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Abstract: Landslides are one of the major geohazards threatening human society. This study was13
aimed at conducting such a hazard risk prediction and zoning based on an efficient machine14
learning approach, Random Forest (RF), for Ruijin, Jiangxi, China. Multiple geospatial and15
geo-environmental data such as land cover, NDVI, landform, rainfall, stratigraphic lithology,16
proximity to faults, to roads and to rivers, depth of the weathered crust, etc., were utilized in this17
research. After pre-processing, including digitization, linear feature buffering and value assignment,18
19 hazard-causative factors were eventually produced and converted into raster to constitute a19
19-band geo-environmental dataset. 155 observed landslides that had truly taken places in the past20
10 years were utilized to establish a vector layer. 70% of the disaster sites (points) were randomly21
selected to compose a training set (TS) and the remained 30% to form a validation set (VS). A22
number of non-risk samples were identified in low slope (< 1-3°) areas and also added to the TS and23
VS in the similar percentage. Then, RF-based classification algorithm was employed to model the24
probability of landslide occurrence using the above 19-band dataset as predictive variables and TS25
for training. After performance evaluation, the RF-based model was applied back to the integrated26
dataset to calculate the probability of the hazard occurrence in the whole study area. The predicted27
map was evaluated versus both TS and VS and found of high reliability in which the Overall28
Accuracy (OA) and Kappa Coefficient (KC) are 91.49% and 0.8299 respectively. In terms of the29
risk probability, the predicted map was further zoned into different risk grades to constitute30
landslide risk map. Modeling results also revealed the order of importance of the 19 causative31
factors, and the most important ones are the proximity to roads, slope, May-July rainfall, NDVI and32
elevation. We hence conclude that the RF algorithm is able to achieve the risk prediction with high33
accuracy and reliability, and this study may provide an operational methodology for geohazard risk34
mapping and assessment. The results of this study can serve as reference for the local authorities in35
prevention and early warning of landslide hazard.36
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38

1. Introduction39

Landslides are frequent natural disasters, which pose a serious threat to traffic, property and40
safety of people (Wu and Ai, 1995; Nadim et al., 2006; Assilzadeh et al., 2010; Froude and Petley,41
2018). Petley (2012) stated that the damage caused by non-seismic landslides is severe around the42
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world, especially in Asia, and we used to underestimate the toll caused by this kind of disaster.43
Ruijin County in Jiangxi, South China is such an area where landslide calamity constitutes a serious44
threat and problem to human society. According to the 264-Geological Team (of the Geological45
Bureau of Jiangxi Nuclear Industry), landslides have caused damage to 104 residential buildings,46
and made 2319 people homeless in the past decades. Affected by landslide disaster, the construction47
and use of the newly-built campus of No. 6 Middle School in Ruijin County have been suspended.48
The uncertainty and suddenness of disaster constitute potential threats to human daily life (Nadim et49
al., 2006; Froude and Petley, 2018). The recognition of potential landslide-prone areas acts as an50
essential part in hazard early warning and aiding decision-makers in land use planning and resource51
management, as well as reducing losses caused by disasters (Aleotti and Chowdhury, 1999; Wu et52
al., 2016; Arabameri et al., 2020).53

In the past decades, a number of studies about landslide risk prediction and assessment have54
been conducted (Montgomery and Dietrich, 1994; Guzzetti et al., 1999; Aleotti and Chowdhury,55
1999; Ayalew and Yamagishi, 2005; Ruffff and Czurda, 2008; Arabameri et al., 2017). These56
studies have proposed a variety of landslide risk prediction and assessment methods, e.g.,57
knowledge-based, physical, and data-driven methods (Corominas et al., 2014; Reichenbach et al.,58
2018; Li et al., 2017). Actually, advantages and limitations exist in each approach, for example,59
knowledge-based and physical methods are mostly intuitive but qualitative or half quantitative60
(Corominas et al., 2014; Goetz et al., 2015; Li et al., 2017), while data-driven methods are61
quantitative, yet require powerful computing capacity for big data processing. On the whole,62
data-driven methods seem more promising for a higher prediction accuracy than other methods, and63
thus shall be more suitable for landslide risk assessment in areas where there is insufficient64
geotechnical data (Guzzetti et al., 1999; Corominas et al., 2014; Furlani and Ninfo, 2015; Li et al.,65
2017; Zhu et al., 2019).66

Owing to the heterogeneity in geological and environmental conditions, the scale and67
mechanism of landslides may differ from one place to another (Cao et al., 2019). This makes the68
hazard prediction complicated and requires a consideration of the hazard-causative factors as many69
as possible while dealing with such risk assessment. Recently, remote sensing (RS) and Geographic70
Information System (GIS) have been taking an significant part in the study of disaster risk zoning71
(Grizer et al., 2001; Wu et al., 2003; Wang et al., 2005; Lai et al., 2019; Chang et al., 2020). RS72
technique can provide not only multitemporal and time-series spatial information of large and even73
inaccessible areas over span of decades but also timely pre- or post-hazard spatial data easily74
(Youssef et al., 2009; Wasowski et al., 2015; Arabameri et al., 2020). Therefore, RS is an effective75
tool for hazard monitoring and assessment. To be precise, satellite images can provide the76
environmental factor layers (e.g., topography, land cover and anthropogenic activities) which can be77
used for landslide risk prediction and modeling (Pradhan et al., 2010; Arabameri et al., 2020). The78
other main intrinsic geological and meteorological hazard-inducing factors are also fundamental and79
essential for this purpose.80

In the past years, machine learning techniques including artificial intelligence and deep81
learning have gained a momentum in geospatial big data processing. For example, data-driven82
algorithms such as Support Vector Machines (SVM), Random Forests (RF), and Artificial Neural83
Networks (ANN) have been well applied in land resource mapping (Wu et al., 2016), prediction of84
soil salinity (Wu et al., 2018) and of ore mineralization in geological field, and shown a superior85
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performance to the traditional approaches (Huang, 2018; Qin et al., 2018; Achour and Pourghasemi,86
2019; Dou et al., 2019; Sameen et al., 2020). Comparing with other machine learning approaches,87
the RF algorithm has clear advantages, i.e., it does not require to normalize and discretize the data,88
and is less sensitive to outliers and runs faster than SVM (Breiman, 2001; Wu et al., 2016; Zhang et89
al., 2017). Landslide causative factors often present nonlinear relationships (Corominas et al., 2014;90
Zhu et al., 2019). RF algorithm is able to catch such nonlinear features among the factors and also91
to prevent overfitting (Breiman, 2001; Goetz et al., 2015; Arabameri et al., 2020).92

In view of the reliable prediction result obtained from regression and classification with the RF93
algorithm (Wu et al., 2016; Wu et al., 2018), the objective of this study is to employ this algorithm,94
one of the data-driven methods, to model the landslide risk taking Ruijin County as an example. As95
RF algorithm has been rarely applied to landslide study, one specific objective of this research is to96
find out an operational RF-based approach for this kind of geohazard zoning and mapping.97

2. Data and Methods98

2.1 The study area99

Ruijin County is located in the southeast of Jiangxi Province, China, extending from 115° 41'100
10" to 116° 21' 49" E in longitude and from 25° 32 '15" to 26° 17' 45" N in latitude, covering an101
area of about 2436 km2 (Fig. 1). From the view of topography, the elevation of the study area varies102
from 70 to 1211 m with a mean of 324 m while the slope from 0 to 65° with an average of 15°.103
Hydrologically, the main rivers are Meijiang, Mianjiang and Jiubao Rivers running through the104
study area as sub-tributaries of the Gongshui River watershed. The study area belongs to the105
subtropical humid climate zone and is characterized by four distinct seasons, sufficient rainfall and106
long frost-free period. Heavy rainfall often occurs from March to July, accounting for more than107
50 % of the annual rainfall with amount of about 1663.5 mm, an average of the period from 1968 to108
2017. The annual mean temperature is 21.54 ℃ and July is the hottest month of the year with a109
mean temperature of 28.8 ℃.110

The hot and humid weather leads to severe weathering of rock mass giving rise to formation of111
a thick weathered crust in which most landslides take places. From the human side, artificial cutting112
on slope for infrastructure construction (such as roads and highways) and housing development113
provoke instability of the crust mass causing landslides.114
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Fig. 1 Location of the study area, Ruijin County, Jiangxi, China and location of the training and validation115
sites of landslides in the study area.116

2.2 Data and Processing Procedures117

For landslide risk assessment, it is unavoidable to deal with non-digital geo-environmental data118
such as geological strata, faults, rivers as they are essential for this purpose. It is hence necessary to119
convert them into digital and meaningful values so that they can be incorporated as quantitative120
variables for landslide risk modeling. The global methodological procedure includes data121
pre-processing, digitization, linear features buffering, rational numeric value assignment to122
descriptive factors and buffers, risk modeling and validation, and finally accuracy assessment.123
These procedures are presented in a flowchart shown in Fig. 2.124
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Fig. 2 Methodological flowchart.125

2.2.1 Geospatial and geo-environmental data126

2.2.1.1 Satellite data127
1) Landsat imagery: Landsat 5 TM images of October and November 2006-2010, and Landsat128

8 OLI images dated May 2017 and Sept 2019 were obtained from the USGS data server129
(https://glovis.usgs.gov). After atmospheric correction using COST model (Chavez, 1996; Wu,130
2003 and Wu et al., 2013), Landsat 8 images were used for land cover mapping using the approach131
proposed by Wu et al. (2016) and Landsat 5 data for deriving the averaged multiyear autumn NDVI132
(Fig. 3a). In general, vegetation can help soil hold water content and improve its mechanical133
properties through root system to stabilize slopes. Thus, landslides may arise more likely in134
unvegetated areas rather than in vegetated ones (Montgomery et al., 2000; Reichenbach et al., 2014).135
However, this will be completely different when slope is cut or excavated because of road136
construction or housing development.137

2) Very high resolution images: those are available on Google Earth as a complementary138
source of ground-truth data. The road and river networks were also extracted from Google Earth139
(Fig. 3b, 4d).140

According to the principle of RF algorithm, we shall use two types of samples for modeling as141
input variables: one is the locality of landslides that have taken places and the other is the stable142
areas where landslides are unlikely to occur (Frattini et al., 2010; Depicker et al., 2020; Arabameri,143
2020). Identified on Google Earth, the stable areas are places where slope is less than five degree,144
e.g., water bodies, urban areas, and cultivated land. Landslides with an area greater than 900 m2 (1145
Landsat pixel) that had been overlooked during the field observation were also identified and146
delineated on Google Earth.147

2.2.1.2 Hydrological data148
1) Rainfall: Rainfall is the main factor triggering landslides (Monsieurs et al., 2018; Depicker149

et al., 2020). Depicker et al. (2020) stated that rainfall condition was the direct cause of many150
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shallow landslides. Daily rainfall data from Jan 2008 to Dec 2013 were obtained from 40151
meteorological stations in Ruijin County and its adjacent areas. As landslides mainly occurred in152
March to July, especially in June and July but without recorded occurrence time, our intention was153
to investigate which months of rainfall may best reveal its role in landslide events. Thus, apart from154
the mean annual rainfall, March-June rainfall, May-July rainfall and March-July rainfall of these six155
years were also aggregated and gridded into raster with 30 m pixel size using Inverse Distance156
Weighting (IDW) approach.157

Fig. 3 Landslide hazard factors: (a) NDVI, (b) Rivers, (c) Lithology, and (d) Faults.158
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2) River network: The influence of rivers on the occurrence of landslides is reflected by the159
proximity to, or rather, the distance to them (Chen et al., 2018a; Cao et al., 2019; Arabameri et al.,160
2019). Thus, the rivers were vectorized from Google Earth (Fig. 3b) and buffered into belts with an161
interval of 30, 60, 90, 120 and 150 m, respectively, for streams and 60, 120, 180, 240 and 300 m162
respectively for the main rivers. Then, these buffers were assigned values in terms of their163
propensity or their importance in the event of landslide. For example, for the main rivers buffers of164
0-60, 60-120, 120-180, 180-240 and 240-300 m were respectively assigned with 20, 15, 10, 5 and 1165
while for streams, buffer zones of 0-30, 30-60, 60-90, 90-120 and 120-150 m respectively with 10,166
8, 6 4 and 1. This implies that the closer to the river the higher propensity of landslide.167

Finally, these buffers are converted to raster data with 30 m cell size using the “Polygon to168
Raster” tool as proposed by Wu et al. (2018).169

2.2.1.3 Geological and geomorphic data170
1) Geological strata and formations: Geological strata were extracted from 1/50,000171

Geological Map. Except for Ordovician, Silurian, Triassic and Tertiary, the strata of other172
geological periods are mostly exposed. In terms of texture and composition, the lithology of173
different strata in the study area can be divided into 113 classes. To facilitate the geohazard analysis,174
these lithological classes were further aggregated into six main categories: (1) granitic rocks, (2)175
magmatic veins, (3) metamorphic rocks, (4) sandstone, (5) limestone, (6) mudstone and shales as176
shown in Fig. 3c. Just based on lithology and in absence of faults and joints, granitic massif would177
possess the highest resistance while mudstone the lowest to landslides. Hence, from (1) to (6), the178
propensity is likely to increase and they were respectively assigned values 1, 2, 3, 5, 7 and 10.179

According to the field observation, landslide events occurred frequently on the boundaries180
between two formations, especially, between the Quaternary sediments and other strata. Therefore,181
the lithostratigraphic boundary factor was also obtained by buffering and rasterization, then added182
to analyze the landslide risk.183

2) Faults: This kind of geological structure has a prominent effect on the stability of rock mass184
(Smets et al, 2016; Delvaux et al., 2017). There formed the spectacular thrust nappe structure which185
was characterized by strong faulting activity in the study area. Such structure is accompanied with a186
series of faults and folds, which tend to be the landslide-prone areas, e.g., the fragile belts related to187
fold hinges, fracture zones and joints. As a matter of fact, the proximity to fault plays a role in such188
hazard events, i.e., the closer to the fault, the higher risk of landslide may exist. For this reason, the189
faults in the study area (Fig. 3d) were divided into three groups in terms of scale, i.e., big faults if190
their length is > 10-20 km, medium faults if they are 2-10 km, and small faults if they are < 2 km.191
The big faults were buffered into five zones of 0-120 m, 120-240 m, 240-360 m, 360-480 m and192
480-600 m, and were respectively assigned with values of 20, 15, 10, 5 and 1. For the medium ones,193
they were also buffered into five zones of 0-60 m, 160-120 m, 120-180 m, 180-240 m and 240-300194
m with assigned values of 10, 8, 6, 4 and 1. The small faults were again buffered into five zones of195
0-30 m, 30-60 m, 60-90 m, 90-120 m and 120-150 m and respectively assigned with 5, 4, 3, 2 and 1.196
These fault buffers were gridded into raster layer of 30 m in resolution.197

3) Depth of the weathered crust, soil type and texture: Weathering is the process converting198
rocks into soils to constitute the weathered crust of our land surface. Landslides mostly take place in199
this crust in which soil texture seems of significant impact on (Kitutu et al., 2009) and the200
variability of soil types and depths of the crust play a part in the occurrence of such events (Fan et201
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al., 2016). Because different soil types and textures have different sand percentage, grain sizes and202
porosity affecting the permeation of rain water. If liquidized by penetrated water, the crust bottom203
(soil/rock interface) may serve as slip surface of landslides as friction and resistance from the204
underlying rocks are reduced by this process. As soon as it has reached certain threshold, landslide205
occurs. Thus, the crust depth, i.e., the depth of the slippery soil/rock interface, is a plausible206
indicator of landslide volume and scale.207

Here the data of soil types were obtained from the Bureau of Jiangxi Coal Geology and the208
sand percentage (%), in which high sand percentage (low percentage of clay but high porosity)209
seems favorable for permeation of rain water and provoking landslide event, was considered as an210
indicator of soil contribution. Hence, soils with sand percentage > 40%, 30-40%, 20-30%, 10-12%,211
5-10% and 0-5%, were respectively assigned with values of 10, 8, 6, 4, 2 and 1. At last soil212
proneness map was converted into raster of 30 m resolution.213

The depth data of the weathered crust were obtained from the field 1282 measurements. In214
assumption that all the ridges have a crust of 0.5m in depth, these field observed depths were215
interpolated using Kriging approach, then converted into raster layer of 30m resolution.216

4) Geomorphic data: Slope (angle) is a key driver of landslides and a triggering angle threshold217
of 28° - 38° was reported by Fan et al.(2016); at the same time, elevation, aspect, plane curvature218
and profile curvature may also contribute to the occurrence of the hazards (Corominas et al., 2014;219
Guzzetti et al., 2005; Galli et al., 2008; Pourghasemi and Kerle, 2016; Cao et al., 2019). The220
ASTER GDEM data with a spatial resolution of 30 m, jointly developed by METI of Japan and221
NASA of the United States, were obtained for Ruijin County from the Geospatial Data Cloud222
(http://www.gscloud.cn/) and used to derive elevation, slope, aspect, plane and profile curvatures223
(Fig. 1, Fig. 4a, 4b).224

2.2.1.4 Land use/cover, transport system and construction sites225
Using the classification approach proposed by Wu et al. (2016), land cover mapping was226

achieved for Ruijin with an accuracy of 90.99%. The main land cover type is forests (54.25%),227
followed by shrub/woodlands (29.33%), croplands (6.65%), artificial areas (urban, villages, road228
and other infrastructures, 5.36%), barelands (1.45 %) and waters (1.41%) (Fig. 4c). Forests cover229
hills and mountains, artificial areas and croplands are mainly distributed in lowlands (valleys) with230
low slope. For risk modeling purpose, forest cover was considered of low proneness and assigned a231
value of 1-2. On the contrary, unvegetated hilly slopes and barelands were regarded of high232
propensity and assigned a value of 10, while zero-slope croplands, urban and water-bodies were233
treated as non-risk (zero probability) areas. At the same time, NDVI can be used as an indicator of234
vegetation greenness and abundance, indirectly representing the development degree of the root235
system. For barelands, woodlands and forests, NDVI shall be a good indicator of propensity of236
landslide.237

Road construction is one of the important human activities leading to slope failure238
(García-Rodríguez et al., 2008; Cao et al., 2019). Similarly, housing development along two sides239
of the roads or on the brink of hills by cutting slopes constitutes also an important factor making the240
slope massif unstable. The influence of road on landslide is also reflected by the distance to them241
(Chen et al., 2018a; Cao et al., 2019; Arabameri et al., 2020). The road system (Fig. 4d) was also242
assigned values the same as was done for rivers and faults.243

https://doi.org/10.5194/nhess-2020-270
Preprint. Discussion started: 5 October 2020
c© Author(s) 2020. CC BY 4.0 License.



9

Fig. 4 Landslide hazard factors: (a) Slope, (b) Aspect, (c) Land use/cover, and (d) Roads.244

There were no landslide accidents recorded in the study area caused by earthquakes, so the245
earthquake factor was not considered in this study.246

2.2.1.5 Integrated geo-environmental dataset247
The occurrence of landslide is a result of the combined action of all the causative248

geo-environmental factors (Corominas et al., 2014; Zhu, et al., 2019). In this study, all these factors249
that may contribute to the occurrence of landslide will be considered for risk modeling. The above250
processed raster layers namely geological strata, proximity to faults, to lithostratigraphic boundaries,251
to roads and to to rivers, depth of the weathered crust, soil types and texture, elevation, slope, aspect,252
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plane curvature, profile curvature, land use/cover, NDVI, multiyear mean annual rainfall, multiyear253
mean May-July rainfall, multiyear mean March-June rainfall, multiyear mean March-July rainfall254
were incorporated into a 19-band dataset in Datum WGS 84 and Projection UTM 50 by Layer255
Stacking function. These raster layers were considered as hazard-causative factors or independent256
hazard predictors.257

2.2.2 Field data258

First-hand data were obtained from the field observation during the Geological Hazard Survey259
Campaign in Ruijin County on a scale of 1/50,000 by the 264 Geological Team of Jiangxi Nuclear260
Industry in the recent years. The realistic landslides that had occurred in the past ten years were261
investigated and recorded. Some landslides had been missed during the field observation were262
digitized on Google Earth as a complement to the former. In total, 155 historical landslide cases263
were collected. The landslide sites ranged from 20 m2 to 64000 m2 in size. Most of the landslides264
are small in scale, i.e., less than 900 m2 in study area. To obtain the optimal spatial presentation of265
samples for RF modeling, the landslide points with areas less than 900 m2 were buffered with radius266
of 30 m and then rasterized into pixels with size of 30 m (Wu et al., 2018), and those larger than267
900 m2, a direct rasterization from vector was conducted. These cases were assigned a value of 1,268
indicating that the events of landslide have truly taken places, i.e., the probability is 1.269

As mentioned above, the non-risk areas (low-slope (< 1-5°) valleys, plain, urban and270
water-bodies) were integrated into the field dataset as zero-risk area, i.e., the risk probability is 0.271

At last, we randomly selected 70 % of the landslide samples (109 cases) plus 70 % of the272
non-risk zones to constitute a training set (TS) and used the remained ones (45 cases, 30 %) as a273
validation set (VS).274

2.3 Landslide risk modeling275

Among the machine learning algorithms, Wu et al (2016 and 2018) found that RF and support276
vector machines (SVM) performed equally well in classification, better than artificial neural277
networks (ANN), but RF performed best in regression prediction. Hence, RF classification278
algorithm was selected for geohazard risk modeling in this study. The overall procedure was279
summarized in Fig. 2 and the detail on modeling, validation and accuracy assessment is given in the280
following sections.281

2.3.1 RF classification of risk probability282

RF classification, based on growing decision trees, is an ensemble of tree classifiers that allow283
to conduct classification by predicting the probability of a given pixel to be classified into the284
target class through majority voting. The key technique of this algorithm lies in that a bootstrap285
sample of the TS is used to build each tree, and a stochastic selection of the input variables is286
searched to determine the best split for each node. Meanwhile, RF algorithm uses out-of-bag (OOB)287
estimates to define the generalization error and the importance of each variable (Breiman, 2001).288
RF will not overfit if the number of decision trees (NT) increases to certain level. Thence, NT289
should be large enough to reduce the OOB error of classification to a stable level in the training290
process. It is to mention here that instead of classification of land cover types, we employ this291
algorithm to classify the probability of risk and non-risk for each pixel.292
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2.3.2 Application of RF algorithm293

In this study, RF classification was conducted within EnMap-Box which is a package294
particularly developed to process and analyze image data (Waske et al., 2012). While conducting295
RF modeling, we kept the combined 19-band dataset as input variables with 109 landslides used as296
TS and 45 as VS. Some key parameters of RF classification include the Impurity Function, the Stop297
Criteria (for node splitting), the Number of randomly selected Features (or Number of Variables) at298
each node and Number of Trees (NT) with classification and regression algorithm (Wu et al., 2016,299
2018).300

The Gini Coefficient was selected for the Impurity Function. The Stop Criteria was set as the301
default values which was a Minimum number of samples at a node of 1 or a Minimum impurity302
calculated based on the Gini index of 0. The Number of randomly selected Features (or Number of303
Variables) at each node was the square root of all available features. The default value of number of304
trees was 100 within EnMap-Box. In this study, NT was set to 300 and 500 in order to achieve a305
better prediction.306

After parameterization of RF classification model using the integrated dataset as predictive307
variables and TS for training and internal validation, the model was applied back to the integrated308
dataset for landslide prediction, i.e., the probability of landslide occurrence in each pixel. The309
accuracy of modeling is calculated versus the independent VS.310

2.3.3 Importance of variables311

The importance of variables in the RF classification can be evaluated by variable substitution312
method. In other words, it can be measured by calculating the difference of the OOB error before313
and after value substitution. Factor importance of Fi can be expressed as follows:314

 
t

t
i
ti errOOBerrOOBNTFVIM 1)( (1)

where NT is the number of trees, errOOBt is an error for tree t of the forests when all the factors are315
included, errOOBti refers to an error after removing the factor Fi and VIM(Fi) is variable importance316
for Fi. For RF classification and its result produced, a high value indicates that the factor is of high317
importance and vice versa.318

2.3.4 Validation of models319

Base on the Confusion Matrix, Precision, Recall, F1 index, Kappa Coefficient (KC) and320
Overall Accuracy (OA) can be calculated to evaluate the accuracy and performance of landslide risk321
prediction model (Congalton, 1983).322

Generally, both TS and VS can be used to calculate these statistical indices. The evaluation323
results of TS show the adaptability of the model to the training data, while those of VS reveal the324
predictive and generalization ability of the model (Tien Bui et al., 2012).325

According to previous studies, the smaller the high-risk area predicted by the model, the more326
historical landslide points concentrated there, which indicates that the model has high predictivity327
(Cao et al., 2019; Dou et al., 2019). The success rate curve and prediction rate curve can be made328
respectively by using the landslide risk prediction results of TS and VS. For the study area, the329
prediction accuracy of landslide risk map can be analyzed and demonstrated by the area under curve330
(AUC) features (Chung et al., 2003; Yilmaz, 2009; Nicu et al., 2019).331
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3. Results and Discussion332

3.1 Landslide risk zoning333

The landslide risk zoning was achieved based on the modeled risk probability when RF334
modeling was implemented at NT = 300. All pixels were divided into four levels: low-risk335
(probability < 0.5), medium-risk (probability ≥ 0.5 and < 0.7), high-risk (probability ≥ 0.7 and < 0.9)336
and extremely high-risk (probability ≥ 0.9). The landslide risk map of Ruijin was hence produced337
(Fig. 5a).338

The predicted results of the landslide-prone areas were largely consistent with the field survey:339
(1) High-risk zones were mainly linearly distributed along rivers and roads (Fig. 5b). Many340
landslides were often caused by river undercutting and artificial cutting for road construction and341
housing. (2) In the central part of the study area, high-risk zones are concentrated in the Quaternary342
soil layer, or rather, in the weathered crust, especially along the boundaries of lithologic strata (Fig.343
5c). The Quaternary unconsolidated soil layer with loose structure provided rich material for344
landslides. The boundaries of lithologic strata behaved as unstable structural interfaces, which were345
important factors for landslides. (3) In the granitic massif, there were also obvious high-risk zones346
distributed along the roads (Fig. 5b, 5c). Weathering accelerated by humidity, high undulating347
landform and tectonically active settings of the study area, changed the intrinsic properties of the348
material and reduced the strength of the near-surface rocks.349

Table 1 shows that 24.83 km2 of areas identified as Extremely high risk zones account for350
1.02% of the total study area, and High, Medium and Low risk zones take up 227.57 km2 (9.32%),351
472.39 km2 (19.36%) and 1715.60 km2 (70.30 %) respectively. Additionally, 94.19% of the field352
samples, i.e., the realistic landslides, took places in 10.34% of the entire study area, which was353
categorized as High-risk and Extremely-high risk zones in our risk zone map.354

3.2 Number of Trees with RF classification355

The selection of NT has a great influence on the accuracy of RF modeling. The performance of356
classification or regression is poor and the error is large when NT is small. As it grows, the OOB357
error decreases continuously and reaches eventually a threshold (Breiman, 2001). However, the358
complexity of RF model is directly proportional to NT. If there are too many decision trees, the359
operating efficiency will decrease as it becomes more time-consuming and the optimal result may360
not be obtained. The previous study by Wu et al. (2018) confirmed that in both low (e.g., 100) and361
high NT (e.g., 1000) cases, the algorithm did not perform well, but it did when NT was set to 300362
and 500. .It is clear that the OOB error tends to be stable after NT gets greater than 300 (Fig. 6), or363
rather, the model accuracy becomes greater than 96%. Hence, 300 was finally used for NT when364
performing landslide risk modeling.365
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Fig. 5 The landslide risk zoning map of Ruijin County.366

Table 1. Distribution of historical landslides within different risk levels367
Landslide Risk

Level
Area
(km2)

Area Percentages
(%)

Number of Historical
landslides

Number
Percentages (%)

Extremely high 24.83 1.02 99 63.87
High 227.57 9.32 47 30.32

Medium 472.39 19.36 5 3.23
Low 1715.60 70.30 4 2.58

3.3 Importance of hazard factors368

For geohazard assessment, it is critical to understand the importance, more concretely, the role369
of each geo-environmental factor in such disaster event. In terms of the OBB error, Fig. 7 shows the370
importance of all the hazard factors considered in this research with the first four factors as follows:371
1) distance to road, 2) slope, 3) May-July rainfall, 4) NDVI, 5) elevation, and so on.372

https://doi.org/10.5194/nhess-2020-270
Preprint. Discussion started: 5 October 2020
c© Author(s) 2020. CC BY 4.0 License.



14

Fig. 6 Out-of-bag (OOB) error plot versus number of trees (NT) within RF modeling.373

In the case of Ruijin, the order of importance seems plausible. Stable slope becomes unstable374
as a result of road construction, i.e., slope cutting or housing development, and naturally, steeper375
slope has higher propensity to slide due to gravity. May-July rainfall is a triggering factor as it376
liquidizes the slippery interface when it reaches certain threshold, i.e., the rainfall amount leading to377
saturation of soil after penetration and starting to flow on the soil/rock interface. Actually, the more378
rainfall in short time, the higher landslide disaster risk may be developed. Rainfall is thus widely379
employed as a Weather Indicator of landslides. NDVI, an autumn mean of five-year period and an380
indicator of vegetation abundance, vigor and root system development of forests and woodlands381
(herbaceous layer is mostly withered at that time), can largely reflect the stability and instability of382
the weathered crust. It is hence reasonable that these factors were identified as the most important383
hazard-causative factors in Ruijin though all others may play also a certain role in the geohazard384
events.385

Fig. 7 Importance of the variables (geo-environmental factors) in provoking landslide events.386
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The importance of hazard factors associated with landslides had been also discussed by other387
authors. The one of Dou et al. (2019) showed that precipitation was the most significant factor but388
according to those of Arabameri et al. (2017) and Cao et al. (2019), DEM was the most important389
one. Actually, it is understandable that in different geological environments, the mechanism of390
landslides may be different and so the importance of hazard factors.391

3.4 Validation of the modeling results392

Only after being validated, has the model potential to be applied elsewhere. We used five393
statistical indicators to evaluate the performance of landslide risk model, including Precision, Recall,394
F1 Index, KC and OA as mentioned above. Against the training dataset, the Precision, Recall, F1395
Index, KC and OA of the modeled results were 0.9908, 0.9818, 0.9863, 0.9724 and 0.9862,396
respectively, while they were 0.95, 0.8867, 0.9173, 0.8299 and 0.9149 respectively versus VS397
(Table 2). Above all, statistical indicators have shown that the RF classification model has good398
performances in predicting the landslide risk.399

Table 2. Performance of the RF modeling vs training set (TS) and validation set (VS)400

Item Training Set Validation Set

Precision (%) 99.08 95.00

Recall (%) 98.18 88.67

F1 Index (%) 98.63 91.73

KC (%) 97.24 82.99

OA (%) 98.62 91.49
NT= 300.401

Fig. 8 presented the success rate curve and predicted rate curve versus TS and VS. The AUC402
for success rate curve and for prediction rate curve were 0.9936 and 0.9677, respectively. A model403
can be considered as appropriate for this kind of risk prediction when the AUC had a value above404
0.5 (Chen et al., 2018b; Achour and Pourghasemi, 2019). The landslide risk map had a better405
success and prediction rates by RF classification model in this study compared with the results of406
other scholars (Chung et al., 2003; Nicu, 2018; Depicker et al., 2020). Hence, RF classification407
algorithm has a good predictive capability, and can be extended elsewhere for application.408

Fig. 8 Success rate curves and prediction rate curves with associated AUC values.409

https://doi.org/10.5194/nhess-2020-270
Preprint. Discussion started: 5 October 2020
c© Author(s) 2020. CC BY 4.0 License.



16

3.5 Case verification410

The landslides in the newly-built campus of No. 6 Middle School and the Longzhu Temple411
in Ruijin took place very recently. The two new landslide events were predicted as Extremely412
high-risk zones in the risk map (Fig. 9a). During the field investigation in July 2019, the middle413
school was closed due to this disastrous effect (Fig. 9b); at the Longzhu Temple there were414
significant ground bulges along the behind and side wall feet because of the extrusion provoked by415
the downward slide of the upper slope (Fig. 9c). Thus, both sites are in danger as landslides416
continue gradually.417

Fig. 9 The landslide risk zoning map and photographs of landslide in field survey.418

4. Conclusions419

The prediction and prevention of landslide disasters have become essential to secure our420
society. This paper presents a research using multi-source geo-environmental dataset as input421
variables followed by a RF Classification to model and predict the landslide risk in Ruijin County.422
Our results were obtained with high reliability of which OA is 98.62% and 91.49% versus TS and423
VS. We believe that our research will be helpful for local government to take action on prevention424
and early warning of geohazard to ensure people’s safety and property, and to provide theoretical425
advice for the infrastructure construction and urban planning.426

Our study revealed the critical role of human activity, in particular, road construction, in427
landslide events. Most of the observed landslides in Ruijin were actually “man-made”. In future428
road development we should take its negative impacts into account.429
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Another innovation lies in finding out a rational digitization and value assignment approach for430
non-digital geo-environmental factors such as geological strata, faults, soil, roads and rivers so that431
quantitative risk modeling and prediction using RF algorithm can be smoothly achieved.432

Our study also illustrates that combination of remote sensing, geological, geomorphic, climatic433
and human dimensional data is relevant for such geohazard risk zoning and mapping. RF algorithm434
is able to satisfactorily achieve such task. This study can hence serve as a prototype for similar435
research elsewhere.436
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