluation.

:::::::::::
CaMa-Flood

::::
does

:::
not

::::::
include

:::::
flood

::::::
defense

:::::::
projects

:
(e.g., 100-yr,

20-yr)indicates that uncertainties from fitting distributions resulted from the extrapolation out of the period with data. Having

longer-term modelled or observed data will greatly reduce the uncertainties. Investigation of historical floods will also benefit

for the improvement of FFA (Payrastre et al., 2011). The deviating results about the uncertainties contribution from runoff25

inputs for wet and dry (or mountainous and flat regions) also requires a differentiating treatment to different kinds of floods in

different regions. The behind reasons for the differences are associated with the topography or model performance in different

regions, while they remain to be investigated.

The water depth , flood risk and damages are sensitive to the flood protection adaptions (Ward et al., 2013). Dam regulation

(Wang et al., 2017) and river levees (Berning et al., 2001) are effective ways to mitigate the potential risks of floods. However,30
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:::::
levees,

::::::
dams),

::::::
which

::::
will

::::
lead

::
to

::::::::::::
overestimation

:::
of the database is not accessible at a large scale and the flood protection is

not applied in the current model. Attempts on the improvement of
::::
flood

:::::::::
inundation

::
in

:::
the

:::::::::
floodplains

::::
and

:::
the

::::::::::
uncertainty,

:::
but

:::
lead

::
to

::::::::::::::
underestimation

::
of

::::
flood

:::::
water

:::::
depth

::::
and

::::::::::
uncertainties

::
in

:::
the

::::
river

::::::::
channel.

::::::::::
Meanwhile,

::::::::::
representing

:::
the

::::
flood

::::::::
defenses

::::::
remains

::
a
:::
big

::::::::
challenge

:::::::
because

::::
the

:::::
global

::::
data

:::
for

:::::
flood

::::::::
defenses

:::
are

:::::::
strongly

::::::
limited

:::::::::::::::::::
(Sampson et al., 2015).

::::::::
Attempts

:::
to

:::::::
improve CaMa-Flood by integrating the dam regulation (Shin et al., 2020) and levees (Tanaka and Yamazaki, 2019) have been

tested at a regional scale.

4.2 Conclusions

This study assessed the uncertainties in floodplain water depth after flood frequency analysis. Uncertainties can result from

the selection of
:::
the

:::::
FHMs

:::::
from

::::::::::
uncertainty

:::::::
sources,

::::::::
including

:::
the

:
variables for FFA, fitting distributions and the runoff in-5

puts which drive the routing model for estimating the water depth. Among all uncertainty sources. Uncertainties from the
:
o

::
the

::::::::::
uncertainty

:::::::
sources,

:::::::::
deviations

::
in

:
runoff inputs contribute the most to the total uncertainty, ;

:
mainly due to the deviated

mean values of extreme water depth. This suggest
::::::
suggests

:
the importance of rainfall-runoff model calibration (or runoff bias

correction) if gauge discharge observation is available. No preferable runoff inputs are available at the global scale, but the

fitting performance implies that directly using the river water depth for FFA is better than using converted water depth from10

water storage. The fitting distribution WAK is the best among the various fitting distributions. The results of model agreement

for inundation estimation is expectable as high agreement is found for inundation regionswith high predicted floodplain water

depth. But additional information of model agreement will be helpful for the decision-makers during the flood protection.

Inundation area related to the water level also shows large uncertainties, which will increase the difficulty of assessing flood

risk and flood damages. The variation of contribution of uncertainties from fitting distribution and runoff inputs for two different15

level of floods (100-yr flood and 20-yr flood)shows that uncertainty from fitting distribution is due to the extrapolation out of the

period with data, and increases with the flood magnitude. While uncertainties from runoff are spatial varied and the contribution

from runoff can be higher for larger floods in wet regions
:::
The

:::::
FHM

:::
for

:::
the

:::::
global

:::
and

:::::::
specific

::::
river

::::::
basins

::::
show

:::
the

::::::::::
distribution

::
of

:::
the

:::::
mean

:::::
flood

:::::
water

:::::
depth

::::
and

:::
the

:::::::::::
uncertainties.

::::::
Larger

::::::::
deviation

::::::
values

:::
are

::::::
found

::
in

::::
wet

::::::
regions

::::
and

:::::
along

:::
the

:::::
river

:::::::
channels,

::::::
while

:
a
:::::
larger

::::::::
deviation

:::::
ratio

::::::::::
(uncertainty

::
in

::::::::::
percentage)

::
is

:::::
found

::
in

::::
dry

:::::
zones

:::
and

:::::::::::
mountainous

:::::::
regions.

:::::::
Analysis20

::
of

:::
the

::::
flood

:::::
water

:::::
depth

::
at

:::::::
specific

:::::
points

::::
and

:::::::::
inundation

::::
areas

:::
for

::::::
regions

::::::::
displays

:::
the

:::::::::
uncertainty

:::::::
changes

::
in

:::::::
different

::::::
return

::::::
periods.

::::::
Higher

::::::::::
uncertainty

::
is

:::::
found

::
for

::
a
::::
rarer

:::::
flood

::::::::
compared

::
to

::::::
normal

::::::
floods,

:::::
which

::
is

::::::
mainly

::::::
caused

::
by

:::
the

::::::::
deviation

::
in

:::
the

:::
tail

:::::
shapes

:::
of

::::::
various

::::::
fitting

:::::::::::
distributions.

:::::::::::
Uncertainties

::
in

:::::::::
inundation

::::
area

:::::
leads

::
to

:::::::::::
uncertainties

::
in

:::::::::
population

:::
and

:::::::::
economic

:::::::
exposure

::
to

:::
the

::::::
floods.

::::::::
Globally,

:::::
9.1%

::
of

:::
the

::::::::::
inundation

::::
area

:::
for

:::::::
1-in-100

::::
year

::::::
floods

::::
with

::::
2.2%

::::::::::
uncertainty

:::::
leads

::
to

::::::
13.4%

:::::::::
population

:::::::
exposure

::::::
(2.9%

::
in

::::::::::
uncertainty)

:::
and

::::::
13.1%

::::::::
economic

::::::::
exposure

:::::
(2.9%

::
in

:::::::::::
uncertainty).

::::
The

:::::::::
uncertainty

::
is

:::
the

::::::
largest25

::
in

::::::
Africa,

::::::
among

::
all

::::::::::
continents,

:::::
which

::::::::
suggests

:
a
:::::
large

::::::::
deviation

::
in

:::
the

::::::::
structures

::
or

::::::::::
parameters

::
of

:::::::::::
hydrological

::::::
models

::::
that

::
are

:::::::
applied

::
in

::::::
Africa.

:
Overall, model calibration/validation with advanced tools (assimilation of remote sensing products) as

well as the
:::
and

::::
also model improvement by taking into account the human interventions are needed to reduce the various

uncertainties.
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The global hydrodynamic model CaMa-Flood is available from . The topography data MERIT is available from . The JRC

flood hazard map is available from and the GAR flood hazard map is available from . The estimated floodplain water depth and

related source codes are available from the authors upon request. The library lmoments3 for L-moments parameters estimation

is available from .

Data availability. The latest global hydrodynamic model CaMa-Flood (v4) is available from https://github.com/global-hydrodynamics/

CaMa-Flood_v4. The topography data MERIT is available from http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/index.html. The es-

timated floodplain water depth and related source codes are available from the authors upon request. The library lmoments3 for L-moments

parameters estimation is available from https://github.com/OpenHydrology/lmoments3.5
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