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Abstract 

Drought is understood as both a lack of water (i.e., a deficit as compared to some requirementdemand) and a temporal 

n anomaly in the condition of one or more components of the hydrological cycle. Most drought indices, however, only consider 

the anomaly aspect, i.e., how unusual the condition is. In this paper, we present two drought hazard indices that reflect both 10 

the deficit and anomaly aspects. The soil moisture deficit anomaly index, SMDAI, is based on the drought severity index, DSI, 

but is computed in a more straightforward way that does not require the definition of a mapping function. We propose a new 

indicator of drought hazard for water supply from rivers, the streamflow deficit anomaly index, QDAI, which takes into account 

the surface water demand of humans and freshwater biota. Both indices are computed and analyzed at the global scale, with a 

spatial resolution of roughly 50 km, for the period 1981-2010, using monthly time series of variables computed by the global 15 

water resources and the model WaterGAP2.2d. We found that the SMDAI and QDAI values are broadly similar to values of 

purely anomaly-based indices. However, the deficit anomaly indices provide more differentiated, spatial and temporal patterns 

that help to distinguish the degree and nature of the actual drought hazard to vegetation health or the water supply. QDAI can 

be made relevant for stakeholders with different perceptions about the importance of ecosystem protection, by adapting the 

approach for computing the amount of water that is required to remain in the river for the well-being of the river ecosystem. 20 

Both deficit anomaly indices are well suited for inclusion in local or global drought risk studies. 

Keywords: drought index, anomaly, soil moisture deficit, streamflow deficit, water abstraction 

1 Introduction  

According to the Australian Bureau of Meteorology, “drought is a prolonged, abnormally dry period when the amount 

of available water is insufficient to meet our normal use (BoM, 2018)”. This definition describes drought as both an anomaly 25 

(“less water than normal”) and a deficit (“less water than required”), reflecting general non-expert notions of drought. 

However, most experts define drought only as an anomaly, for example, as “a lack of water compared to normal conditions 

which can occur in different components of the hydrological cycle” (Vvan Loon et al., 2016, p.3633). Assuming that humans 
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and other biota are accustomed to seasonal variations of water availability in the form of precipitation, soil moisture, 

streamflow, or groundwater storage, droughts are mostly defined by the deviation of a water quantity at a specific point in time 30 

(e.g., precipitation in May 2005) from its long-term mean or median (e.g., of all May precipitation values during the reference 

period 1981-2010). It is further assumed for most drought hazard indicators that humans and other biota are used to interannual 

variability. Therefore, drought is not defined by a percentage deviation but rather by using percentiles (e.g., precipitation in 

May 2005 is less than the 10th percentile of all May precipitation values during the reference period) or by standardized drought 

indicators where the anomaly is divided by the standard deviation. Anomaly-based drought indicators that indicate “less 35 

water than normal” include the Standardized Precipitation Index (SPI) (Mckee et al., 1993), the Standardized Precipitation 

Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010; Bergez et al., 2013), the China Z index (CZI) (Wu et al., 2001) 

and, for streamflow drought, the Standardized Streamflow Index (𝑆𝑆𝐹𝐼SSFI) (Modarres, 2007) and the percentile-based low-

flow index by Cammalleri et al. (2017) can be used. 

Some researchers have quantified drought by only considering the deficit aspect of drought, i.e., by computing the 40 

difference between an optimal water quantity and the actual quantity (“less water than required”).  Deficit-based indicators 

have only been derived for assessing drought risk for vegetation, as optimal water quantities can be defined by either the field 

capacity of the soil (Sridhar et al., 2008) or potential evapotranspiration. For the latter, the deficit is computed either as the 

difference between potential evapotranspiration and precipitation (Hogg et al., 2013) (Hogg et al., 2013) or between potential 

and actual evapotranspiration. Examples of deficit-based indicators include the Soil Moisture Deficit Index (SMDI) as well 45 

as the Evapotranspiration Deficit Index (ETDI) from Narasimhan and Srinivasan (2005) and the Soil Water Storage (SWS) 

from British Columbia Ministry of Agriculture (2015). A drawback of these deficit-based drought hazard indicators is that 

they indicate strong drought events in arid and (semi)arid regions, even though the vegetation in these regions is adapted to 

generally lower soil moisture (Cammalleri et al., 2016). Deficit-based indicators cannot be meaningfully derived for the 

variable precipitation only as the definition of an optimal precipitation amount depends on the user of the precipitation water. 50 

It is, however, conceptually meaningful to determine deficits for human water supply based on the variable streamflow, 

defining the deficit as the difference between the demand for water from the river and the actual streamflow. To the best of 

our knowledge, streamflow drought has not, as yet, been characterized by a deficit-based drought indicator. 

 Two notable attempts in identifying and bringing together both the anomaly and deficit aspects are the Palmer Drought 

Severity Index (PDSI) (Palmer, 1965) and the Drought Severity Index (DSI) (Cammalleri et al., 2016). PDSI is a standardized 55 

index developed to quantify the cumulative deficit of moisture supply in the form of precipitation as compared to demand in 

the form of potential evapotranspiration; it indicates meteorological drought, has been extensively used in the USA (Heim, 

2002) and its strengths and weaknesses have been investigated (Dai et al., 2004). DSI indicates soil moisture drought by 

combining the soil moisture deficit (as compared to the situation in which plant evapotranspiration is not constrained by soil 

moisture availability) and the anomaly of the deficit, thus indicating rare events in which plants suffer from water stress. An 60 

anomaly-based soil moisture drought may, however, be unsuitable for indicating a drought hazard for vegetation as, in areas 

with high soil moisture in most years, the low interannual variability and, thus, the standard deviation, would indicate a strong 
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drought hazard in years with unusually low soil moisture values that are, nevertheless, still close to the optimal values and do 

not cause any water stress for the plants (Cammalleri et al., 2016). 

Similar to the demand for soil water by plants, humans have a demand for water from rivers in situations where they 65 

rely on river water for their water supply. About 75three -quarters% of global water withdrawals for irrigation, cooling of 

thermal power plants, manufacturing and domestic use, totalingtotaling about 3700 km3/a in the first decade of this century, 

are sourced from surface water (Döll et al., 2014). Globally, irrigation is the largest water demand sector, accounting for more 

than 60% of total surface water withdrawals (Müller Schmied et al., 2020; Döll et al., 2014). To date, however, streamflow 

drought indicators only describe the anomaly of streamflow but do not indicate whether there is enough water in the river to 70 

meet water demand. Thus, to assess the risk of drought for human water supply from rivers, an indicator that combines the 

anomaly of streamflow conditions with a deficit, with respect to water demand, is desirable. In this way, the locations and 

times where the human water supply is at risk can be identified.  

Differing from anomaly-based streamflow drought indicators, a combined analysis of streamflow anomaly and deficit 

requires time series information of both streamflow and water demand. This information is available from global water 75 

resources and uses models such as WaterGAP with a spatial resolution of 0.5° (55 km by 55 km at the equator) and a monthly 

temporal resolution (Alcamo et al., 2003; Müller Schmied et al., 2020). Up to the present time, macro-scale drought risk 

assessments have included the demand for water as vulnerability indicators by using a country's average water withdrawal to 

water availability ratio (e.g., (Meza et al., 2020).  

In this study, we introduce and relate two drought hazard indicators that combine both the deficit and anomaly aspects: 80 

one for soil moisture drought and the other for streamflow drought. In the soil moisture deficit anomaly index (SMDAI), the 

deficit is calculated as the difference between the soil moisture at field capacity (that which should allow optimal, non-water-

limited plant growth) and the actual soil moisture. The SMDAI slightly modifies and simplifies the DSI introduced by 

Cammalleri et al. (2016). Another difference from Cammalleri et al. (2016), is that the SMDAI is computed globally, using 

the output of WaterGAP, rather than just for Europe. The streamflow deficit anomaly index QDAI is, to our knowledge, the 85 

first-ever streamflow drought indicator that combines both the anomaly and deficit aspects of streamflow drought. In the case 

of QDAI, the deficit is computed by comparing actual streamflow to the combined human and environmental surface water 

demand per grid cell. QDAI focuses on determining the drought hazard for the water supply for humans, including domestic, 

industrial, and irrigation water demand. QDAI is constructed similarly to SMDAI and computed globally using WaterGAP. 

Whether QDAI should be called a drought hazard indicator, or a combined drought hazard and vulnerability indicator , is up 90 

for discussion. However, for global-scale drought risk assessments, gridded QDAI values can be meaningfully combined with 

country-scale vulnerability indicators of, for example,  coping capacity. 

In Section 2, we describe (a) the methods for calculating SMDAI and QDAI and (b) how water demand, streamflow, 

surface water use, and soil moisture are computed by WaterGAP 2.2d (Müller Schmied et al., 2020). In section 3, spatial and 

temporal patterns of SMDAI and QDAI are presented. In Section 4, we analyze the components of SMDAI and QDAI, compare 95 
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SMDAI to DSI, compare QDAI to a standardized streamflow indicator (𝑆𝑆𝐹𝐼SSFI) and discuss the limitations of the study. 

Finally, we draw conclusions in Section 5. 

2. Methods and data 

2.1 Global-scale simulation of soil moisture, soil water capacity, streamflow and human water withdrawalabstraction 

In this study, we use the output of the latest version of the global hydrological and water use model WaterGAP 2.2d 100 

(Müller Schmied et al., 2020). . WaterGAP consists of two three major modulescomponents: the water use models for five 

different sectors, the linking model GSWUSE and the global hydrological model (WGHM).  The water use models compute 

water use in the five sectors household, manufacturing, cooling of thermal power plants, livestock and irrigation. Household 

and manufacturing water use is computed based on national statistics (Flörke et al., 2013) (Flörke et al., 2013). The amount of 

water required for cooling of thermal power plants is calculated based on the location, type, and size of power plants and the 105 

annual time series of thermal electricity production (Flörke et al., 2013) (Flörke et al., 2013). The globally small amount of 

livestock water use is determined from the number of livestock and livestock-specific water use values (Alcamo et al., 2003). 

Irrigation water use is computed based on information on the irrigated area and climate for each grid cell. The irrigation model 

first computes cell-specific cropping patterns and growing periods and then irrigation consumptive water use, distinguishing 

only rice and non-rice crops (Döll and Siebert, 2002). The irrigated areas are changing over time (Siebert et al., 2015)(Siebert 110 

et al., 2015).  

The water use models do not take into account the source of the sectoral water abstractions. This is done by The 

submodel GWSWUSE, which distinguishes water use from groundwater and surface water sources and computes monthly 

time series of 0.5° grid-cell values of human water abstractions from 1) surface water bodies (river, lakes, and man-made 

reservoirs)and and 2) groundwater, for each of the five sectors, as well as the respective net abstractions from both sources 115 

(Döll et al., 2012). A comparison of simulated annual sectoral water abstractions per country to independent values from the 

AQUASTAT database of FAO showed a rather high similarity between the two data sets (Müller Schmied et al., 2020). 

Taking into account the net abstractions, i.e. the difference between water abstractions and return flows, WGHM 

simulates, with a spatial resolution of 0.5° by 0.5° (55 km by 55 km at the equator) and a daily time step, the most relevant 

hydrological processes occurring on the continents and computes water flows such as actual evapotranspiration, runoff, 120 

groundwater recharge and streamflow, as well as the amount of water stored in diverse compartments such as the soil and the 

groundwater for all land areas, excluding Antarctica (Müller Schmied et al., 2014; Döll et al., 2003; Alcamo et al., 2003).  

The soil is represented as one water storage compartment that is characterized by 1) soil water capacity (SmaxSmax), 

which is computed as the product of land cover, specific rooting depth, and soil water capacity in the upper meter and 2) soil 

texture, which affects groundwater recharge (Müller Schmied et al., 2014). The temporal development of soil moisture (SS) is 125 

computed from the balance of inflows (precipitation and snowmelt minus interception by the canopy) and outflows (actual 

evapotranspiration and total runoff from the land). Total runoff from the land fraction of the grid cell is then partitioned into 
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the fast surface and subsurface runoff and the diffuse groundwater recharge. Both components are subject to so-called 

fractional routing to the various other storages within the 0.5° grid cell, which include the groundwater as well as lakes, 

wetlands, man-made reservoirs, and rivers (Döll et al., 2014). Streamflow (Qant) in each grid cell depends on the runoff 130 

generated within the cell, inflow from upstream grid cells as well as human water abstractions and takes into account the 

impact of man-made reservoirs. 

WGHM is calibrated to match long-term annual observed streamflows at the outlets of 1319 drainage basins that 

cover ~54 % of the global drainage area, following the calibration principles provided by Müller Schmied et al. (2014), Hunger 

and Döll (2008), and Döll et al. (2003). In validation studies against time series of observed streamflows, WaterGAP has been 135 

repeatedly shown to be among the best-performing global hydrological models (Zaherpour et al., 2019; Zaherpour et al., 2018; 

Veldkamp et al., 2018). Nevertheless, there can be significant mismatches between the observed and simulated seasonality and 

interannual variability. 

This study uses simulated data of 30-years (1981 – 2010)  monthly time series of WaterGAP gridded (0.5° x 0.5° ) 

output of 67420 land grid cells covering all land areas of the globe except Greenland and Antarctica, for 1) soil moisture (S) 140 

[mm], 2) streamflow (Qant) [km3 month-1], 3) streamflow under naturalized condition (Qnat) [km3 month-1], assuming there 

are no human water abstraction or man-made reservoirs, and 4) total surface water abstractions (WUsw) [km3 month-1]. In 

addition, the consistent dataset of soil water capacity (Smax) [mm] is utilized. 

2.2 Computation of deficit and anomaly components of the soil moisture deficit anomaly index SMDAI 

2.2.1 Deficit 145 

Soil moisture deficit (dsoil) refers to the lack of water in the root zone for plants as compared to optimal growing 

conditions assumed to occur at soil water capacity (demand for water). dsoil is calculated as  

 
dsoil =  

Smax − S

Smax
 

(1) 

 

dsoil =  
Smax−S

Smax
                                                                                                                                                                            (1) 

where SmaxSmax [mm] is the amount of water stored in the soil between field capacity and wilting point within the plant’s root 150 

zone, S S [mm] is the actual amount of soil water. dsoil ranges from 0 (no deficit/stress) to 1 (extreme deficit/stress). 

2.2.2 Anomaly 

Assuming that vegetation is used to seasonal variations of soil moisture, the anomaly of monthly soil moisture is 

determined separately for each calendar month.Interannual variability of both monthly soil moisture and monthly soil moisture 

deficit can be used to examine the occurrence frequency of soil moisture droughts and identify the normal state of the system. 155 
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The unusualness of drought, compared to the normal state for a specific site and calendar month, is commonly quantified 

usingIn case of standardized drought indicators such as the SPI, the standard z-score. In generala so-called, the z-score is 

computed separately for each calendar month (here using, for example, 30 monthly soil moisture deficits in the 30 January 

months during the period 1981-2010), by standardizing the variable using the calendar month mean and standard deviation 

after translating the cumulative distribution function that optimally fits the distribution of monthly values to a normal 160 

distribution (McKee et al., 1993). Thus, computation of the z-score assumes that the vegetation is adapted to both seasonal and 

interannual variability. Following Cammaleri et al. (2016), in this study, we express the anomaly aspect of drought not by the 

z-score but by deriving a so-called drought probability index (p) that can be combined with the deficit indicator to a deficit-

anomaly drought hazard index. 

Computation of p also starts with identifying the probability of exceedance of a certain soil moisture deficit FF.  165 

Sheffield et al. (2004) found that long-termtime series of  soil moisture data per calendar month areis best represented by the 

beta distribution function. The probability density function f and cumulative density function F of the beta distribution function 

can be expressed as  

 
F(dsoil; a, b) =

B(dsoil; a, b)

B(a, b)
 

(2) 

 

f (dsoil; a, b) =  
1

B(a,b)
dsoil

(a−1)
(1 − dsoil)

(b−1)                 (2)170 

   

F(dsoil; a, b) =
B(dsoil;a,b)

B(a,b)
                   (3) 

where a, b ≥ 0 are the shape parameters, B(a, b) is the beta function and B(dsoil;  a, b) is the incomplete beta function. In this 

form, the b supports the range of dsoil∈ [0, 1].  

 In this study, we could confirm the assumption made by Cammalleri et al. (2016) that the beta distribution function represents 175 

satisfactorily the distribution of dsoil , which is the same as that of the soil moisture itself. The beta cumulative distribution 

function was fitted to dsoil values for each calendar month and grid cell (i.e., for each grid cell, twelve beta functions are fitted 

corresponding to the twelve calendar months).  

Following Cammalleri et al. (2016), the next step was to derive from F F a drought probability index (psoil) that 

translates the probability that a certain soil water deficit status is drier than usual into the range [0, 1]. As suggested by Agnew 180 

(2000), a z-score  of -0.84, which corresponds to a return period of 5 years and a F(dsoil) of 0.8, was assumed to be the 

threshold for drought (Table 1), for which psoil= 0. Then, the drought probability index  isindex is calculated as   

 
psoil =

F(dsoil) −  0.8

1 − 0.8
 

(3) 
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psoil =
F(dsoil)− 0.8

1−0.8
                      (4) 185 

 

where F(dsoil) is the beta cumulative distribution function fitted to dsoil. If the beta cumulative distribution function is fitted 

to S, then (1-F(S)) should be used instead of F(dsoil). 

 

 Cammalleri et al. (2016) calculated psoil using the mode instead of median as the reference for the normal status of 190 

dsoil. The computation of psoil from F(dsoil) was carried out done in two steps. First, for dsoil values that are greater than or 

equal to the mode, a new standardized cumulative distribution function F F*(dsoil) is computed (Eq. 3 in Cammalleri et al., 

2016). Subsequently, mapping of F F*(dsoil) values ranging from 0.6 to 1 are mapped onto the psoil range of [0, 1], an by an 

exponential function (Eq. 4 in Cammalleri et al., 2016) was employed. This exponential function that was developed following 

considerations to subjectively fit subjectively   fitted to subjectively defined pairs of  F  F*(dsoil ) and psoil  (Table 1 in 195 

Cammalleri et al., 2016) (Eq. 4 in Cammalleri et al., 2016). In this study, we have simplified the more unnecessarily complex 

approach of Cammalleri et al. (2016) by relying directly on FF(dsoil) for mapping FF(dsoil) onto psoil according to Eq. 34 

(Figure S1). . In our opinion, there is no added value in defining an arbitrary exponential mapping function for deriving an 

indicator for the probability of a drought occurrence (psoil). Furthermore, like most other drought researchers, we prefer the 

median to the mode, as among 30 deficit values, which are rational numbers, there is no true mode, i.e., no value that occurs 200 

most often. The relation between the anomaly component (p) of SMDAI (i.e., psoil) to the non-exceedance probability of the 

soil moisture deficit (FF(dsoil)) and the pertaining return periods, z-scores, and class names, according to Agnew (2000) as 

well as the anomaly component (p) of DSI (p_DSI) isare presented in Table 1. A comparison of  psoil to p_DSI values as a 

function of (F(dsoil)) (F(dsoil))  as presented in Table 1 is shown in Figure S1 and the slight differences between psoil and 

p_DSI as well as DSI and SMDAI, as well as DSI and SMDAI, computed with WaterGAP output for August 2003 at the 205 

global scale isare presented in Figure S2. For the period 1981-2010,  SMDAI is, averaged over all grid cells, A lso, a difference 

of 0.05  (on average per grid cell)larger is observed between SMDAI and  than DSI. values for the period of 1981- 2010. 

 

 Furthermore, like most other drought researchers, we prefer the median to the mode, as among 30 deficit values, which are 

rational numbers, there is no true mode, i.e., no value that occurs most often. Table 1 shows the relationship of the anomaly 210 

component (p) of SMDAI (i.e., 𝐩𝐬𝐨𝐢𝐥) to the non-exceedance probability of the soil moisture deficit (F(𝐝𝐬𝐨𝐢𝐥)) and the pertaining 

return periods, z-scores and class names, according to Agnew (2000) as well as the p-values by Cammalleri et al. (2016) 

(p_DSI). Figure S2 shows, for the example of August 2003, that there are only slight differences between the values of p_DSI 

and p and of DSI and SMDAI, if they are all computed using WaterGAP output. 

 215 
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Table 1. Relationship of the anomaly component p of SMDAI and QDAI to the non-exceedance probability of the soil moisture 

deficit (𝐅(𝐝𝐬𝐨𝐢𝐥)) or of streamflow (𝐅(𝐐)), the pertaining return periods, z-scores and class names according to Agnew (2000) 

as well as the p-values by Cammalleri et al. (2016) to compute DSI. The class name refers to the drought conditions with z-

score values that are larger than those listed in the z-score column. The equiprobability transformation technique, first 

suggested by Abramowitz and Stegun (1965) and utilized in Kumar et al. (2009) for calculation of the Standardized 235 

Precipitation Index (SPI), is used to back-calculate F values from the z-score values. 

𝐅(𝐝𝐬𝐨𝐢𝐥)/ 𝐅(𝐐) Return period 

(yrs) 

z-score Drought class 

name 

p_DSI 𝐩𝐩𝐬𝐨𝐢𝐥/𝐩
𝐐
 

0.8 5 -0.84 Normal 0 0 

0.843 6.4 -1.00 Mild 0.04 0.21 

0.87 7.7 -1.12 Moderate 0.10 0.35 

0.9 10 -1.28 Moderate 0.26 0.50 

0.933 15 -1.50 Moderate 0.54 0.68 

0.95 20 -1.64 Severe 0.72 0.75 

0.97 33.3 -1.88 Severe 0.89 0.85 

0.9775 40 -2.00 Severe 0.93 0.88 

0.99 99 -2.33 Extreme 0.99 0.95 

0.995 200 -2.57 Extreme 0.997 0.97 

0.998 500 -2.88 Extreme 0.999 0.99 

1 -- ~ -4.00 Extreme ~ 1 ~ 1 

 

2.3 Computation of deficit and anomaly components of the streamflow deficit anomaly index QDAI 

2.3.1 Deficit 

Similar to the soil moisture deficit, the streamflow deficit (dQ) is the calculated as the demand for water minus the 240 

supply divided by demand. It refers to the amount of streamflow that is lacking to satisfy the surface water demand of both 

humans and the river ecosystem. dQ is computed as  

 
dQ =  

(WU
sw

+ EFR) − Qant

WUsw + 𝐸𝐹𝑅
 

(4) 

 

dQ =  
(WUsw+EFR) −Qant

WUsw+𝐸𝐹𝑅
                    (5) 

where WUsw [km3 month-1] is water abstraction from surface water bodies, derived as the sum of water abstractions for 245 

irrigation, livestock, cooling of thermal power plants, manufacturing and household use. Qant [km3 month-1] is the streamflow 
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and EFR [km3 month-1] is the environmental flow requirement, i.e., the surface water demand of the river ecosystem. 

Following Richter et al. (2012), EFR is calculated for each calendar month as a function of mean monthly streamflow under 

the naturalized condition (Qnat
̅̅ ̅̅ ̅̅ ), with  

 EFR =  0.8 ⋅ Qnat
̅̅ ̅̅ ̅̅  (5) 

 250 

EFR =  0.8 ⋅ Qnat
̅̅ ̅̅ ̅̅                                 (6) 

assuming that 80% of the natural mean monthly streamflow that would have occurred in the river without human water use 

and man-made reservoirs needs to remain in the river for the well-being of the river ecosystem. Differing from SmaxSmax, which 

represents the vegetation demand for soil water, the streamflow demand is temporally variable. dQ is, like dsoil, in the range 

of 0 (no deficit/stress) to 1 (extreme deficit/stress); if  dQ  is less than  0 or  WUsw equals 0, then dQ is set to 0. To explore how 255 

assumptions about EFR and, thus, total surface water demand affectaffects QDAI, we set EFR to be alternatively equal to half 

of Qnat , or zero (Section 3.2 and Section 4.1.2). These alternatives represent situations in which humans wish to protect 

freshwater biota less, or not at all, so the total surface water demands and, thus, consequently streamflow deficits are lower. 

2.3.2 Anomaly 

SThe quantification of the streammflow anomaly (pQ) is computed with based on the interannual variability of 260 

monthly aggregated streamflow (Qant)[ km3 month-1 ] values for each calendar month. The unusualness of a streamflow 

drought is better captured by a standard cumulative distribution function that can reproduce the statistical structure of 

streamflow (Qant) compared to a standard distribution function reproducing the statistical structure of streamflow deficit (dQ) 

due to the temporal variability of the water demand. Furthermore, the methodological consistency between the calculation of 

pQ and psoil is maintained, as the anomaly of soil moisture deficit (dsoil) is equal to the anomaly of soil moisture (SS) [mm]. 265 

In some regional streamflow drought studies (Langat et al., 2019; Sharma and Panu, 2015; Lorenzo-Lacruz et al., 

2010; López-Moreno et al., 2009), the standard cumulative distribution function Pearson type III was used to fit monthly 

streamflow values. However, Svensson et al. (2017) rightly pointed out that the Pearson type III distribution function with a 

lower bound at zero is reduced to the gamma distribution function. The probability density function f and cumulative density 

function F of the gamma distribution function can be expressed as  270 

 
F(Qant; a, b) =

g(Qant; a, b)

G(a)
 

(6) 

 

f (Qant; a, b) =  
ba

G(a)
Qant

(a−1)e−bQant                             (7) 
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F(Qant; a, b) =
g(Qant;a,b)

G(a)
                              (8) 

where a, b ≥ 0 are the shape parameters, G(a) is the gamma function and g(Qant; a, b) is the incomplete gamma function; in 

this form the gamma distribution supports d > 0. Taking into account that streamflow drought occurs when a certain streamflow 275 

value is not exceeded, while in the case of psoil a soil moisture drought occurs when a certain soil moisture deficit is exceeded, 

the drought probability index for streamflow drought pQ is computed as 

 
pQ =

(1 − F(Qant)) −  0.8

1 − 0.8
 

(7) 

 

pQ =
(1−F(Qant))− 0.8

1−0.8
                            (9) 

2.4 Combining deficit and anomaly to compute SMDAI and QDAI 280 

Water deficits (dsoil  and dQ ) and anomalies (psoil  and pQ ) are combined into single deficit anomaly indicators 

(SMDAI and QDAI) based on the desired indicator characteristics as elaborated by Cammalleri et al. (2016). The combined 

drought indicator should be zero if there is either no deficit- or no anomaly-based drought. It should be equal to p and d if p 

and d are the same, while it should have lower values if either d d or p p is close to zero. Thus, following Camalleri et al. 

(2016) 285 

 SMDAI = √psoil ⋅ dsoil 
(8) 

 

 

SMDAI = √psoil ⋅ dsoil                (10) 

 

and accordingly 290 

 
QDAI = √pQ ⋅ dQ 

(9) 

 

QDAI = √pQ ⋅ dQ                 (11) 

 

Both SMDAI and QDAI values range from 0 to 1, where 0 corresponds to no drought hazard and 1 corresponds to 

extreme drought hazard. The indicator values are put into classes and coinciding drought classifications according to Table 2. 295 
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Table 2. SMDAI and QDAI ranges corresponding to drought classes. 

SMDAI range /QDAI range Drought conditions 

0 < SMDAI < 0.25 Mild 

0.25 ≥ SMDAI < 0.5 Moderate 

0.5 ≥ SMDAI < 0.75 Severe 

SMDAI ≥ 0.75 Extreme 

 

2.5 Fitting standard cumulative functions 

Out of the total 67420 WaterGAP land grid cells, only 57043 grid cells were considered in this study. Grid cells with 300 

barren or sparsely vegetated land cover, based on the MODIS-derived static land cover input map used in WGHM (Müller 

Schmied et al., 2014), together with grid cells in Greenland, were not considered. For each of these grid cells and each calendar 

month, we determined the best fitting beta and gamma cumulative distribution functions for monthly dsoil and  Qant , 

respectively, by utilizing a combination of functions from the R packages gamlss, gamlss.dist, extremeStat and fitdistrplus. 

However, as tested by the one-sample Kolmogorov–Smirnov test (KS-test) at the 0.05 significance level, for 27.12% of the 305 

grid cells in the case of dsoil and 39.94% in the case of Qant, the fits were rejected for all 12 calendar months. An example of 

an accepted grid cell and a rejected grid cell of the beta distribution function are shown in Figure S3... An example of an 

accepted grid cell and a rejected grid cell of the beta distribution function are shown in Figure S3.  In the rejected gridse cells, 

the probability of non-exceedance F F is determined directly from the time series of 30 monthly values using the R function 

empirical cumulative distribution function (ECDF). The ECDF is a step function that increases by 1/30 at each of the 30 dsoil 310 

values of SMDAI or Qant values of QDAI (Figure S3 left). The computed F F value of a specific dsoil or Qant value is the 

fraction of all 30 dsoil or Qant values that are less than, or equal to, the specific dsoil or Qant value. Figure S4 shows the grid 

cells where ECDFs had to be used to compute F. 

3 Results 

3.1 SMDAI 315 

To clarify the interplay relation of dsoil, the anomaly of dsoil as compared to the mean monthly dsoil_mean  ,(which is 

indicated by psoil, and SMDAI), the respective time series of these variables are shown in Figure 1 for two grid cells with 

rather different characteristics: a grid cell in Germany (42.25N, -121.75 E, left panels in Figure 1) and one in northeast India 

(88.25 E,27.25 N, right panels in Figure 1). The values of dsoil in the German grid cell shows, on average over the whole 
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reference period, a high deficits in the summer months and low deficits only in 1-2 winter months (dashed grey line). According 320 

to the definition of psoil, an anomaly-based drought hazard, as indicated by psoil > 0 (blue line), occurs only if the actual soil 

moisture deficit (green line) is much higher than the mean calendar monthseasonal values dsoil_mean ; this is so highper 

definition, that this deficit is exceededis the case in only 1 out of 5 years (Eq. 34 and Table 1). According to Eq. 810, SMDAI 

is always between psoil and dsoil. In the German cell, an anomaly-based drought occurred during the unusually dry, but still 

low deficit, winter months of 2006, resulting in an SMDAI value that was much smaller than psoil. During the Central European 325 

(CEU) summer drought of 2003, SMDAI was approximately equal to psoil . Thus, SMDAI appropriately indicates that 

anomalously low soil moisture during generally wet winter months is less of a hazard to vegetation than the same anomaly 

would be during generally dry summer months. The grid cell in northeast India is characterized by a low seasonality of soil 

moisture and a generally very high soil moisture saturation. Even for some unusually dry months (with high psoil ), 

dsoil remains almost always below 0.25. Due to the low deficit, even in cases of high psoilp, SMDAI is much smaller than 330 

psoilp during all drought events indicated by psoilp. When comparing temporally averaged drought hazards between the two 

grid cells, SMDAI would indicate a relatively higher drought hazard for the German grid cell than for the Indian grid cell, 

which would not be the case if a purely anomaly-based indicator, such as psoilp, were used as the drought hazard indicator.  
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 335 

 

Figure 1. Soil moisture drought hazard: example of a time series (2000 – 2010) of monthly 𝐝𝐬𝐨𝐢𝐥 and mean seasonality of soil 

moisture deficit, 𝐩𝐬𝐨𝐢𝐥 and SMDAI (bottom) for a cell in Germany (left) and northeast India (right). The central European 

(CEU) drought in 2003 is indicated. 
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The relationship between SMDAI, psoil, and dsoil can be explored further by using global indicator maps for a specific 340 

month, e.g., August 2003 (Figure 2). ; WaterGAP computes soil moisture deficits of 75% or more in most grid cells, while 

low deficits occur only in a few areas, where August belongs to the rainy season, e.g., the Sahel region and the monsoon areas 

in India , do low deficits occur (Figure 2a). In each grid cell, psoil  is, per definition, zero in 80% of all August months. 

Therefore, in any month, approximately 80% of the grid cells indicate no drought and psoil psoil equals 0 (Figure 2b). Only 

grid cells with a non-zero psoil have a non-zero SMDAI (Figure 2c). F; for example, southeast India shows extremely high dsoil 345 

values, but as there is no anomalously high soil moisture deficit except for in a few grid cells where psoil is mostly zero, 

SMDAI is also mostly zero. T and, thus,  no soil moisture drought hazard is detectedindicated. The difference between SMDAI 

and psoil is shown in Figure 2d. I; in most grid cells with differences, SMDAI is higher than psoil due to high dsoil. Focusing 

on central Europe, SMDAI (in Figure 2c) correctly detects indicates the summer drought of 2003, documented in the EM-

DAT International Disaster Database (http://www.emdat.be), the European Drought Reference database 350 

(http://www.geo.uio.no/edc/droughtdb) and in Spinoni et al. (2019). The location of grid cells from Figure 1 are is represented 

in Figure 2a with blue points drawn at the centercentreer of each grid cell. During northern hemisphere winter months, soil 

moisture deficits are lower, for example, in Europe and the eastern part of North America, but high in most snow-dominated 

northern high-latitude regions, with corresponding effects for the relationship between psoil and SMDAI (see Figure S54 

showing the drought situation in December 1999). I; in Europe and the eastern part of North America, for example, SMDAI 355 

is smaller than psoilpsoil (Figure S54d). 
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Figure 2. Global maps of 𝐝𝐬𝐨𝐢𝐥, 𝐩𝐬𝐨𝐢𝐥, SMDAI and the difference between SMDAI and 𝐩𝐬𝐨𝐢𝐥 for August 2003. Blue points in 360 

(a) represent the location of German and Indian grid cells from Figure 1 and nc are grid cells that are not computed due to land 

cover.. 

Figure 3 shows the frequency of occurrence of the four SMDAI drought classes specified in Table 2 and of the no-

drought condition (SMDAI = 0) during the reference period 1981-2010. SMDAI is zero in about 80% of the cases, following  

psoil as monthly soil moisture almost never reaches the maximum soil moisture capacity. in more than 80% or more of all 365 

months as psoil should be zero in 80% of the months of the months as psoil should be zero in 80% of the months (Figureure. 

3e). Values larger than 80% occur where and if dsoil were is zero while psoil often zero, SMDAI would be zero more often 

than psoilis not, which occurs in particular in very dry areas.. However, Figure 3 shows larger values in the dry regions and, 

thus, we believe that the higher frequency of no-drought conditions and constant low occurrences of drought hazards in areas 
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with high mean soil moisture deficits, such as the Sahel region, are may be due to the imperfect fits of the applied CDFs.  370 

Extreme soil moisture drought hazards (Figure 3d) occur with a relatively high frequency in the Mediterraneannorthwestern 

parts of Australia and southeastern parts of Africa, parts of central Australia and South Africa. Regions with mostly low soil 

moisture deficits, such as central and eastern European countries and the eastern USA, show very low occurrence frequencies 

of extreme drought hazards and more often than other regions a moderate drought hazard (Figure 3b). Snow-dominated regions, 

such as parts of Russia and Canada, show a relatively high frequency of extreme soil moisture droughts due to the high values 375 

of simulated soil moisture deficits created by the lack of liquid water to infiltrate the soil during the winter months and the 

temperature-driven seasonal shifts of snow melts and, thus, infiltration of water into the soil.  
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 380 

Figure 3. Frequency of occurrence [%] of different soil moisture drought classes during the period 1981-2010, as defined by 

SMDAI (Table 2) and nc are grid cells which not computed due to land cover.. 

3.2 QDAI 

The QDAI indicates the drought hazard to for the surface water supply required for satisfying human water demand 

(WUsw), assuming the water suppliers also take into consideration the water demand by freshwater biota (EFREFR). The 385 

deficit component of QDAI (dQ) is the relative difference between the total surface water demand and streamflow, while the 

anomaly component (pQ) is based on the unusualness of streamflow. QDAI depends on more individual variables than SMDAI. 

; Figure 4 shows their interplay relation for two grid cells with different characteristics of human surface water demand as 

compared to streamflow. In the grid cell in the western USA, where streamflow of the Klamath River is observed in Keno 
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(42.25N, -121.75 E, left panels of Figure 4), water demand ( is mostly for irrigation, with a mean of  (i.e., 0.038 km3 month-1 390 

temporal mean) is high compared to the relatively small streamflow (i.e., 0.105 km3 month-1 temporal mean). In the grid 

cell in Germany, human surface water demand of(i.e., 0.056 km3 month-1 temporal mean) is small as compared to the rather 

high streamflow of the Rhine of (i.e., 4.6 km3 month-1 temporal mean), of the Rhine where the streamflow is measured inat 

Mainz (49.75 N, 8.25 E, right panels of Figure 4). 

In the USA grid cell, the difference between the mean monthly streamflow under the naturalized condition 395 

(Qnat_mean) and mean monthly simulated streamflow (Qant_mean) is high, especially in the growing period, due to the high 

large anthropogenic anthropogenic extractionabstractions of streamflow water in the drainage basin of the grid cell (observed 

in the topmost plot). While the observed (Qant_obs ) and simulated (Qant ) streamflow show a reasonable correlation, ; 

WaterGAP appears to overestimate streamflow depletion by human water use in the summers. Characterized by a high 

seasonality of anthropogenic surface water demand, WUsw (dashed grey line in centercentreer plot) and generally unfulfilled 400 

surface water demand (i.e., WUsw + EFR_0.8, orange line in centercentreer plot) result in frequent high summer dQ (green line 

of the bottom plot). In addition, an the anomaly-based drought hazard indicated by pQ > 0 (dark blue line) indicates high 

summer values occurring asif Qant is , which are much lower than the mean seasonal value (Qant_mean), which happens to 

occur, during the 10 years considered in Figure. 4, in months with appreciable deficits. Hence, QDAI, which is always between 

pQ  and dQ  (Eq. 129), is rather similar to pQ  in this exampledetects extreme streamflow droughts incurred by high water 405 

extractions for irrigation during the summer months.  

If water suppliers assumed that the river ecosystems do not require 80% of naturalized streamflow for their well-

being but only 20%,do not take into account when extracting water, the water that needs to remain in the river for the river 

ecosystem (EFR EFR is assumed to be zero), the streamflow deficit (i.e., WUsw + EFR_0.2, orange line in the centercentre plot 

of Figure S5) decreases (Figure S65). Hence, QDAI values decrease for all summer droughts as can be clearly observed in the 410 

summer droughts of 2000 and 2008, and. However, the winter droughts in 2001 and 2005, whichthat were detected when 

considering the larger EFREFR, are no longer identified. 

In the German grid cell (the right panels in Figure 4), the relatively low anthropogenic surface water demand results 

in almost identical values of Qnat_mean and Qant_mean (lines overlap in the top plot), as well as the and total surface water 

demand and is very similar to EFR (lines overlap in the centercentreer plot). Non-zero dQ values (bottom plot) are mainly 415 

computed if Qant is lower than EFREFR, such as during the central European drought of 2003. It is sensible to consider this 

type of situation as a drought hazard as water supply companies would have to stop any surface water abstraction if they wished 

to protect the river ecosystem.  If the water supply companies do not stop any surface water abstraction (EFR_0.2), then they 

would not suffer from any hazard, even during a drought similar to the 2003 central European drought (right panels Figure 

S65). Differing from a purely anomaly-based drought hazard indicator, the QDAI indicates much stronger droughts in the 420 

USA grid cell when compared to the German cell, as it indicates a drought hazard only if surface water demand, the sum of 

human and the ecosystem water demand, is higher than the streamflow.  



 

22 

 

 

Figure 4. Streamflow drought hazard: example of a time series (2000 – 2010) of monthly surface water demand, surface water 425 

supply, and mean seasonality of surface water supply, as well as  𝐝𝐐, 𝐩𝐐 and QDAI (bottom) for a cell in the USA (left) and 

Germany (right).. 
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The global streamflow drought related hazard maps for August 2003 (Figure 5) helps to illustrate the global variations 

of QDAI as a function of its components pQ  and dQ , which again depends on the human surface water demand WUsw . 

Streamflow deficits are not restricted to areas with high mean annual WUsw during the period 1981-2010 (Figure 5a), but can 430 

be greater than 75% in regions such as South Africa were Qant is low (Figure 5b). Unlike factors ofDifferent from soil moisture 

drought, pQ and dQ are strongly correlated (Figure 5c). This is due to the fact that total surface water demand is dominated in 

many grid cells by EFREFR, which is a fraction of Qnat. In the EFREFR-dominated cells, the mean monthly Qant is very 

similar to the mean monthly 𝑄𝑛𝑎𝑡, such that dQ is then approximately the difference between mean monthly Qant and Qant; 

this difference is also the basis for computing, ; this is represented by pQ .QDAI (Figure 5d). QDAI is and is found to be, 435 

mostly smaller than y, less than pQ (Figure 5e). The 2003 central European drought hazard for the surface water supply for 

humans (Figure 5d) is, at least in many parts of Germany, less pronounced than the soil moisture drought hazard for vegetation 

(Figure 2c). Figures 5c-e also indicate the grid cells with Qant = 0. If streamflow in a grid cell is zero in 20% or more of all 

August months (left panel of Figure S7),  pQ and thus QDAI is zero because the zero streamflow is not an anomaly that occurs 

in less than 1 out of 5 years. 440 

 



 

24 

 



 

25 

 

 

Figure 5. Global maps of mean annual  𝐖𝐔𝐬𝐰, 𝐝𝐐, 𝐩𝐐, QDAI and the difference between QDAI and 𝐩𝐐 for August 2003. Blue 

points in (b) represent the location of the German and USA grid cells from Figure 4. Grid cells with  Qant = 0  are indicated; 445 

nc: QDAI is not computed due to land cover. 

 In contrast to SMDAI,  the frequency of occurrence of no-drought conditions according QDAI  is larger than 80% in 

grid cells particularly with large rivers and barely any human water use, such as the Amazon River in South America, the 

Congo River in Africa, and the Ob River in Russia (Figure. 6e),where the deficit is often zero. Besides, grid cells with 

intermittent flows also show a high percentage of no-drought conditions, if  for any calendar month there are at least six months 450 

(i.e., at least 20% of the months) with Qant = 0 (Figure S7). In these grid cells, no-drought conditions are due to zero streamflow 

is not an anomaly that occurs in less than 1 out of 5 years. This type of intermittent grid cells, where Qant = 0 for least 20% of 

the months of any calendar month are marked separately in Figures 6c-e. Extreme streamflow drought hazard for human water 

supply (Figure 6d) occurs most often in regions with high streamflow deficits (compare Figure 5b), such as South Africa and 
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parts of southeastern Australia, i.e., regions with low streamflow and relatively high surface water abstractions,mainly for 455 

irrigation (Figure 5a). Regions with low water human surface water abstractions such as northern Canada and the Amazon and 

Congo basins, show an exceptionally high occurrence of mild drought hazards (Figure 6a). 

  

Figure 5. Global maps of mean annual  𝐖𝐔𝐬𝐰, 𝐝𝐐, 𝐩𝐐, QDAI and the difference between QDAI and 𝐩𝐐 for August 2003. 

Blue points in (b) represent the location of the German and USA grid cells from Figure 4. 460 

Differing from SMDAI (Figure 3), the no-drought conditions, as identified using QDAI, occur more often than 80% 

of the time as dQ is often zero, in particular, in very large rivers with scarcely any human water use such as the Amazon river 

in South America, the Congo river in Africa and the Ob river in Russia; these  are clearly visible in Figure 6e. Extreme 

streamflow drought hazard for human water supply (Figure 6d) occurs most often in regions with high streamflow deficits 

(compare Figure 6b), such as South Africa and southeastern Australia, i.e., regions with low Q streamflow and relatively high 465 

surface water abstractions for irrigation. Regions with low to moderate water human surface water demand (Figure 5a), such 

as northern Canada and the Amazon and Congo basins, show an exceptionally high occurrence of mild drought hazards (Figure 

6a).  
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 470 

Figure 6. Frequency of occurrence [%] of different streamflow drought classes during the period 1981-2010 as defined by 

QDAI (Table 2). Grid cells where for any calendar month there are at least six months with 𝐐𝐚𝐧𝐭 = 0 are indicated as int and 

grid cells which are not computed due to land cover are indicated as nc.Figure 6. Frequency of occurrence [%] of different 

streamflow drought classes during the period 1981-2010 as defined by QDAI (Table 2). 

4 Discussion 475 

4.1. Analysis of SMDAI and QDAI components  

4.1.1 Sensitivity of SMDAI to the Smax values assumed in WaterGAP 

Smax is one of the key components for computing SMDAI. WaterGAP calibration and validation studies have 

indicated that Smax Smax may be underestimated in WaterGAP by a factor of two or more (Hosseini-Moghari et al., 2020). In Field Code Changed
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order to understand the sensitivity of SMDAI to changes in Smax, we ran a version of WaterGAP in which Smaxwas doubled 480 

 (Smax2). Figure 7 presents global maps of dsoil_Smax2 (Figure 7a),  psoil_Smax2 (Figure 7c), and SMDAI_smax2 (Figure 7e) for 

the August, 2003, and the change in each parameter with respect to the standard WaterGAP output i.e., the difference between 

parameter computed using  Smax2Smax2 and  SmaxSmax (Figure 7b, 7d, and 7f).With  Smax2Smax2, more  amount of soil moisture 

is kept in the soil and soil deficits, expressed relative to  SmaxSmax, can be observed to increase or decrease with doubled 

 SmaxSmax (Figure 7b). Differences are mostly small except for scattered grid cells in which the soil moisture deficit decreases 485 

by more than 50 percentage points. Such cells are also found in central Europe where, under the heavy drought conditions of 

August 2003, computed deficits dQ are generally smaller in the case of doubled  SmaxSmax; in this region, psoilpsoil increases 

in the case of doubled  SmaxSmax (Figure 7d). Globally, psoilpsoil increases or decreases in some grid cells by more than 50 

percentage points. Equally, for SMDAI, the sensitivity to doubled  SmaxSmax is low for most grid cells but can be greater for a 

few (Figure 7e). 490 
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Figure 7. Spatial representation of 𝐝𝐬𝐨𝐢𝐥, 𝐩𝐬𝐨𝐢𝐥 and SMDAI computed with with Smax2 are presented in the left panel , and, in the 

right panels, are the differences in these 𝐝𝐬𝐨𝐢𝐥, 𝐩𝐬𝐨𝐢𝐥, and SMDAI compared to the results computed with the standard version 

of WaterGAP for August 2003 as well as nc are grid cells which not computed due to land cover. 495 

4.1.2 Sensitivity of QDAI to different assumptions about EFR 

The streamflow drought hazard for water supply indicated by QDAI depends on how EFR EFR is computed, i.e., 

given that the protection of river ecosystem as one of the important conditions is included. In Figure 8, we compare the global 

distribution of QDAI values among the 57043 0.5° grid cells that are computed for alternative EFREFR, assuming that either 

80% or 50% of mean monthly natural streamflow is required to remain in the river for the well-being of the river ecosystem, 500 

or that there is no EFR EFR at all that needs to be considered when the decisions about river water abstractions for water supply 

are made. We consider the two months of August and December 2003 and distinguish between humid and (semi)arid grid cells 

(Figure. S68). The boxplots show that a drought hazard in humid areas is only identified if the existence of an EFR EFR is 

acknowledged. If water suppliers in humid areas assume that all water in the river can be abstracted, they will very rarely be 
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unable to satisfy their demand. In humid grid cells, QDAI increases strongly with the selected EFREFR, which means that 505 

with increasing consideration of the water requirements of  the river ecosystems, drought hazards to the water supply increase, 

i.e., there are more situations where water abstractions would have to be reduced to keep enough water in the river for the 

ecosystems to thrive. In (semi)arid regions, QDAI is already very high, even without acknowledging any water requirement 

of the river ecosystem. As in humid regions, QDAI increases with increasing EFREFR. As can be expected, QDAI, for 

example, as shown by the median, is overall somewhat higher in the northern hemisphere summer month of August 2003 than 510 

in December 2003, but the impact of alternative EFR EFR assumptions is similar. Figure 8 also clearly shows that water 

suppliers in (semi)arid and arid regions suffer from drought hazards much more strongly than water suppliers in humid areas 

due to the much higher ratio of water demand to streamflow. 
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Figure 8. Global distribution of QDAI in August 2003 (left) and December 2003 (right), computed with alternative assumptions 

about EFR EFR for grid cells with humid and (semi)arid conditions.. 

 Further differences between different QDAI values computed for alternative EFR are explored for two widely known 

drought events, the i.e., South Asian drought of 2009 (Neena et al., 2011) and the North American drought of 2002 (Seager, 520 

2007). Figure 9 presents the spatial extent of both the droughts detected by QDAI at a continental scale (left panels of figure 

9) for August 2009 and March 2002, respectively. TFurther, time series plots ( in the right panels of Ffigure 9) for an Indian 
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grid cell (75.75 E, 24.75 N top panel) as well as another for a USA grid cell (-110.75 E, 44.25 N bottom panel), as well as 

another for a USA grid cell (-110.75 E, 44.25 N bottom panel), are also presented in figure 9 which provide a better 

understanding onof the sensitivity of QDAI to EFR. As expected, QDAI values calculated with no EFR at all, i.e., EFR =525 

0% 𝑄𝑛𝑎𝑡
̅̅ ̅̅ ̅̅  , = 0 (presented in green)n line is observed to detect lower QDAI valuesare lower and drought periods shorter than 

if it is assumed that water needs to remain in the river for the well-being of the ecosystems as well as span of drought compared 

to QDAI with EFR, assuming that either 80% or 50% of mean monthly natural streamflow is required to remain in the river 

for the well-being of the river ecosystem.. Interestingly, short but severe drought in theHowever, in Indian grid cell with 

frequent streamflow droughts, it is observed that for smaller and more severe droughts, such asin 2002, 2006, and 2010 have 530 

almost equal QDAI values and span for all three EFR alternatives.  
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 535 

Figure 9. Continental maps of QDAI for Asia and Northern America for August 2009 and March 2002 respectively (left panels) 

with blue points representingshowing the location of the Indian and USA grid cells. Time series of different QDAI with 

alternative EFR (right panels) for Indian grid cell for 2001-2010 and USA grid cell for 1998 – 2007 and nc are grid cells which 

are not computed due to land cover. 

 540 
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4.23 Comparing QDAI to the Standardized Streamflow Index (SSFI) (SSFI) 

The Standardized Streamflow Index (𝑆𝑆𝐹𝐼SSFI) is a well-known anomaly-based drought indicator introduced by 

Modarres (2007) that is computed separately for each calendar month, similar to the Standardized Precipitation Index (SPI)  

((Mckee et al., 1993)), as 

 
𝑆𝑆𝐹𝐼 =

𝑄𝑎𝑛𝑡𝑖 − 𝑄𝑎𝑛𝑡

𝜎
 

(10) 

 545 

 

𝑆𝑆𝐹𝐼 =
𝑄𝑎𝑛𝑡𝑖−𝑄𝑎𝑛𝑡

𝜎
                 (13) 

 

where Qanti  [km3 month-1] is the streamflow value at time interval 𝑖,  𝑄𝑎𝑛𝑡  is the long-term mean of the streamflow values and  

𝜎 is the standard deviation of the streamflow values used in calculating the long-term mean. Like pQ, 𝑆𝑆𝐹𝐼 SSFI assumes biota 550 

and humans are accustomed to the seasonal and interannual variability of the streamflow. In order to quantify the added value 

of QDAI, we compared QDAI values to 𝑆𝑆𝐹𝐼 SSFI values computed with a 1-month timescale. The anomaly of streamflow 

in 𝑆𝑆𝐹𝐼 SSFI was computed in the same manner as for pQ, by fitting the gamma cumulative distribution function for monthly 

Qant, . It waswhich is then transformed into Gaussian distribution by calculating the mean, standard deviation, as well as using 

the approximate conversion provided by Abramowitz and Stegun (1965); this is also used by  Kumar et al. (2009). Figure 109 555 

shows three grid cells characterized with by rather different values of the ratio R of long-term average annual WUsw to long-

term average annual Qant: high (Vietnam, 10.75N, 107.25E in Figure 910a), moderate (south-east USA 31.75N, -84.75E in 

Figure 109b) and low (Russia, 63.75 N, 136.75E in Figure 910c). 

As would be expected, pQ and 𝑆𝑆𝐹𝐼 SSFI show an equivalent behavior in all grid cells as they are based on the same 

streamflow data, do not use any additional information and can be mathematically transformed from one to the other (Table 560 

1). In contrast, QDAI is based additionally on estimates of the grid cell's specific human surface water demand and assumptions 

on EFR. A comparison of 𝑆𝑆𝐹𝐼 SSFI and QDAI is, therefore, essentially a comparison of pQ and QDAI. If R is very small, 

such as in the case of the Russian grid cell, with R = 3.5 x 10−6 (Figure 109c), pQ and QDAI is veryare very similar to pQ, 

while dQ are is very similar to EFR, being 80% of the mean monthly Qnat (see explanation in Section 3.2). For the Vietnamese 

grid cell with a high R value of 0.143, QDAI does not interpret the anomalously low streamflow values in late December 2003 565 

and December 2005 as a drought hazard due to the low human water demand for surface water in December. Globally averaged, 

the fraction of months under drought during 1981-2010 is 16.0% according to QDAI and 19.1% according to SSFI. This 

reflects that QDAI only identifies a drought condition if there is, in addition to the anomalously low flow, a water 

deficitFurther, considering every value of QDAI > 0 and SSFI < -0.84 as an indication for an individual drought hazard, we 
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find SSFI indicates number of drought hazards 0.0379 times higher than QDAI on average per grid cell for the period of 1981- 570 

2010.  

 

 

Figure 109. Time series of QDAI and 𝑆𝑆𝐹𝐼 SSFI for grid cells with different ratios of surface water abstractions to streamflow 

R in three regions: a) Vietnam (10.75N, 107.25E) in (a), b) south-east USA (31.75N, -84.75E) in  (in (b) and c) Russia (63.75 575 
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N, 136.75E) in (c). 𝑆𝑆𝐹𝐼 SSFI is shown in red if it is below -0.84 standard deviations, corresponding to a 5-year return period 

and a p of zero (Table 1).. 

 

4.4 Indicated propogationpropagationPropagation of for drought from soil moisture to streammflowstreamflow as 

indicated by SMDAI and QDAI 580 

As can be expected from the flow path of water on the continents, below normal precipitation occurs before below 

normal soil moisture. Below normal streamflow may occur even later, but only if streamflow at a certain location is not 

dominated by local conditions and not conditions in a distant upstream area. This so-called drought propagation can be 

identified by drought hazard indicators for the respective variables (As in van Loon, (2013). Knowledge about the dynamics 

of drought propagation supports monitoring drought development and drought mitigation as it allows to , we also identify the 585 

translation of drought indication from anomalous meteorological conditions to hydrological conditions as drought propagation. 

In a typical scenario, the indication of drought as below-normal availability of water is typically observed to move from 

precipitation, soil moisture, streamflow, and groundwater caused by natural climate variability. The determination of drought 

propagation in the hydrological cycle helps in better understanding the true length of drought, estimate, for example, impacts 

of the early meteorological drought analyzing its impact on various sectors at different stages of its propagation through the 590 

water cycle. The purely physical propagation may be expected to be best observed by purely anomaly-based indicators, e.g.e.g., 

using standardized drought indicators for the variables: precipitation, soil moisture, and streamflow. Here, we want to explore 

drought propagation from soil moisture drought to streamflow drought using the deficit-anomaly indicators SMDAI and 

QDAI., and monitoring its development in different climate regions around the world. 

For the example of a grid cell in Germany ((42.25N, -121.75 E), drought propagation is identified during the Figure 595 

11 provides an example where drought propagation from soil moisture to streamflow is clearly observed for previously 

identified 2003 Central European (CEU) summer drought (Figure 11). C By comparing the set of time series for dsoil, 

psoil, SMDAI with 𝑆𝑆𝐹𝐼 SFFI and dQ, pQand QDAI for a grid cell in Germany (42.25N, -121.75 E) at 2002 – 2005 temporal 

scale, we observe a lag of one month in the onset of streamflow drought and a two-month delay in the termination of streamflow 

drought as indicated indicated by SSFI and QDAI compared to soil moisture drought indicated by SMDAI. Soil moisture 600 

drought lasted from March to October 2003, the streamflow drought from April to December 2003. The drought periods by 

SMDAI and QDAI are driven by their anomaly componentsAs expected in both SMDAI and QDAI, the duration of respective 

droughts is in higher correlation with anomalous soil moisture deficit and streamflow conditions, i.e., psoil  and  pQ pQ  , 

respectively. However, the highest anomaly of soil moisture is already reached May, and the highest streamflow anomaly only 

in August. This would indicate a time lag between peak soil and streamflow drought of three months. However, considering 605 

SMDAI and QDAI, the time lag is zero, as both peak in August, as soil moisture deficit in March is low.However, it is 

important to observe the severity peaks of both the droughts, i.e., SMDAI and QDAI values at the start of August 2003, are 

sensitive to the deficit values dsoil and dQ. QDAI and pQ (as well as 𝑆𝑆𝐹𝐼SSFI) peak in the same month because human water 
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demand in this grid cell is small as compared to the water demand of the ecosystem which is assumed to be a fraction of 

streamflow.An  Overall, an eextreme soil moisture drought event from June to August 2003 as identified by (by  SMDAI was 610 

accompanied and prolonged by values between start of June and August) prolonged by a severe streamflow drought event 

from July to October as identified by QDAI(by QDAI values between the start of August and October) indicates  exceptionally 

dry summer event with a primary impact on natural vegetation, crop failure and possibly high reduction in production of goods. 

 

Figure 11. Drought propagation from soil moisture to streamflow: example of a time series (2002 – 2005) of monthly of dsoil, 615 

psoil, dQ, pQ, SMDAI and QDAI for a grid cell in Germany.. 

 

 

5 Conclusion 

In this paper, we presented two drought hazard indices that combine the drought deficit and anomaly characteristics: 620 

one for soil moisture drought (SMDAI) and the other for streamflow drought (QDAI). With SMDAI, which describes the 

drought hazard for vegetation, we achieved the simplification  of the deficit-anomaly based Drought Severity Index introduced 

by Cammalleri et al. (2016). We transferred the DSI concept to streamflow drought, creating an indicator that specifically 

quantifies the hazard that drought poses for the water supply from rivers. To our knowledge, QDAI is the first-ever streamflow 

drought indicator that combines the anomaly and deficit aspects of streamflow drought.  625 

The concept of SMDAI and QDAI was tested at the global scale by using simulated data from the latest version of 

the global water resources and using the model WaterGAP. Whereas the reliability of the computed SMDAI and QDAI values 
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strongly depends on the quality of the model output, the indicators themselves have been proven to provide meaningful 

quantitative estimates of drought hazard that depend not only on the unusualness of the situation but also the concurrent deficit 

of available water as compared to demand. We found that the values of the combined deficit-anomaly drought indices are often 630 

broadly similar to purely anomaly-based indices and share with them the difficulty of dealing with intermittent streamflow 

regimes. ., Hhowever, they do provide more differentiated spatial and temporal patterns that and help to distinguish the degree 

and degree nature of the drought hazard. QDAI can be made useful serve as a tool for enlightening relevantinforming water 

suppliers and other stakeholders about the joint drought hazard for both water supply for humans and river ecosystem, while 

stakeholders may adapt the EFR applied for computing QDAI in accordance towith their valuation of ecosystem health for 635 

stakeholders, who holddifferent perceptions on the importance of ecosystem protection, by adapting the approach for 

computing EFR, the amount of water that is required to remain in the river for the well-being of the river ecosystem. Like all 

hydrological drought indicators that reflect streamflow anomaly,QDAI needs to be interpreted carefully in case of highly 

intermittent streamflow regimes. 

The term “drought hazard” can be defined as the source of a potential adverse effect of an unusual lack of water on 640 

humans or ecosystems. In this sense, SMDAI and QDAI are drought hazard indicators, even if they include some elements of 

vulnerability to drought. Both SMDAI and QDAI are well applicable in drought risk studies. In local drought risk studies, 

additional indicators of ecological or societal vulnerability should be added. In regional or global drought risk studies, the 

inclusion of grid-scale values of QDAI and SMDAI would be beneficial as both indices contain spatially, highly ly resolved 

information on vulnerability, while most other vulnerability indicators represent spatial averages of much larger spatial units 645 

such as countries. 
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