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Abstract.

Assessing the risk of a historical-level flood at-a-largeseale-is essential for regional flood protection and resilience estab-
lishment. Due-to-limitations-en-the-However, due to the limited spatiotemporal coverage of observations, the risk assessment
relies on model simulations this-ts-and is thus subject to uncertainties from variotsphysical-processesin-the-chain-of the flood
frequeney-anatysis(FFA)cascade physical processes. This study assessed-the-FFA-—performance-as-well-as-assesses the flood
Wmhe uncertainties with different combinations of FFA—V&H&b}eyéﬁverafeﬁéep&r&nd—wa%eﬁ&wge)—ﬁmﬁg

a-runoff inputs, variables for flood frequenc
analysis, and fitting distributions based on estimations by the CaMa-Flood global hydrodynarmc modelCaMa-Hlood-—Results

fitting-distribution—Deviations—, Our results show that deviation in the runoff inputs are-the-main-—source-of-the-is the most
@W uncertainties in the estimated flooded water depth bm

es-and inundation area, contributing more than
80% of the total uncertainties. Global and regional inundation maps for floods with 1-in-100 year return period show large
uncertainty values but small uncertainty ratios for river channels and lakes, while the opposite results are found for dry zones
and mountainous regions. This uncertainty is a result of the fitting distributions. In addition, the selected variables are limited
but increase from the regular period to the rarer floods, both for the water depth at points and for inundation area over regions.
The uncertainties in inundation area also lead to uncertainties in estimating the population and economy exposure to the floods.
In total, inundation accounts for 9.1%[8.1-10.3%] of the land area for a 1-in-100 year flood, leading to 13.4%[12.1-15%]
of population exposure and 13.1%[11.8-14.7%] of economic exposure for the globe. The flood exposure and uncertainties
vary in continents and the results in Africa have the largest uncertainty probably due to the limited observations to constrain
runoff simulations, indicating a necessity to improve the performance of different hydrological models especially for data
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1 Introduction

A flood hazard map (FHM) is a map of flood water depth or inundation area at a specific return period (e.g., 1-in-100 year

return period). FHM provides information for flood risk assessment. which is helpful for stakeholders and insurance services

??). However, FHM is a theoretical map of a global-identical reoccurrence (e.g., 1-in-100 year return period), and thus it is not

observable. Production of the FHM is based on flood frequency analysis (FFA) with simulations of flow characteristics (e.g.

discharge, water stage, water volume) from flood models (Liscum and Massey, 1980; Wiltshire, 1986; Hamed and Rao, 2019)

and a fitting regression to a specific reoccurrence.

‘Winsemius et al. (2013) established a framework

risk assessment which

stiver discharges river-water depth)-are-availablewith cascaded global forcing datasets, a global hydrological model, a global
flood-routing model, and an inundation downscaling routine. These authors used a single hydrological model (PCR-GLOBWB)
to_evaluate flood risk in south Asia. However, they recommend that the framework should be extended to a multi-model
approach to address any uncertainties. Trigg et al. (2016) analyzed eight global flood hazard models over Aftica and China and
show that there was only 30-40% agreement in the flood extent and significantly large deviations in flood inundation area,
economic loss and exposed population estimates. A similar multi-model approach was applied in Bernhofen et al. (2018) and
Aerts et al. (2020). However, because the eight global flood hazard models use different forcing inputs, hydrological models,
river routing models and spatial resolutions, it is impossible to attribute how much each process contributes to the uncertainties
in_the final results or which process is dominant. These authors suggested that component-level comparisons with limited
variables could be better able to attribute the uncertainties. Schellekens et al. (2017) therefore controlled the forcing inputs but
investigated 10 global hydrological models in terms of evapotranspiration, runoff and soil moisture, However, the flood hazard
was not investigated because the river routing model was not applied. Zhao et al. (2017) further evaluated routing models in
reproducing the peak river discharge, while uncertainties and results of inundation are not discussed.
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neeessitates-a-degree-of Running a flood model requires a large set of model inputs, model parameters, topographic information
and so on. Therefore, implementing flood models at a local or regional scale is much easier than global implementations. The
variety of uncertainties has been discussed for specific flood events at a local or regional scale in (Merwade et al., 2008; Bales and Wagner, -

. The sensitivity of the inundation to selection of forcing inputs (Ward et al., 2013), Digital Elevation Models (DEM) (Tate et al., 2015

roughness (Pappenberger et al., 2008), spatial resolutions (Merwade et al., 2008), or fitting functions (Kidson and Richards, 2005
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has also been analyzed. However, because the regional analysis is highly dependent on the availability of local data, the results
and conclusions are not necessarily applicable to other regions or to the global scale. Therefore, we are curious about the
magnitude and the spatial patterns of the sensitivity of FHMS to various factors at the global scale.

Zhao et al. (2017) suggested that runoff differences will lead to wide ranges of the uncertainty in peak discharge. Therefore,
runoff is selected as an uncertainty source to the FHMS to be investigated in this study. Because length of observations or

forcing data is limited, obtaining a FHM with a low-frequenc ., 1-in-100 year return period) requires extrapolation based

on curve-fitting to the existing data or simulations (Kidson and Richards, 2005). The limitation of FFA is therefore apparent
as the fitting requires-based on a priori assumption about the underlying distribution generating flood events. Though;-beeause
However, because the limited length of ebservational-records—cannot-represent-the records hardly represents the complete
characteristicseffleeds, a range of more-or-less skewed, relatively complex distributions is always tegether-considered to
account for the uncertainties. Typical distributions that are used include Pearson Hi-type-type III, Log-Pearson, Gauss, Gumbel
and Log-normal distribution (Radevski and Gorin, 2017; Drissia et al., 2019). However, no conclusion is found whether-any
to support which of the fitting distributions is preferable for most of the regions (Drissia et al., 2019). Different-distributions
are-recommended-to-test-Therefore, it is recommended that different distributions should be tested with local recordsbefere
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FFA-ean-be-The FFA can be conducted on any characteristics of river flow, but mainty-—with-is mainly used for river dis-
charge and water stage (or named-water level or simitarty-water depth) because they are-normally-can be recorded as gauge
observations (Radevski and Gorin, 2017). There is no preference offor these two variables and the selection is determined-only
by-the-only determined by data accessibility. The results of the FFA based on the discharge will be slightly different from the

results with the-a water stage because of the loop rating curve relationship between discharge and water stage (Domeneghetti

et al., 2012; Alvisi and Franchini, 2013). In additionte-the-aforementioned-unecertainty-seurees—from—rainfall;rainfall-raneff
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floods-will-be-complex-and-remain-un-investigated-—, Pappenberger et al. (2012) uses river water storage provided from flood
models, which is then remapped the fitted water storage to inundation extent. The increase of water storage and water stage is
non-linear because of the topographical variety in river channels and floodplains. Therefore, selection of different variables for
the fitting is another source of uncertainty for flood estimations.

Tn-There are many other uncertainties that can lead to deviations in mapping the floods, including forcing, routing and
downscaling. However, we need to limit the factors to avoid adding too much complexity to the analysis. Therefore, in this
study, Floed-Frequeney-Analysis-is-applied-to-the- flow-estimation-by-CaMa-Food-and-the resulting-uneertainties-are-assessed-a

we will investigate

the FHMs along with uncertainties due to selected factors (i.e., runoff generation models, the fitting distributions and the
variables to be fitted). Section 2 describes the methods and data that we used. In Section 3, the-we assess the fitting perfor-

mance of FFA is-compared-among-the-for all combination of experiments with different flow variables used for FFA, the
fitting-distributionsas-wel-asHitting distributions, and the runoff that drives CaMa-Flood. Uneertaintiesresulted-from-different

resent the flood water depth and contributions from different factors over the globe and regional cases for a 1-in-100 year



return period. The flood water depth for specific points and the inundation area for specific regions at multiple return periods

are discussed, together with their uncertainties. The potential impact (exposure) of the eentributionfrom-seourees-is-provided
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2 Methods and datasets.

25 2.1 Experiment design

The cascade of generating the global flood hazards maps comprises the following steps: 1. global forcing data; 2. global
hydrological models; 3. global river routing models; 4. FFA (Winsemius et al., 2013). In this study, the-CaMa-Flood—was

a
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we limit the factors to be investigated on the global hydrological models and the FFA. The uncertainties to be investigated

in this study are attributed to three major sourcesas , as follows: first, the variables used for the FFA-~2)-; second, the

fitting distributions used for FFAand-3)-; and third, the runoff inputs to the river routing model-Catchment-based Macro-scale
floodplain model (CaMa-Flood:), Each experiment is therefore a combination of the three sources (Table 1).

For the variables selection, V1 —(rivdph)-represents-the-represents that FFA is based on the numeric results of "river water
depth" provided by CaMa-Flood. In V2—(ste2dph), the FFA was first conducted on the estimated water storage, which is the
only prognostic variable in the CaMa-Flood. Then, at each return period (e.g., +00-yrs;56-yrs1-in-100 year), the river water
depth was estimated based on the storage-water depth relation and the corresponding water storage. Because of the non-linear

relation between water level and storage, the fitting will lead to different results. The differences between experiment V1 and V2
denote the uncertainty resulted-that results from the selection of target-variables-used-forFFAthe target variables that we used
for the FFA. Despite river water depth and water storage, discharge is the variable that is most frequently used in engineering
design because discharge is frequently measured. However, with only discharge we cannot estimate the water level (or water
storage) because the relationship between discharge and water level is not one-to-one consistent because of the loop rating.
curve, While with either river water depth or water storage, we can estimate the flood extent and the floodplain water depth for
Theuncertainty-
Table 1. Experiments used in this study for uncertainty analysis. There are three groups, as follows: (A) the variables for FFA (B) the fitting.

distributions and (C) the runoff inputs. Different runoffs are generated by using the same forcing (WEFDEI) but with different land surface

models or global hydrological models (as specified in the brackets).

A Varables | B fitting distribution G Runoff

V1 rivdph | El  GEV (Generalized Extreme Value) | Rl €20 _any (W3)

V2 storage | E2_ GAM (Gamma) R2_ €20 cnrs (ORCHIDEE)
E3_ PE3 (Pearson type 1) R3 €20 jrc (Lisflood)
F4_ GUM (Gumbel) R4 e20_ecmwf (HTESSEL)
S WEIL(Weibull) RS €20 _nerc JULES)
E6_ WAK (Wakeby) RO €20 univk (WaterGAP3)

R7_ €20 univu (PCR-GLOWB)

Uncertainty due to the fitting distributions used for FFA was evaluated as the resulting differences by applying various fitting
functions (i.e., F1 — F6). These distributions are generally used in FFA but for different variables in different fields, and they
were treated without priorities in this study. The samples were fitted-auntomatically-automatically fitted without any manual
modifications in their parameters with L-moments optimization.

The results of the FFA were based on the output of CaMa-Flood which-is-assoectated-with-the-associated with different runoff
inputs. In this-our case, the CaMa-Flood wetre-was driven by seven different kinds of runoff forcing (i.e., RF—R7R1-R7)

from eartH2Observe (e20) category {>—Fherunoff(Schellekens et al., 2017). The runoffs were driven by the same WEDEF
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WATCH Forcing Data methodolo
lied to ERA-Interim data (WFDEI, Weedon et al., 2014) but with different land surface and-hydrologicalmodels;therefore;
or hydrological models. Therefore, the runoff inputs have-atready-contained-contain the uncertainties in the fereing-and-thatin

therainfall-runoff model processes (model structures and model parameters). The-Therefore, the deviation of the results in the

FFA among the seven inputs was s-therefere-the uncertainty caused by the runoff inputs.

2.2 Global river routing model (CaMa-Flood)

The CaMa-Flood is designed to simulate the hydrodynamics in continental-scale rivers. Entire river networks are discretized
to irregular unit-catchments with the sub-grid topographic parameters of the river channel and floodplains. The river discharge
and other flow characteristics can be calculated with the local inertial equations along the river network map. The water storage
of each unit-catchment is the only prognostic variable that is to be solved with the water balance equation. The water level and
flooded area are diagnosed from the water storage at each unit-catchment using the sub-grid topographic information. Detailed
descriptions of the CaMa-Flood can be found in the original papers by Yamazaki et al. (2011, 2012, 2014).

The major advantage of the CaMa-Flood simulations is their explicit representation of flood stage (water level and flooded
area) in addition to river discharge. This facilitates the comparison of model results with satellite observations, either the
altimeters by Synthetic-aperture radar (SAR) or inundation images by optical or microwave imagers. The estimation of the
flooded area is helpful in the assessment of flood risk and flood damages by overlaying it with socio-economic datasets.

Another apparent advantage of the CaMa-Flood is its high computational efficiency of the global river simulations. The
CaMa-Flood utilizes a diagnostic scheme at the scale of unit-catchment to approximate the complex floodplain inundation
processes. The prognostic computation for water storage is optimized by implementing the local inertial equation and the
adaptive time step scheme. The high computational efficiency is beneficial for implementations at a global scale, This is
critically important because ensemble simulations are frequently applied to account for uncertainties but computation time
will be multiplied manyfold. In this study, CaMa-Flood was driven by different runoff inputs (see next section) to achieve the

flow characteristics at each unit-catchment at the global scale. The FFA is conducted based on the flow characteristics usin
CaMa-Flood.

2.3 Flood frequency analysis (FFA)

The runoff inputs are available from 1980 to 2014 (35 years in totalywith-a-spatial-resolution-of-0:25°(~25km-at-the-equater).

For a specific unit-catchment defined in the CaMa-Flood, the maximum value of the daily river water depth or catchment water
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storage was obtained for each year and was then sorted. The frequency as the return period (F;,) was calculated with the
following equation:

m
o= 5 ™
where m is the sorted ranking, IV denotes the number of total years (herein 35).

Then-the-The parameters of the fitting distributions were ealeulated-with-the-basis-then calculated based on these sorted
annual values with the L-moment method (Hosking, 2015; Drissia et al., 2019). }This is defined as a linear combination
of probability-weighted moments of the time series. The parameters-estimation_parameter estimations using L-moment and

quantile functions used for different distributions have been described in detail in Hosking (1990). The computation of the

parameters was done in the Python Imoments3 Library. Note that enly-the Wakeby (WAK) is a S-parameters—funetionwhile
the-others-are-all 3-parameters-funetionsfive-parameter function; the GEV, PE3 and WEI are three-parameter functions; while
GAM and GUM are two-parameter functions.

2.4 Criterion

Akaike Information Criterion (AIC, Sakamoto et al., 1986; Mutua, 1994) was used to evaluate the performance of the FFA
against the annual values. aic is ealeulation-as-calculated as

aic=2k+n-log , 2

where k is the number of parameters needed for the fitting distribution, .S represents the simulated values, O represents the

observed values, n denotes the number of samples. Fhe-performance-of-fitting-is-better-when-the-Smaller aic value-istower
denotes higher fitting performance because of smaller deviations between simulations and observations. Although there are
various performance metrics to measure the goodness-of-fit, the aic is used in our study because it will enlarge the small
difference between samples and estimations. We only have 35 samples and these are sorted, therefore the fitting performance
should be very high and the fitting results should not have large differences.

24 Study-area-and-downsealing-Downscaling to high-resolution inundation map

To reduce the computation cost due to high-resolution simulations, the CaMa-Flood was run globally at a 0.25° spatial resolu-
tion, which means that only one unit-catchment was assigned for each 25 km by 25 km grid. The evaluation-performance of
the FFA performanee-was evaluated with aic was-condueted-at the global scale to capture the overall features -cerrespending
to-theresults-in-seetion3—(see Section 3.1).

T-However, it is difficult to characterise the river water depth or inundation area in detail with local topography at a low
resolution (0.25°), and it is difficult to visualize the inundation map at a high resolution (<100m) for the globe. Therefore,
high-resolution (3 arcsec, ~90 m at the equator) regional analysis related to the floedplain-flood water depth and inundation

area with their uncertainties was conducted regionally over the lower Mekong River basinBasin, where the delta is vulnerable
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to floods (Shin et al., 2020). Corresponding results from-point-analysis-te-regional-analysis-on the uncertainties in water depth
and inundation area, as well as the flood water depth at specific points will be presentedin-seetion-4-—.

The estimated low-resolution storage was downscaled to the high-resolution inundation map with the topography map
(MERIT, Yamazaki et al., 2017) at 90 m. The fundamental assumption is that the water-movement of water within a unit
catchment is instantaneous and that the water surface is flat within each-unit-eatchment-and-the-the unit catchment at each time
step (Zhou et al., 2020). The total water storage under the identical water level should be equal to the water storage estimated in
this unit-catchment (see Figure 1-a). The area of lowest elevation is inundated first, until the total water volume approximates
the estimated water storage of the unit catchment. The relationship between the water level and water storage or the flooded
area should-be-similar-to-is illustrated in Figure 1-b;-as-when-. When the floodplain has been inundated, the small increases
of water level is-eorresponding-corresponds to large changes in the water storage as-wet-as-and the flooded area. River water

depth can be saturated after inundation (it does not react significantly to the increase of storage after flooding), and this might
cause the-an error in function fitting. The assumption of the-a flat water surface is not valid for longriversections-or-large
water bodies (e.g., large lakes or reservoirs with water surface gradient) and rivers-with-large-slopes-steep river segments (e.g.,
mountainous area). However, the impact of violation is limited at the catchment scale with a grid size of 25 km (in-consisteney
which is consistent with the global scale). Inundation-The inundation area over the mountainous area is also limited compared

to that in the floodplains.

The flood exposure of the population and economy is estimated based on the inundation map and population density ma
Gridded Population of the World — GPW) in year 2015 (?), as well as the Gross Domestic Production map in year 2015 (?).
The two maps are in 30 arcsec, therefore the 3 arcsec inundation map was ageregated to the 30 arcsec.
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Figure 1. (a) Illustration of a river channel reservoir and a floodplain reservoir defined in each unit-catchment. The water level for the

river channel and floodplain is assumed to be the same in each unit-catchment. The denotation of each parameters and its calculation can
refer to (Yamazaki et al., 2011). (b) The relationship between the water level and water storage, as well as the flooded area for a specific
unit-catchment, The shape of the curve within the river channel is determined by the profile of the river channel and the curve above the river

3.1 Fitting performance

In this section, we will first analyze the fitting performance using aic for all different experiments listed in Table 1. Note that the
river water depth and the river water storage are n

%mwwmm%mmw&@ 112 for
each grid (divided by the maximum value £
feﬁ%the—medeﬂed—mﬂe—%eﬁe%ojmegglvg\r}g) The fitting performance was evaluated by the aic value —The-estimated-(Eq. 2). A
indicates a better fitting performance. Figures 2-a and
b display a sample result for e20_ecmwf and-GEV-funetion-is-shows-in-(R4) and GEV fitting distribution (F1) for water level
and storage, respectively. The difference between the two maps is shown as Figure 2-c.
Beeause-the-time-series-were-normalized-to-ranges-of-0-and--the-The fitting performance is relatively high with low aic
(<-50) in most of the unit-catchments. ow-This is happens because we have only a few samples (35) and the time series was
normalized to a range between 0 and 1. The advantage of the aic is that it enlarges the small difference so that we can see a

lower aic ¥
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Figure 2. PerformaneeTFitting performance of floed—frequeney—analysis-FFA for (a) V1 —rivdph—(river water depth) and (b) V2
—sto2dph(water storage). The performance was quantified with aic and (c) is the aic difference of (a) and (b). Negative-difference-indicates
better-performanee-of FFA-for- V1 —rivdph-—This is only an example for e2o_ecmwf and GEV fitting distribution.

large deviation between different experiments. Relatively low fitting performance is found in the Greenland area and those dry
areas in the Sahara, Mongolia and middle Australia (Figure 2-a). The area with low fitting performance (high aic) increases
when dealing with the storage, typically in Mongolia, Australia, South Africa, south Latin America and in the west-western

part of North America. These regions are mainly dominated by dry climate or mountainous topography. The relativelytow

ver-discharge-could-be-the reasenforlow-model-performance-in-the-fittingaccumulative river discharge over those regions is
small. The magnitude is thus highly depended on single precipitation events, leading to an unstable relationship between the

high floods in different years.
The difference of the aic values for the river water depth and that for the storage is mapped as Figure 2-c. fa—whieh;

negativeNegative values indicate that the fitting performance is better for water depth than for that for the water storage.
Despite the near-zero values, negative values (red scatters) are distributed in the main parts of the world. The places with the
largest differences are distributed in the northern and southern Africa, Australia, Northern China, Western America, in-high
consisteney-which is consistent with the high values in Figure 2-b. Although positive values are also found, the values are not
large. The results indicate that for most of the lands, the fitting on the data of river water depth is better than the fitting on the
water storage. Though-However, this is only the resultsresult of a case with e2o_ecmwf runoff input and GEV distribution.
An overall evaluation en-al-of all of the distributions and runoff inputs are-is shown in Figure 3. The probability distribution

of the aic values for all the global grids are plotted in Figure 3-a and 3-b-fer-Vd—rivdph-and-V2—sto2dphb using water river
depth and storage, respectively. We-found-that-the-fitting-distribution-determines-the-wic-values-as-the-pdf-eurvesfor the-same

11
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Figure 3. Overall performance of FFA for (a) V1 (river water depth) and (b) V2 (water storage). The performance aic over all the land grids
are collected and displayed as the histogram. (¢) is the aic difference between (a) and (b). Negative difference indicates better performance
of FFA for V1. Different colors represent different fitting distributions, and the multiple lines in a specific color represents results driven by

ge—The pdf
curves have two peaks, one is normally distributed with mean values around -200 (or -220) and the other ene-is-nearzero—The
fater-peak-is near 0. The latter peak around O corresponds to the red scatters in FigureFigures 2-a sand b, showing poor fitting
performance of the distributions over the coastal regions. The difficulties in representing coastal rivers in CaMa-Flood should
be the reason or this. From the variations of curves in different curve in the same color, we find that the performance metric

aic is not too sensitive to the runoff. Regarding the differences among different distributions, WAK (yellow lines) have the
smallest-lowest aic values with the best performance while GAM (red lines) and GUM (black lines) have the largest values

with the poorest performance in Figure 3-a. The other three distributions (GEV, PE3 and WEI) have a similar and moderate

performance for the-water depth. Altheugh-thetines-The differences of the fitting performance are mainly due to the degree
of freedom of each fitting distribution because the WAK has five parameters, GAM and GUM have two parameters while the
others have three. With a higher degree of freedom, the fitting performance will be better. Meanwhile, compared to fitting with
the river water depth, the curves were not so distinguishable in Figure 3-b;-the-sequence-of-the-fitting-performancefor-different
distributions-is-the-same-asfor-the-water-depth. This indicates that the results are not sensitive to the fitting distribution. As
shown in Figure 1-a, the water level is calculated by allocating the water storage to the river channel and floodplain from
the bottom to the top. In the channel, the relationship between water level and storage is linear, while it is nonlinear in the
floodplains. So. if the maximum water level for the different years locates in both the river channel and the floodplain. then
fitting the water level becomes more difficult; especially for GAM and GUM because they have only two parameters. Given
that the storage is not affected by the channel shape, fitting the water storage with different fitting functions will not make a
large difference.

12
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Figure 3-c shows the difference of fitting performance for water depth and water storage (corresponding to Figure 2-c if

e2o_ecmwf and GEV is specified). Same-as-As in Figure 2-c, negative values indicate that the fitting performance for water
depth (V1) is better than that for the water storage —Fer(V2). More negative values were found for the distributions of WAK,
GEV, PE3 and WEI, moerenegative-values-were-found-especially within the range of [-50, 0]. While for GAM and GUM, more

positive values are found within the range of [0, 25], showing better performance for water storage than that for water depth.

ButHowever, as we see from Figure 3-a and 3-b, the fitting performance of GAM and GUM is not as good as other functions.

V2=sto2dph)—Sinee-the-Because the normalization did not change the relative magnitude of different values, the difference
between fitting river water depth and water storage results from their relationship (Figure 1). For the floods (tails of the fitting
distribution), the changes in water storage should be larger than that changes in the water level if given a shift of the flood

frequency. This eauses-leads to the resulting difference in the fitting performance.

3.2 Comparison-between-different-Fitting-distributionsFlood water depth at 1-in-100 year return period

3.2.1 Global flood depth

This section summaries the mean flood water depth and the related uncertainties over the globe at 1-in-100 year return period
(Figure 4). The results are based on the original estimations of the FFA, rather than the results after normalization presented in
the previous section. For the mean values (Figure 4-a), the floodplain water depth will only exceed 10 m in most of the main
channels of large rivers, especially in the Amazon River, large rivers in southern China, southeastern Asia and Siberia. The
standard deviation of the flood water depth (Figure %)~

in-4-b) shares the same
spatial patterns with the mean values. The deviation in large rivers can reach 5 m or more, which indicates a high degree of
deviation to the mean) are opposite because C'v is lower where the mean or deviation is higher, and vice versa. The regions with
high C'v are likely to be the dry zones (e.g., Sahara, Central Asia-Australia, and Central Asia) and the originating river basins in
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distributions the Tibetan Plateau).

: | att-the-global-eatehments shows-the same results-This deviation in the flood water depth can be
caused by various factors, including the used variables, runoffs and the functions listed in Table 1. Figures 4-d, ¢ and f show
the proportion of the standard deviation due to each factor to the total standard deviation in Figure 4-b. A larger proportion
indicates the deviation due to a certain factor contributes more to the total standard deviation. Therefore, for most of the global
grids, runoff deviation from different land surface models or global hydrological models is the major contributor, taking a
proportion larger than 80% (Figure 22 ‘ ' i

the monthly anomalies with the signal-to-noise ratio (SNR) among all runoff inputs that are used in this study. Their results

suggested that the runoff has a larger spread over cold regions (e.g., high latitudes in Asia and North America, and the Tibetan

Plateau) and dry zones (e.g., Sahara, and Central Asia). However, the spatial patterns of runoff spread are not seen in the

deviation ratio of the flood water depth Figure 4-¢). This suggests the spread of flood water depth due to runoff is not sensitive

to the climate zones.

In-the-aforementioned-analysis;"The deviation among different variables (Figure 4-d) or functions (Figure 4-f) contributes
similarly with a very small proportion to the total deviation. The difference is the deviation due to variables is scattered and
likely to have larger values in dry regions or coastal areas. While a larger deviation among different fitting distributions-mainly

found along the large rivers. A difference indicates that the flood water depth will be more sensitive to the functions while less

14
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Figure 4. The mean and uncertainties of the flood water depth for the 1-in-100 year return period. The mean floodplain water depth (a),

overall standard deviation (b) is displayed in (d)—(f) for different variables, runoffs and fitting functions, respectively.
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sensitive to selected variables in large rivers (higher water level or larger water storage). Therefore, more attention is needed to
select the fitting function when evaluating the flood risks for large river basins.

3.2.1 Regional flood water depth

The global analysis is at the spatial resolution of 0.25%, which is insufficient to show enough spatial details. In this section,
we evaluate the uncertainty range in the water level and inundation at a higher spatial resolution (i.¢., ~90m) after applying
the downscaling (see Section 2.4). The analysis presented in the main text is for the lower Mekong region where the delta
is vulnerable to floods. We also provide results and analyses for other large river basins (e.g., Amazon, Yangtze, Mississippi,
Lena, and Nile) in the supporting material.

Figure 5-a displays the flood water depth for the 1-in-100 year flood at 90 m for the lower Mekong. The largest water depth
(>10.0 m) is found in the centre of Tonle Sap Lake and the main channel of the Mekong River. A large extent in the lower
Mekong delta suffers relatively low inundation water depth (in dark red). Low water depth also occurs along the boundaries of
lakes and main channels. The river tributaries have low average water depth in all of the experiments.

Figure 5-b-e2o—enrst48:9%) provides the largest value for mostof shows the uncertainties resulted from different experiments
listed in Table 1. In general, the uncertainty range is higher where the estimated water depth is deeper (Figure 5-a) because
the largest uncertainties are found in the main channel of Mekong with magnitude higher than 2.0 m, while the lowest

uncertainties are found in the

uncertainty in the Tonle Sap Lake is homogeneous with a magnitude around 1.0 m. The coefficient of variation (Figure 5-¢)
is_higher where the mean flood water depth and the deviation is smaller. The overall uncertainties mainly result from the
runoff inputs ranking-in-the-middle-(Figure 5-e) and from the fitting distributions (Figure 2?-¢)~-the-variety-increases-as#o
raneff-inputis-5-f) and the variables (Figure 5-d). This is consistent with the conclusions from the middle-enefor-alarge

lobal analysis.

investigated the flood water depth for other rivers, including Amazon, Yangtze, Mississippi, Lena, and Nile (see Figure S1-S5).
Floods will cause a large inundation area in the deltas although the flood water depth is small. Higher uncertainty in water depth
with lower coefficient of variation is found in the river channels. While lower uncertainty of water depth with higher coefficient
of variation is found for the delta plains. The uncertainties are still mainly caused by the runoff inputsare-also-preferable-if-the
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Figure 5. The mean and uncertainties of the flood water depth for the 1-in-100 year return period in the lower Mekong River Basin. The
mean floodplain water depth (a), the standard deviation (b) and the coefficient of variation (c) are estimated based on all the experiments.

The deviation proportion to the overall standard deviation (b) is displayed in (d)—(f) for different variables, runoffs and fitting functions,

respectively. Area with floodplain water depth less than 0.01 m are masked out. We use Multi-Error-Removed Improved-Terrain DEM
MERIT DEM) as the terrain model. The cross in yellow in (a) is the representative GRDC gauge to be analyzed in the next subsection.
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. The selected variables and fitting functions will
not lead to large deviations compared to the runoff inputs.

4 Resional - s

3.1 Flood water depth for multiple return periods

3.1.1  Point analysis

In addition to the global and regional pattern at a single return period (1-in-100 year as shown in previous section), we are also
curious to understand how the uncertainty varies at different return periods. We selected the Phnom Penh (Latitude: 11.5617
Longitude: 104.9317, yellow cross in Figure 5-a)w Httes+ : i

is a representative GRDC gauge at the confluence point of the outlet of the Tonle Saple Lake and the main Mekong River. The
estimated mean water depth as-well-as-and the uncertainty range (deubled-standard deviation) ameng-for different conditions

-, which

are shewn-plotted as the solid line and shaded area, respectively, in Figure 6. The overall mean value of the estimated water
depth is shown in Figure 6-a. The water depth at 560%-is-6-61-in-2 year return period is 8.14 m and it is 7-9-9.58 m for the
100-yearreturn-period-floodthereafter100-yrflood)1-in-100 year flood. The overall uneertainty-range-standard deviation is
large up to +:3-0.69 m and it is generally the same for different return peried-frequeney-(from-0-1%t6-99:9%)periods.

In Figure 6-b, the differences between mean floodplain water depth using river depth (V1=rivdph) and storage (Vi=sto2dphV2)

is very small. The uncertainty range is still as large as that in Figure 6-a;-indieating-. This indicates that the uncertainty is-tittle
contributed-by-receives little contribution from the variables for FFA but is large for other sources. Similarly, subtracting
the uncertainty from fitting distributions does not apparently decrease the uncertainty range (Figure 6-¢);-indicating—d). This
indicates that the uncertainty that resulted from the selection of fitting distribution is still small. Partieutartyln particular, the
mean value for GUM function in the tails of the floods (more than 20-y+-1-in-20 year flood) is higher thaVV2—n-than results of

other functions, indicating that GUM may provide a relatively deviated estimate of mean floodplain water depth for the extreme

flood events. Fhe-This difference of GUM mainly happens because GUM only has two degrees of freedom. The uncertaint
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Figure 6. Uncertainties in the estimated floodplain water depth at Phnom Penh (104.9317°E, 11.5617°N) in the Mekong River Basin in

different groups. a) the mean floodplain water depth and overall uncertainty; b) the mean and uncertainty in groups of different variables for

FFA, the uncertainty is then not related to the selected variable; ¢) the mean and uncertainty in groups of different runoff inputs; d) the mean

and uncertainty in groups of different fitting distributions.

ranges of other uncertainties 1

except GUM are similar, which indicates that the uncertainty from experiments other-than-excluding the fitting distribution is
still large.

Figure 6-d—c separates the uncertainties of the runoff inputs from the overall uncertainties. It is notable that the mean
values significantly vary from different runoff inputs (solid linesinFigure-6-¢). For the +66-yr-1-in-100 year flood, the mean
water depth ranges from 6:9-8.57 m in e2o_univk to 9:8-10.58 m in e2o_cnrs (2:9-2.01 m in difference). As for each of the
runoffrunoffs, the uncertainty caused by other sources (variables and fitting distributions; the shaded area in Figure 6-d-c) is
now very small, especially within the normal period (5-yrflood-and-5-yr-dreught)-covered by the modelled simulations (35
years in this study). White-Meanwhile, the uncertainty range starts to increase for the extreme floods. The uncertainty range
increases to 0.3-0.5 m for +00-y+-1-in-100 year flood (on average 255% of the total uncertainty) and 0-8-1-6-mfor200-yr
flood(on-average-33-3%of the-total-uneertainty)—Though:-0.4-0.6 m for 1-in-200 year flood, although the uncertainty range

is still much smaller than the deviations of the mean values. The increasing uncertainty is similar at the other end of the
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tails. Similar results are found for other specific points in other river basins and further details can be found in the supportin
10 information.

The-abovetresults

3.1.2  Inundation area

The uncertainties are also reflected in the inundation area which can be used for assessing the flood exposure of population or
economic losses. Figure 7 displays the results for the lower Mekong River Basin at all return periods. The mean values (solid
line) and also the uncertainty (standard deviation, colored shades) are displayed in different groups. The mean inundation area
5 increases from 52098 km? for a normal flood (1-in-2 year return period) to 59330 km? corresponding to a 1-in-100 year flood

(b) Mean inundation area grouped by VARIABLES
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Figure 7. The uncertainties in the estimated inundation area for the study area: a) shows the mean inundation area and the overall uncertaint
b)

d) show the mean and uncertainty in different groups by variables, runoff inputs and the fitting functions, respectively.

Similar to the features of floodplain water depth at Phnom Penh (Figure 6), the magnitude of uncertainty range in the

inundation area is similar for all the return periods (Figure 7-a). The uncertainty range for the two ends of tails is a little bit

larger. The uncertainties also mainly resulted from the deviation of means values in different runoff inputs (Figure 7-c), rather

than the variables (Figure 7-b) or the fitting functions (Figure 7-d). The predicted inundation area for a 1-in-100 year flood
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ranges from 54000 km? to 64000 km? in different experiments, indicating a 20% difference to the largest extent. The standard
deviation of the inundation area for a 1-in-100 year flood is around 2000 km?, which increases to 3000 km? for a 1:in-200
year flood.

In general, the uncertainties for the inundation area share similar patterns to the results for specific points. These results

demonstrate that runoff input is the primary source of uncertainty te-the-in river water depth simulation. The-This uncertainty is
mainly due to the systemic bias in the runoff inputs. While for a specific runoff input, the uncertainty is small, especially during
the normal period when the estimated values are available (35 years simulation in our case). ta-the-tails-that That extrapolation
is applied to FFA +in the tails, where the uncertainty range gets-inereasing-is increased, mainly due to the different tail shape
of various fitting distributions. But-However. the uncertainty range is still smaller than the deviation between results driven by
different runoff inputs. Therefore, for impact assessment over the extreme events, the runoff inputs or the average state of the
extremes should be evaluated first with observed information, if allowed. Fhen-attention-ean-Attention can then be given to

the selection of different fitting distributions if observations of large floods can be used to optimize the fitting performance,

especially in the tails.

3.1.3 Population and economic exposure to floods

+Previous results

show that the inundation area varies in floods with different return periods in the Lower Mekong River Basin. This inundation
will lead to migration and economic losses, although the impact should be with uncertainty because of the uncertainties in
inundation estimations. In this section, we evaluate the exposure of population and economy to the floods at a global scale. The
results are summarized for each continent (see Figure S11 for location map). The global population density (period per km?
and the economic development (GDP, USD per km?) can be found in Figure S12 and S13. Given that runoff is the details-with

did not show uncertainty ranges due to sources other than the runoff in Figure 8, although the uncertainty ranges can be found
in Figure S14.

In total, the inundation area for floods at 1-in-100 year return period reaches 13x10°km?, accounting for 9.1% of the global
area (excluding Antarctica). The ratio for different runoff inputs ranges in 8.1-10.3%. barge-extentin-the lower Mekong delta
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eategories: atH0:04-0-+-0:4-0:3-03-0-50-5-1-6-1-6-5:0>5-0-atk-gross number is 1.17 billion, accounting for 13.4% [km?212.1%-15%]

of the total population. The potential impact on the

GDP will reach up to 14.9 trillion US dollars (USD) in average with the proportion of 13.1%[11.8%—14.7%] +66:6-8-8-7:3-5:4

Among all the continents, Asia will suffer the largest
flood extent and also the largest population exposure (above 0.6 million) and economic exposure (above 6 trillion USD) to

the unee
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5 the-values-inthe Tonle-Saplakehighest. The area with high population density and economic development is highly consistent

with the flood-prone area (e.g., the Yangtze, Mekong, Ganges and Indus). Compared to AS, North America (NA) will also

suffer large flood extent, while the population and economic exposure is relatively small because the area with high population
density or economic development (i.e., the eastern coastal area of the US) is not consistent with the flood-prone area (central
plain or Mississippi area). The other continents will suffer smaller inundation area and lower total exposure of the population

10 and economy to the floods. However, it is better to compare the relative values (compared to the specific continent) rather than

absolute values because of the area difference.
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a+00-yr-flood-(Figure4-a)—TFhe risk-is-espeeially high-Regarding the relative inundation and flood exposure (the second row.
in Figure 8), the inundation area accounts for 12.5-15% of the continental area in NA while the flood exposure of population
and economy is around 7-9%. In comparison, the inundation area accounts for 3-8% of the continental area in the-Amazon
River-Congo Riverfarge riversin-southernChina;southeastern-Africa (AF), the population exposure ratio is 7-13% and
economic exposure is 10-18%, indicating a high vulnerability in AF to the floods. The ratio of population exposure in AS
(12-19%) is higher than that in AF due to the high consistency of population distribution in Southern Asia and the rivers-in

dflood-prone areas. The economy in AS
12-20%) is less fragile than that in AF given a relatively larger flood inundation (7.5-10%). The unecertainties-in-the-Amazon

+00-yrfleedinundation ratios and flood exposure ratios in other continents are similar, which suggests an even distribution of
opulation and economy in the flood-prone and other regions.

deviations of curves in the same color reflect the uncertainties. It is notable that the uncertainties in AF for the economy is

the largest. For instance, the highest economic exposure to 1-in-100 year floods approaches 19% for a certain runoff, while it
is 13% for the lowest with a up to 6% difference. The economic exposure for a 1-in-2 year flood for the runeff-inputs—Ata

27



10

15

20

25

a O O d N g1ooar—gria Oh outio O bt aii &y O

former runoff (>15%) is already higher than that for the latter 1-in-100 year flood.
This deviation is primarily caused by the various processes in the land surface models or hydrological models. However, the
arameterization in AF is not well solved among different models compared to other continents, which is probably due to

the extrapolation ol {itting and larger uncertainties occur in the fitting tails. -Althougeh the uncertainties in runoft-inputs «

the topography and climate zones in AF. This high degree of uncertainty makes it difficult to accurately assess the economic
impact of the floods in the current situation and also for the future projections.

4 Diseuassion-Discussions and €onelusionconclusion

4.1 DiseussionDiscussions

This study assesses-the-flood-risk-based-on-pure-assessed the FHM based on simulations with a global hydrodynamic model
(CaMa-Flood). Bue-te-The analysis of flood hazards can be uncertain because of the multiple choices of runoff inputs, fitting
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distributions for ﬂeeé%reqﬁefxeyanalyﬂsfFEAr%FFA and the variables for FFA%heaﬂalrysrs—efﬂeeeFﬂskc—aﬂbeﬁﬂeeﬁam-fPhe

ffeqﬂeﬂ%ﬂlyﬁs—ffﬁkeﬂﬂeefmmﬁeweﬁepefwe&wd Our results show that variation in runoff derived from different land
surface models and hydrological model is the primary factor behind the uncertainties in flood water depth and the inundation
area, as well as the flood impact on population and economy.

uses the annual maximum water level (or water storage); therefore, the variety ﬂffheFFAmﬂyLdemeﬂs&a{emeﬁeffefmaﬂee

only demonstrates the performance of rainfall-runoff models in reproducing the discharge-peakspeak discharge. Separation of
surface runoff and subsurface runoff, and the evaporation rate during the extreme raining events can lead to the differences

deviations in total runoff and the hy

hydrography after routing.
In this study, the runoff and the river discharge estimated by CaMa-Flood are not yet calibrated against observations, although
calibration will ruin the designed sensitivity test with different runoffs.
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There is a lack of studies that have assessed the sensitivities of runoff selection to the flood inundation at a global scalefor

7. Although ?
assessed the global inundation and population exposure with multiple runoff inputs, their results are simulations for each year
(not for a low-frequency flood) with much wider uncertainty range. For regions, the estimated inundation area ranges from
3.5%-9% for the 1-in-100 year return period in Africa (Trigg et al., 2016). While it is 4.5% for experiment "GIoFRIS", which
3.5%-5.2%].

is the same as our experiment R7 but with different routing DynRout, approximating our results in Africa 4.4%

astarge-as20%in Zhao et al. (2017), different routing model leads to 34%—85% in bias of annual peak discharge for global

GRDC gauges. Meanwhile, when using a single routing model (i.e., CaMa-Flood), the bias decreases to 39%—-50%. This shows

that the selection of routing model may also lead to deviation of the inundation area, although the magnitude deserves further
studies, . . . . . . . .

' e “6-m)-Although the uncertainty sources have been discussed in this study, there are some other
factors that are associated with inundation estimation. (Tate et al., 2015) revealed the choice of digital elevation data to be an
important factor as for the whole Amazon River basin. vegetation removal from DEM results in an increase in flooded area
of 27.5%, and 9.3% for the Congo basin, while the impact is not effective in other basins. There are also regional sensitivity
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During-the-validation,-we-found-a~20%-inundation to roughness (Pappenberger et al., 2008; ?) and spatial resolution (??
although their results needs validation over a global scale. ? systematically investigated the sensitivities of various factors

inflow hydrograph, channel friction parameter, floodplain friction parameter, spatial resolution) in different phases of

B3

flood events and concluded that the channel friction parameter is the most influential factor during peak flood inundation.
However, because the ranges of uncertainty are determined within a standard deviation of the inundation-areabetweentwo

aren 0 aco on a nd-30 a m a ovnd—n-Hinkel-e 014 hayv—av adthe-co

mean values, they cannot reflect real sensitivity if using entirely different forcing. With improvement of the
computation capability, the major-contributionto-the-final uncertaintiesresultedfrom-the-deviations-of runoff-inputs—A @

and-runoff-inputs-to-different floods-sensitivity analysis over the global scale becomes much easier.

One limitation of our study is that we lack validation because the FHMs are not measurable. However, from comparison of
long-term water frequency with Landsat and GIEMS data, we noticed that there are some limitations in the current CaMa-Flood
that will lead to different results in the uncertainty evaluation. CaMa-Flood does not include flood defense projects (e.g., 166-yr;

31



10

15

20

25

levees, dams), which will lead to overestimation of the databas

flood inundation in the floodplains and the uncertainty, but
lead to underestimation of flood water depth and uncertainties in the river channel. Meanwhile, representing the flood defenses

remains a big challenge because the global data for flood defenses are strongly limited (Sampson et al., 2015). Attempts to
improve CaMa-Flood by integrating the dam regulation (Shin et al., 2020) and levees (Tanaka and Yamazaki, 2019) have been

tested at a regional scale.
4.2 Conclusions

This study assessed the uncertainties in

the-seleetion—of-the FHMs from uncertainty sources, including the variables for FFA, fitting distributions and the runoff in-
puts which drive the routing model for estimating the water depth. Among all uncertainty-seurces—Uncertaintiesfrom-theo
the uncertainty sources, deviations in runoff inputs contribute the most to the total uncertainty;—; mainly due to the deviated
mean values of extreme water depth. This suggest-suggests the importance of rainfall-runoff model calibration (or runoff bias

correction) if gauge discharge observation is available.

of the mean flood water depth and the uncertainties. Larger deviation values are found in wet regions and along the river
channels, while a larger deviation ratio (uncertainty in percentage) is found in dry zones and mountainous regions. Analysis
of the flood water depth at specific points and inundation areas for regions displays the uncertainty changes in different return
periods. Higher uncertainty is found for a rarer flood compared to normal floods, which is mainly caused by the deviation in the
tail shapes of various fitting distributions. Uncertainties in inundation area leads to uncertainties in population and economic

opulation exposure (2.9% in uncertainty) and 13.1% economic exposure (2.9% in uncertainty). The uncertainty is the largest
in Africa, among all continents, which suggests a large deviation in the structures or parameters of hydrological models that
are applied in Africa. Overall, model calibration/validation with advanced tools (assimilation of remote sensing products) as
well-as—the-and also model improvement by taking into account the-human interventions are needed to reduce the various

uncertainties.
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