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Abstract. Rainfall thresholds, namely rainfall intensity-duration conditions beyond which the probability of debris flow occur-

rence is considered significant, can be used as a forecasting tool in debris-flow early warning system. Many uncertainties may

affect the thresholds calibration and, in turn, the reliability and effectiveness of this tool. The purpose of this study is to assess

the uncertainty in the determination of the rainfall threshold for stony debris flow based on the Back Dynamical Approach

(BDA) (Rosatti et al., 2019), an innovative method to estimate the rainfall duration and averaged intensity strictly related to5

measured debris flow. The uncertainty analysis has been computed performing two Monte Carlo cascade simulations: (i) to

assess the variability in the estimate of rainfall conditions due to the uncertainty of some of the BDA parameters and (ii) to

quantify the impact of this variability on the threshold parameters, obtained by using the frequentist method. Then, the devia-

tion between these analysis outcomes and the values obtained in Rosatti et al. (2019) has been examined. The results highlight

that the variability in the rainfall condition estimate is strongly related to the debris flow characteristics and the hyetograph10

shape. Depending on these features, the spreading of the obtained distributions can take both low and high values. Instead,

the threshold parameters are characterised by a low statistical spreading. Finally, the consistency between the outcome of this

study and the results obtained in Rosatti et al. (2019) has been proved and the critical issues related to the rainfall condition

estimation have been discussed.

1 Introduction15

Debris flows are very intense phenomena that affect mountain regions and have a significant impact on the territory in which

they occur, causing damages and, in some cases, casualties (Fuchs et al. (2013), Cánovas et al. (2016)). For this reason, debris

flow risk management, based on both active and passive mitigation strategies, is crucial to reduce the effects of the phenomenon

on the territory. An early warning system is an example of a passive mitigation tool (Huebl and Fiebiger, 2005) as it allows to

activate prevention measures (e.g. evacuation sets out in the civil protection plans) before the expected event occurs.20

In this last framework, the forecast of the possible occurrence of debris flow is mainly based on rainfall thresholds (Chien-

Yuan et al. (2005), Segoni et al. (2018)), namely rainfall conditions beyond which the probability of debris flow occurrence

is considered significant. Usually, rainfall thresholds are power laws that link the rainfall duration to the rainfall cumulated or

intensity (Nikolopoulos et al., 2014) and the relevant coefficients are calibrated on historical data. A considerable literature

deals with this topic (e.g. Aleotti (2004), Guzzetti et al. (2007), Jakob et al. (2012), Pan et al. (2018)).25
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One of the critical issues of the rainfall threshold calibration is the uncertainty related to both data and models parameters

(Gariano et al., 2019). Here with the term “model”, we indicate generically a set of operations that, given some input data and

model parameters, provide an output. The uncertainties derive mainly from data error measurements (e.g. in rainfall) and from

the estimation of the parameters related to the chosen models used to prepare the data and to calibrate the threshold. The result

is an uncertainty framework that can significantly impact the threshold estimation resulting in a not reliable forecasting tool. In30

this context, uncertainty analysis is required. In general, this type of analysis allows to assess and control the output variability

of a given model due to input uncertainties (Helton et al. (2006), Marino et al. (2008), Pisoni et al. (2018)) and to describe the

degree of goodness of the results (Coleman and Steele, 2018). In the present case, the model is the threshold estimation and

the relevant uncertainty outcomes provide useful information concerning the reliability and robustness of the threshold.

This work aims to assess the uncertainty related to the debris-flow threshold estimation based on the Backward Dynamical35

Approach (BDA), introduced by Rosatti et al. (2019). Given a rainfall event related to a debris flow occurrence, the BDA allows

to quantify the rainfall volume strictly pertaining to the surveyed debris flow. The rainfall volume is defined as the amount of

water needed to convey downstream as a mixture, the volume of sediments deposited by the debris flow. It is estimated on

the basis of a schematic description of debris flows dynamics. Once the rainfall volume is calculated, the relevant rainfall

conditions (duration D and averaged intensity I) determining that volume is defined based on the event hyetograph. Finally,40

the threshold calibration is performed applying the frequentist method (Brunetti et al. (2010) and Peruccacci et al. (2012)) to

the (I,D) set, obtained considering all the known and well documented events in a homogeneous area.

In literature, there are some studies related, for example, to the variability of calibrated threshold due to the uncertainty in

rainfall estimation (e.g. Nikolopoulos et al. (2014), Rossi et al. (2017)) and in rainfall temporal resolution (Marra, 2019). On

the contrary, this work focuses on the analysis of how the uncertainty in some input parameters affects the BDA outputs and45

threshold estimation and not on the rainfall.

The uncertainty analysis can be performed using different strategies and methods (e.g. Helton et al. (2006), Coleman and

Steele (2018), Hofer (2018)). In this paper, we have chosen the Monte Carlo (MC) approach. It consists in the production

of a large set of model outputs, obtained picking the model inputs within given ranges. Then, the statistical analysis of the

output set gives the required uncertainty estimation. In this work, two MC cascade simulations have been performed to carry50

out the uncertainty analysis. A first MC application is used to assess the uncertainty in the BDA outputs estimation. Then, the

effects of these outputs variability on threshold calibration are quantified with a further MC computation. Finally, the results

are compared with the reference values obtained in Rosatti et al. (2019) to assess their consistency.

The paper structure is the following. A brief description of the BDA method and the calibrated threshold obtained by Rosatti

et al. (2019) for a study area is presented in Sect. 2. The method used to assess the uncertainty propagation is described in Sect.55

3. The results of the application of the method obtained are presented in Sect. 4. In Sect. 5, discussion and conclusion end the

paper.
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2 The Backward Dynamical Approach

The Backward Dynamical Approach is an innovative method proposed by Rosatti et al. (2019) that defines the rainfall volume

strictly relevant to a stony debris flow in a physical-based way. As described in Rosatti et al. (2019), the BDA starts from the60

knowledge of the deposited volume Vdep occupied by the sediments, surveyed after a debris flow event. Thanks to a simplified

volumetric description of the phenomenon dynamic (Fig.1), the rainfall volume pertaining to the debris flow V DF
r , defined as

the volume of water necessary to convey downstream as a mixture the volume of sediments Vdep, can be express as a function

of this latter volume:

V DF
r =

cb− c
c

Vdep (1)65

where cb is the concentration of the sediment in the bed, constant and assumed equal to 0.65 (Takahashi, 2014), and c is a

reference volumetric solid concentration of the given debris flow. According to Takahashi (1978), c can be estimated as

c= min
(

if
∆(tanψ− if )

, 0.9cb

)
(2)

where if is the average slope of the last 50 m of the river bed before the deposition zone, ψ is the dynamic friction angle of the

sediments and ∆ = (ρs− ρl)/ρl is the sediment relative submerged density where ρl and ρs are, respectively, the liquid and70

solid constant density.

V DF
r can also be express as product between the rainfall volume per unit area E and the event basin area Ab:

V DF
r = EAb (3)

from which, a dynamical expression for the rainfall volume per unit area can be obtained:

E =
1
Ab

cb− c
c

Vdep (4)75

On the other hand, E can be obtained from the forcing of the phenomenon, namely in the hyetograph. Under the assumption

of uniform rainfall over the basin, the hydrological expression for E is:

E =

t2∫

t1

i(t)dt (5)

where i(t) is the measured rainfall intensity, t1 and t2 are the start and end times related to the debris-flow duration. In the

absence of event detailed data, the instant of maximum intensity during the event tmax is assumed to be the debris flow80

triggering time (Iadanza et al., 2016) and t1 and t2 are assumed to be:



t1 = tmax−∆t1

t2 = tmax + ∆t2
(6)

Because of the measurement technique, i(t) is a piecewise constant function on time intervals δt. Therefore, the integral in

Eq. (5) cannot equal exactly the value of E, and an approximated value must be considered. The values of ∆t1 = n1δt and
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Figure 1. Conceptual Lagrangian volumetric description of debris flow dynamic from Rosatti et al. (2019). The scheme is divided into three

transepts: transept 1 is characterised by the runoff formation; the bed material erosion and the achievement of equilibrium conditions occur

in transept 2; transept 3 is characterised by the deposition of sediments with water entrapment. V DF
r is the rain volume pertaining to the

debris flow, Vero is the bed volume variation related to the erosion, Vdep is the deposited volume occupied by the sediments and θ is the

inclination angle of the bed with respect to a reference horizontal direction.

∆t2 = n2δt are computed considering the minimum number of intervals (i.e. n1 and n2) necessary to exceed (or equal) the85

value of E:

min




t2∫

t1

i(t)dt


≥ E (7)

For further details on the computation of ∆t1 and ∆t2, please refer to Rosatti et al. (2019).

Therefore, the duration D and the average intensity I related to the event become

D = ∆t1 + ∆t2 (8)90

I =
min

( ∫ t2
t1
i(t)dt

)

D
(9)

2.1 The BDA-based threshold for a study area

As described in Rosatti et al. (2019), the BDA methodology has been applied to obtain a stony debris flow rainfall threshold for

the Trentino-Alto Adige/Südtirol region (Italy) (Fig. 2). A dataset composed of 84 debris flow events has been considered to95

calibrate the threshold. Firstly, the (I,D) couples have been computed applying the BDA method. Then, the threshold has been

obtained by using the frequentist method (e.g. Brunetti et al. (2010) and Peruccacci et al. (2012)). According to this method,
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Figure 2. Location of Trentino-Alto Adige/Südtirol region (Italy), the study area used in Rosatti et al. (2019).

the threshold is a straight line in the log-log ID plane parallel to the power law

I = âD−b (10)

obtained fitting the events rainfall conditions. The threshold exponent is therefore equal to b while the intercept is computed100

by setting a value of the non-exceedance probability of the dataset events, namely by imposing the occurrence probability of

debris flows related to rainfall conditions located below the threshold. The threshold equation is then:

I = aD−b (11)

in which a < â. For more details on the frequentist method, we refer the reader to the above-mentioned references.

In Rosatti et al. (2019) the non-exceedance level has been set equal to 5% and the resulting calibrated threshold is:105

I = 6.2D−0.67 (12)

3 Method

As briefly presented in the introduction, to perform a comprehensive study, the uncertainty analysis of the BDA-base threshold

estimation is divided into three parts. A first analysis examines the uncertainty propagation in the computation of the BDA110
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Table 1. Uncertainty probability distributions of the input parameters established to perform the LHS. if,r , Ab,r and Vdep,r are the reference

values (i.e. the values used in the calibration phase) of the average slope, of the basin area and of the sediments respectively.

Input parameter/data Probability distribution function

if Uniform(if,r (1− 5%
√

3), if,r (1+ 5%
√

3))

Ab Uniform(Ab,r (1− 5%
√

3), Ab,r (1+ 5%
√

3))

Vdep Uniform(Vdep,r (1− 5%
√

3), Vdep,r (1+ 5%
√

3))

ψ Uniform(32◦, 38◦) ∼ Uniform(35◦ (1− 5%
√

3), 35◦ (1+5%
√

3))

outputs (i.e. (I,D) couple, Eq. (8) and (9), and related values of c, Eq. (2) and E, Eq. (4)) starting from the uncertainty of some

input parameters. Subsequently, the effects of this propagation on the frequentist method threshold estimation are analysed.

Finally, a comparison between the results of the two previous analyses and the reference outcomes, obtained in Rosatti et al.

(2019), is carried out. In the following sections, we present the details of each part.

3.1 BDA outputs uncertainty analysis115

The main sources of uncertainties in the BDA outputs are attributed to some of the input parameters and data, namely the

average slope if , the basin area Ab, the deposited volume Vdep and the dynamical friction angle ψ. As described in Rosatti

et al. (2019), during the calibration phase, if and Ab related to each event have been estimated performing GIS analysis based

on the available debris flow data (e.g. location of the deposited area, technical reports...) and Vdep have been provided by

regional agencies. Instead, due to the scarcity of sediments information, ψ has been assumed to be 35◦ for all debris flow120

events. As stressed in the Introduction, the rainfall intensities i(t) associated with the event are assumed to be certain. Future

analysis will assess and study also the uncertainties related to this piece of data.

For each event, the uncertainty propagation of if ,Ab, Vdep and ψ is carried out with MC approach using the Latin Hypercube

Sampling (LHS) procedure (McKay et al. (2000), Helton and Davis (2003) and Helton et al. (2006)) for the generation of

the sample. The implementation of this procedure is schematized in Fig. 3 and is composed of three main steps. First, the125

characterization of the uncertainty in the parameters, namely the probability distribution function (pdf) of their values, has to

be defined (Fig. 3(a)). Lacking certain data concerning the pdfs, according to Marino et al. (2008), all the input parameters are

assumed to be uniformly distributed. In particular, for each event, the means of the parameter distributions are set equal to the

reference values, namely to the values used in the calibration phase (indicated with subscript r). The dynamical friction angle

is the only parameter with a validity range. For stony debris flow, according to Lane (1953) and Blijenberg (1995), it varies130

from 32◦ to 38◦. Therefore, assuming 35◦ as the mean of the ψ distribution, this range can be obtained by imposing a variation

coefficient CV (i.e. the ratio between the standard deviation and the mean) equal to about 5%. Since being greater than zero

is the only constraint of the other parameters, for homogeneity this CV value is considered suitable for all parameters. The

uncertainties characterization of the parameters is summarized in Table 1.

Second, the parameter samples, namely the ordered sets of parameters values in the form (if , Ab, Vdep, ψ), must be obtained.135
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Hyetograph

Uncertainty 
characterization

Generation of 
samples

Propagation of 
samples

(a) (b) (c)

Figure 3. Scheme of the uncertainty analysis performed with Monte Carlo and Latin Hypercube Sampling method for the (I,D) cou-

ples computation. For each event, the procedure consists of three steps. (a) Uncertainty characterization of the input parameters: the non-

dimensional form of the input parameters, obtained dividing the parameters by the reference value used in the calibration phase and indicated

with a subscript r, are assumed to be uniformly distributed. (b) Samples generation performing the LHS. (c) Propagation of samples through

the BDA method introducing the event hyetograph. The dots size in the log-log ID plane indicates the absolute frequency of obtaining the

(I,D) couples.

These samples are generated by using the LHS (Fig. 3(b)), introduced by McKay et al. (2000). This method produces N

samples starting with a division of each parameter range into N disjoint intervals of equal probability. Then, one value is

randomly selected within every interval, thus obtaining N values for each parameter. These values are then arranged in a

matrix composed of N rows and k columns, where k is the number of the parameters (four, in the specific case). In each

column, the N values relevant to a single parameter are inserted in random order (Helton et al., 2006). Each row of this matrix140

gives one of the N parameter samples. According to Marino et al. (2008), to ensure the accuracy, the sample size N should be

at least greater than k. In this study, N is set to 100 and the (100× 4) LHS matrix is generated for each event, based on the

previously established pdfs.

Finally, the BDA outputs are obtained starting from each parameter sample, resulting in 100 (I,D) couples for each event (Fig.

3(c)), together with the related concentrations c and rainfall volumes per unit area E.145

The obtained results are then analysed in term of relative uncertainty, quantified through the computation of the CV of the

output distributions. The CV , by definition, is a standardized measure of uncertainty (Håkanson, 2000) and allows to compare

the relative variability of the results independently of their measurement units (Abdi, 2010) and of their means. For this reason,

the CV is chosen as statistical measure to compare the relative variability between the outputs (between both the same output
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of different events and different outputs of the same event) and to understand how the uncertainty of an output variable changes150

depending on the event characteristics. In particular, the CV s are computed for all the BDA outputs.

Moreover, to evaluate how the (I,D) points move in the ID plane, the absolute uncertainty associated with the (I,D)

couples estimation is quantified throughout the computation of the 95% uncertainty intervals. The extremes of the latter are

defined as the 2.5 and 97.5 percentiles of the D and I distributions. The length of the uncertainty interval allows evaluating the

absolute variability of the D and I distributions.155

3.2 Threshold uncertainty analysis

To figure out the effects of the BDA outputs variability on the threshold computation, namely on the two constants a and b

of Eq. (11), the uncertainties propagation is estimated with a further Monte Carlo procedure. In this case, 5000 samples are

generated selecting randomly one of the one hundred (I,D) couples previously obtained for each event. The result is 5000

(a,b) couples, i.e. 5000 different thresholds.160

Consistently with the BDA output analysis, the relative uncertainty associated with the a and b distributions is quantified

through the computation of the CV s. In addition, to analyse the threshold absolute uncertainty for each combination of thresh-

old parameters, the intensity values are calculated for fixed durations selected within the threshold relevant time interval, from

five minutes to six hours with a five minutes time step. In this way, for each duration we obtain an intensity frequency distribu-

tion composed of 5000 samples. Then, the 2.5 and 97.5 percentiles of these distributions are chosen as upper and lower bounds165

of the threshold uncertainty.

3.3 Comparison between MC outputs and reference values

In this analysis, we compare the MC means (I,D) couples, the threshold obtained with the mean values of a and b and

the threshold uncertainty bounds with the results of the original calibration phase (reference values) in order to assess the

differences between the two approaches.170

As regards the rainfall conditions, according to Marra (2019), the bias of duration BD and intensity BI are computed for

each event as:

BD =
Dm

Dr
BI =

Im
Ir

(13)

where the subscripts r and m represent respectively the reference value and the mean of the MC output distribution.

For what concerns the threshold, firstly the differences between the MC intensities IMC,k, where k stands for mean, upper175

and lower bounds, and the reference threshold ones It,r (Eq. (12)) are carried out for the same fixed durations used to define

the uncertainty bounds:

Diff = IMC,k − It,r (14)

Subsequently, the percentage changes, defined as:

% change=
(
IMC,k − It,r

It,r

)
· 100 (15)180
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are computed to figure out how much the MC results deviate relatively from the calibrated threshold.

4 Results

4.1 Propagation of uncertainty in the BDA outputs

The method described in the previous section has been applied to the 84 debris flow events used to calibrate the threshold for

the Trentino-Alto Adige/Südtirol region (Italy) in Rosatti et al. (2019). The values of the CV s for the BDA outputs related to185

each event are shown in Table 2. The analysis of their variability allows to make the following observations:

– D is the output characterised by distributions with the largest and most variableCV s with respect to all the other outputs.

In fact, the events CVD vary between 0% and 157.5%. The reason for this behaviour will be clarified further on;

– the distributions of I are characterised by a lower spread with respect to the D distributions, being all the CVI values

within 0% and to 30.0%. The reason of this behaviour is connected to the fact that I , by definition, is an average and190

therefore the effects of the input parameters variability are smoothed by the mean operator. Also the reason why CVI

can be zero will be explained further on;

– also the concentration distributions show a low spread. As c is characterised by an upper bound (i.e. 0.9cb), the CVc

is strictly related to the proximity of cr to this maximum value and consequently, according to Eq. (2), to the value of

if,r. As shown in Fig. 4, until the if,r is less than about 0.3, the CVc tends to go up by increasing the if,r since cr is195

sufficiently smaller than 0.9cb. Instead, if the if,r is between about 0.3 and 0.4, the CVc tends to decrease by increasing

the if,r as c reaches the maximum and it is equal to 0.9cb for an increasing number of if samples. Finally, the CVc

becomes 0% if the if,r is grater than about 0.4 as c is always equal to 0.9cb independently from the values of the if

samples;

– the volume per unit area distributions shows CVEs that vary between 7.1% and 64.6%. It is worth noting that high200

uncertainty in the estimation of E does not necessarily imply large CVD and/or CVI (e.g. event 12) and vice versa (e.g.

event 38).

To better understand the variability of D and I , we classify the events into three categories based on the CVD values:

1. events with zero variability: CVD = 0%;

2. events with low variability: 0%<CVD ≤ 30%;205

3. events with high variability: CVD > 30%.

The first category comprises 48 events for which the 100 simulations of the MC method has provided as final outputs always

the same (I,D) couple. For these events, the propagation of the input parameters uncertainties does not effect the (I,D) couple

estimation resulting in CVD = CVI = 0%. This type of result is related to two conditions:
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Table 2. Coefficients of variation of the outputs of the BDA method related to each event expressed as a percentage.CVD is the coefficient of

variation of the duration distribution, CVI of the intensity distribution, CVc of the concentration distribution and CVE of the rainfall volume

per unit area distribution.

Event CVD CVI CVc CVE Event CVD CVI CVc CVE Event CVD CVI CVc CVE

1 0.0 0.0 0.0 7.1 29 0.0 0.0 12.6 26.6 57 0.0 0.0 10.6 15.6

2 34.6 5.5 11.6 18.3 30 0.0 0.0 12.5 26.9 58 157.5 14.9 14.1 35.4

3 34.2 7.9 13.3 30.7 31 0.0 0.0 0.0 7.1 59 0.0 0.0 10.6 15.9

4 23.0 6.2 11.1 17.8 32 0.0 0.0 11.3 18.4 60 0.0 0.0 0.4 8.8

5 7.1 1.5 9.1 12.6 33 13.8 4.1 11.2 17.2 61 16.1 4.4 9.5 13.4

6 0.0 0.0 0.0 7.1 34 30.9 9.7 13.1 28.1 62 0.0 0.0 11.1 18.1

7 39.6 13.5 13.8 36.3 35 24.8 22.7 9.8 14.2 63 0.0 0.0 7.0 55.5

8 26.4 2.8 12.0 20.9 36 0.0 0.0 7.9 58.4 64 7.8 1.0 0.0 7.1

9 0.0 0.0 0.0 7.1 37 0.0 0.0 3.6 34.2 65 0.0 0.0 14.0 43.5

10 26.6 15.7 10.3 14.7 38 74.7 30.0 10.1 14.4 66 0.0 0.0 10.0 14.4

11 0.0 0.0 12.9 27.0 39 0.0 0.0 0.0 7.1 67 110.1 28.2 13.6 35.5

12 0.0 0.0 11.6 55.9 40 0.0 0.0 0.0 7.1 68 32.9 4.6 13.8 35.9

13 0.0 0.0 0.0 7.1 41 35.3 15.1 12.4 24.7 69 37.1 12.3 13.9 36.2

14 15.6 2.6 9.5 13.2 42 0.0 0.0 13.3 30.0 70 0.0 0.0 13.7 36.1

15 0.0 0.0 11.2 17.8 43 0.0 0.0 0.0 7.1 71 0.0 0.0 6.6 54.8

16 0.0 0.0 0.0 7.1 44 0.0 0.0 1.0 15.0 72 0.0 0.0 12.9 54.7

17 0.0 0.0 13.3 34.6 45 25.3 10.0 12.5 22.8 73 16.0 0.6 12.0 21.6

18 0.0 0.0 12.7 25.0 46 0.0 0.0 0.0 7.1 74 0.0 0.0 13.2 29.5

19 13.3 3.0 10.4 15.1 47 16.7 4.9 9.0 12.1 75 0.0 0.0 13.2 31.4

20 41.7 4.7 7.1 54.9 48 0.0 0.0 10.8 16.4 76 37.7 18.9 8.9 12.3

21 0.0 0.0 8.8 11.7 49 15.9 4.3 9.7 13.1 77 31.1 9.4 9.5 13.1

22 0.0 0.0 11.0 17.8 50 39.9 11.0 14.3 42.4 78 0.0 0.0 14.2 38.7

23 0.0 0.0 9.3 13.0 51 25.1 8.6 11.2 18.9 79 0.0 0.0 13.0 26.4

24 17.3 5.7 9.5 13.3 52 0.0 0.0 9.6 63.1 80 25.2 9.4 13.4 31.1

25 0.0 0.0 0.0 7.1 53 35.4 1.6 10.1 14.5 81 0.0 0.0 9.8 64.6

26 62.4 16.9 14.1 44.8 54 0.0 0.0 0.0 7.2 82 0.0 0.0 0.7 10.1

27 72.1 25.7 12.9 26.3 55 22.6 10.6 9.3 12.7 83 0.0 0.0 11.4 18.4

28 0.0 0.0 12.9 26.2 56 0.0 0.0 0.0 7.1 84 16.1 1.0 9.4 13.2
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Figure 4. Comparison of the reference slope if,r , reference concentration cr and CVc trends. The events have been sorted with decreasing

slopes.

– regardless of the input parameters variability, the concentration is always equal to 0.9cb. In this case also the variation210

coefficient of the concentration is equal to zero (e.g. events 1, 13 and 25) and the variation of E is only due to the

propagation of the basin area and deposited volume uncertainties (Eq. (4)), namely CVE ' 7.1%. For these 14 events,

such a low variation in E implies the constant computation of the same (I,D) couple;

– despite CVc is not zero and the CVE is greater than 7.1% (e.g. event 28), the condition of Eq. (7) is satisfied, in all the

100 simulations, with the same time instants of the hyetograph. 34 events fall into this condition.215

The events that belong to the second category are characterised by I and D distributions relatively low spread around their

mean values. For each of these 19 events, the uncertainty of the inputs implies the computation of more (I,D) couples which,

however, are relatively close to the mean value.

The third category includes 17 events for which the input parameters uncertainties propagation results in high relative uncer-

tainty in the (I,D) couples computations. In general, these events are related to a hyetograph characterised by an intensity peak220

and low values around it. This sharp decrease in intensity implies that small variations in E require large variations in the time

intervals in order to satisfy Eq. (7). Event 58 is the extreme case of this condition: the duration distribution of this event has an

extreme much greater than the mean value (Fig. 5). This is due to the presence of zero intensity temporal instants in the middle

of the precipitation event that must be considered to reach the higher values of E. For this reason, for some combinations of

the input parameters, D is much greater than the mean value and these extremes entail an increase in the standard deviation,225

namely in the CVD. The effects of this condition on I are fewer thanks to the mean computation carried out to obtain this
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Table 3. Mean, standard deviation, variation coefficient CV and mean 95% confidence interval CI of the parameter a and b computed

performing the Monte Carlo simulations.

Parameter Mean Standard deviation CV (%) 95% mean confidence interval

a 6.0056 0.3882 6.46 0.0108

b 0.6834 0.0199 2.91 0.0006

output.
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Figure 5. Hyetograph of event 58. In term of D, the extreme value (3.75 h) is much greater than the mean (0.32 h).

As regards the absolute uncertainty associated with the (I,D) couples estimation, the results are shown in Fig. 6: the

horizontal and vertical lines represent respectively the 95% uncertainty intervals related to D and I . As evident, the length of230

the intervals varies greatly depending on the event. In term of intensity, the maximum length is 61.3 mm h−1 and is reached

with the event 67 while, for the duration, the event 38 is characterised by the maximum length that is equal to 3.51 h.

4.2 Uncertainty in threshold computation

The main statistical quantities concerning the output a and b parameters distributions are given in Table 3. In particular, the

variation coefficients are respectively 6.46% and 2.91%. These low values highlight that the relative uncertainties associate to235

a and b are very small. The low spread nature of the thresholds parameters is also evident in the scatter plot and in the bivariate

3D histogram, respectively shown in Fig. 7(a) and 7(b).

Moreover, the lower and upper bounds of the threshold uncertainty, evaluated as explained in Sect. 3.2, are shown in Fig. 8.

The uncertainty area is substantially symmetric to the threshold computed with the mean values of the distributions of a and b
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Figure 6. Plot of the uncertainty in the (I,D) evaluation obtained with the Monte Carlo simulations. The dots are the mean values and the

horizontal and vertical lines are respectively the duration and intensity absolute uncertainties (i.e. the 2.5 and 97.5 percentiles). To make the

graph clearer, the points with uncertainty intervals equal to zero have not been represented and the linear scale is used for both axis.
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Figure 7. Values a and b of Eq. (11) obtained performing 5000 MC simulations: (a) scatter-plot and 2D histogram and (b) bivariate 3D

histogram
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(Table 3). The bandwidth decreases monotonically by increasing the duration and varies between 5.61 mm h−1 and 0.64 mm240

h−1. This means that the highest absolute uncertainties are related to shorter durations.
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Figure 8. (a) Log-log and (b) semi-log plot of the threshold absolute uncertainty. The blue line is the rainfall threshold obtained using the

mean value of a and b (Table 3). The shaded area represents the threshold uncertainty whose upper and lower bounds have been computed

considering the 2.5 and 97.5 percentiles of the intensity distributions for fixed durations.

4.3 MC means and reference values

As regards the events rainfall condition, the biases between the reference values and the MC output distributions means (Eq.

(13)) are shown in Fig. 9.BD deviates between 0.8 and 1.5 (Fig. 9(a)) whileBI between 0.86 and 1.15 (Fig. 9(b)). Consistently245

with the analysis of the CV described in Sect. 4.1, most events (48) are characterised by BD =BI = 1. Moreover, most of the

remaining events have BD > 1 and BI < 1: the MC (I,D) mean couples tend to be located lower and more to the right than

the reference ones. This condition highlights an underestimation of some mean rainfall conditions with respect to the reference

ones.

As regards the threshold, the differences between the mean, lower and upper bounds MC intensities and the reference250

threshold ones (Eq. (14)) as a function of D are shown in Fig. 10(a). For almost all durations, the threshold obtained with the

MC mean values of a and b is slightly lower than the reference one: a positive difference occurs only for the first time interval.

Consistently with the obtained a and b mean values (Table 3) and the BD and BI trends, in the log-log ID plane the mean

threshold is respectively slightly more downward translated and clockwise rotated than the reference one. Instead, the upper

and lower bounds are respectively always higher and lower than the reference threshold. This means that the latter is contained255

in the MC threshold uncertainty area. This behaviour is also evident in Figure 10(b) where the percentage changes (Eq. (15))
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Figure 9. Bias of (a) duration BD and (b) intensity BI between the mean values of the variable distributions obtained performing the MC

simulations and the reference values for each event.

are plotted: the mean threshold deviates between 0.14% and −5.44%, the upper bound between 8.06% and 12.31% and the

lower bound between −8.34% and −22.94% from the reference one.
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Figure 10. (a) Difference between the MC intensities (upper bound, lower bound and values obtained with the mean values of a and b) and

the reference threshold ones as a function of the duration; (b) percentage change of the MC intensities respect the reference threshold ones,

as a function of the duration.
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5 Discussion and conclusions

This study aimed to figure out the effect of the uncertainty of some parameters on the computation of BDA outputs and on the260

subsequent threshold calibration.

In summary, the results obtained for the BDA outputs analysis has highlighted that the uncertainty of the inputs may result in a

both low and high variation of the outputs distributions depending on the event characteristics and on the variable considered.

The main uncertainties are related to the computation of D, as evident from Table 2 and Fig. 6, and are mainly due to the

piecewise constant nature and shape of the hyetograph. Indeed, given the discrete nature of i(t), in some cases, even a small265

change in E may result in a relatively large variation of D (e.g. event 38), namely in the number of temporal instants necessary

to achieve the needed rainfall volume. This is especially true if the hyetograph is characterized by time intervals with zero

intensity within the event. However, although some events are characterised by a high uncertainty in the estimation of the

(I,D) couple, the threshold computation is not affected by high variability. Both the threshold parameters have low variation

coefficient (Table 3), are low spread within the ab plane (Fig. 7) and the upper and lower bounds of the uncertainty area are270

close to the mean threshold (Fig. 8). This low uncertainty is mainly due to zero variability of 48 events outputs: since the (I,D)

points of these events are located in the same positions in all the 5000 MC simulations, they propagate zero uncertainty in the

threshold computation.

Moreover, the deviation between the MC results and the reference values has been analysed both in term of (I,D) couple

estimation and threshold computation. As evident from Fig.9, most events are characterised by BD and BI equal or close to 1.275

However, the duration bias of some events is high. Despite this, the reference threshold is very close to the threshold computed

with the MC mean value of a and b and is contained in the uncertainty area (Fig.10). This means that if the uncertainty analysis

has been done during the calibration of the threshold and the mean threshold had been accepted, there would have been no

large variations.

As evident, the most critical part of the study is the computation of the (I,D) couples. High variability of some I and D280

output distributions points out the presence of possible critical issues in the estimation of the rainfall conditions associated

with the event, as also highlight in Rosatti et al. (2019). The critical issues may be due to three main conditions. Firstly, some

combinations of the input parameters, obtained with the LHS method, may be not representative of the analysed event. This

condition leads to inconsistent estimates of the rainfall volume and, consequently, of D and I . Secondly, the analysed debris

flow may have had a different dynamic than the simplified one on which the BDA is based. For instance, the hypothesized285

equilibrium condition may have not been reached by some events due to particular conditions, such as lack of sediments,

the presence of non-erodible zones or initiation of a debris flow caused by slope failure. This leads to an overestimation or

underestimation of the concentration and, therefore, to a not reliable rainfall condition estimation. Finally, according to Marra

et al. (2014), the radar data may be affected by some sources of error. During the calibration phase, to avoid the source of

error related to the beam shielding, typical phenomenon for mountain regions (Germann et al., 2006), the events have been290

filtered out based on the radar signal power. Events with radar signal weakened more than 90% have been excluded (Rosatti

et al., 2019). However, other sources of error, such as signal attenuation in heavy rain or wet radome attenuation, have not been
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considered in the current study. If present, these errors propagate in the computation of V DF
r (Eq. (7)) implying an over or

underestimation of the available rainfall volume. This results in a wrong estimate of the event (I,D) couple. Further analysis

will assess how these three conditions affect the (I,D) couple estimation and, consequently, the threshold calibration.295

However, the BDA method seems to be robust enough to provide a reliable rainfall threshold: the input parameters uncer-

tainties result in a low variation of the threshold estimation. Further analysis will also assess the robustness and the reliability

of the threshold to forecast the possible occurrence of debris flow.
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