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Abstract: Regarding the ever increasing and frequent occurrence of serious landslide disaster in 14 

eastern Guangxi, the current study were implemented to adopt support vector machines (SVM), 15 

particle swarm optimization support vector machines (PSO-SVM), random forest (RF), and 16 

particle swarm optimization random forest (PSO-RF) methods to assess landslide susceptibility by 17 

Zhaoping County. To this end, 10 landslide disaster-related causal variables including digital 18 

elevation model (DEM)-derived, meteorology-derived, Landsat8-derived, geology-derived, and 19 

human activities factors were selected for running four machine-learning (ML) methods, and 20 

landslide susceptibility evaluation maps were produced. Then, receiver operating characteristics 21 

(ROC) curves, and field investigation were performed to verify the efficiency of these models. 22 

Analysis and comparison of the results denoted that all four ML models performed well for the 23 

landslide susceptibility evaluation as indicated by the values of ROC curves -- from 0.863 to 0.934. 24 

Moreover, the results also indicated that the PSO algorithm has a good effect on SVM and FR 25 

models. In addition, such a result also revealed that the PSO-RF and PSO-SVM models have the 26 

strong robustness and stable performance, and those two models are promising methods that could 27 

be transferred to other regions for landslide susceptibility evaluation. 28 

Keywords: Landslide; Susceptibility evaluation; Machine-learning (ML); Particle swarm 29 

optimization (PSO); Support Vector Machines (SVM); Random Forest (RF)  30 
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1. Introduction 31 

The geological environment in eastern Guangxi is fragile and landslide disaster occur 32 

frequently, which not only causes huge economic losses and ecological damage, but also seriously 33 

restricts the survival of human beings and the sustainable development of human society 34 

(Pourghasemi et al., 2012; Huang and Zhao, 2018; Chen et al., 2019). With the rapid development 35 

of the economy in recent decades, the frequency and intensity of landslide disaster are rapidly 36 

increasing with the over-exploitation and utilization of natural resources by humans (Zhang et al., 37 

2016). Therefore, it is of great significance to objectively evaluate the landslide susceptibility for 38 

the reduction and prevention of the disasters. 39 

In recent years, more and more machine-learning (ML) algorithms have been optimized and 40 

applied for landslide susceptibility assessment in different regions. Examples are: Bayesian 41 

network (BN) (Song et al., 2012; Pham et al., 2016), Naïve Bayes (NB) (Tien Bui et al., 2012; 42 

Pham et al. 2015, 2016), artificial neural networks (ANN) (Choi et al., 2012; Zare et al., 2013; 43 

Conforti et al., 2014; Pham et al. 2015; Xu et al., 2015; Tien Bui et al., 2016; Aditian et al., 2018; 44 

zhou et al., 2018), Support Vector Machines (SVM) (Marjanović et al., 2011; Tien Bui et al., 45 

2012; 2016; Pourghasemi et al., 2013; Pradhan, 2013; San, 2014; Kavzoglu et al., 2014; Peng et 46 

al., 2014; Hong et al. 2015; Pham et al., 2016; Kumar et al., 2017; Ada and San, 2018; zhou et al., 47 

2018; Aktas and San, 2019; Wang et al., 2019; Zhang et al., 2019), Logistic Regression (LR) 48 

(Choi et al., 2012; Kavzoglu et al., 2014; Hong et al. 2015; Trigila et al., 2015; Pham et al., 2016; 49 

Tien Bui et al., 2016; Lin et al., 2017; Sevgen et al., 2019; Wang et al., 2019), decision tree (DT) 50 

(Tien Tien Bui et al., 2012; Pradhan, 2013; Tsai et al., 2013; Youssef et al., 2016; Hong al., 2018; 51 
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Khosravi et al., 2018; Aktas and San, 2019), Random Forest (RF) (Trigila et al., 2015; Youssef et 52 

al., 2016; Chen et al., 2017; Ada and San, 2018; Aktas and San, 2019), Fisher’s linear 53 

discriminant analysis (FLDA) (Rossi et al., 2010; Murillo-García and Alcántara-Ayala, 2015), 54 

SVM-ANN (Xia et al., 2018), SVM-LR (Wang et al., 2019), convolutional neural network 55 

(CNN)-SVM, CNN-RF and CNN-LR (Fang et al., 2020). These have all been used to 56 

quantitatively predict and assess the susceptibility for landslide in different regions of the world. 57 

These studies play an important role in the susceptibility evaluation and prediction of landslide. 58 

In addition, many comparative studies on landslide susceptibility assessment using different 59 

ML methods have been performed. For example, Marjanović et al. (2011) stated a comparison 60 

research of SVM with other models and found that SVM has the best performances compared with 61 

DT and LR for landslide susceptibility evaluation. In another landslide assessment investigation, 62 

Tien Bui et al. (2012) also proved that the capability of SVM was better than the decision tree and 63 

NB models. Another comparative investigation, Trigila et al. (2015) completed a comparison of the 64 

LR and RF algorithms in an analytic study of landslide susceptibility and discovered that RF 65 

presents a better performance than LR. Another comparative study on performance of landslide 66 

susceptibility mapping, Kavzoglu et al. (2014) made an experimental research to investigate that 67 

the performance of SVM is higher than the LR. Another study certified that results produced from 68 

SVM have the highest prediction accuracy compared to LR, BN, NB, and FLDA for landslide 69 

susceptibility evaluation (Pham et al., 2016). Likewise, another comparative research on the 70 

performance of two ML algorithms, SVM and FR, for landslide susceptibility prediction based on 71 

two-level random sampling, was compared by Ada and San (2018). 72 
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In general, each of the above ML models has been widely applied to landslide prediction and 73 

evaluation. Among them, SVM and RF have been widely proved to be useful methods in the 74 

evaluation of landslide susceptibility (Marjanović et al., 2011; Tien Bui et al., 2012; Kavzoglu et 75 

al., 2014; Trigila et al., 2015; Pham et al., 2016; Ada and San, 2018). However, few studies have 76 

focused on the optimization of SVM and RF models in landslide susceptibility prediction and 77 

evaluation and compared the optimized results. Therefore, the objective of the present paper is to: 78 

(1) determine the landslide susceptibility assessment factors by multi-source data fusion and 79 

correlation factor analysis; (2) optimize SVM and RF models by using a particle swarm 80 

optimization (PSO) algorithm; (3) analyze and evaluate the susceptibility levels of landslide by 81 

using the SVM, PSO-SVM, RF, and PSO-RF models for Zhaoping County; and (4) compare the 82 

performances of four ML models for landslide susceptibility evaluation by receiver operating 83 

characteristic (ROC) curve, statistic analysis, and field-verified methods. The results provide 84 

valuable informational support for the prediction and evaluation of landslide in Zhaoping County, 85 

Guangxi.  86 
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2. Study areas and materials 87 

2.1. Study areas 88 

Zhaoping County is located between longitude 110°34′E to 111°19′E and latitude 23°39'N to 89 

24°24'N in the eastern part of Guangxi, the middle reaches of the Guijiang River, with a total area 90 

of about 3,223.67km
2
 and a total population of 448,000, as shown in Fig. 1. It is situated in the 91 

subtropical monsoon humid climate region with mild climate and abundant rainfall. The annual 92 

average temperature is 19.8°C and the annual rainfall is 2046 mm, which is one of the rainy and 93 

heavy rain centers in Guangxi. 94 

 95 

Fig. 1. Location of Zhaoping County in Guangxi Province (a) and China (b) 96 

Zhaoping County has remarkable geomorphological characteristics; it is in a mountainous 97 

region with intervening deep valleys, where the mountain area is 87.6% of the total area, and the 98 

terrain is high in the northwest and low in the southeast. The main structure is near EN to WS 99 

trending large fault and north protruding Dayaoshan arc structural compression belt, where a 100 
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series of secondary arc folds and faults are distributed. At the same time, the Dayaoshan uplift 101 

belt is cut by a series of near-SN trending faults and it forms many secondary depression areas. 102 

Under the influence of multi-stage tectonic movements, joint fissure is developed in rock mass 103 

and rock is weathered seriously, which provides the basic conditions for the formation of 104 

landslide. Finally, extremely fragile geological characteristics are formed, because of long-term 105 

geological changes in geological internal and external forces; these landslide occured frequently 106 

in Zhaoping County. According to the detailed survey data of landslide in 2018 in the Guangxi 107 

Geological Survey Bureau, there are 345 hidden danger points of landslide in Zhaoping County. 108 

2.2. Data sources and hazards inventory data 109 

Following are the main data sources adopted in this paper: (1) A digital elevation model 110 

(DEM) for Zhaoping County with a spatial resolution of 30m×30m; it was constructed from 111 

ASTER Global DEM acquired from the United States Geological Survey 112 

(http://earthexplorer.usgs.gov). Based on the DEM data, three geomorphic factors were generated: 113 

slope, aspect, and plan curvature. (2) The annual precipitation data was collected from the 114 

government of Guangxi Meteorological Bureau; (3) Landsat 8 OLI image (2017/12/24, 124/043) 115 

used to extract the normalized differential vegetation index (NDVI), and land use and land cover 116 

(LULC) map; (4) 1:50 000 topographic map was collected to reflect the densities of residents and 117 

road network. (5) 1:50 000 geological map was adopted to extract the stratum lithology and 118 

tectonic complexity. (6) A landslide inventory map in Zhaoping County was prepared from field 119 

investigation of Guangxi Geological Survey Bureau. 120 
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2.3. Classification of evaluation factors 121 

There are many kinds of factors affecting the occurrence of landslide in Zhaoping County, 122 

and the factors are not independent of each other. To more objectively assess the susceptibility of 123 

landslide, a total of ten hazards affecting factors were chosen based on the results of field 124 

investigation of Guangxi Geological Survey Bureau and the characteristics of landslide 125 

distribution in Zhaoping County; they are slope, aspect, curvature, annual rainfall, NDVI, stratum 126 

lithology, tectonic complexity, LULC, residential density, and road network density. At the same 127 

time, these factors have been classified into different grades (Table 1) according to the analysis of 128 

influence of each evaluation factor to landslide occurrences implemented by Guangxi Geological 129 

Survey Bureau for Zhaoping County. 130 

Table 1 Landslide affecting factors and their classes 131 

No. Evaluation factor Classification 

(a) Slope (°) 1-[0,7); 2-[7,13); 3-[13,19); 4-[19,25); 5-[25,34); 6-[34,50); 7-[50,70); 8-[70,76) 

(b) Aspect (°) 1-[0,22.5); 2-[22.5,67.5); 3-[67.5,112.5); 4-[112.5,157.5); 5-[157.5,202.5); 

6-[205.2,247.5); 7-[247.5,292.5); 8-[292.5,360) 

(c) Plan curvature 1-[-25,-5); 2-[-5,-2.5); 3-[-2.5,-1); 4-[-1,0); 5-[0,1); 6-[1,2.5); 7-[2.5,5); 8-[5,28.9) 

(d) Annual rainfall (mm) 1-[0,1980); 2-[1980,2100); 3-[2100,2220); 4-[2220,2340); 5-[2340,2460); 

6-[2460,2580); 7-[2580,2700); 8-[2700,2820) 

(e) NDVI 1-[0,0.01); 2-[0.01,0.09); 3-[0.09,0.17); 4-[0.17,0.25); 5-[0.25,0.33); 6-[0.33,0.4); 

7-[0.4,0.5); 8-[0.5,0.71) 

(f) Stratum lithology 0-River; 1-Quaternary; 2-carbonate rock; 5-clasolite intercalated with siliceous rocks; 

6-clastic rock; 7-sandstone and shale; 8-granite or basal rocks 

(g) Tectonic complexity 1-[0,1.4); 2-[1.4,2.7); 3-[2.7,3.8); 4-[3.8,4.9); 5-[4.9,6); 6-[6,7.3); 7-[7.3,8.9); 8-[8.9,9.4) 

(h) LULC 1-cultivated land; 2-woodland; 3-grassland; 4-river and lake; 5-construction land 

(i) Residential density 1-[0,1.2); 2-[1.2,2.7); 3-[2.7,4.5); 4-[4.5,6.9); 5-[6.9,10.1); 6-[10.1,14.2); 7-[14.2,19.7); 

8-[19.7,25) 

(j) Road network density 

(km/km
2
) 

1-[0,3.2); 2-[3.2,4.7); 3-[4.7,6.1); 4-[6.1,7.8); 5-[7.8,9.7); 6-[9.7,11.7); 7-[11.7,13.9); 

8-[13.9,14) 

According to the classification standard of Table 1, the attribute value of each evaluation 132 
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factor is obtained by superimposed analysis with a 30m*30m grid and the attributes of each 133 

evaluation factor; the results are shown in Fig. 2(a-j). Thereinto, Fig. 2(a-c) indicates that maps of 134 

slope (Fig. 2a), aspect (Fig. 2b), and curvature (Fig. 2c) were extracted from DEM with a 135 

30m*30m grid cell, which represented the influence of topography on the development and 136 

distribution of landslide in Zhaoping County. 137 

Precipitation, especially heavy rain or continuous precipitation is the external dynamic 138 

factor that induces landslide (Zhang et al., 2016). There is plenty of precipitation in Zhaoping 139 

County, and the annual average number of heavy rain days is between 3 and 15 days. Under the 140 

action of precipitation infiltration, scour, erosion, and so on, unstable mountains easily form 141 

landslide. Meanwhile, the landslide and frequent periods of heavy rain are basically the same, 142 

both concentrated from May to August, indicating that the formation of landslide is closely 143 

related to heavy rain in Zhaoping County. Figure 2d is the annual rainfall map of Zhaoping 144 

County from the Guangxi Meteorological Bureau. 145 

The ecological environment is closely related to the occurrence of landslide. Zhaoping 146 

County has a warm and humid climate with a wide variety of vegetation. In this current study, the 147 

map of NDVI (Fig. 2e) was extracted from a Landsat8 OLI image to characterize the ecological 148 

environmental characteristics for Zhaoping County. 149 

The strata of Zhaoping County are mainly Cambrian, Devonian, and a small number of 150 

Quaternary, and the main lithology are clastic rocks, clastic rocks intercalated with siliceous 151 

rocks, sandstone and shale, carbonate rock, and a small amount of granite or basal rock, 152 

accounting for 55.89%, 34.11%, 4.54%, 3.96%, and 0.47% of the total area, respectively (Fig. 2f). 153 

https://doi.org/10.5194/nhess-2020-251
Preprint. Discussion started: 27 August 2020
c© Author(s) 2020. CC BY 4.0 License.



10 

 

Clastic rocks are prone to landslides under the action of precipitation, especially heavy 154 

precipitation (Zhang et al., 2016). At the same time, after the influence of multi-stage tectonic 155 

movement and long-term action of geological internal and external forces, a more complex 156 

geological structure pattern is formed, and folds and fractures staggered distribution, which 157 

resulted in extremely fragile geological environmental characteristics in Zhaoping County. Figure 158 

2g indicates the tectonic complexity of Zhaoping County. 159 

In addition, human activities have become one of the major driving forces for environmental 160 

changes and induced landslide (Zhang et al., 2016). Human engineering activities such as land 161 

use change, steep slope reclamation, road and bridge building, development of forests and 162 

mineral resources, construction of hydropower engineering and so on, strongly disturb the 163 

topography and geomorphology and make it lose its equilibrium state, which leads to the 164 

probability of landslide occurring far more than in the natural state. Therefore, LULC map, 165 

residential density, and road network density were selected as representative factors to reflect the 166 

influences of human activities on the environment in Zhaoping County, as shown in Fig. 2(h-j). 167 
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 172 

Fig. 2. Attribute value of landslide evaluation factors [(a) slope, (b) Aspect, (c) Plan curvature, (d) Annual 173 

rainfall, (e) NDVI, (f) Stratum lithology, (g) Tectonic complexity, (h) LULC, (i) Residential density, (j) Road 174 

network density] 175 

On the basis of the above, the database of the landslide susceptibility evaluation factors in 176 

Zhaoping County was established, with a total of 3,581,859 grid evaluation units. In the present 177 

database, 1,493 grid units as training samples were selected to construct the training dataset, 178 

including 242 landslide hazards points and 1,251 non-hazards points; 1,042 grid units as testing 179 

samples to construct the testing dataset, including 103 landslide hazards points and 939 180 

non-hazards points. Four ML models (SVM、PSO-SVM、RF and PSO-RF) for geological hazard 181 

susceptibility evaluation were trained using the training dataset, whereas the performance of the 182 

constructed four landslide susceptibility evaluation models was verified using the testing dataset.  183 
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3. Methods 184 

Landslide susceptibility evaluation has been carried out in nine main processes (Fig. 3): (1) 185 

According to the environmental characteristics of Zhaoping County, all the evaluation factors 186 

related to landslide are collected; (2) Evaluation units were divided into 30m×30m grid cells by 187 

using ArcGIS; (3) The landslide susceptibility assessment factor system was determined; (4) 188 

Classification criterion for each evaluation factor was divided according to the classification 189 

standard of Guangxi Geological Survey Bureau; (5) Spatial and attribute databases for each 190 

evaluation factor were set up based on 30m*30m grid cells; (6) Training and testing datasets were 191 

selected; (7) Landslide susceptibility evaluation models were established based on different ML 192 

methods, such as SVM, PSO-SVM, RF, and PSO-RF; (8) We validated and compared the 193 

evaluation accuracy for four ML models with ROC curves, statistical analysis, and field-survey; 194 

And (9) we divided the landslide susceptibility levels in Zhaoping County. 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

Divided landslide susceptibility levels in Zhaoping County 

Collected data related to landslide 

Divided evaluation units based on ArcGIS software 

Preprocessed the evaluation factors 

Determined landslide evaluation factor system 

Divided classification criterion for each evaluation factor 

Set up spatial and attribute databases for evaluation factor 

Established landslide susceptibility evaluation models based on ML methods 

Validated and compared the evaluation accuracy for different ML models 

Selected the training and testing data sets 

Topographic map 

Geological hazards map 

DEM 

Hydrogeological map 

Geological map 

Field survery report 

Multi-media survey map 

 

Land use/land cover map 

 

Landsat8 OLI image 

Fig. 3. Flowchart of landslide susceptibility evaluation based on ML 
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3.1. SVM model 204 

Support vector machine (SVM) is based on statistical approach and structured risk 205 

minimization theory (Cortes and Vapnik, 1995; Vapnik, 1995). It uses kernel function to map the 206 

input variables to a high-dimensional characteristic space, and then finds the optimal hyperplane 207 

for separating two classes. The SVM ensures that the extreme solution is the global optimal 208 

solution (Kavzoglu et al., 2014). At present, SVM has been proven to have many unique 209 

advantages in dealing with small samples, nonlinear and high-dimensional pattern recognition, and 210 

is successfully applied in hazards prediction and assessment ( Marjanović et al., 2011; Tien Bui et 211 

al., 2012; Pradhan, 2013; Kavzoglu et al., 2014; Pham et al., 2016; Ada and San, 2018). 212 

In the landslide assessment of the current study, the training sample set is given as *𝑥𝑖, 𝑦𝑖+, 𝑖 =213 

1,2, … , 𝑛; 𝑥𝑖 ∈ 𝑅
𝑚,  𝑦𝑖 ∈ *−1, +1+. SVM seeks the optimal classification superplane in the 214 

feature space of the landslide, which can separate the two types of training samples of the hazards 215 

point and the non-hazards point. The optimal classification superplane is defined as the following: 216 

min , 
 

 
‖ ‖ 

    𝑦𝑖( 
 𝑥𝑖 +  )  1, 𝑖 = 1, 2, …… , 

     (1) 217 

where 𝑛 represents the number of training samples,   represents the dimension of the input 218 

vector, ‖ ‖ represents the norm of the superplane normal vector, and   is the displacement term. 219 

The Lagrangian multiplier rule is introduced to find the extreme value, and the auxiliary 220 

function is generated as follows: 221 

L(w, b, λ) =
 

 
‖ ‖ − ∑ 𝜆𝑖

𝑚
𝑖= (𝑦𝑖( 

 𝑥𝑖 +  ) − 1)    (2) 222 

where the 𝜆𝑖 is Lagrange multiplier. 223 
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The dual minimum method given by Vapnik (1995) and Tax and Duin (1999) is used to solve 224 

the   and   values of the equation. 225 

For the nonlinear non-separable hazards samples, the non-negative relaxation variables (𝜉𝑖) 226 

and penalty factor 𝐶 are introduced to adjust the constraint conditions, and the formula is modified 227 

to: 228 

min , 
 

 
‖ ‖ + 𝐶 ∑ 𝜉𝑖

𝑚
𝑖= 

    𝑦𝑖( 
 𝑥𝑖 +  )  1 − 𝜉𝑖, 𝑖 = 1, 2, …… , 

     (3) 229 

where 𝜉𝑖    denotes a sample classification error; 𝐶 represents the degree of the penalty. In the 230 

landslide assessment, 𝐶 ∈ ( ,1] denotes that the support vector represents the percentage of the 231 

entire training set. Therefore, the smaller the valve of 𝐶 ∑ 𝜉𝑖
 
𝑖= , the better for finding the 232 

classification hyperplane.  233 

Meanwhile, the radial basis kernel function  (𝑥, 𝑥𝑖) is adopted to process the nonlinear 234 

decision boundary when the SVM is constructed based on the training sample set. As shown in the 235 

formula (4): 236 

 (𝑥, 𝑥𝑖) =     (−
‖    ‖

 

   
)    (4) 237 

where    represents the kernel parameter, which implicitly decides the distribution of data after 238 

mapping to a new characteristic space. The number of support vectors affects the speed of 239 

training and prediction. 240 

To bring the kernel function into (3), the final regression function (the optimal hyperplane) is 241 

obtained as formula (5): 242 

 ( ) = ∑ 𝜆𝑖𝑦𝑖 (𝑥𝑖, 𝑥) + b 
 
 =      (5) 243 
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The evaluation results of landslide susceptibility in Zhaoping County are obtained by using 244 

regression analysis of formula (5) and parameter optimization. Furthermore, the natural breakpoint 245 

method is adopted to divide the susceptibility into five levels: extremely high, high, middle, low, 246 

and extremely low areas (Fig. 4a). 247 

3.2. SVM model based on particle swarm optimization (PSO-SVM) 248 

From the above analysis, it can be seen that the selection of the SVM parameters (penalty 249 

factor 𝐶, and the core parameter of radial basis function  ) directly affects the prediction 250 

accuracy of the landslide susceptibility evaluation model (Kavzoglu et al., 2014). Therefore, the 251 

particle swarm optimization (PSO) algorithm with powerful parameter global search capability 252 

was adopted to select the optimal 𝐶 and  , and the PSO-SVM model for prediction and evaluation 253 

of landslide was set up in Zhaoping County. The main steps of the PSO-SVM model can be 254 

summed up as Table 2: 255 

Table 2 The main steps of the PSO-SVM model 256 

(1) Initialization: 

The initial parameters of the PSO-SVM model are set, including species size, iteration times, learning factor, 

inertia weight, initial particle and particle initial velocity. The particle vector represents a SVM model 

corresponding to different 𝐶 and  . 

(2) Optimization: 

In the process of particle optimization, each solution of the optimization problem is called a particle in the 

search space. The particle adaptation value (fi) is calculated according to the fitness function. Adaptive function is 

the measure basis of the selection individual, and the individual is evaluated by the fitness function. 

(3) Replacement: 

On the basis of the objective function, the adaptive value of each particle (fi), the population individual 

optimal solution fi(pbest), and the population global optimal solution fi(pgbest) were calculated and compared. If fi＜

fi(pbest), then the optimization solution of the previous round is replaceed with the new adaptation value (fi), and 

the particles of the previous round is replaced with the new particles, and then the fi(pbest) of each particle is 

compareed with the fi(pgbest) of all particles. If fi(pbest)＜fi(pgbest), the optimal solution of each particle is used to 

replace the optimal solution of all the original particles, and the current state of the particles is saved at the same 
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time. 

(4) Determination: 

If the fi of the individual in the population meets the requirements, or if the evolutionary algebra is 

terminated, then the calculation is ended, and the particle individual corresponds to the optimal 𝐶 and   

combination, otherwise go to step (2) to continue the iteration. 

(5) Set up the PSO-SVM model: 

The global optimal PSO-SVM model is obtained by using the optimal parameters of the SVM with the 

optimal 𝐶 and   combination to train the training samples. The susceptibility of landslide is quantitatively 

evaluated and divided into five levels: extremely high, high, middle, low, and extremely low areas (Fig. 4b). 

3.3. Random Forests (RF) model 257 

Random Forests (RF) is a cluster tree classification proposed by Breiman (2001), which is 258 

composed of several unrelated decision trees. It is put back from the original training dataset by 259 

the Bagging algorithm to obtain multi-Bootstrap training data sets. And then the corresponding 260 

decision tree model was acquired by training random selection of m attributes from all M decision 261 

attributes. Finally, the final classification result of the test set samples was determined by voting. 262 

Suppose that for the landslide sample x of Zhaoping County, the output of the g decision tree 263 

is 𝑓𝑡𝑟𝑒𝑒,𝑔(𝑥) = 𝑖, 𝑖 = 1,2, … , 𝑛, that is, its corresponding category,  = 1,2, … , G,  G is the 264 

number of decision trees in RF, then the output of the RF model is as follows: 265 

𝑓𝑅𝐹(𝑥) = ar ⏟
𝑖= , ,…, 

ma {𝐺(𝑓𝑡𝑟𝑒𝑒,𝑔(𝑥) = 𝑖)}        (6) 266 

where G(∙) represents the number of samples that satisfy the expressions in parentheses. 267 

The construction process of the RF model for landslide susceptibility assessment in 268 

Zhaoping County is as Table 3: 269 

Table 3 The main steps of the RF model 270 

(1) Initialization: 
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Suppose D is an original training data set of landslide susceptibility assessment factors, which is composed of 

M prediction attributes (M=10) and a classification attribute Y (Y =5). There is n (n=3,581,859 different examples in 

D. 

(2) Get multiple training datasets: 

The K new training subsets of {D1, D2, …, DK} were obtained by K times random sampling with replay from 

the original training data set D by using Bagging algorithm. At the same time, each of the K training subsets 

contains n instances, in which there is repetition. 

(3) Training to generate decision tree: 

For each training subset Di (1≤i≤K), the decision tree without pruning is generated by the following 

procedure: 

Firstly, let the number of predictive attributes in the training sample be M, F (F<M) attributes are randomly 

chosen from M to compose a random characteristic subspace Xi, and those as the split attribute sets of the present 

node of the decision tree. In the process of generating the RF model, the value of F remains unaltered; 

Secondly, the node was split according to the optimal split attribute of each node selecting from the random 

feature subspace Xi by the decision tree generation algorithm; 

Thirdly, every tree grows completely and has no pruning process. The corresponding decision tree hi(Di) is 

generated by each training set Di; 

Fourthly, the FR model of {h1(D1), h2(D2), …, hi(Di)} was generated by combining all the generated decision 

trees. And the corresponding classification result of {C1(X), C2(X), …, CK(X)} is obtained by using testing of each 

decision tree hi(Di) with test set sample X; 

Finally, according to the classification results of K decision trees, the final classification results corresponding 

to the test set sample X was determined by classification results with large number of decision trees by voting 

method. 

(4) Dividing levels: 

According to the above steps, the landslide susceptibility of Zhaoping County is divided into 5 levels (Fig. 

4c). 

3.4. Weighted random forest based on particle swarm optimization algorithm (PSO-RF) 271 

In order to further compare the performance of different models in the evaluation of the 272 

susceptibility of the landslide, the parameters of the weighted FR are optimized by the PSO 273 

algorithm, and the main steps are as Table 4: 274 

Table 4 The main steps of the PSO-FR model 275 

(1) Initialization: 

The initial parameters of the PSO-FR model are set, including number of decision tree R, pruning 

threshold ε, number of predicted test samples X, and initial value of random attributes m. 

(2) Sampling: 
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Using rhe Bootstrap algorithm, R training sets are randomly produced, and X pre-test samples are selected 

in each training set. 

(3) Generating decision tree: 

A total of R decision trees is generated by using the rest of the samples of each training set. In the process of 

generating decision trees, m attributes are selected from all attributes as the decision attributes of the present node 

before each attribute is selected. 

(4) Determination: 

When the number of samples included in the node is less than the threshold ε, the node is taken as the leaf 

node, and the mode of the target attributes is returned as the classification result of the decision tree. 

(5) Setting up the PSO-SVM model: 

When all decision trees are produced, each decision tree is pre-tested and its weights are calculated by using 

the following formula: 

 𝑟 =
𝑋𝑐𝑜𝑟𝑟𝑒𝑐𝑡,𝑟

𝑋
, 𝑟 = 1,2, … , 𝑅    (7) 

where 𝑋𝑐𝑜𝑟𝑟𝑒𝑐𝑡,𝑟 is the classified correct number of samples of r decision trees, and X is the number of pre-tested 

samples. 

(6) Calculation of the classification results: 

The classification results of the model are calculated by the following formula: 

∫ (𝑥)
𝑊𝑅𝐹

= ar   𝑎𝑥⏟      
𝑖= , ,…,𝑐

{∑  𝑟𝑟∈𝑅,∫ ( )=𝑖𝑡𝑟𝑒𝑒,𝑟

}    (8) 

(7) Optimization: 

Taking the classification results as the fitness values, the PSO algorithm is applied to optimize the parameters 

of formula (6) iteratively and determined the parameters of the final RF model. 

(8) Running 

Finally, the optimized parameters are input into the model, and the output results of the model are obtained. 

According to the results, the susceptibility of landslide is divided into five levels (Fig 4d). 

  276 
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4. Results and discussions 277 

4.1. Evaluation results 278 

The 3,581,859 grids of Zhaoping County were input into the aboved four ML models, and 279 

homologous output values were obtained. According to these output results, the landslide 280 

susceptibility of Zhaoping County was divided into five levels: very low, low, moderate, high and 281 

very high, as shown in Fig. 4. 282 

 283 
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 284 

Fig. 4. Evaluation results of landslide susceptibility for four ML models in Zhaoping County [1-extremely low, 285 

2-low, 3-middle, 4-high, 5-extremely high; (a) SVM; (b) PSO-SVM; (c) RF; (d) PSO-RF] 286 

Figure 4 shows that the extremely high susceptibility levels for landslide is mainly 287 

distributed in the clastic rock areas along the Guijiang River and its tributaries, and the closer the 288 

river bank, the higher its susceptibility index. Here the geological structure is complex, where 289 

multi-period tectonic movement makes the joints and fractures of rock mass develop, the 290 

weathering of rock is serious, and water erosion is strong. Under the action of precipitation, 291 

especially heavy precipitation, as well as undermining and erosion of river water, clastic rocks are 292 

easy to form landslide disaster. 293 

Simultaneously, Fig. 4 indicates that the high susceptibility levels for landslide is mainly 294 

distributed in the surrounding towns and trunk lines built near the mountains or the Guijiang 295 

River. Here the geological structure is relatively complex, the stability of rock is poor and 296 

weathering is strong, which supplies adequate material basis for the development of landslide 297 
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disaster. Simultaneously, the NDVI map of these regions indicate that the vegetation coverage in 298 

these regions is low, which indirectly reflects the frequent human engineering activities in the 299 

region, indicating that the human engineering construction strongly interferes with the geological 300 

ecological environment of the region and leads to the frequent occurrence of landslide. This also 301 

illustrates that the stability and bearing capacity of regional geological environment system 302 

should be fully considered in the construction of human engineering. 303 

Figure 4 also indicates that the medium susceptibility levels for landslide is mainly 304 

distributed along the county roads, rural roads and residential areas, distributed in belts or 305 

surface-like distribution. The rock mass here is stable; the vegetation covers well, and is less 306 

disturbed by human activities. 307 

The remaining areas are low and extremely low susceptibility levels for landslide, far away 308 

from the Guijiang River and its tributaries, with high vegetation coverage and less human 309 

engineering activities. 310 

4.2. Evaluation accuracy and validation analysis 311 

Evaluation accuracy and validation analysis is an essential component in landslide 312 

susceptibility prediction and evaluation to attest the availability and scientific significance of the 313 

adopted method (Frattini et al., 2010). Many research papers confirmed that the area under curve 314 

(AUC) of the receiver operating characteristic (ROC) curve was an effective method for the 315 

precision inspection of the prediction model, and was widely used in all subjects (Hanley and Mc 316 

Neil, 1983; Fawcett, 2005; Rossi et al., 2010; Pham et al., 2016; Tien Bui et al.,2016; Chen et al., 317 
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2017; Lin et al., 2017; Hong et al., 2018; Ciurleo et al., 2019). Therefore, the AUC values of the 318 

ROC curves were used to evaluate the accuracy of landslide susceptibility in Zhaoping County 319 

for the ML methods, such as the SVM, PSO-SVM, RF, and PSO-RF model, as shown in Fig. 5. 320 

 321 

Fig. 5. ROC curves and AUC values of validation set for the PSO-RF, RF, PSO-SVM, and SVM model 322 

Figure 5 indicates the ROC curves and the AUC values of the validation set for the PSO-RF, 323 

RF, PSO-SVM, and SVM models. The values of AUC are 0.934, 0.886, 0.918, 0.863, 324 

respectively, which indicate that the accuracy of the four ML methods in the evaluation and 325 

prediction of landslide susceptibility in Zhaoping County is higher than 86%. At the same time, 326 

the AUC values of the PSO-SVM and PSO-RF models (0.918 and 0.934) were higher than those 327 

of the traditional SVM and the RF (0.863 and 0.886), which indicated that the PSO algorithm can 328 

effectively optimize SVM and RF models, and the prediction accuracy of the optimized model is 329 

more than 91.5%. Such a result further revealed that the PSO-RF and PSO-SVM models have the 330 

stronger robustness and stable performance. Furthermore, the present study further testified that 331 
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PSO has strong global parameter search ability, and parameter adjustment is simple and easy to 332 

implement, which confirmed that the PSO algorithm is successfully applied in landslide hazards 333 

evaluation and prediction (Liu et al., 2012; Feng et al., 2017; Hoang and Tien Bui, 2018). 334 

Figure 5 indicates that the performance of the RF and RF-PSO is better than the SVM and 335 

PSO-SVM in evaluating the susceptibility of landslide because the values of AUC for RF (0.886) 336 

and RF-PSO (0.934) are higher than the values of AUC for SVM (0.863) and PSO-SVM (0.918), 337 

respectively, which confirmed that the generalization performance of the integrated learner is 338 

superior to that of a single learner (Li et al., 2014; Zhang et al., 2018). At the same time, the 339 

research further certified that the RF and PSO-RF models have advantages in dealing with high 340 

dimensional features and geological big data, such as fast classification speed, strong anti-noise 341 

ability, and avoiding over-fitting (Tien Bui et al., 2016). However, because of the sensitivity of 342 

the RF and PSO-RF models to the proportion of landslide samples, it is necessary to carry out 343 

sample screening before using RF and PSO-RF models to evaluate the susceptibility of landslide. 344 

In order to further verify the accuracy of the four ML models, the ratio of grid number of 345 

landslide points that fall into different susceptibility levels was counted, as shown in Table 5: 346 

Table 5 Percentages of landslide points falling into different susceptibility levels 347 

Susceptibility levels SVM (%) PSO-SVM (%) RF (%) PSO-RF (%) 

Extremely high 0.1238 0.2030 0.1793 0.2306 

High 0.0561 0.0609 0.0596 0.0845 

Medium 0.0302 0.0232 0.0171 0.0117 

Low 0.0124 0.0057 0.0077 0.0041 

Extremely low 0.0010 0.0006 0.0008 0.0005 

Table 5 indicates that the proportions of hazards points falling into extremely high and high 348 

susceptibility regions are 0.2306% and 0.0845%, 0.2030% and 0.0609%, 0.1793% and 0.0596%, 349 
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and 0.1238% and 0.0561% for the PSO-FR, PSO-SVM, RF, and SVM models, respectively, 350 

which certified that the evaluation accuracy of four ML models in the extremely high and high 351 

prone regions from high to low are: PSO-RF, PSO-SVM, RF, and SVM. Simultaneously, Table 5 352 

also indicates that the proportions of landslide points falling into low and extremely low 353 

susceptibility regions are 0.0041% and 0.0005%, 0.0057% and 0.0006%, 0.0077% and 0.0008%, 354 

and 0.0124% and 0.0010% for the PSO-FR, PSO-SVM, RF, and SVM models, respectively, 355 

which certified that the wrong accuracy of four ML models in the low and extremely low 356 

susceptibility regions from low to high are: PSO-RF, PSO-SVM, RF, and SVM. 357 

In addition to the above two methods of verification, field investigation has been 358 

implemented by Guangxi Geological Survey Bureau in Zhaoping County. Simultaneously, the 359 

field investigation results were compared and analyzed with the evaluation results of four ML 360 

models, as shown in Fig. 6: 361 

 362 
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 363 

Fig. 6. Landslide susceptibility overlying maps of field survey and evaluation results for four ML models in 364 

Zhaoping County [1-extremely low, 2-low, 3-middle, 4-high, 5-extremely high;  365 

(a) SVM, (b) PSO-SVM, (c) RF, (d) PSO-RF] 366 

Figure 6 indicates that the landslide susceptibility evaluation results of four ML models in 367 

Zhaoping County are in accord with the distribution of landslide points of field investigation, 368 

which further illustrates that the methods in evaluating landslide susceptibility in the present 369 

paper was reasonable and effective. 370 

Overall, the ML models of the SVM, PSO-SVM, RF, and PSO-RF achieved excellent 371 

performance in predicting and evaluating the susceptibility levels of landslide in this study.  372 
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5. Conclusions 373 

The improvement of performance for landslide susceptibility models is still the focus of 374 

widespread concern in the disaster research community, because the capability of the models is 375 

dominated by the method adopted (Tien Bui et al., 2016); though ML methods have been 376 

validated efficient in terms of prediction and assessment performance (Pham et al., 2016). 377 

Therefore, four widely used ML models such as SVM, PSO-SVM, RF, and PSO-RF were 378 

investigated to predict and evaluate the susceptibility levels of landslide for Zhaoping County in 379 

Guangxi of southern China.  380 

Analysis and comparison of the results denoted that all four ML models performed well for 381 

the landslide susceptibility evaluation and prediction as the AUC values of ROC curves are all 382 

greater than 86%. Thereinto, it has been shown that the PSO-RF model (93.4%) has the highest 383 

accuracy in comparison to other landslide models, followed by the PSO-SVM model (91.8%), the 384 

RF model (88.6%), and the SVM model (86.3%). Moreover, the results also showed that the PSO 385 

algorithm has a good effect on SVM and FR models. In addition, our results also revealed that the 386 

PSO-RF and PSO-SVM landslide models have the strong robustness and stable performance, and 387 

those two models are prospective methods that could be applied to landslide susceptibility 388 

evaluation in similar natural geological and ecological environment background regions. 389 

At the same time, the results described in the present study proved that the prediction results 390 

of four ML models are consistent with the field survey results by comparing Fig. 4 and Fig. 6, 391 

which verified the validity of the four ML models again. This also proved that the ML models 392 

have excellent performance in evaluating and predicting the occurrence of landslide. Furthermore, 393 
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the results can provide informational service and decision support for landslide early warning, 394 

land use planning and environmental management for local government departments. 395 

In addition, our study found that the10 disaster-related factors selected in this paper can fully 396 

reflect the natural geological and ecological environment characteristics of the study area, and 397 

have a great correlation to the occurrence of landslide disasters. Simultaneously our study also 398 

found that the selection of training samples will affect the susceptibility evaluation results during 399 

the process of landslide susceptibility evaluation using four ML methods. It is worth mentioning 400 

that there is a great difference between the extremely low and extremely high susceptibility 401 

regions for the evaluation results of RF and PSO-RF model, and the occurrences of the extremely 402 

low prone regions is almost 0. However, regions where landslide hazards have not occurred do 403 

not mean that landslide will not occur, so future investigations should pay more attention to 404 

over-fitting in evaluating and predicting the susceptibility of landslide for the RF and PSO-RF 405 

models.   406 
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Code availability 407 

The following program is used to optimize parameters in SVM, PSO-SVM, RF, and PSO-RF, 408 

and further use the optimized parameters to set up training models of SVM, PSO-SVM, RF, and 409 

PSO-RF. 410 

Name of code: gaSVMcgForClass.m, SVMcgForClass.m, main.py 411 

Developer and contact address: Kong Chunfang, Wang Junzuo 412 

Telephone number and E-mail: +8618602766895, kongcf@cug.edu.cn 413 

Year first available: YES 414 

Hardware required：CPU-i5, MEMORY-4G 415 

Software required: WIN10, matlab R2018a, Spyder 416 

Program language: M language, Python 417 

Program size: 9.35k 418 

The code can be accessed using the following link: https://github.com/kongcf/mycode.git  419 
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Data availability 420 

All data used during the study are available in 4TU Research Data repository and can be 421 

accessed through this doi link: https://doi.org/10.4121/12857417.v1  422 
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