
Rebuttal letter manuscript “Simulating Synthetic Tropical Cyclone 
Tracks for Statistically Reliable Wind and Pressure Estimations”  
 
Dear editor, dear reviewers, 
 
On the July 31, 2020, we have submitted the following manuscript to the Journal of Natural 
Hazards and Earth System Sciences titled: "Simulating Synthetic Tropical Cyclone Tracks for 
Statistically Reliable Wind and Pressure Estimations" (MS No.: nhess-2020-250). On the 
October 7, 2020, we were informed that the open discussion was completed. In total, we 
received comments by two reviewers which provided a very positive feedback on the work 
done and valid suggestions. We would like to acknowledge their time and efforts, which  have 
led to an improvement in the quality of our manuscript. Below you find a point-by-point reply 
to all specific questions and suggestions. Attached you also find the revised manuscript with 
the changes made to address the review comments tracked. 
 
Kind regards, 

Kees Nederhoff 

--- 

Anonymous Referee #1   
 
General Comments:  
 

1. An important limitation that I see in the applicability of this approach for studies on 
climate changes, is that it does not consider explicitly variables like SST in the cyclo-
genesis. Hopefully, this limitation will be overcome in future releases 

 
We agree with the reviewer that climate change studies are of vital importance to our research 
field. TCWiSE does indeed not consider SST in the cyclogenesis but it can be used to study 
the effects of climate change using data from for instance IPCC studies on changes in the 
intensity and/or frequency distributions (Page 9 Lines 5-10; later in this rebuttal will be referred 
to as P9 L5-10). 
 
 
Specific comments 

 
1. p2, l8: how reliable are very old data? Can we assume that the frequency of TC 100 

years ago was similar to that of today? 
The tool at the moment assumes stationarity, with historical data being assumed to describe 
the current climate. As stated in the reply to the general comment above, it possible to take 
into account a heuristic implementation of a factor on both the frequency and intensity. In order 
to address the first question we have added a statement on the increasing quality of historical 
data  to the introduction (P2 L10-13). 

 
2. p2, l18: the term "heading" should be defined 

We have added the definition of heading (P2 L22). 
 

3. p4, l8: it could be useful to add, in the future, 1st order estimations of the ocean 
variables as well. 

TCWiSE only computes TC tracks and winds. We have at the moment no immediate plan to 
include, within TCWiSE, the effects of these winds on other variables, such as water level and 
surface currents. TCWiSE does however support the creation of output file in a format that 



can be used directly in open source models (currently only Delft3D4 and Delft3D-FM are 
supported including flow and wave). In addition, TCWiSE does take the ocean variable SST  
into account to determine track termination.  
 

4. p4, l16: "number of points needed per KDE" does not read well. You mean, the kernel 
size? 

Adjusted as suggested (P4 L22-23). 
 

5. p4, l17: "The user can also define bulk ... climate changes." But to do so I should 
assume a dependency between TC frequency and climate variables such as SST, or 
build a further statistical model to infer it. I believe this would be better done inside 
TCWiSE, please consider it as a future development. 

TCWiSE is a purely data-driven approach, with no ability to simulate the TC generation 
physical processes. This means that this information needs to be input from other sources. At 
the same time, this can also be seen as a flexible aspect of the tool, since no assumptions are 
being made on the TC generation process.  
 

6. p4, l25: .. poisson distribution ... this is not very clear. how do you define the poisson 
dist? monthy or seasonally?" 

Annually and monthly. The Poisson distribution is a discrete probability distribution that 
expresses the probability of a given number of events occurring in a fixed interval of time or 
space if these events occur with a known constant mean rate. In TCWiSE, a Poisson 
distribution is being used for the number of events per year, with the  distribution of events 
during a year being estimated based on a KDE of historical data (see also P4 L30-32 and P5 
L1-4 and last paragraph of Section 2.3). 
 

7. p5, l6: .. sea surface temperature (SST) .. I guess SST is somehow estimated by 
TCWiSE? How? 

SST is an input variable. In the presented application,  the SST data are extracted from the 1-
degree resolution, worldwide monthly average SST map from the International Research 
Institute of Columbia University (2017) (see also P7 L14). 
 

8. p5, l12: "last track". How does the algorithm decides that it has to generate nothing 
else? At the end of its time horizon 

The number of tracks to be generated is also an input variable, more precisely it is determined 
by multiplying the average number of tracks per year (based on data) with the number of years 
we want to generate tracks for. We have added additional information to the MS (Section 2.2 
item 8). 
 

9. p5, l16: "create wind swaths", in fig 1 it is said that is done by means of POT GPD. 
would you clarify how? 

Wind swaths are created based on either non-parametric and/or parametric estimates of the 
spatially-varying (extreme) wind fields.  Non-parametric estimates are determined using the 
empirical distribution of the collected historical peak (POT) data, the parametric estimates are 
determined by fitting a GPD distribution to the historical peak (POT) data (see also P5 L24-
29). 
 

10. p5, l16: The difference between wind swaths and maximum wind is not very clear. 
Wind swaths are spatial maps of the maximum (computed) wind speeds per TCs. Hence, they 
are the same thing. The difference with spatially-varying wind field maps is that these maps 
have a timestamp. For example, for a 7-day long synthetic TC, we will have 7x8=168 
(assuming hourly data) wind speed maps. If we take the maximum of all those maps, we will 
get the wind swath or maximum wind speed map of that TC. If we do a similar approach to all 
the synthetic TCs we can start associating probabilities to each wind swath since we have 
saved this information per grid cell. A more sophisticated approach would be to fit a GPD to 



the data (i.e. maximum wind speed per TC per grid cell). See also Section 2.2 item 8 where 
we explain this in the MS.  
 

11. p7, l4: "temporal variability of genesis locations or other input parameters are included 
in the tool" but you mentioned earlier that a Poisson dist is used to model the seasonal 
dependency (how?) 

We understand the question and agree that the reasoning was not clear in the previous version 
of the MS. We have changed our explanation in the current version of MS (see P7 L16-20).  
 

12. p7, l9: "Genesis location in ocean surface temperatures less than a user-definable 
value .." this sentence is not well formulated 

We have rephrased the sentence following the reviewer's comment (see P7 L12). 
 

13. p7, l23: "The KDE that is sampled are constructed for each grid point based on input 
data within a specific search range." this sencence does not read well 

We have rephrased the sentence following the reviewer's comment (see P7 L29). 
 

14. p8, l25: "... not completely similar to the historical ..." maybe this could also depend on 
the way the termination in historical data is defined? Do all the agencies define the TC 
termination in the same way? 

For historical data, termination is defined as the last point of the TC track. TCWiSE can be run 
purely on historical termination which will result in almost an identical synthetic termination 
probability compared to historical. However, in TCWiSE it is also possible to add 
environmental factors to impose TC termination (e.g. wind speed or SST). This is the main 
source of deviations between synthetic and historical termination.  
 

15. p8, l30 & p9, l3: see my previous comment for p4, l17 
See our reaction to specific comment #5 above. 
 

16. p9, l11: wind swaths: it is still a bit unclear what the wind swaths are and how you do 
generate them - on what variable is the GPD fitted? 

See our reaction to specific comment #10 above. 
 

17. p11, l30: "MAE": you mean, the MAE between historical and TCWiSE cdf? Please 
clarify 

We have added the definitions of MAE and nMAE (see P11 L29-33). 
 

18. p11, paragraph 3.3.1: I would suggest adding formulas with the error indicators used 
See our reaction to specific comment #17 above.  
 

19. p12, l15: "the genesis patterns ..." this sentence does not read well figure 4: "is the 
maximum wind speed per TC and not the same as the wind field and/or 
wind swaths" again, the difference should be explained 

We have rephrased the sentence about genesis patterns (see P12 L14-15). Moreover, we 
have added an explanation of the difference between the intensity of the TC eye and wind 
swaths. 
 

20. p15, l9: "for example" looks out of context 
Removed. (see P15 L9). 
 

21. p15, l9: the TCWiSE bias of c vs historical looks generally slightly negative. Is it only 
in this case?  

Based on our experience on the use of TCWiSE in the Western Pacific Ocean and North + 
South Indian Ocean, there are no clear biases in terms of the forward speed that are always 
either positive or negative. The only tendency we noticed is an overestimation of wind speeds 



at land stations. This is arguably due to the lack of roughnes effects, with  the synthetic tracks 
being largely above water conditions. 
 

22. figure 7: the scale looks in radiants rather than in deg  
Thank you for noticing this. We have changed this figure in the current version of the MS. 
 

23. figure 8: the bias in TCWiSE max wind looks slightly positive. Is it a systematic 
tendency or is it random? 

See our reaction to specific comment #21 above. 
 

24. p19, track termination. To what extend may these differences depend on the 
uncertainty of historical data on track termination. 

Differences in track termination between historical and synthetic tracks are compounded over 
the duration of the simulation. This means that uncertainty in TC track also is partly responsible 
for the error in the track termination (see P19 L2-14) 
 

25. p20, l7: estimates *of* TC winds 
We have changed this in the manuscripts, thanks for noticing.  
 

26. p21, l2: How many TC were used for the estimation of the extremes on the historical? 
How do you ensure the extremes on the historical are compatible with the ones on the 
synthetic tracks? 

We have used a total 10 000 years of synthetic TCs in the extreme value analysis. In particular, 
per grid cell, we have saved maximum wind speeds per TC. Subsequently, using a peak over 
threshold (POT) method selected a limited number of peaks to fit the Generalised Pareto 
Distribution (GPD). The historical data are used to create the synthetic tracks which ensure 
that both are compatible (see P21 L1-3). 
 

27. p21, l5-9: the authors should mention here that the large differences are due to the 
differences between the historical, used to fit the model, and the observations. They 
should also mention, earlier, that the historical data are model data, and not 
observations 

We have changed the wording slightly in order to emphasize this point (see P22 L2-5). 
 

28. p24, l10: "this makes TCWiSE also more sensitive to input errors compared ...", 
unclear why this should be: the algorithm used by other authors may as well be 
sensitive to input errors 

The reviewer is correct. The point that we are trying to put across is that because TCWiSE is 
relatively user-friendly, compared to pre-generated global synthetic TC databases, there are 
more steps involved and therefore room for more user errors.  

 
29. p25, l2: ".. using datasets derived by global climate models .." you mean, CMIPX? 

How? These models are quite unable to represent properly the TCs. That’s a reason 
why statistical tools like this can come in handy 

Although TCWiSE can accurately generate high-resolution wind fields it depends on other 
sources for the definition/determination of the TC genesis, propagation, intensity, and 
frequency distributions. What we are here stating is that one can use data from Global Climate 
Model (GCM), such as are being generated by NCAR and GFDL, to infer changes in TC 
patterns (as done by Knutson et al., 2010) and use these as input.  We agree that GCM models 
often lack resolution and that statistical tools could also be used (e.g. in conjunction with GCM 
model) to more accurately project changes in the TC distributions. All this together would lead 
to the generation of more accurate extreme wind field projections by TCWiSE. 

 
30. p25, l20-22: this sentence is a bit unclear and full of repetitions 

We have changed the wording of this sentence (see P25 L22-24). 



 
31. p25, l25: " It does seem however that synthetic TC tracks have a less clear southwest-

"from what do you see this? 
We have revised and deleted this sentence.  
 

32. p25, l27: subtitute Jetstream with "climate dynamics" 
We have changed this in the manuscripts, thanks for noticing.  
 

33. p25, l30: "These differences can be attributed to the fact that TC termination can get 
triggered by ..." this sentence does not read well 

We have changed the wording of this sentence (see P26 L1). 
 

34. If the tool is open source, I believe it would be useful to provide a link to a code 
repository 

After acceptance for publication, we will make the source code publicly available.  
 
 
James Done (Referee #2) 
 
Specific Main Comments:  
 

1. I agree that synthetic track simulation adds events and overcomes the sampling 
problem. But these need to be interpreted in the correct context. These synthetic tracks 
are constrained to reproduce the statistics of the historical record. This means that this 
tool would not, for example, produce a Hurricane Sandy-like track before Sandy 
occurred in the historical record. A physical model on the other hand has the potential 
to produce physically credible but not observed track behaviors. I suggest making this 
point in the discussion. 

We agree  and have added the comment of physically-credible and statistically-unlikely tracks 
in the discussion (P24 L18-19). Note that because we divide the basins into grid cells and 
define the distributions per cell, the tool is capable of generating tracks that have not occurred 
before.  

 
2. Another limitation of the tool is the assumption of stationarity in the historical record. 

We know that change has been detected in some TC characteristics in some regions 
(Knutson et al. 2019). Perhaps this limitation can be stated in the discussion. 

We have added the assumption of stationarity to the discussion (P24 L19). 
 

3. I’m glad to see the option to include inland wind decay of Kaplan and De Maria 1995) 
in addition to the implicit decay through the KDE of Vmax. But it’s important to state in 
the manuscript that at-sea winds will still extend inland before the TC center crosses 
the coast and the Kaplan and De Maria wind decay turns on. I think this is a possible 
reason for your high bias in 10-year return winds in some coastal regions (Fig. 10). 

We extended our discussion on the limitations of the landward decay based on De Maria and 
Kaplan in the discussion section (P25 L9-10).   
 

4. Section 2.5: Can you explain in more detail how asymmetry is considered? The Vmax 
in BTD is ground-relative and so includes a component of asymmetry. Did you remove 
the component of asymmetry from the BTD Vmax before creating th synthetic tracks 
and running the symmetric Holland model (and then add asymmetry back to the spatial 
wind field afterwards)? 

TCWiSE in its generation of synthetic tracks does not take into account asymmetry since it is 
focused on intensity evaluation of the eye. The Wind Enhanced Scheme (WES; Deltares, 2018) 
handles asymmetry in the computation of the spatially-varying winds. In particular, asymmetry 
is removed from the synthetic track via the relationship of Schwerdt (1979) prior to fitting the 



Holland wind model and asymmetry is added afterward again on the spatial wind fields. In this 
paper, we mainly want to focus on the TCWiSE tool and have therefore not added this 
explanation, however, we did add a more explicit reference about WES  (see P9 L18). 
 

5. There are a couple of notable omissions from the reference list. Arthur (in review) has 
a paper under discussion at NHESS that describes a synthetic track model that has 
similar functionality to this study. Lee et al. (2018) published a synthetic track model 
that differs from your data-driven approach by accounting for environmental drivers of 
TC behavior. 

Thank you for pointing this out,  we have included these references in the introduction (P3 L1-
2 and P3 L8-9).  
 

6. The paper is generally well written. But there are a few grammatical quirks and 
awkward word choices that can be corrected by a thorough review of English grammar. 

To improve the language in the MS, a native speaker has reviewed the paper which hopefully 
resolved the few grammatical quirks and awkward word choices.  
 
Specific comments 

 
1. Abstract, lines 10-12: This sentence makes the point that short historical records may 

not represent the parent population. This is a valid point but I suggest not using the 
term ‘future TCs’ in this sentence because that implies climate change and 
nonstationarity which is a separate issue. 

We agree with Reviewer 2 and have changed it into ‘hypothetical’.  
 

2. Introduction: The sentence spanning lines 27-29 about first and second order effects 
doesn’t appear to fit well in this paragraph about extreme value modeling. 

We have moved this part of the introduction to the first paragraph since this is a point we would 
like to make. 
 

3. The introduction talks a lot about the multi-hazard nature of TCs but then the paper 
describes a tool for TC wind only. I suggest toning done the discussion of surge, waves 
and rainfall in the discussion and just mentioning it briefly. 

We agree and have therefore changed the wording in the introduction (see P1 L22). 
 

4. To improve the flow of the introduction, can the point about the need for a larger sample 
size be made just once? It is currently discussed twice in the first and third paragraphs. 

We have removed the first reference of the sample size in order to improve the flow of the 
introduction.  
 

5. Section 2.2. Why not choose a threshold of 17ms to include all Tropical Storms rather 
than is seemingly arbitrary 25 m/s? 

We agree and have changed this value in the default settings (the user can always change it 
to another value).  
 

6. Section 2.4.3. What are the units ‘10kn/s’. Do you mean knots? 
Yes, we have changed kn/s to knots. 
 

7. Can you comment on the computational performance of the tool? How long does it 
take to run 10,000 years of the North Atlantic, for example? 

Computational performance depends strongly on numerical settings and computational power 
available to the user. We did add in a separate discussion section in which we mention the 
computational cost for the configuration we ran in our case to give readers an impression (see 
P26 L18-21). 
 



8. Fig. 5. Would it be useful to additionally plot the difference field to highlight the 
differences discussed in the main text? 

Figure 5 (and subsequent ones) are used to show qualitative patterns that are supported with 
quantitative evaluation via metrics such as the Kirchhofer metric score. We feel that a 
difference plot will focus too much on the minor variation between historical and synthetic 
spatial maps instead of focusing on the larger-scale patterns. 
 

9. In Section 3.3, use of the fourth-highest recorded value for the 10-year return wind will 
probably be noisy. Would it be better to fit an extreme value distribution to the 
observations to estimate the return value? This may produce a better agreement with 
the model. 

We agree that there are uncertainties associated with this empirical approach and that an 
extreme value distribution might give less noisy results. This is why we show both the non-
parametric (empirical) and parametric (fit) results from TCWiSE.  
 

10. Figure 11: Can you clarify what the historical TC wind data are please? Is it Holland 
model run along historical tracks? 

Yes, tracks and intensity. The historical is simply the BTD in combination with the Holland 
wind profile to get to spatially-varying wind fields. The synthetic TC is the same but then based 
on synthetic tracks and intensities. In order to clarify this, we have changed the caption of the 
figure to include these explanations (P22 L2-5). 
 

11. The description of Fig. 11 in main text has ‘Port Arkansas’. The correct name is Port 
Aransas. 12) Figures 10 and 12: Please state the grid spacing used in these 

Thank you for noticing. We have corrected the text and added the spacing (P21 L9-10). 
 

12. Section 4.2. I don’t see what you are referring to about the synthetic TC tracks having 
a less clear southwest to northeast orientation. I think this needs to be quantified in 
some way or excluded from the manuscript. 

We have deleted this sentence.  
 

13. The Hoek (2017) reference was incomplete in my pdf version. 
Thank you for noticing and it has been corrected (P29 L4-5). 
 

14. The Bader (2019) reference is missing from the reference list. 
Thank you for noticing and it has been added (P28 L5-6). 
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Simulating Synthetic Tropical Cyclone Tracks for Statistically 
Reliable Wind and Pressure Estimations 
Kees Nederhoff1, Jasper Hoek2,3, Tim Leijnse2, Maarten van Ormondt2, Sofia Caires2, Alessio Giardino2 
1 Deltares USA, 8601 Georgia Ave, Silver Spring, MD 20910, USA 
2 Deltares, Boussinesqweg 1, Delft, 2629 HV , The Netherlands  5 
3 Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands 
 

Correspondence to: Kees Nederhoff (kees.nederhoff@deltares-usa.us) 

Abstract. The design of coastal protection measures and the quantification of coastal risks at locations affected by tropical 

cyclones (TCs) are often based solely on the analysis of historical cyclone tracks. Due to data scarcity and the random nature 10 

of TCs, the assumption that a hypothetical TCs could hit a neighboring area with equal likelihood than past events can 

potentially lead to over- and/or underestimations of extremes and associated risks. The simulation of numerous synthetic TC 

tracks based on (historical) data can overcome this limitation. In this paper, a new method for the generation of synthetic TC 

tracks is proposed. The method has been implemented in the highly flexible open-source Tropical Cyclone Wind Statistical 

Estimation Tool (TCWiSE). TCWiSE uses an Empirical Track Model based on Markov-chains and can simulate thousands of 15 

synthetic TC tracks and wind fields in any oceanic basin based on any (historical) data source. Moreover, the tool can be used 

to determine the wind extremes and the output can be used for the reliable assessment of coastal hazards. Validation results 

for the Gulf of Mexico show that TC patterns and extreme wind speeds are well reproduced by TCWiSE. 

1 Introduction 

Tropical Cyclones cyclones (TCs) are among the most destructive natural hazards disasters worldwide. TCs can cause 20 

hazardous weather conditions including extreme rainfall and wind speeds, leading to coastal hazards such as extreme storm 

surge levels and wave conditions. In In assessing the impacts of these hazards and consequent risks, multi-hazard risk 

assessments, the spatial distribution of surface winds is needed. Past observed best-track data (BTD) can be used to reliably 

reproduce spatially varying wind conditions during individual TCs using parametric models (Nederhoff et al., 2019) and 

consequent hazards (e.g. Giardino et al., 2019). For TCs, one often refers to either the first-order hazards due to the TC (e.g. 25 

maximum wind speed), or to second-order effects (e.g. storm surge levels and wave heights). This is required for example to 

define design conditions for coastal protection measures or to quantify coastal risks However, BTD covers only historical 

occurrences, readily available from the 1970s onward globally, which in many regions implies that no reliable hazard estimates 

can be derived solely from the BTD fields due to a lack of occurrences in this (relatively limited) timespan. 

Extreme value theory is concerned with the distribution of rare events, rather than usual occurrences. For TCs, one 30 

often refers to either the first-order hazards due to the TC (e.g. maximum wind speed), or to second-order effects (e.g. storm 
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surge levels and wave heights). This is required for example to define design conditions for coastal protection measures or to 

quantify coastal risk s. A wide range of such statistical methods exists,  for all of which it is of importance to userely on 

the use of numerous observational points to derive reliable extreme values. When the dataset covers the return period of the 

event, then the extreme value estimation can be based directly on historical values (i.e. non-parametric). However, for the 

estimation of extremes associated with longer return periods, one needs mustto resort to the fitting of a statistical distribution 5 

to the data (i.e. parametric). The simplest technique is either to fit either a Gumbel distribution with two parameters (location 

and scale) under certain assumptions or to fit a Generalized Extreme Value (GEV) to a time series of annual maxima (Coles, 

2001). Other methods make better use of the available data, for example, via a peaks-over-threshold (POT) approach to identify 

all extremes within a year and to fit the Generalized Pareto distribution (GPD) to them (Caires, 2016).       

Worldwide the length of TC track records varies from approximately 50 years (from 1970’s onward) to more than 10 

150 years in the Gulf of Mexico (GoM) with argueably increasing accuracy for more recent observations compared to very 

old data. Thus, depending on the region, the number (and accuracy) of events recorded in the direct vicinity of a location varies 

significantly. Furthermore, in certain regions, the frequency of occurrence is also very low, making the sample size of historical 

events very limited. Only using a handful of observed TCs in recent history has severe limitations when estimating extreme 

wind, storm surge and wave conditions for rare (e.g. 1, 000 years) return periods, since individual storms will start to affect 15 

the derived extremes. In particular, biases (both over- and underestimations) start willto emerge due to sampling errors.  

To overcome this data scarcity problem, one potential approach is to generate synthetic TC tracks, which increases 

the amount of data by introducing cyclones that could potentially occur. Two different types of models are available for the 

generation of synthetic tropical cyclones: . These are the Simple Track Model (STM) and the Empirical Track Model (ETM). 

STM (e.g. Vickery & Twisdale, 1995) was the first method developed to generate synthetic cyclones. The basic idea is that 20 

specific observed TC characteristics (e.g. wind speed, central pressure deficit, the radius of maximum winds (RMW), heading 

(the direction the TC is propagating to in degrees), translation speed, coast crossing position, etc.) are obtained and used to 

construct probability density functions. Next, these characteristics are sampled from their distributions using Monte Carlo 

simulations and passed along a track that does not vary, ensuring . This means that TC characteristics are kept constant along 

the track. The downside of this method is that it is very site-specific as all parameters are gathered for a single area or coastline. 25 

ETM is, in principle, the evolution of STM (e.g. Vickery et al., 2000). It uses the same technique of gathering the statistics and 

then sampling them, utilizing Monte Carlo simulations. Instead of sampling all parameters once, the characteristics variables 

can change in its their characteristics every time step along the track. 

In recent literature, several synthetic TC databases and or methods have been published. Vickery et al. (2000) used 

statistical properties of historical tracks and intensities to generate a large number of synthetic storms in the North Atlantic 30 

basin. Six-hour changes in TC properties were modeled as linear functions of previous values of those quantities as well as 

position and sea surface temperature. James and Mason (2005) applied a similar, yet slightly simpler and less data-intensive, 

approach since the focus was on synthetic TCs affecting the Queensland coast of northeastern Australia where fewer data was 
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available compared to the North Atlantic basin. Arthur (in review) used a fairly similar approach to James and Mason (2005) 

but instead focus instead on  focuseding on the entire continent of Australia, included the fitting of extreme value distributions 

and made the code open-source. Vickery et al. (2009) added a second step in the TC generation by including thermodynamic 

and atmospheric environmental variables such as sea surface temperature, tropopause temperature and vertical wind shear. 

Emanuel et al. (2006) also used the ETM; however, for the generation of the synthetic tracks they applied Markov chains 5 

(Brzeźniak & Zastawniak, 2000) with kernel density estimates (KDE) conditioned on a prior state, time, and position, instead 

of using a linear function. Bloemendaal et al. (2020) developed a synthetic TC database on a global scale following the 

principles outlined in James and Mason (2005). Other approaches (e.g. Lee et al., 2018) are less data-intensive, but and instead 

more environmentally forced.  

While there are numerous methods and tools available to generate synthetic TCs, most of them were developed with 10 

a very specific focus in mind and therefore may not always easily applicable tobe suitable to use for other areas in the world 

and/or different utilisationsapplications. Moreover, none of these methods are yet available open-source for review by other 

peers and potentially peer-application and all are focused purely on the generation of the track itself. For example, for coastal 

engineering or risk-based applications, the possibility to easily link the track to other processes (e.g. generation of wind 

profiles, rainfall, hazard modeling) could offer a wide range of opportunities for different applicationsutilisations. 15 

In this paper, a new method for the generation of synthetic cyclone tracks and wind fields is described. The method 

has been implemented in a new tool to compute synthetic TC tracks, based on the ETM method, for any oceanic basin in the 

world. This new tool, named TCWISE TCWiSE (Tropical Cyclone Wind Statistical Estimation Tool), has been made publicly 

free and open-source via URL (will be made available after acceptance of the paper). The tool is set up as a Markov model 

where (historical) meteorological data serves as a source to compute synthetic tracks. Additionally, TCWISE TCWiSE can 20 

create meteorological forcings for further use in different hazard models (e.g. surface wind fields, TC- induces induced rainfall, 

etc.) including the possibility to assess current and future climate variability.  

TCWiSE has been developed with an attempt to give users flexibility in its choices. For example, while a 

comprehensive historical TC database is already included in IBTrACS (International Best Track Archive for Climate 

Stewardship, Knapp et al., 2010), the tool offers the option to choose from different sources within this dataset. Additionally, 25 

variables like the resolution of kernel density estimation (KDE) and internal parameters can be tuned optimized if 

wanteddesired. Also, it is possible to choose among several wind profiles to create spatially varying wind fields. This approach 

makes it possible feasible to calibrate parameters in TCWiSE that arguably vary from case study to case study. TCWiSE has 

been successfully applied in several studies prior to this publication (e.g. Deltares, 2016, Hoek, 2017 and Bader, 2019). In 

general, the whole tool is data-driven but due to the usage of Markov-chains and KDE, variability within the dataset can also 30 

be explored (i.e. combinations of statistical plausible parameters that have not occurred historically).   

This paper is outlined as follows: Section 2 describes the method and code structure of TCWiSE. Section 3 presents 

a validation case study for the GoM. Finally, Section 4 and 5 discuss and summarize the main conclusions of the study. 
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2. The Synthetic Track Generation with TCWiSE   

2.1 Introduction 

TCWiSE comprises a Monte Carlo method for synthetic TC generation and involves four main stepscomponents: track 

initiation, track evolution, wind field construction and determination of extreme surface wind speeds. The steps are: 1) Based 

on the average number of TCs per year, its their monthly distribution and the distribution of the genesis location, timestamps 5 

and synthetic genesis locations are generated. 2) Subsequently, an ETM is used to determine the changes in track and intensity 

at certain time intervals (i.e. 3-hourly per default). The ETM is a Markov model where the values of the next time step solely 

depend on that of the previous time step, similar to the methods developed by e.g. Vickery et al. (2010) and Emanuel et al. 

(2006). The main variables it keeps track of are location (latitude and longitude), time, maximum sustained wind speeds (vmax), 

forward speed (c) and heading (θ) of the synthetic TC track. 3) After the TC tracks have been generated, the surface wind 10 

fields are constructed using the so-called updated Holland wind profile (Holland et al., 2010) using with calibrations based on 

Nederhoff et al. (2019).  4) Finally, the generated data of surface wind fields is used to estimates TC wind extremes. The main 

outputs of the tool are the synthetic tracks, the surface wind fields per TC and the surface wind extremes. The output wind 

fields can be used further to derive extremes of associated second-order effects, such are as storm surges and waves. The tool 

is written in Matlab and leverages the Parallel Computing Toolbox to allow the utilization of the multicore processors on 15 

computer clusters. 

2.2 Flowchart 

A compact flowchart of the method which is used to generate the synthetic tracks is shown in Figure 1.  

 

The steps of this process are as follows: 20 

1. Define settings: The user specifies the data source, the area of interest, the number of years which are to be simulated 

and a number of numerical parameters. In particular, the included IBTrACS dataset contains data from several 

meteorological agencies from which the user can choose. Also, the users can define settings such as the number of 

points needed per KDEthe kernel size. The user can also define bulk climate variability parameters such as changes 

in TC frequency and intensity due to climate change. 25 

2. Construct statistics of original data: TCWiSE processes the (historical) data and computes the probability of genesis 

and termination per location on the map. Moreover, it computes change functions for the three variables of which the 

tool keeps track of. In particular, KDE of the conditional-dependent changes in maximum sustained wind speeds 

(intensity; vmax), forward speed (c) and heading (θ) as a function of the location and the variable itself are determined 

and saved for later usage. This information will be used within the Markov-chains during the simulation of synthetic 30 

tracks. 
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3. Compute cyclone genesis: The tool computes the number of storms to be generated by taking the average number of 

storms observed per year within the oceanic basin of interest. The yearly monthly distribution (i.e. seasonality) is also 

taken into account by first using a Poisson distribution for the number of TCs per each year after which the 

yearmonthly distribution is taken into account by , giving each track a unique timestamp within the number of years 

to be simulated based on a KDE of historical data.  For every track, its genesis location is determined and each TC 5 

track gets an associated initial vmax, c, and θ associated to the genesis location. See section 2.3 for more information. 

4. Compute new location and intensity: For every track, TCWiSE samples on 3-hourly intervals change to the three 

sampled parameters (vmax, c, and θ) until termination of the track. KDE is used to randomly sample changes to these 

parameters as a function of location and the parameter itself. The tool uses the maximum sustained wind speeds as 

the intensity parameter. Heading and forward speed are the location parameters. All these three parameters are 10 

sampled at a use-definable time step (3-hourly by default). 

5. If on land (optional): It is possible to include an additional decrease in intensity on land via relationships developed 

by Kaplan and DeMaria (1995). Implicitly, part of the decrease of intensity on land is already accounted for via the 

KDE of vmax. However, due to search windows, some of this effect is smoothed out. See section 2.4.2 for more 

information. 15 

6. Terminate track: After each interval of 3 hours, the tool checks if the tracks should be terminated. The termination 

criteria are defined in three different ways: a. probability, b. wind speed criteria and , c. sea surface temperature (SST). 

See section 2.4.3 for more information. 

7. Valid track: To make sure realistic TC tracks are generated, the tool checks if the synthetic track that is terminated 

has reached a wind speed of at least 25 17 m/s or more (default threshold definition TC, but user-definable) during 20 

its lifetime (i.e. approximate TC category 1 based on Saffir-Simpson Hurricane Wind Scale). This prevents the 

generation of extratropical storms that never reach TC status. 

8. Last track: TCWiSE continues with this loop until the last synthetic TC track has been generated. This is reached 

once the total number of synthetic tracks has been created. 

9. Create spatially-varying wind field maps: The tool creates meteorological forcing conditions, i.e. the surface wind 25 

fields per time step per TC, for subsequent analysis of wind swath maps and for the application within numerical 

models (currently only Delft3D4 and Delft3D-FM are supported including flow and wave; Lesser et al., 2004 and 

Kernkamp et al., 2011). 

10. Create wind swaths. TCWiSE creates wind swaths (footprints or extreme maximum surface wind velocities) of the 

high TC winds, based on the wind field maps per TC. Via non-parametric and parametric estimates also probabilities 30 

or return periods can also be given to wind swaths. In particular, output wind speeds are in m/s and, by default but 

user-definable, 10-minute averaged. Note that different meteorological agencies use different wind speed averaging 
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periods. Harper et al. (2010) recommend for at-sea conditions a conversion factor of 1.05 going from 10-minute to 1-

minute averaged wind speeds.  

 

A more detailed description of the track initialization, track & intensity evolution, termination, climate variability and wind 

fields is described in the paragraphs below. 5 
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Figure 1. Flowchart of the track modeling procedure. Dark blue colors are pre-processing steps, blue colors the computational core 
of TCWiSE and light blue post-processing steps. KDE stands for Kernel Density Estimation, SST for Sea Surface Temperature and 
POT/GPD is the acronym of Peak Over Threshold and Generalized Pareto Distribution. 

2.3 Track initialization 

The track initialization is done through random sampling of the genesis locations for each track from a spatially-varying 5 

probability constructed based on (historical) input data. Only the spatial occurrence of the genesis locations is sampled, as no 

temporal variability of genesis locations or other input parameters are included in the genesistool. The spatial-varying 

probability used to sample the genesis locations is constructed by first drawing a rectangular grid of a user-definable size 

(default: 1 x 1°) around all historical events under consideration. For each grid point, all genesis locations within a certain 

distance (default 200 km in size, but user-definable) distance are counted and normalized with the total number of counted 10 

genesis points to obtain the genesis density at each grid point.  

Genesis location that occurcred in ocean surface temperatures less than a user-definable value (default: 24 degrees 

Celsius), are deleted since high SST is the driving force behind TC genesis and without it, TCs cannot occur (e.g. Gray, 1968). 

TCWiSE uses SST data from the International Research Institute of Columbia University (2017Reynolds et al., 2002) which 

provides a worldwide monthly average SST map on a 1-degree resolution.  15 

After generating the genesis locations, the matching timestamp, intensity and track propagation of genesis are 

determined. The timestamp is determined by applying a Poison distribution per year (i.e. the number of TCs per year varies 

from year-to-year) after which the yearly within the year distribution is taken into account by giving each track a day number 

relative to January 1 of that year based on a KDE of historical data. The latter step allows to takeaking into account average 

climatological patterns such as a higher number of TCs during the months of August and September. The intensity, heading 20 

and forward speed of the TC at the genesis location are determined by randomly sampling from all the historical occurrences 

at genesis again within a certain (user-definable) distance user-definable size. Hence, this sampling is using only the data points 

during TC genesis and results in initial values for intensity, heading and forward speed (and not changes to these variables as 

will be done for the track evolution). 

2.4 Track evolution 25 

After the generation of the genesis location and parameters, the evolution of the track and intensity is modeled during its 

lifetime in (by default) 3-hourly intervals. The propagation is modeled by sampling the change in the heading (∆θ), forward 

speed (∆c) and intensity (∆vmax) for each time step. 

2.4.1. Search range 

The KDE that is sampled areis constructed for each grid point based on input data within a specific search range. This search 30 

range is defined by a rectangular box of a user-definable size (default: 1 x 1°) around the point of interest. The minimum 
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number of data points required within the search range is 250 data points (default, user-definable). If less than the specified 

amount of points are located within the search range, the search range is increased until the required number of data points are 

found or until the maximum is reached (user-definable; default 5° × 5°). 

The change in intensity evolution and track propagation, which includes the heading and forward speed, are all treated 

similarly. Changes are sampled from the pre-processed KDE that are conditionally dependent on the previous time step. 5 

Historical occurrences are smoothed since a kernel density estimation (KDE) from raw histograms is used (Wand and Jones, 

1994). This smoothing overcomes possible discrete signals. By default, the heading is divided into 17 equally large bins and 

partly overlapping bins of 45 degrees, forward speed is divided into 17 overlapping bins of 2.5 knots and wind speed is divided 

into 37 overlapping bins of 5 knots. This ensures that the full parameter range for TCs is covered. For each variable, the search 

range (i.e. range for which values are included in the bin) is twice the window size (i.e. the difference per each subsequent bin) 10 

to ensure a smooth transition between different bins. All these settings are user-definable. Data points that are on land can be 

excluded in the computation of the intensity evolution. 

No additional parameters are defined for the track evolution. Effects such as intensification, Coriolis, wind shear, beta 

drift (Holland, 1983), etc. are not explicitly defined nor controlled for. The conditionally -dependent KDE of change per 

variable per location drives the complete track evolution. 15 

2.4.2. Effect of land 

When a TC makes landfall, TCs weaken due to, among other factors, a lack of heat sources (e.g. Tuleya, 1994). This effect 

should be part of the conditionally -dependent KDE, but due to the possibly large search ranges per location (and thus blending 

of on-land and on-water conditions), the effect of land can be underestimated (and the intensity on-water underestimated). 

Therefore, the user can exclude data points on land. When this is chosen, one should use additional formulations to reduce 20 

intensity when the synthetic TC is on land. Among other relationships available in the literature, Kaplan and DeMaria (1995) 

created a simple empirical model for computing cyclone wind decay after landfall. In TCWiSE, a similar method can be used 

to compute the decay of wind speed after landfall. Following the relationships of Kaplan and DeMaria, wind speed decreases 

exponentially based on how long a TC is on land. The specific amount of decay as a function of time is, again, user-definable. 

2.4.3. Track termination 25 

During each interval of 3 hours, the tool checks if the tracks should be terminated. The termination criteria is defined in three 

different ways: 

1. When the wind speed is lower than a user-definable low value (user-definable, default 10 knotsn/s). 

2. When the synthetic TC is over a user-definable low water temperature (user-definable, default 10 degrees 

Celsius). 30 

3. The probability of termination based on (historical) input data. 
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When different methods of termination are used, the termination of a synthetic TC is thus not completely similar to the 

historical probability of termination. Hence, termination within TCWiSE can also be triggered by low wind speeds (due to the 

fact the TC is on land) and/or too low SST. 

2.4.4. Climate variability 

Projected effects of climate change on frequency and intensity of TCs can also be taken into account via the heuristic 5 

implementation of a factor on both the frequency and intensity. These factors can be defined using expert assessment of TC 

climate predictions (e.g. Knutson et al. 2015), allowing, for instance, the assessment of changes in TC coastal hazards in the 

next century. The effect of climate variability on possible shifts of the TC tracks or regional changes of parameters are not 

included yet but could be included by modifying the (historical) KDE’s and/or using global climate models as an input source 

for TCWiSE. 10 

2.5. Spatially-varying wind field 

After the generation of the track (time, location and intensity), spatially varying wind fields are computed based on the 

parametric model of Holland et al. (2010) via the Wind Enhanced Scheme (WES; Deltares, 2018). The relationships of 

Nederhoff et al. (2019) are used to compute either the most probable TC geometry (radius of maximum winds; RMW and 

radius of gale-force winds R35) or to take geometry into account as a stochastic variable. The user has the choice between 15 

generic relationships and calibrations for different basins. This ensures reliable azimuthal wind speeds. TC asymmetry is 

considered based on Schwerdt (1979) and assumes a constant inflow angle of 22 degrees (Zhang & Uhlhorn, 2012). See for 

mMore details on the implementation of the Holland parametric wind model are provided in Deltares (2018). 

2.6. Wind swaths 

After the generation of the spatially varying wind fields, wind swaths (footprints of extreme surface wind velocities) for 20 

different return periods are generated. Both non-parametric as and parametric extremes based on a fitted POT/GPD wind 

swaths for different return periods are computed. TCWiSE utilizes the peaks-over-thresholdPOT method (POT) combined 

with the Generalized Pareto distribution (GPD; Caires, 2016) for extreme value analysis. In particular, the choice of the 

threshold for the POT and the fitting of the coefficients are automatically performed.  Parametric estimates of extremes are 

preferred when 1) statistical uncertainties need to be quantified or 2) when fewer observations are available on which to base 25 

the non-parametric estimates on. 
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3. Tool validation  

3.1. Introduction 

The United States (US) is one of the countries most affected by TCs over the years. Especially In particular, the United 

StatesUS Gulf Coast has suffered severely from hurricanes in the past which have caused a significant number of casualties 

and damage. Among the most sadly famousnotorious, TCs Andrew 1992, Katrina 2005 and Harvey, 2012 have devastated US 5 

territory. In the severe hurricane season of 2017 alone, Harvey, Irma and Maria resulted in more than 250 billion USD in 

damage in the US (NOAA, 2018).  

In this section, a validation of generation, occurrence, propagation and termination of synthetic TC is carried out, by 

comparing with historical tracks for the entire North Atlantic (NA) basin. A more detailed comparison between historical BTD 

from the IBTrACS database and simulated synthetic tracks by TCWiSE is performed for 9 control points in the Gulf of Mexico 10 

(GoM). Subsequently, extreme wind speed estimates from TCWiSE and from historical data are compared along the coastline 

and also validated against literature. Figure 2 presents the area of interest for the validation case study, including relevant 

locations for this analysis. 

Figure 2. Area of interest of the Gulf of Mexico, including the locations of the 9 control points in the GoM (red triangles), 15 
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NOAA/NDBC measurement location (red dots), cities (white circles) and milepost (red dashed line). © Esri, DigitalGlobe, GeoEye, 
Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community. 

3.2 Data 

The NA basin data from IBTrACS database are used within the TCWiSE algorithm to compute 10, 000 (ten thousand) years 

of synthetic TCs. Only historical data observed from 1886 up to 2019 are considered. This is because from 1886 the accuracy 5 

in measurements of the maximum sustained wind speeds has increased from 10 kt to 5 knotst. This yields in 955 historical 

TCs and 71, 320 synthetic TCs for the entire NA basin. 

Measured winds from a total of 9 National Data Buoy Center (NDBC https://www.ndbc.noaa.gov/) buoys across the 

GoM have been used in this study to validate the TCWiSE computed extreme wind speeds. Computed and observed wind 

speeds are all converted (if needed) to 10-meter height and 10 minute-averaged (see e.g. Harper et al. 2010). This is generally 10 

the height and the averaging period needed for hydrodynamic models (in wave modeling this is generally tpyically the 1-hour 

average wind speed). Only observations from buoys with at least 20 years of data have been used to validate modeled wind 

speeds. MoreoverFurthermore, only observations within a 200 km radius of an active TC (based on IBTrACS) are considered. 

This prevents the inclusion of peak wind speeds due to extra-tropical storms instead of TCs in the validation.  

Moreover, TCWiSE- computed extreme values are compared to values found in the literature. For example, Vickery 15 

et al. (2009) present simulated TC induced wind speeds across the US coastline for return periods of 50 up to 2000 years.  

Following the methodology of Neumann (1991), along the US coastline, NOAA (National Oceanic and Atmospheric 

Administration, https://www.noaa.gov/) presents hurricane return periods for both hurricanes (>64 knots) and major hurricanes 

(>96 knots) within 50 nautical miles (92.6 kilometers) based on the track information. TCWiSE computed return periods are 

compared to NOAA’s reported values (https://www.nhc.noaa.gov/climo/). 20 

3.3.1. Statistical test for TC validation 

A variety of tests is are available for statistical comparison between computed and historical cyclone parameters. The tests are 

used to prove the hypothesis that the historical values come from the same statistical population as the simulated values. For 

each parameter, such as forward speed, a goodness of fit between the historical cumulative distribution function (CDF) can be 

performed and compared to the CDF from the synthetic tracks. Strictly, this would require that different data sets are employed 25 

for model fitting and for model testing so that distributional parameters of the model used to generate the large-sample CDF 

are not estimated from the historical sample. However, in this paper, we utilized all available observational data to include as 

much climate variability in the synthetic tracks as possible. 

Several tests exist (e.g. Kolmogorov–Smirnov, Cramer-von Mises, Anderson-Darling, Kuiper, Watson) to test the 

null hypothesis that the samples x and y come from the same (continuous) distribution (Stephens, 1974). In addition, a more 30 

pragmatic approach is available which consists of simply computing the mean-absolute-error (MAE) or regression on the 

historical and computed CDFs. In this paper, we present a combination of different statistics to test if the synthetic tracks have 
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similar statistical properties as the Best Track Data (BTD). In particular, normalized mean-absolute error (nMAE; MAE 

divided by variance of BTD), root-mean-square error (RMSE) and bias are presented.  MoreoverAdditionally, the CDF of 

several TCs physical properties are compared for the historical and synthetic tracks. Finally, the Kirchhofer (1974) method is 

used for quantifying similarities/differences in spatial patterns (e.g. TC genesis, evolution, etc.). 

3.3.2 Computed and historic TC parameters 5 

In the following paragraphssection, the modeled results of TCWiSE are compared to historical BTD. Validation follows the 

life of a TC first with first a visually and qualitative validation of the generation being presented. Subsequently, the track 

occurrence, evolution and CDFs of the three main parameters of TCWiSE are compared quantitatively to historical data. Lastly, 

a visual and qualitative validation of the termination is presented. 

 10 

Generation  

Historical and simulated genesis probability for the entire North Atlantic Basin (NA) is shown in Figure 3. Cyclone genesis is 

taken as the first point which the BTD identifies as such, which means it is the point from where meteorological institutes 

started tracking the storm. As shown in Figure 3A, visually the simulated and the historical genesis match well visually. A hot 

spot of TC genesis is shown illustrated on the West coast of the African continent. Additionally, two hot spots are visible east 15 

of the Caribbean Sea and in the western part of the Caribbean. Within the GoM some areas also show cyclone genesis. The 

genesis spatial patterns of genesis are almost identically while being slightly smoothed out in the simulated synthetic tracks 

(Figure 3B). This visual assessment was quantified and confirmed by using the Kirchhofer metric score, which provided a 

value equal to 0.967 (a value of 1.0 represents a perfect match). In particular, grid cells that are zero (either in the historical or 

synthetic dataset) are not taken into account in the analysis. This gives confidence that TCWiSE can reproduce the genesis 20 

patterns observed in the historical BTD. 
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Figure 3. Genesis probability of historical (BTD) (upper panel; A) and simulated TCs with TCWiSE for the NA basin (bottom panel; 
B). Occurrence is based on TCs within 200 km per grid cell for historical TCs from 1886-2019 and 10, 000 years of simulated events. 
© Microsoft Bing Maps. 

Track occurrence, evolution and CDFs 5 

Historical and simulated TC intensity tracks are shown in Figure 4. All individual tracks are plotted with a color code derived 

from the intensity of the eye of the storm (i.e. maximum sustained wind speed). Tracks with higher intensity are plotted on top 

of those with lower ones. The figure shows that TCs are generated around latitudes of +/- 10-20 degrees (see also Figure 3). 

Part of the TCs increase in intensity while moving towards the north-west making landfall in the US, Central America, northern 

countries of South America and across the Caribbean. Others turn back in an eastward direction and propagate towards Europe. 10 

Intensities are generally larger in the Caribbean and GoM while TCs that propagate northward decrease in intensity.  Similar 

patterns can be observed in the simulated synthetic TCs (Figure 4B). However, higher intensities can be observed for individual 

simulated synthetic tracks due to the larger number of years of data that are presented (10, 000 years simulated tracks vs 134 
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years for the historical tracks) and thus a larger likelihood of having a more intense TC.  Moreover, it does seem that synthetic 

TC tracks have a less clear southwest-northeast orientation in heading on the North Atlantic Ocean.   

 

Figure 4. Panel above (A): overview of historical tropical cyclone tracks in the IBTrACS database for the period 1886-2019. Panel 
below (B): 10 10,000 years of simulated tracks with TCWISE. Colors indicate the maximum sustained wind speed of the TC 5 
coreintensity of the eye. Note that the maximum sustained wind speedintensity is the maximum wind speed at the core of the TCper 
TC and not thewhich is different from same as the time and spatially-varying wind field and/or spatially-varying wind swaths. In 
particular, further away from the TC eye, still gale force winds can still be present due to the TC. © Microsoft Bing Maps.  

The average yearly occurrence of historical and synthetic TCs is presented in Figure 5. A high occurrence of TCs in the GoM, 

Caribbean and along the east coast of the US is observed for both historical and simulated tracks. The simulated occurrence is 10 

quite similar but, as expected, more smoothened for the synthetic tracks. The Kirchhofer metric score for occurrence confirms 

the matching of the patterns with a high score of 0.926. This gives confidence that TCWiSE produces synthetic TCs with a 

similar occurrence rate as historically observed.  
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Figure 5. Average occurrence of historical (BTD) (upper panel; A) and simulated TCs with TCWiSE (bottom panel; B) for the NA 
basin. Occurrence is based on TCs within 200km per grid cell for historical TCs from 1886-2019 and 10 10,000 years of simulated 
events. © Microsoft Bing Maps. 

The generation of synthetic TCs includes three distinct parameters which can be compared between the historical and synthetic 5 

tracks namely being: forward speed (c), heading (θ) and maximum sustained wind speeds (vmax). The CDFs are presented for 

these parameters in Figures 6 to 8 for the nine locations as shown in the map in Figure 2. Visually the CDFs of the synthetic 

data appear to match those of the historical data rather well. nMAE of the forward speed (Figure 6) vary between 0.02 – 0.20 

with an average RMSE of around 0.43 m/s and with a bias of +0.31 m/s. For example, Location 3 (WS) and Location 9 (NW) 

have a larger error due to the positive bias. Statistical errors in the headings (Figure 7) are generally small too. Location 2 and 10 

9 have larger nMAE than the other control locations (possibly due to the effect of land), while Location 7 and 8 have the lowest 

errors. The nMAE of maximum sustained wind speed (Figure 8) varies between 0.00 – 0.04 with, on average, a RMSE of 

around 3.62 m/s and with a bias of -3.10 m/s. These error statistics do reveal a general tendency for larger deviations closer to 

land, but give confidence in the synthetic generation and propagation of the TC. 
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Figure 6. CDFs of forward speed (c [m/s]) of historical (green line) and synthetic (blue line) TCs at 9 locations within the NA basin, 
as shown in the map in Figure 2. The 75% confidence interval (dashed green line) of historical data is also shown. Historic data are 
based on data available between 1886 and 2019, while synthetic data are derived from 10, 000 years of simulated events with 5 
TCWiSE. Data points within 200 km from the control location are included in the analysis both for the historical and synthetic data.  
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Figure 7. CDFs of heading (θ []) of historical (green line) and synthetic (blue line) TCs at 9 locations within the NA basin, as shown 
in the map in Figure 2. The 75% confidence interval (dashed green line) of historical data is also shown. Historic data are based on 
data available between 1886 and 2019, while synthetic data are derived from 10, 000 years of simulated events with TCWiSE. Data 
points within 200 km from the control location are included in the analysis both for the historical and synthetic data. 5 
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Figure 8. CDFs of maximum sustained wind speed (vmax [m/s]) of historical (green line) and synthetic (blue line) TCs at 9 locations 
within the NA basin, as shown in the map in Figure 2. The 75% confidence interval (dashed green line) of historical data is also 
shown. Historic data are based on data available between 1886 and 2019, while synthetic data are derived from 10, 000 years of 
simulated events with TCWiSE. Data points within 200 km from the control location are included in the analysis both for the 5 
historical and synthetic data. 
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Track termination 

Historical and simulated termination probability is shown in Figure 9. In TCWiSE, cyclone termination is defined as the last 

point of TC that is obtained from the BTD. The figure shows that historically there is a large probability of termination at the 

East coast of Canada (i.e. Nova Scotia and Island of Newfoundland) (see e.g. Elsner et al, 1999) and the East coast of Mexico. 

At In some cases, TCs terminate after landfall in the US or while propagating on the Atlantic Ocean. Visually, the historical 5 

and simulated termination does not match veryalign as well. The reasons for deviations are because termination can be 

triggered by several different physical processes and is thus not so closely related to the input data. In particular, in TCWiSE, 

synthetic TCs can get terminated due to a low ocean temperature of the ocean and/oror low wind speed on land. Hence, the 

differences in this comparison can be explained due to the schematization of the physical processes which lead to a different 

TC termination in TCWISE than based on the historical probability alone. MoreoverAlso, errors from the previous steps in the 10 

TC life (i.e. genesis location, propagation, etc.) will be compounded in the track termination. The comparison between 

historical and simulated termination probability was quantified by using the Kirchhofer metric score for termination, which 

provided a value of 0.622 (compared to 0.967 for genesis and 0.926 for occurrence).  
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Figure 9. Termination probability of historical (BTD) (upper panel, A) and simulated TCs with TCWiSE (bottom panel, B) for the 

NA basin. Occurrence is based on TCs within 200 km per grid cell for historical TCs from 1886-2019 and 10, 000 years of simulated 

events. © Microsoft Bing Maps. 

3.3 Computed and historic TC maximum wind speeds  5 

Observed extreme wind speeds 

Figure 10 presents the non-parametric 10-year return value estimates of TC wind speed for the GoM based on synthetic TCs. 

Cooler colors depict lower TC wind speeds and warmer colors higher wind speeds. The circles indicate the non-parametric 

estimates based on buoy observations for the same return period; given that the observations cover about 40 years they are the 

fourth-highest ever recorded value. The figure shows how the general patterns of higher wind speeds in the central GoM and 10 

lower values near land, as shown by the data, are reproduced correctly by TCWiSE. The model computed values are biased 

high (i.e. overestimation) for stations near land. This is most likely due to land-related processes not being fully accounted for 

in TCWiSE. Also, the data scarcity (sub-sampling) affects the estimates from the observations.  
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Figure 11 presents a comparison between observed and TCWiSE computed TC extreme wind speeds, for different 

return periods, at nine locations throughout the GoM, both based on 134-years of historical and 10, 000-years of synthetic 

tracks. As could already be seen in Figure 10, there is some scatter between observed, historical and synthetic TC wind speeds. 

For example, the peak in the observed wind speed, in particular of larger return periods, at East GoM (Figure 11A) and Middle 

GoM (Figure 11B) are underestimated by both the historical and synthetic TCs. These are respectively peaks corresponding 5 

to Hurricane Rita (2005) and Hurricane Kate (1985). Based on the observation record of 40 years, the non-parametric return 

period estimate is of 40 years, whereas TCWiSE indicates that the return period associated with those events is higher. The 

cause of the large difference between observed wind speeds and values derived from historical and synthetic TCs wind speed 

for West GoM (Figure 11C) is unclear. On the other hand, wind speed extremes at Venice, FL (Figure 11E) and Port Arkansas, 

TX Port Aransas, TX ( Figure 11I) seem to be overestimated by the historical TCs and synthetic TCs which could be related 10 

to unresolved land-related processes.   

 

 

Figure 10. Model estimates for non-parametric empirical estimate of 10-year TC wind speed return values based on extreme wind 
speeds based on 10, 000 years of TCWiSE computations. The white circles indicate observed TC wind speed extremes based on 15 
NDBC wave buoys/NOAA data. All wind speeds are in m/s, 10 minute-averaged and determined at a 10-meter height. © Microsoft 
Bing Maps. 
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Figure 11. Observed and TCWiSE computed TC extreme wind speeds for different return periods. Red stars are observed events 
from NDBC and NOAA wave buoys. Green dots are historical TCs based on BTD and Holland wind profile and blue line are 
synthetic modeled events based on synthetic tracks and Holland wind profile. All wind speeds are in m/s, 10 minute-averaged, on 
10-meter height).  5 

Modeled extreme wind speeds 

Figure 12 presents the 1 000-year parametric TC wind speed for the GoM, estimated by fitting a GPD to the POT of the 

generated data. The figure shows a spatial pattern similar to that of the 10-year non-parametric TC wind speeds (Figure 10).  

The highest values are found in the Caribbean Sea and central GoM.  Lower values can be found in the Florida Panhandle / 

Northwest Florida and in the southwest of the GoM. This is in line with the literature (e.g. Neumann, 1991). Computed 10 

occurrence rates are also in line with NOAA values for both hurricanes (>64 knots) and major hurricane (>96 knots) within 

50 nautical miles (92.6 kilometers). Occurrence rates for major hurricanes (>96 knots) are the highest for South Florida and 

Louisiana with a respective return period of 17-20 years. TCWiSE estimates are 19-22 years. 

Figure 13 presents the estimated TC wind speed return value swaths versus coastal milepost which starts at Cancun, 

Mexico and goes across the GoM in a clockwise orientation. Several return periods are depicted in different colors. Moreover, 15 
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TC wind speed is presented both in 10-minute averaged in m/s and 1-minute averaged in knots.  Saffir–Simpson hurricane 

wind scale (SSHWS) is included as well. TCWiSE simulation indicates for a return period of 10-year TC wind speed of around 

30 m/s (close to SSHWS-1) near Cancun and large stretches of the US coastline. For a return period of 1 000-year, this increases 

to values around 60 m/s (around SSHSS-4). Generally, values near Villahermosa are the lowest for all GoM. Vickery et al. 

(2009) reported maximum gust TC wind speeds with a return period of 100-year that vary between 33-57 m/s (using a 5 

conversion factor of 1.23 based on Harper et al., 2010). TCWiSE indicates values of the same order of magnitude but with less 

spatial-variability.  

 

 
Figure 12. Model estimates for the parametric empirical estimate of 1000-year TC wind speed return values based on extreme wind 10 
speeds based on 10, 000 years of TCWiSE computations. All wind speeds are in m/s, 10 minute-averaged and on 10-meter height. 
Black dots are the location of cities as plotted in Figure 10 and 13. © Microsoft Bing Maps. 
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Figure 13. TCWiSE 10-, 25-, 50-, 100-, 250-, 500- and 1 000-year return value estimates of wind speed. All wind speeds are in m/s, 
10 minute-averaged and on 10-meter height (left axis) or 1-minute averaged in knots (right axis). Cities on the x-axis are also depicted 
in Figure 12 as black circles. Milepost is presented in the same figure as a white line.  Shading shows the 5/95% confidence interval. 
SSHWS-value indicates the corresponding Saffir-Simpson hurricane wind scale. 5 

4. Discussion 

For clarity, discussion points have been grouped under two main topics: the TCWiSE tool and the validation study.  

4.1 The TCWiSE tool 

The philosophy which guided the development of TCWISE TCWiSE is to release an open-source tool, giving modelers full 

control over the track generation, propagation and termination. However, this makes TCWiSE also more sensitive to input 10 

errors compared to pre-generated global synthetic TC data products (e.g  Bloemendaal et al., 2020). However, the strength of 

this approach is twofold. First of all, this allows the user of TCWiSE to rigorously calibrate and validate assumptions within 

the code for its own case study site. Secondly, due to the flexible Matlab coding language, it allows easy adjustments of the 

tool and implementation of additional processes. For example, stochastic rainfall was recently added to the original code by 

Bader (2019).  15 

TCWiSE is an almost completely data-driven tool to simulate synthetic TCs. As such, output values are highly 

dependent on the (historical) input data and not the physical processes describing the genesis, propagation and termination of 

these TCs. This limits the possibility of synthetic TCs computed by TCWiSE that are physically-credible but statistical-

unlikely. Moreover, this assumes stationarity of the historical record.  If cyclone characteristics are expected to behave 

identically as overto the last decades, this method has been proven accurate for the determination of extremes. However, 20 

climate change is expected to influence future TCs frequency and intensity (e.g. Knutson et al. 2010). This can already be 
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accounted for by a heuristic factor to adjust both the frequency and intensity of the TC (or other variations implemented by the 

user) to reflect changes due to climate change. Other methods, e.g.for example, by either adjusting the KDE or by using datasets 

derived by global climate models, are currently being investigated. 

The effect of land on intensity can be taken into account either directly via the conditionally -dependent KDE or 

landward decay based on De Maria and Kaplan (2005). The latter is beneficial since TC information on land contaminates the 5 

KDE of intensity. In particular, due to the applied search range methodology, information from decreasing winds on land start 

to affect winds on the water. The downside of this method is that this does introduce an additional calibration coefficient for 

the user and larger deviations in the termination. Moreover, TCWiSE does not include a boundary layer model which means 

that the physical wind response to variable surface drag and terrain height is not included. In particular, the at-sea TC wind 

will extentd inland before the TC center crosses the coast and the decay turns on. Done et al. (2020) has however shown, 10 

however, that the output of parametric wind models can be used to simulate the near-surface spatial wind fields of landfalling 

TCs, accounting for terrain effects such as coastal hills and abrupt changes in surface roughness due to coastlines and forested 

or urban areas. 

In TCWiSE, track termination can be either be purely based on historical track termination or via additional 

formulations based on user-definable cut-off wind speed and/or SST. While these additional formulations were of importance 15 

to get the track evolution (and thus associated coastal hazards) simulated correctly, they do result in deviations of simulated 

track termination compared to historical data. However, arguably, track termination is not of importance for the simulation of 

coastal hazards and therefore this is deemed an acceptable trade-off for the more reproductive skill in the track evolution. 

TCWiSE does not take into account errors in the wind fields and its the associated impact on the confidence interval 

for the computed return periods for wind speeds. Nederhoff et al. (2019) showed demonstrated that the Holland wind profile 20 

in combination with reliable estimates of the TC geometry (i.e. the radius of maximum wind and gale force winds) to calibrate 

the wind profile wind, has a median root-mean-square-difference of 2.9 m/s. Other approaches (e.g. Vickery et al., 2009) do 

include error estimates in their estimates of the extreme winds. Vickery et al. (2009) and conclude that uncertainty in the 

estimated 100-year return period wind speed varies from aboutaround  6% along the Gulf of Mexico coastline, which 

corresponds to about +/- 3-5 m/s. 25 

4.2 Validation study 

Validation results across the NA basin and in particular the GoM have shown that TCWiSE can reproduce the main patterns 

seen in the BTD, wind observations and literature. It does seem however that synthetic TC tracks have a less clear southwest-

northeast orientation in heading on the North Atlantic Ocean. This can be done could despite be related to the lack of physical 

description of the climate dynamics Jetstream given that TCWiSE is a purely data-driven tool and does not include specific 30 

processes to steer TC propagation. 
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A comparison of similarities in spatial patterns between synthetic tracks and historic tracks, evaluated by means of 

the Kirchhofer metric score, show that TCWISE TCWiSE is able to correctly reproduce genesis and TC occurrence while 

differences were found for the TC termination. These differences can be attributed to the fact that TC termination which can 

get triggered by several processes criteria in TCWISETCWiSE. Hence,  and it is not just related to the historical probability 

of termination. At the same time, this has a relatively minor effect on the track evolution and consequently coastal hazards. 5 

The comparison of CDFs of forward speed, heading and maximum sustained wind speed of historical and synthetic 

tracks show in general a good agreement for the different stations in general. While differences between observed and modeled 

CDFs are apparent, results of the goodness-of-fit tests are generally acceptable (Figure 6-8) with mean nMAE of 0.08. More 

classical statistical tests such as Kolmogorov–Smirnov were not presented here and often reject the null hypothesis that the 

observed and modeled data are from the same distribution. This is related to the methodology of providing inputs to the Markov 10 

chains. While this method resulted in reliable probability distributions, it also smoothed out some local spatial patterns and 

therefore resulted in differences at the nine control locations. Arguably, locally patterns in the BTD (features < 500 km) could 

well be subject to a sampling error and not necessarily a feature of the TC climate we aim to reproduce.  

All BTD, since 1866, has been included as a basis for the generation of the synthetic tracks. Especially for pre-satellite 

records, errors in the BTD can be quite significant so previous studies (e.g. Holland, 2008) selected a specific subset of the 15 

BTD to ensure the quality of the data and remove potential inconsistencies. However, the advantage of including all data 

entries is that the derived TC climate is more widely defined (i.e. larger parameter space). It is howeverBut it is easily possible 

in TCWiSE to only include tracks from more recent years. 

4.3 Computational performances 

To provide the reader with a rough estimate of the computation performance of the tool, TCWiSE simulations 20 
for the NA and in particular GoM were performed on a 16 core Windows machine. The simulation of 10,000 years of 
synthetic tracks took several hours. The generation of spatially-varying wind fields, wind swaths and matching extreme 
value analysis took another +/- 15 days.  

 

5. Conclusions 25 

A new methodology and highly flexible open-source tool has have been developed with which synthetic tropical cyclones 

(TC) s can be generated and used for subsequent analysis of (coastal) hazards. In particular, TCWiSE handles track 

initialization, evolution, and termination based on historical TC information. Subsequently, the tool creates a spatially-varying 

wind field based on the Holland wind profile calibrated for TC geometry. Lastly, TCWiSE computes non-parametric and 

parametric wind swaths for user-definable return periods.  30 
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The validation study for the North AtlanticNA and in particular the Gulf of MexicoGoM showed reliable skill in 

terms of track initialization and evolution compared to the historical BTD. A more detailed assessment of the goodness-of-fits 

at nine control locations showed that normalized errors are generally smaller than 10%. Extreme wind speeds show agreement 

for more frequent return period, with possible deviation for the most extreme cases. This is the result of biases associated with 

the scarcity of observed data. 5 

TCWiSE can be useful in a variety of applications.  Improved estimates of extreme TC conditions, can lead to a better 

quantification of coastal hazards (e.g. extreme storm surge levels and waves), and consequent risks and damages resulting 

from these hazards. Similarly, an improved assessment of those hazards can help guide the design of appropriate adaptation 

measures. Other fields of application may vary from improved design parameters for offshore structures to navigation. In all 

these types of applications, the flexibility of TCWiSE to tailor the synthetic TC generation to user-specific needs and questions 10 

makes the tool very well-suited for coastal engineers. The application of the tool for determining coastal hazards will be 

presented as part of a separate paper currently under preparation (Leijnse et al., in prep).  

 

Code and data availability.  

TCWiSE is freely available for other researchers and consultants. The repository consists of the Matlab code and required 15 

input data (such as BTD and SST) map. Registration is required before getting access to the subversion (URL will be made 

available after acceptance of the paper). 
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