
1 

 

The role of geomorphology, rainfall and soil moisture in the 

occurrence of landslides triggered by 2018 Typhoon Mangkhut in the 

Philippines 

Clàudia Abancó 1, Georgina L. Bennett 1, Adrian J. Matthews 2, Mark A. Matera3, Fibor J. Tan3 

1College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, United Kingdom 5 
2Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences and School of Mathematics, University of 

East Anglia, Norwich, NR4 7TJ, United Kingdom 
3 School of Civil, Environmental and Geological Engineering, Mapua University, Manila, Philippines 

 

Correspondence to: Clàudia Abancó (claudia.abanco@ub.edu) 10 

Abstract 

In 2018 Typhoon Mangkhut (locally known as Typhoon Ompong) triggered thousands of landslides in the Itogon region of the 

Philippines. A landslide inventory of Typhoon Mangkhut is compiled for the first time, comprising 1101 landslides over a 570 

km2 area. The inventory is used to study the geomorphological characteristics and land cover more prone to landsliding as 

well as the hydrometeorological conditions that led to widespread failure. The results showed that landslides mostly occurred 15 

in slopes, covered by wooded grassland in clayey materials predominantly facing East-Southeast. Rainfall (GPM IMERG) 

associated with Typhoon Mangkhut is compared with 33 high intensity rainfall events that did not trigger regional landslide 

events in 2018. Results show that the reported  fatal landslide occurred during high intensity rainfall, coinciding with the 

highest soil moisture values (estimated clays saturation point), according to SMAP-L4 data. This indicates that, in addition to 

the rainfall, soil moisture plays an important role in the triggering mechanism. Our results suggest that SMAP-L4 and GPM 20 

IMERG data show potential for landslide hazard assessment and early warning where ground-based data is scarce. However, 

other rainfall events in the months leading up to Typhoon Mangkhut that had similar or higher intensities and also occurred 

when soils were saturated did not trigger widespread landsliding, highlighting the need for further research into the conditions 

that trigger landslides in typhoons.   

1 Introduction 25 

Landslides driven by typhoon and monsoon rainfall cause thousands of fatalities and millions of pesos in damage to 

infrastructure and commerce in the Philippines each year. The Philippines accounts for 46% of known rainfall-triggered 

landslides in SE Asia, although it represents only 6% of the land area (Kirschbaum et al., 2015; Petley, 2012). The climate 

characteristics, with frequent tropical cyclones and two different monsoon regimes, together with abrupt orography and 

unstable geologic materials make the terrain prone to Multiple-Occurrence Regional Landslide Events (MORLEs) (Crozier, 30 
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2005). Despite the relevance of the phenomena, the understanding of the triggering conditions and the instability mechanisms 

associated with rainfall triggered MORLEs in the Philippines has still received little attention. This, combined with a lack 

ofcomprehensive landslide inventories results in hazard and risk assessment techniques that still lack accuracy in the 

country.Landslide hazard maps published earlier in the Philippines used an heuristic approach, based on geomorphologic 

qualitative observations considering only worst case scenarios (Aleotti and Chowdhury, 1999; Corominas et al., 2014). 35 

 

The understanding of MORLEs and the assessment of their impact relies on the availability of landslide inventories (Crozier, 

2005; Martino et al., 2020; Shu et al., 2019). Landslide inventories are key to evaluate the probability of slope failure, based 

on the conditions of previous slope failures and the effects of local terrain conditions across a region as a preliminary step 

toward landslide susceptibility, hazard and risk assessment (Fell et al., 2008; Guzzetti et al., 2005, 2012). Regardless of their 40 

importance, landslide inventories are often not available due to incomplete event records, or as a result of the lack of time and 

resources to update them, for example in response to extreme events (Malamud et al., 2004).  To map landslides across large 

regions using manual techniques is a highly time consuming task, particularly challenging in regions hit by the passage of 

typhoons, where the area affected by landslides can be up to hundreds of km2 and landslide densities very high (e.g.: Tseng et 

al., 2015)Therefore the use of automatic mapping tools is increasing. The current state of the art of these tools is growing, as 45 

algorithms based on different source of satellite data (visible imagery and/or radar) have been developed in the last years 

(Alvioli et al., 2018a; Borghuis et al., 2007; Kirschbaum and Stanley, 2018; Mondini, 2017; Prakash et al., 2020; Scheip and 

Wegmann, 2020). Whilst these tools show great potential, especially for the acquisition of inventories after fatal rainfall 

events,manual mapping  isstill necessary to collect accurate inventories. .  

 50 

In the Philippines, a nationwide inventory of >12000 landslides is available (Lagmay et al., 2017). However, most of the 

landslides are mapped as points rather than polygons, precluding magnitude-frequency analysis, a major component of 

landslide hazard assessment (Guzzetti et al., 2005). A limited number of studies including the analysis of landslide predisposing 

and triggering factors in the area of Baguio have been published (Nolasco-Javier et al., 2015; Nolasco-Javier and Kumar, 

2019), however, the Philippines lacks a more detailed landslide susceptibility studies that may help in local planning. For 55 

example, the Philippines’ Mines and Geosciences Bureau (MGB) hazard map for the area of Itogon (Benguet, Luzon) is based 

on the most extreme scenario and hence, classes most of the region at the highest hazard level, making land use planning 

difficult.  

 

The analysis of the triggering rainfall conditions is also fundamental to understand MORLEs. The study of landslide triggering 60 

rainfalls has been of interest to the scientific community in recent decades, generating extensive literature. One of the most 

common approaches for the prediction of landslide triggering rainfalls is the definition of rainfall thresholds. Rainfall 

thresholds are used to characterise the rainfall conditions that, when reached or exceeded are likely to trigger one or more 

landslides or torrential flows (De Vita et al., 1998). Different state of the art techniques and methodologies to obtain rainfall 
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thresholds are reviewed by Segoni et al. (2018), while their applications for early warning purposes are  assessed by Guzzetti 65 

et al. (2020). Two main approaches are used to derive such thresholds: a) physically-based models, where infiltration and 

hydrologic behaviour of the rainfall over a susceptible soil layer is simulated  (e.g.: Crosta and Dal Negro, 2003; Godt et al., 

2008; Papa et al., 2013); or b) empirically derived thresholds, based on the analysis of a database of rainfalls using, for example, 

statistical techniques (e.g.: Brunetti et al., 2010; Guzzetti et al., 2007). The thresholds are generally expressed as a correlation 

between the peak intensity of the rainfall for different durations or the relationship between the total rainfall versus its duration 70 

(usually in the form I=αD-β), although some authors also include other triggering or antecedent rainfall parameters, as 

extensively reported by Segoni et al. (2018). Factors such as the location or size of the study area, the intended use of the 

thresholds, or simply the resources available determine the source of the rainfall data used to construct thresholds. Uncertainties 

on the source and both spatial and temporal resolution of the data as well as on the methods used to define the rainfall events 

or the rainfall thresholds will be key to their accuracy (Abancó et al., 2016; Leonarduzzi and Molnar, 2020; Nikolopoulos et 75 

al., 2015). Rainfall thresholds are used with early warning purposes in several countries and regions all over the world, although 

not in the Philippines so far (Guzzetti et al., 2020).  

 

The use of satellite rainfall data for forecasting landslides is still minimal compared to other rainfall data sources, such as rain 

gauges or weather radar. Rainfall estimates from satellite products tend to underestimate the rainfall measurements, compared 80 

to rain gauge measurements, especially during extreme events (Mazzoglio et al., 2019). This is because rain gauges are nearly 

point measurements (generally correspond to areas smaller than 1 m2) while satellite measurements are area averaged, for 

example over an area of 10 x 10 km for the Integrated Multi-satellite Retrievals for the Global Precipitation Measurement 

(GPM) Mission (IMERG). Therefore, if a rain gauge is located on the path of a particularly intense convective cell, its records 

will be significantly higher than measurements from satellite products, which are averaged over area grid cell. Despite these 85 

aspects, the usability of satellite products to forecast landslides has been proven, given that the thresholds are derived using 

the same source of satellite data (Brunetti et al., 2018). In fact, early warning systems based on satellite data are a really 

powerful tool for developing countries where rain gauges may be scarce or poorly maintained, as well as to implement early 

warning systems at regional scales, not just at site-based locations (Kirschbaum and Stanley, 2018; Liao et al., 2010). A clear 

advantage of the satellite rainfall products is the large coverage at high temporal resolution, which enables detailed analysis of 90 

rainfall conditions that trigger multiple landslides over large regions.  

 

The soil wetness at the beginning of the triggering rainfall has been proven to play a major role in landslide triggering 

mechanisms (Bogaard and van Asch, 2002; Rahardjo et al., 2008; von Ruette et al., 2014) and therefore to help improve the 

early warning systems (Guzzetti et al., 2020; Krogli et al., 2018; Marino et al., 2020). Although in previous works in the 95 

Baguio area (Philippines) the importance of the antecedent rainfall has been shown to be key to understanding the triggering 

mechanisms of MORLEs during typhoons (Nolasco-Javier et al., 2015; Nolasco-Javier and Kumar, 2018), no previous work 

has involved the analysis of soil moisture. The Soil Moisture Active Passive (SMAP) satellite product is a global soil moisture 
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dataset that has potential for analysis of landslide triggering conditions and early warning (Kirschbaum and Stanley, 2018), 

but as yet has not been widely used in landslide research.  100 

 

The municipality of Itogon (Benguet, Luzon) and its surroundings was hit by Typhoon Mangkhut (locally known as Typhoon 

Ompong) in September 2018, which triggered thousands of landslides, including a fatal one that killed more than 80 composed 

of miners and their families (Cawis, 2019). The purpose of this work was: a) to map and characterize landslides triggered by 

Typhoon Mangkhut for the first time, producing one of the first inventories for a typhoon event in the Philippines, b) to 105 

investigate the antecedent and triggering rainfall and soil moisture conditions that led to widespread landsliding and c) examine 

other geomorphologic factors that made certain slopes susceptible to landslides, d) to consider the potential of satellite based 

rainfall and soil moisture data for early warning of these regional landslide events.  

2 Study Area 

2.1 Geological and geomorphological setting 110 

Our research was conducted over an area of 570 km2 at the NW of the Philippines’ largest island, Luzon. The study area is 

located in the province of Benguet (16.19 to 16.31ºN and 120.34 to 120.48ºE), at the Southern end of the Cordillera Central 

Mountain Range, the largest mountain range of the country (Figure 1). The Eastern half of the study area is characterized by 

the Upper Agno River course (region 3 in Figure 1), which flows N to S, and is dammed by three cascading dams used for  

hydroelectric power generation: Ambuklao Dam in the North, Binga Dam in the middle, and San Roque Dam in the South. In 115 

the West, the study area is characterized by smooth slopes between 600 and 1500 meters above sea level (m.a.s.l.), where 

Baguio City and the Municipality of La Trinidad are located (region 1 in Figure 1). The mountainous region between Upper 

Agno River and the city and municipality in the West, in the middle of the study area, was the most affected area by Typhoon 

Mangkhut in 2018 (region 2 in Figure 1). The valleys are characterized by steep slopes (30 degrees on average, but up to 70 

degrees), with altitudes ranging from 263 to 2190 m.a.s.l. in the highest point. The municipality of Itogon is the main inhabited 120 

area in these valleys.. Itogon is a mining town, where the extraction of gold has been one of the main economic activities since 

the 1990s, and some tailings dams can be observed in its surroundings. The bedrock of the area is mostly constituted by 

Cretaceous, Tertiary and Quaternary igneous and sedimentary rocks, part of the magmatic arc formed mainly in response to 

subduction along the Manila Trench since the early Miocene (Bellon and P. Yumul Jr., 2000). While the sedimentary bedrock 

consisting of limestones and clastic sedimentary rocks predominate in region 1 of the study area (Figure 1), the mountainous 125 

region in the centre (region 2 in Figure 1) and the eastern river plains (region 3 in Figure 1) mostly consist of diorite and diorite 

porphyry (MGB, 2006). The study area can also be described as seismically active (Su, 1988). The whole area is covered by 

surficial formations consisting of loam and clays and undifferentiated mountain soils. Finally, the vegetation cover is mainly 

forest, but it also contains pine trees, fruit trees, shrubs and open grassland (Palangdan, 2018).  
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2.2 Climate  130 

The Philippines is characterized by having several types of climate: from tropical rainforest, tropical savanna or tropical 

monsoon to humid subtropical, in higher altitudes, such as in our study area. The country is divided in 4 climatic regions, based 

on the distribution of rainfall as presented in the Modified Corona Climate Map of the Philippines (CADS/IAAS CAD and 

PAGASA/DOST, 2014). Our study area is in the Type 1 zone, characterized by having two pronounced seasons: dry from 

November to April and wet during the rest of the year. Most rain falls between June and September. The average annual 135 

precipitation in our study area, during the period 1960-1990 (Hijmans et al., 2005) ranges from 3276 mm in the higher 

elevations to 1894 mm in the floodplain, with a mean value of 2766 mm. The Western and central part of the study area 

(Regions 1 and 2 in Figure 1) are characterized by having lower mean temperatures and higher amounts of rainfall. In contrast, 

in the lower elevations of the river Agno floodplain (Region 3 in Figure 1), it is warmer, and the precipitation rates are lower 

(Table 1). The winds are controlled by two systems in the Philippines: the northeast monsoon, active from October to late 140 

March, and the southwest monsoon, prevalent during the months of July to September. Both monsoons bring heavy rains in 

parts of the country where the prevailing wind affects.  Moreover, from the approximately 20 tropical cyclones that enter the 

Philippine area of Responsibility (PAR) every year, most of them hit northern Luzon, and seven to eight make landfall 

(Nolasco-Javier and Kumar, 2019; Yumul et al., 2011).  

2.3 Landslides  related to previous typhoons 145 

Due to the frequent passage of tropical cyclones over the landslide-prone slopes of the study area, rainfall-induced landslides 

are frequent. Since 2001, at least 14 typhoons causing landslides have hit the study area, according to Nolasco-Javier and 

Kumar (2018) and Paringit et al (2020).  The most devastating episodes in the last decades, before Typhoon Mangkhut, have 

been Typhoon Bilis (2006), with 53 landslides reported; Typhoon Parma (influenced by simultaneous Tyhoon Melor in 2009), 

with 97 landslides reported and Typhoon Koppu (2015), with 80 landslides reported to the City Disaster Risk Reduction and 150 

Management Council (CDRRMC) of the City of Baguio.  

 

During Multiple-Occurrence Regional Landslide Events (MORLEs), such as the ones triggered by typhoons and tropical 

storms, small or remote landslides are often unreported. Further studies from Nolasco-Javier et al (2015) and Nolasco-Javier 

and Kumar (2019) demonstrate that the number of landslides caused by Typhoon Parma in the area of Tublay was, by far, 155 

larger than the reported events. Therefore, the actual complete landslide record in the area is unknown.  

 

2.4. Typhoon Mangkhut (13-15 September 2018)  

From 13 – 15 September 2018, the study area was hit by the passage of Typhoon Mangkhut (called Typhoon Ompong in the 

Philippines; Figure 2a). Typhoon Mangkhut developed from an area of low pressure situated over the Marshall Islands and 160 
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approached to the Philippines, crossing the North of Luzon Island following a trajectory from East-South East to West-North 

West. . The highest rainfall amount recorded during the passage of Mangkhut was at Baguio City PAGASA weather station 

(at the West of the study area) was 794 mm from 12 to 15 of September (Weather Division PAGASA, 2018). . The estimations 

from the Global Precipitation Measurement mission (Huffman et al., 2019) show lower values over the larger area affected by 

landslides, with 360 mm of rainfall over a 44-hour period (Figure 2b). The typhoon triggered an elevated number of landslides 165 

in the area (Figure 1). The landslides were typically shallow translational landslides, mud and debris flows, often with a 

complex behaviour: starting as a shallow landslide and becoming a flow (Varnes, 1978). However, rockslides and rockfalls 

were also reported. A detailed report on the landslides occurred, followed by a hazard assessment including field surveys in 

six barangays within critical areas, was issued by the Mines and Geosciences Bureau just after the event (Mines and 

Geosciences Bureau, 2018). Some of the debris flows had extraordinarily long runouts, such as the fatal landslide that killed 170 

more than 80 miners and their families in the area of Barangay Ucab, on the 15 September around 13:00 h local time, further 

described in the following sections of this paper.  

3 Data and methods 

3.1 Compiling a landslide inventory and magnitude-frequency analysis  

The first step to evaluate the predisposing and triggering factors of the landslides triggered by Typhoon Mangkhut was the 175 

creation of a landslide inventory. We mapped landslides manually using satellite imagery by comparing pre- and post- Typhoon 

Mangkhut images of the study area. The sources of the satellite imagery were of diverse resolution (Table 2) and were 

combined with digital terrain models as well as with the use of Google EarthTM to more clearly identify the landslides.  

 

Despite having many advantages, such as the possibility to map large and often not accessible mountain regions (Guzzetti et 180 

al., 2012), satellite mapping has some limitations, such as the availability of good images, cloud free, within a sensible time 

period before and after the event. In our study, very high resolution images have a gap of several months (pre- and post- 

typhoon) (Table 2). Considering that landslides are not uncommon in the area, and that the construction and mining activities 

are intense, some of the landslides mapped using satellite images may not have occurred during Typhoon Mangkhut but before 

or after. For this reason, other imagery sources with narrower time windows (only few days in the case of Planet Labs) (Table 185 

2) and Google Earth, together with the comparison with local reports reporting field surveys after the Typhoon (Mines and 

Geosciences Bureau, 2018) have been used to cross-check the inventory and verify that the landslides mapped did actually 

occur during the passage of Typhoon Mangkhut. 

 

Landslides were mapped as polygons, without distinguishing source and runout areas, as it was often difficult to discriminate 190 

between slides, debris flows and earth flows as well as the transition between them. In the cases where the deposition areas 

were clearly differentiated from failure and runout areas, these have not been included in the polygons; however, in cases 
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where runout was not long it was difficult to differentiate them. The dense vegetation covering a major part of the slopes was 

useful to identify and delineate the landslides, as they are easily visible as bare soil within a body of dense vegetation. 

Moreover, the Normalized Difference Vegetation Index (NDVI) proved to be useful to identify such changes.  195 

 

We plotted the magnitude-frequency distribution of landslides across the study area using the areas obtained from the inventory 

and estimated the exponents of the tail of the resulting characteristic power law distribution using the maximum likelihood 

estimate procedure rom the complementary cumulative distribution function (CCDF) following  Clauset et al. (2009).  

Finally, a more detailed analysis was done on one major landslide that occurred in the area of First gate, in Barangay Ucab  200 

(region 2 of the study area, see Figure 5), where small scale miners were staying in a Bunkhouse owned by Benguet Corporation 

(Palangdan, 2018). This landslide had a combined behaviour, evolving from a hillslope into a flow with a particularly long 

runout, that ended up in a tragedy causing the loss of life of 80 miners. 

3.2 Analysis of landscape controls on landslides 

In order to assess the influence of landscape characteristics on the spatial distribution of landslides, we combined the landslide 205 

inventory with topographical data and several thematic maps with terrain information using spatial analysis techniques in 

ArcMap 10.6.1 (ESRI, 2018). We obtained the frequency distribution for each predisposing factor both for the total of the 

study area (using all the pixels) and only for the areas affected by landslides (mean value of each landslide). A 5-m resolution 

Digital Surface Model acquired in 2013 with IfSAR techniques (NAMRIA, 2013) provided the topographical information of 

the study area: elevation, slope and aspect degree. Maps on soil type (Victor A. Bato, Ozzy Boy Nicopior, 2004), land cover 210 

(NAMRIA, 2010) and bedrock geology (MGB, 2006) were used to retrieve information on further terrain factors. Bedrock 

geology was only available for the 63% of the study area, corresponding to the boundaries of the Baguio quadrangle geological 

map. 

3.3 Analysis of rainfall and soil moisture 

Rainfall data from 2018 at a resolution of 0.1 degrees (approx.. 10 km) and 30 minute time interval was acquired from the 215 

Global Precipitation Measurement (GPM IMERG) mission (Huffman et al., 2019) for the study area and its surroundings. 

These data are of particular interest to  analyse: a) the correlation between the spatial variability of the rainfall associated with 

Typhoon Mangkhut and its antecedent rainfall and the distribution of landslides (instead of having only the point-based data 

from Baguio city rain gauge (Figure 2)); and b) the characteristics of the Typhoon Mangkhut rainfall and soil moisture at the 

nearest GPM grid point to the fatal landslide in Barangay Ucab. 220 

 

. The definition of the rainfall duration is a key consideration in the analysis of the rainfall thresholds for landslides, which 

often brings uncertainty to the analysis (Abancó et al., 2016; Alvioli et al., 2018b; Luigi et al., 2020; Melillo et al., 2014). 

Frequently the information of the failure time of landslides is unknown, hence discriminating between the rainfall occurred 
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before and after the failure becomes challenging. Generally the rainfalls are selected based on approximations of the failure 225 

date and time, however it has been proved that if the uncertainty of the landslide occurrence spans more than one day, triggering 

rainfall can be significantly underestimated (Peres et al., 2018).   

According to the reports issued after Typhoon Mangkhut, the fatal landslide in Barangay Ucab must have taken place on the 

15 September, between 05:00 and 07:00 UTC. Although we could have defined, for this this specific case, the “triggering 

rainfall” (just rainfall in the lead up to failure), different than the “total rainfall” (from the beginning to the end of the rainfall 230 

event) the analysis has been done using the total rainfall to make this consistent with the comparison with other rainfalls that 

did not trigger landslides.   

We considered that the  total rainfall of the event was that which occurred between the beginning and the end of the rainfall at 

the nearest GPM grid point to Barangay Ucab. We assumed that a rainfall event starts and ends after and before a period of 1 

hour of no rain, following Abancó et al. (2016).  235 

We analysed the characteristics of the triggering rainfall (Typhoon Mangkhut) as well as other high intensity rainfall events in 

the previous and following months that did not trigger landslides. In order to select high intensity rainfall events we filtered 

rainfalls with intensity higher than 4 mm hr-1 in average for 3 consecutive hours, which would mean at least an accumulated 

rainfall of 12 mm in 3 hours. Although 12 mm may not seem a high amount of rainfall, the selection criteria was based on the 

fact that only 3% of the 30 minute rainfall records from GPM IMERG exceeded 4 mm hr-1 in 2018. The mean daily rainfall of 240 

2018 was 9 mm/day, and only 39 rainfall events fulfilled the condition of having an intensity of 4 mm/h for 3 consecutive 

hours at the grid point near Barangay Ucab The purpose of this analysis was to compare the characteristics of the landslide 

triggering rainfall with other similar rainfall events and to better identify the conditions that caused Typhoon Mangkhut to 

trigger so many landslides. 

 245 

In addition to calculating antecedent rainfall in the lead up to Typhoon Mangkhut, we also analysed soil moisture data. The 

data are also from a satellite source, specifically from the Soil Moisture Active Passive mission (SMAP), acquired by means 

of a radiometer (passive) instrument and a synthetic-aperture radar (active) instrument operating with multiple polarizations 

in the L-band range. SMAP data have a resolution of 9 km and 3 hours. We used data between May and September 2018, from 

Level 4 (L4), corresponding to the surface and root zone soil moisture data (0-100 cm vertical average) in the form of volume 250 

of water/volume of terrain (Reichle et al., 2017). 

4 Results 

4.1 Landslide characteristics  

A total of 1101 landslides were manually mapped, most of them located in the region 2 of the study area (Figure 1). The 

landslides in the study area have areas from 25 m2 up to 120000 m2, representing a mean density of 1.9 landslides/km2, a 255 

maximum value of 4.8 landslides/km2 in region 2.  The fatal landslide in Barangay Ucab, is also located in region 2 and is 

https://en.wikipedia.org/wiki/Radiometer
https://en.wikipedia.org/wiki/Synthetic-aperture_radar
https://en.wikipedia.org/wiki/L-band
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highlighted in Figure 1.The exceedance probability distribution of the landslide areas has a characteristic roll-over and  power 

law tail. The exponent of the power tail is 2.65, and the rollover point is located at 190 m2 approximately (Figure 3).  

 

Elevations in the study area range between 263 and 2190 m.a.s.l. (Figure 4a) and follow a distribution close to normal, with a 260 

peakbetween 1101 and 1320 m.a.s.l. The landslide density is also highest within the same range, in terms of mean elevation. 

However, only 4 landslides occurred below 660 m.a.s.l. and only 1 over 1760 m.a.s.l. Slope gradients that favoured landslides 

are shifted towards higher gradients than the study area distribution, with most landslides occurring on slopes steeper than 30 

degrees (Figure 4b). However, flatter areas down to 10 degrees and steeper up to 50 degrees were affected by failure of 

landslides too. Particularly striking is the aspect control on landsliding with a concentration of landslides on East-Southeast-265 

South facing slopes (Figure 4e).  

 

The study area is covered by mountain soils, mostly Ambassador silt loam and Bakakeng clay. Nevertheless, landslides 

essentially happen in Bakakeng clay and Halsema clay loam and only to some extent in the Ambassador silt, but not in 

mountain soils (Figure 4c), which are mostly covered by coniferous forest and natural grasslands. Landslides mostly occurred 270 

in wooded grassland, while only a small amount take place in coniferous forests (Figure 4d). It is worth nothing that although 

the Halsema clay loam is scarce in the study area, the density of landslides is particularly high.  

 

In terms bedrock geology, the area has predominantly a sedimentary sequence of basaltic and andesitic volcanic rocks (Pugo 

formation), followed by intrusive bodies consisting of diorites and granodiorites (Central Cordillera diorite complex) and a 275 

sequence of conglomerates, sandstone and shale (Zigzag formation). The higher density of landslides is located in the Central 

Cordillera Diorite Complex and the Balatoc Dacite (Figure 4f).  

4.2 Rainfall and soil moisture conditioning and triggering of landslides 

4.2.1 Rainfall 

The GPM IMERG rainfall data measured in the study area during the passage of Typhoon Mangkhut indicates that the highest 280 

intensities, recorded at 03:30 UTC on 15 September, occurred in the eastern region of the study area (Figure 6), which also 

received the greatest accumulated rainfall over the course of the event (Figure 2). However, the rainfall accumulated throughout 

the previous two weeks (hereafter called antecedent rainfall) was higher in the central region, where most of the landslides 

occurred. In this central region, the antecedent rainfall was up to 245 mm (according to GPM IMERG measurements), which 

is still less than the rainfall accumulated during the Typhoon. The fact that the antecedent rainfall was higher in the area where 285 

most of the landslides occurred, even if the intensities were lower, suggests that the wetness of the terrain played an important 

role in the mechanism of failure. Notably, this area is covered by clayey materials, such that the effect of pore water pressure 

due to the antecedent rainfall could play a particularly crucial role .  
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A detailed analysis of rainfall and soil moisture conditions in the lead up to landslides is based on the GPM IMERG point 290 

closest to the fatal landslide at Barangay Ucab (Figure 5) for which time of occurrence is most precisely known. The Typhoon 

Mangkhut rainfall at this point was compared to 33 high intensity rainfall events (3-hour mean intensity above 4 mm hr-1) over 

the preceding and following months that did not trigger a MORLE. While Typhoon Mangkhut rainfall had a duration of 43.5 

hours (34 hours until the fatal landslide in Barangay Ucab was triggered), according to the criteria of 1 hour without rainfall 

for the initiation and end of the event, the durations of the other high intensity rainfall events spanned from 2 to 107 hours. 295 

The rainfall that occurred during the passage of Typhoon Mangkhut was also not the highest in terms of accumulated rainfall, 

as the records show accumulations up to 409 mm in prior high intensity rainfall events. The comparison between the intensity-

duration relationships (maximum floating rainfall intensity for different durations) of the high intensity rainfall events indicates 

that two events in 2018 had higher intensities (up to 2 hours duration and for long durations of 48 and 72 hours) than Typhoon 

Mangkhut (Figure 7). Both events happened earlier in the year than Typhoon Mangkhut: on 21 May and 20 July respectively.  300 

 

As introduced in Section 3.3, the GPM IMERG data represents an average of the rainfall in each of the 0.1 x 0.1 degree cells, 

which means that even if a high peak of rainfall occurs in a cell (such as the one registered by the rain gauge at Baguio city) it 

is averaged above the whole area. We compared the high intensity rainfall events selected for the analysis. The results revealed 

that a great number of rainfall events clearly exceed global intensity-duration thresholds (Caine, 1980) and regional thresholds 305 

(Arboleda et al., 1996; Nolasco-Javier et al., 2015; Nolasco-Javier and Kumar, 2018) (Figure 7), despite having used data from 

GPM IMERG, which tends to underestimate rainfall in extreme events.  

4.2.2 Soil moisture 

The SMAP data containing information on the soil moisture on the root zone (at 0-100 cm depth) from May to September 

2018 in 4 different points of the study area was analysed. As can be seen in Figure 8, soil moisture increases from May to 310 

September and the correlation with the rainfall is clear. The increments of soil moisture can be observed in two different 

situations: a) after a particular high intensity rainfall, such as the one occurred on 20 July (that had a higher intensity than 

Typhoon Mangkhut); or b) after periods of more continuous prolonged rainfall at lower intensity, for example in mid-June or 

early August. The increase of soil moisture with time is continuous, but especially significant from July onwards. The increase 

in July is especially relevant in points C and A, that were lower than B and D in May, June and early July but after this event 315 

are higher. The higher levels of soil moisture achieved in the analysed months are close to 0.455 m3/m3, which could be close 

to the level of full saturation limit of the soil. Typhoon Mangkhut occurred after several days of continuous rainfall, in August 

and early September, that kept a high continuous level of soil moisture, almost up to 0.45 m3/m3. Figure 9 shows the timeline 

of the rainfall and the soil moisture (in point C) during the typhoon (13 September 2018 at 21:00 UTC until 15 September 

2018 15:30 UTC), with a temporal resolution of 30 minutes for the rainfall and 3 hours for the soil moisture. 320 
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5 Discussion  

In this study, we investigate the landscape and meteorological predisposing and triggering factors of the landslides triggered 

by Typhoon Mangkhut in a study area of the province of Benguet (Luzon, Philippines). The typhoon triggered an elevated 

number of landslides, with the highest density (4.8 landslides/km2) in the central part of the study area, around the municipality 

of Itogon, a region with steep slopes in the southern end of the Cordillera Central. The impact of this event was significantly 325 

high, mainly due to two main aspects: a) an elevated vulnerability of elements in the area, with an important presence of mining 

activity and settlements; and b) the complex behaviour of some of the landslides, with long runouts and elevated entrainment 

rates, which magnified their volume. We will look at landslide runout and controls on this in a separate study.  

 

This study has been conducted using a  manually-mapped landslide inventory . We experimented with an automatic landslide 330 

mapping tool to map landslides more efficiently, based on the application of a threshold for NDVI using a random forest model 

and a post-process by filtering flat areas (Martinis, 2018).When comparing with visual observations, we found the success rate 

insufficient, as the tool was only designed for the use Sentinel-2 images and it was unable to detect smaller landslides (<800 

m2) (Abancó et al., 2020).so Despite the potential of other types of automatic tools, for this specific work the final inventory 

was entirely done using manual techniques, combining very high and high resolution imagery in order to narrow down the 335 

time windows and ensure we were mapping landslides triggered by Typhoon Mangkhut.  

 , The inventory was based on a single typhoon therefore the results of the analysis may be conditioned by the characteristics 

of this specific event. Systematic inventories should be conducted over multiple years to provide more reliable information for 

the evaluation of size statistics of landslides as well as of the susceptibility of the landscape to landsliding (e.g.: Guzzetti et al., 

2005, 2006; Del Ventisette et al., 2014).  However, our analysis gives an indication of landslide characteristics and of the 340 

landscape controls in the region that will contribute towards a future landslide hazard assessment. Furthermore, it is of great 

importance for the understanding of the rainfall triggering conditions of landslides in the territory and in working towards 

landslide early warning in the region. 

 

5.1. Landslide characteristics and landscape predisposing factors 345 

We present here a magnitude-frequency distribution of landslides, which is, to our knowledge, the first published one in this 

region of the Philippines. t The magnitude-frequency distribution of the areas of the landslides in the inventory shows a 

characteristic shape with rollover and power law tail, with an exponent of the power tail of 2.65 and a rollover point around 

190 m2. This exponent is higher than two landslide distributions triggered by typhoon events in Taiwan, with exponents of 

1.42-1.60 (Chien‐Yuan et al., 2006), though similar to earthquake-triggered landslide inventories in China (Li et al., 2013) and 350 

Haiti (Gorum et al., 2013): 2.63 and 2.71 respectively (Tanyaş et al., 2019). These numbers, as 2.65 obtained in this study, 

suggest that the small landslides are more frequent than larger ones, in comparison to other studies where the exponent of the 

power law tail is lower than 2 (Bennett et al., 2012; Van Den Eeckhaut et al., 2007). Further mapping in the region and across 
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other regions of the Philippines will help to refine these distributions, which are a key component of a probabilistic hazard 

assessment (Guzzetti et al., 2005)  355 

 

An interesting finding of this study is the strong aspect control on landsliding in Typhoon Mangkhut. A possible explanation 

for aspect control of landslides in the literature is differences in vegetation and thus root cohesion between aspects that receive 

differing amounts of solar insolation (Rengers et al., 2016). Indeed landslides in the region occur within wooded grasslands 

and rarely in coniferous forest (Figure 4d), with higher root binding of the soils. Another possible explanation would be that 360 

these slopes have a soil type that is more prone to landslides, so the Bakakeng clay or the Halsema clay loam. This reddish-

brown clay  and the brownish clay loam are characterized by having a very slow internal drainage (low permeability) (Carating 

et al., 2014), which may explain their tendency to fail, due to an excessive pore pressure, when they are saturated. Further 

analysis on the geotechnical properties of these clayey soils should be carried out to determine what makes them more prone 

to landsliding to the other soils in the study area. For example, in high plasticity clays, their exposure to repetitive wet-dry 365 

cycles may reduce their shear strength (Khan et al., 2017); or the appearance of cracks, which may change the hydraulic 

conductivity and make them more prone to landsliding (Khan et al., 2019).  

 

However, although landslides tended to happen in a certain land cover (wooded grasslands) and soil type (Bakakeng clay and 

Halsema clay loam), there is no evidence that this could explain the prevalent orientation of the slopes affected by landslides 370 

to the East-Southeast, as there are no differences in vegetation or soil type between different aspects. We analysed the wind 

speed and direction using ERA-5 data (Hersbach et al., 2020), as previous studies suggest that the wind does affect rainfall 

intensities on various slope aspects as the leeward sides are subjected to lower rainfall intensity than the windward sides, and 

therefore the occurrence of landslides can be affected by the winds (de Lima, 1990; Liu and Shih, 2013). Results show that 

winds during the highest intensity rainfall were coming from the West-Southwest (Figure 10), which does not reveal a clear 375 

explanation for the aspect control of the landslides, as found out by other authors (e.g. Chen et al., 2019). Hence, the topic 

deserves further research.  

 

Although in this study we have not considered anthropogenic factors, local reports (Mines and Geosciences Bureau, 2018) and 

studies (Nolasco-Javier and Kumar, 2018) have pointed out that rapid urbanization and mining activities can severely impact 380 

the susceptibility of the slopes to landsliding.  The presence of underground mines in the region, summed to the existence of 

faults and fractures in the bedrock, generates a labyrinth of underground excavations that may clearly affect the slope stability 

and should be looked at in further research.  

 

5.2. Rainfall and soil moisture conditions leading to landsliding 385 

First, the analysis of 2018 rainfall in the study region shows that more rainfall intensity does not mean more landslides, in 

contrast to some other studies (Chen et al., 2013; Lin and Chen, 2012). In fact, the results of this study do not support the 
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model proposed by Crozier (2017), that suggests a higher density of landslides at the core of the rainfall intensity cell, 

decreasing as the rainfall intensity does. Instead, the density of landslides was higher in areas of greater antecedent rainfall, 

supporting the findings of Nolasco-Javier and Kumar (2018) in the same region.  390 

Second, Nolasco-Javier and Kumar (2018) used daily rain gauge data to suggest a potential threshold of 500 mm of rainfall 

accumulated over the rainy season that was needed for landsliding,. However, we found that that the threshold is far higher 

based on analysis of the rainfall that was needed to trigger landslides in 2018. If we zoom in the rainfall accumulated at 

Barangay Ucab grid point, the 500 mm threshold was already reached in our study area on the 14 June 2018, yet a very intense 

event in July and some other intense rainfalls failed to trigger landsides according to the records and the satellite imagery 395 

available. Our study suggests that, based on 2018 data, 2600 mm of rainfall accumulated over the rainy season would have 

been needed for landsliding to occur. Defining rainfall thresholds is challenging and multiple events are needed to refine 

thresholds.  

 

By comparing the data registered at the GPM grid point near Barangay Ucab, we could see that multiple rainfall events 400 

exceeded the global threshold Caine (1980). This is probably because such thresholds are obtained using a high diversity of 

meteorological patterns, therefore may be too low for extreme climates such as tropical in the Philippines. 

 

Finally, soil moisture data provides an additional picture of the soil conditions at the time of landsliding beyond that given by 

antecedent rainfall data. There are several studies that have started to combine soil moisture with rainfall data to define 405 

landslide thresholds (Hürlimann et al., 2019; Mirus et al., 2018) and for landslide early warning (e.g.: Kirschbaum and Stanley, 

2018; Krogli et al., 2018). The analysis of soil moisture in our study area in the lead up to Typhoon Mangkhut shows that the 

volumetric water content of the soil increased over the rainy season, reaching a maximum of 0.455 m3/m3, when the typhoon 

happened in September 2018. This value is actually a reasonable value for the porosity of clays (Hough, 1969), which would 

suggest that the soil before Typhoon Mangkhut reached the saturation limit of Bakakeng clay. Any rainfall occurring in these 410 

saturated conditions would create an increase of soil pore-water pressure, which would result in a decrease of effective stress 

and therefore a tendency to fail. Adding information of soil moisture in early warning systems would be really valuable to 

track the saturation point of the soil before a typhoon would hit a specific area. Ideally, thresholds should be specific for each 

soil type accounting for different saturation limits.  

 415 

5.3. Potential of satellite-based rainfall and soil moisture data for landslide early warning 

In order to explore the potential of using satellite-based rainfall and soil moisture data for landslide early warning, we 

conducted a further analysis of rainfall and soil moisture conditions for the 34 high intensity rainfalls (incuding Typhoon 

Mangkhut) (Figure 11). The purpose of this analysis was to find out if by combining information on: a) the initial soil moisture 

at the beginning of a rainfall event and b) the characteristics of the rainfall, it would be possible to discriminate between 420 

landslide triggering and non-triggering rainfalls. Results show that although Typhoon Mangkhut rainfall has one of the highest 
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values of volumetric water content in the soil and also has high values for all four rainfall parameters analysed (mean rainfall, 

peak rainfall intensity, rainfall duration and total rainfall of the event), it does not clearly stand out from other rainfalls. This 

may be because there are other factors involved in the triggering rainfalls that we have not considered here, such as the 

atmospheric pressure (Pelascini et al., 2020). Alternatively, it may be that satellite-based rainfall and soil moisture data do not 425 

adequately capture the conditions on the ground. Hence, satellite-based data should be used with caution in landslide early 

warning systems (Hidayat et al., 2019; Kirschbaum and Stanley, 2018), ensuring that threshold curves are derived using the 

same source of data (Brunetti et al., 2018).  

 

Further work should be carried out in the region in order to establish a reliable threshold to identify and provide reliable early 430 

warning of landslide-triggering rainfalls, using either rain gauges or satellite rainfall products or a combination. The high 

temporal resolution of satellite data allows more detailed thresholds, which would be more useful to be applied in early warning 

systems, than daily values, such as the ones suggested by Nolasco-Javier and Kumar (2018) and Nolasco-Javier et al. (2015). 

However, it is also important to consider the uncertainty that the satellite data brings compared to in-situ measurements. Hence, 

we are working on the installation of in-situ sensors to verify satellite data. A combination of satellite rainfall and soil moisture 435 

data (in real time or forecasted) with rain gauges and soil-moisture sensors could potentially be combined in a future landslide 

early warning system.  

6 Conclusions 

We used satellite imagery to produce a complete inventory of landslides triggered by Typhoon Mangkhut (2018), which 

contains 1101 landslides. The magnitude-frequency distribution of the landslide areas, the first we are aware of for the 440 

Philippines, has a characteristic rollover effect, with a power law tail, with an exponent of 2.65. The exponent is higher than 

in other typhoon-triggered landslide inventories, which suggests that bigger landslides are rarer in the study area.  

 

Landslides occurred predominantly in Bakakeng clay and Halsema clay loam, two clayey soils that cover some slopes in the 

study area, which have a low permeability. The geomorphological analysis of the inventory shows that most of the landslides 445 

happen face East-South East. After discarding land cover, soil type or wind direction related explanations, we suggest that 

further analysis, including anthropogenic factors, is needed. Extensive mining activities take placein the region, and it is still 

uncertain if the landslide prevalence in some slopes could be associated to the excavation of many interconnected underground 

mines.  Moreover, the increasing infrastructure generates higher loads and pressures on the slopes, which may also lead to 

landslides. 450 

 

We used GPM IMERG rainfall data to analyse the spatial distribution of the rainfall associated to Typhoon Mangkhut. 

Antecedent rainfall in the two weeks leading up to the typhoon better explains the spatial landslide pattern than rainfall 
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intensity. This result suggests, as pointed out by other studies, that the soil moisture may play a very important role in the 

triggering of landslides in the area. We used SMAP-L4 soil moisture data to analyse the soil moisture evolution throughout 455 

the rainy season of 2018. The results show that soil moisture increased along the season, achieving highest values (probably 

at the saturation point) when Typhoon Mangkhut hit the area. However, in previous months, other intense rainfalls happened, 

also with high volumetric water content, that did not trigger landslides.  

 

The Typhoon Mangkhut rainfall was compared to 33 other high intensity rainfalls occurred in 2018 and to some published 460 

global and regional rainfall thresholds. This analysis shows that, although satellite-based rainfall products tend to 

underestimate rainfall measurements, a great number of rainfall events (that did not trigger landslides) were above global and 

regional rainfall thresholds used for comparison. The need of further analysis of landslide triggering rainfall in the area is 

highlighted, preferably including a comparison with ground-based measurements.  

 465 

Finally, we did a preliminary analysis to assess the potential of combining triggering rainfall and the soil moisture data to be 

combined in a potential early warning system. We find that it is difficult to isolate Typhoon Mangkut from other rainfall events 

that happened in the lead up to the typhoon with higher intensities and under equally saturated soil conditions, yet did not 

trigger landslides. The results show that it is not possible to draw a threshold only using one single landslide triggering event 

and point out that the exclusive use of satellite data may induce some uncertainties due to the area-averaged measurements, 470 

which need to be analysed in future studies.  
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Tables 

Table 1: Average maximum and minimum monthly precipitation (from 1960 to 1990) in the different regions of the study area (see 705 
Fig.1). Source: https://www.worldclim.org/, version 1.4, release 3. 

 Region 1 Region 2 Region 3 

Month Average max 

precipitation 

(mm) 

Average min 

precipitation 

(mm) 

Average max 

precipitation 

(mm) 

Average min 

precipitation 

(mm) 

Average max 

precipitation 

(mm) 

Average min 

precipitation 

(mm) 

January 22 3 30 3 18 3 

February 19 2 22 2 17 2 

March 50 30 46 23 45 29 

April 115 68 101 63 109 69 

May 247 190 265 219 256 203 

June 385 249 432 337 417 310 

July 610 346 617 331 635 379 

August 685 415 783 546 739 506 

September 487 307 586 388 556 351 

October 316 165 335 197 329 217 

November 174 65 192 55 170 65 

December 58 20 78 13 55 20 

 

Table 2: Details of the satellite imagery sources used in this study. 

Imagery source Spatial resolution (m) Data image pre-typhoon Date image post-typhoon 

WorldView2 0.5 18/02/2018 02/03/2019 

Sentinel 2 10 28/04/2018 09/11/2018 

Planet Labs 3 06/09/2018 19/09/2018 

 

  710 

https://www.worldclim.org/
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Figures 

 

 

Figure 1: Landslide inventory. Area affected by 1101 landslides triggered by Typhoon Mangkhut was mapped using polygons. Three 

regions of the study area are distinguished (see text in Section 2.1). The yellow area is referred in Figure 5. Inset, location of the 715 
study area within the Philippines, in the province of Benguet (Luzon).  
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a) 

 

 

b)   

 

 720 

Figure 2: a) GPM IMERG data showing the evolution of Typhoon Mangkhut over the Philippines on the between 13 and 15 

September 2018; b) Accumulated rainfall during Typhoon Mangkhut (13/09/2018 19:30 to 15/09/2018 15:30 UTC) within the study 

area and its surroundings, according GPM IMERG data (map) and rain gauge records in Baguio city (black triangle). 
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Figure 3: Exceedance probability distribution for the 1101 landslide areas in the inventory, fit with theoretical power law model by 725 
the maximum likelihood method. 
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Figure 4: Histograms of different geomorphological parameters over the study area and frequency of landslides for every parameter 730 
class. The geomorphological parameters are:  a) Elevation, b) Slope; c) Soil type; d) Land cover type; e) Aspect; f) Geology. Note that 

Geology is only over the 63% of the study area and 93% of the landslides as the Geology Map was only available for part of the area. 
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a) 

 

b) 

 

c) 

 

 

Figure 5: a) General view of the initiation area of the fatal landslide in Barangay Ucab that killed more than 80 miners;  b) view of 735 
the particularly long runout of the landslide, from the road facing downhill and c) location of the landslide (see yellow rectangle in 

Figure 1 for the exact location within the study area). Satellite imagery from Worldview (02/03/2019). 
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 740 

 

 

Figure 6: Colour gradient represents the antecedent rainfall, accumulated during the 13 days before the Typhoon. The values in the 

GPM IMERG grid points indicate the rainfall intensity on the 15 September 2018 at 03:30 UTC (maximum intensity in the study 

area) 745 
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Figure 7: Intensity-Duration correlations (using maximum floating intensities) of rainfall associated to Typhoon Mangkhut as well 750 
as 33 high intensity rainfalls along 2018 in the study area. The rainfalls are compared to some global and regional thresholds 

published in the literature.  
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a) 

  

b) 

  

 

Figure 8:  a) Location of SMAP-L4 and GPM IMERG grid points from which the soil moisture and rainfall data has been obtained 

within the study area and b) evolution of soil moisture (in volumetric water content) in A to D and rainfall in Y from the beginning 755 
of May to the end of September 2018. 
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Figure 9: Detail of rainfall (GPM IMERG) and soil moisture (SMAP-L4) in points Y and C (see Figure 8a) respectively, during 760 
Typhoon Mangkhut. The red cross indicates the estimated time of the landslide occurrence (in UTC).  
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 765 

Figure 10: Time series of (a) wind speed (blue line), precipitation rate (orange line), (b) wind direction, from 12-18 September 2018, 

at the GPM IMERG grid point near Barangay Ucab. Note that wind directions indicate where winds “come from” (e.g.: direction 

270 indicates a wind coming from the West). 
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Figure 11: Correlation between soil moisture a) mean rainfall intensity of the event (total rainfall/rainfall duration), b) peak 

rainfall intensity during event, c) duration of the rainfall and d) acummulated rainfall during the event for the 33 (and Typhoon 

Mangkhut) high intensity rainfalls in the study area (see Figure 7). Soil moisture data obtained from SMAP-L4 data at point C 780 
and rainfall data from GPM IMERG at point Y (see Figure 8). 

 

 


