
Uncertainty analysis of a rainfall threshold estimate for stony debris
flow based on the Backward Dynamical Approach
Marta Martinengo1, Daniel Zugliani1, and Giorgio Rosatti1

1Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy

Abstract. A rainfall threshold is a function of some rainfall quantities that provides the conditions beyond which the probability

of debris-flow occurrence is considered significant. Many uncertainties may affect the thresholds calibration and, consequently,

its robustness. This study aims to assess the uncertainty in the estimate of a rainfall threshold for stony debris flow based on the

Back Dynamical Approach, an innovative method to compute the rainfall duration and averaged intensity strictly related to a

measured debris flow. The uncertainty analysis is computed by performing two Monte Carlo cascade simulations: (i) to assess5

the variability in the event characteristics estimate due to the uncertainty in the Back Dynamical Approach parameters and data

and (ii) to quantify the impact of this variability on the threshold calibration. The application of this procedure to a case study

highlights that the variability in the event characteristics can be both low and high. Instead, the threshold coefficients have

a low dispersion showing good robustness of the threshold estimate. Moreover, the results suggest that some event features

are correlated with the variability of the rainfall event duration and intensity. The proposed method is suitable to analyse the10

uncertainty of other threshold calibration approaches.

1 Introduction

In mountain regions, rainfall-induced natural phenomena, as shallow landslides and debris flows, are relatively frequent events

that have a significant impact on the territory in which they occur, causing damages and, in some cases, casualties (Fuchs et al.,

2013; Dowling and Santi, 2014; Cánovas et al., 2016). The risk management of these phenomena is crucial to reduce their15

effects on the territory and it is based on both active and passive mitigation strategies. An early warning system is an example

of a passive mitigation tool (Huebl and Fiebiger, 2005) as it allows to activate prevention measures (e.g. evacuation sets out in

the civil protection plans) before the expected event occurs.

The early warning systems for these phenomena are mainly based on rainfall thresholds (Chien-Yuan et al., 2005; Segoni

et al., 2018), namely rainfall conditions beyond which the occurrence probability of a rainfall-induced event is considered20

significant. In this framework, most rainfall thresholds are power-law relations expressing the rainfall event cumulated or

intensity as a function of the event duration (Segoni et al., 2018). A considerable literature deals with this topic (e.g. Caine,

1980; Guzzetti et al., 2008; Winter et al., 2010; Jakob et al., 2012; Staley et al., 2013; Marra et al., 2014; Zhou and Tang, 2014;

Iadanza et al., 2016; Marra et al., 2016; Pan et al., 2018).

In some studies rainfall thresholds concern a wide typology of phenomena (Segoni et al., 2018), other works focus on25

both shallow landslides and debris flows (e.g. Baum and Godt, 2010; Cepeda et al., 2010), other on shallow landslides (e.g.
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Giannecchini, 2005; Frattini et al., 2009) and, finally, some studies are specifically conceived for debris flow (e.g. Nikolopoulos

et al., 2014; Giannecchini et al., 2016; Li et al., 2016).

Power-law thresholds can be derived in the following way. Given a historical dataset of rainfall-induced events, the rainfall

associated with each event is determined and described in terms of the couple of synthetic quantities employed in the threshold30

(e.g. rainfall event cumulated - event duration). Classically, these quantities are defined only on the basis of a hyetograph

analysis (Segoni et al., 2018), without considering the characteristics of the rainfall-induced phenomenon. In a log-log plane,

the resulting set of couples becomes a cloud of points and the power-law function is a straight line. Starting from these couples

set, the threshold is determined by locating the straight line in the log-log plane using one of the several estimate strategies

available in the literature, e.g. manual methods, statistical approaches, probabilistic procedures (Guzzetti et al., 2007; Segoni35

et al., 2018). The result is the calibrated rainfall threshold.

One of the critical issues of the calibration is the uncertainty related to both data and models parameters (Gariano et al.,

2020). Here with the term “model”, we indicate generically a single equation or a set of operations that, given some input data

and model parameters, provide an output. In the case of the rainfall threshold, the uncertainties derive mainly from direct data

error measurements (e.g. in rainfall), from the non-unique definition of the models parameters (e.g. distance within which to40

select the rain gauge to define the event precipitation) and from the strategy used to calibrate the threshold. The result is an

uncertainty framework that can significantly impact the threshold estimate.

Some studies have already investigated the uncertainty in threshold determination, focusing on some aspects that can affect

the hyetograph or the event synthetic quantities used in the threshold. For instance, Nikolopoulos et al. (2014) has analysed the

consequences of the spatial variability of the precipitation while Marra (2019) and Gariano et al. (2020) have investigated the45

effects of the rainfall temporal resolution. Moreover, the uncertainty arising from the choice of the reference rain gauge and the

differences between the radar and the rain gauge measurements have been examined in Rossi et al. (2017). Besides, the effect

of the uncertainty in triggering rainfall estimate has been investigated in Peres et al. (2018) while Abraham et al. (2020) has

analysed the consequences of the scale of analysis, the rain gauge selection and how the intensity is quantified.

Rosatti et al. (2019) has introduced an innovative method to calibrate an intensity-duration rainfall threshold for stony debris50

flow, a particular type of debris flow, frequent in some mountain areas as in the Alps, in which the presence of silt and/or clay in

the mixture is negligible and the internal stresses are mainly caused by the collision among the particles (e.g. Takahashi, 2009;

Stancanelli et al., 2015; Bernard et al., 2019). The new method, called Backward Dynamical Approach (BDA), starts from the

knowledge of the volume of sediments deposited after an event and, thanks to a schematic description of the stony debris-flow

dynamic, it is able to identify, in the related hyetograph, the rainfall event volume, intensity and duration strictly pertaining to55

the debris-flow event. Hence, the BDA differs from the classical literature approaches since the synthetic quantities describing

the rainfall events are defined involving not only the forcing (i.e. the hyetograph) but also the dynamic of the rainfall-induced

event.

This work focuses on the uncertainty deriving from data and parameters inherent to the BDA, leaving out the uncertainty

related to the hyetograph, already investigated in the literature. In particular, the aim is to perform an uncertainty analysis on60

the threshold calibration to check the robustness of the BDA. To reach this goal, among the different strategies and methods
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available in the literature (e.g. Helton et al., 2006; Coleman and Steele, 2018; Hofer, 2018), we have chosen the Monte Carlo

(MC) approach. With this tool, we have developed a proper methodology composed of two MC cascade simulations and we

have applied it to a dataset concerning a specific study area. Detailed analysis of intermediate and final results have also been

performed to better understand the uncertainty analysis outcomes.65

The paper structure is the following. A brief description of the BDA method is presented in Sect. 2. The study area and

data are described in Sect. 3. The method used to assess the uncertainty propagation in the BDA-based threshold calibration is

described in Sect. 4. The obtained results are presented and discussed in Sect. 5. Conclusions end the paper.

2 The BDA-based threshold calibration

As mentioned in the Introduction, the BDA determines the rainfall event intensity and duration, namely the couple (I,D),70

associated with a stony debris flow, by using not only the hyetograph but also information concerning the occurred debris flow.

The BDA starts from the knowledge of the deposited volume Vdep occupied by the sediments after a debris-flow event.

Thanks to a simplified global volumetric description of the debris-flow dynamic (Fig.1), the rainfall volume pertaining to the

debris flow V DF
r , defined as the volume of water necessary to convey downstream Vdep as a mixture, can be express as:

V DF
r =

cb− c
c

Vdep (1)75

where cb is the concentration of the sediment in the bed, constant and assumed equal to 0.65 (Takahashi, 2014), and c is a

reference volumetric solid concentration of the given debris flow.

The expression of Takahashi (1978) is valid in permanent and uniform conditions and it can be used as reference concentra-

tion:

c= min

(
if

∆(tanψ− if )
, 0.9cb

)
(2)80

where if is the bed slope, ψ is the dynamic friction angle of the sediments and ∆ = (ρs− ρl)/ρl is the sediment relative

submerged density, where ρl and ρs are, respectively, the liquid and solid constant density. ∆ is constant and assumed equal

to 1.65 (e.g. Prancevic and Lamb, 2015). According to the assumptions of the BDA, the reference concentration is evaluated

considering the bed slope in the last portion of the debris-flow channel, just upstream of the deposition area. This means that

the information concerning the triggering conditions and the detailed evolution of the debris flow in the upper part of the basin85

are not considered.

The rainfall volume pertaining to the debris flow can also be expressed as the product of the rainfall volume per unit area E

and the event basin area Ab:

V DF
r = EAb (3)

from which, a backward dynamical expression for the rainfall volume per unit area can be obtained by equating (1) with (3):90

E =
1

Ab

cb− c
c

Vdep (4)
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Figure 1. Conceptual Lagrangian volumetric description of debris-flow dynamic from Rosatti et al. (2019). The scheme is divided into three

transepts: transept 1 is characterised by the run-off formation; the bed material erosion and the achievement of equilibrium conditions occur in

transept 2; transept 3 is characterised by the deposition of sediments with water entrapment. V DF
r is the rain volume pertaining to the debris

flow, Vero is the bed volume variation related to the erosion, Vdep is the deposited volume occupied by the sediments and θ = arctan(if ) is

the inclination angle of the bed with respect to a reference horizontal direction.

On the other hand, E can be obtained from the forcing of the phenomenon, namely the hyetograph. Under the assumption

of uniform rainfall over the basin, the hydrological expression for E is:

E =

t2∫
t1

i(t)dt (5)

where i(t) is the measured rainfall intensity and t1 and t2 are the unknown start and end times related to the debris-flow95

duration. In the absence of detailed data of the event, these times are expressed as:t1 = tmax−∆t1

t2 = tmax + ∆t2

(6)

where tmax is the instant of maximum intensity during the event and ∆t1 and ∆t2 are unknown intervals. These intervals can

be obtained equating the right hand side terms of Eq. (5) and (4):

tmax+∆t2∫
tmax−∆t1

i(t)dt=
1

Ab

cb− c
c

Vdep (7)100

Because of the measurement technique, i(t) is a piecewise constant function on time intervals δt, namely i(k). Consequently,

the reference times becomes: t= kδt, tmax =Mδt, ∆t1 = n1δt and ∆t2 = n2δt where M is the number of time intervals that

identifies the peak and now n1 and n2 are unknown integers. In addition, the integral in Eq. (7) must be rewritten in discrete

form (namely a summation) and the previous equation cannot be satisfied exactly.
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An approximation algorithm, able to determine in a univocal way the unknowns, can be introduced: starting from zero and105

increasing of one unit alternatively n1 and n2, the first couple n̂1, n̂2, for which the condition

M+n̂2∑
k=M−n̂1

i(k)δt≥ 1

Ab

cb− c
c

Vdep (8)

is satisfied, is the searched couple. If a zero-intensity interval is reached, the sum stops being symmetrical with respect to M

and only either n1 or n2 is increased until the previous relation is satisfied.

Finally, the duration D and the average intensity I can be expressed as:110

D = ∆t1 + ∆t2 = (n̂1 + n̂2)δt (9)

I =

∑M+n̂2

k=M−n̂1
i(k)δt

D
(10)

Once the (I,D) couple is computed for each event of the available dataset, the rainfall threshold is estimated by using the

frequentist method (e.g. Brunetti et al., 2010; Peruccacci et al., 2012). According to this method, the (I,D) couples are plotted115

in a log-log ID plane and a straight line fitting these points is determined. The slope and the intercept of this straight line are

the logarithms of the coefficient of the following power law:

I = âD−b (11)

The rainfall threshold is then obtained translating vertically the straight line in the log-log ID plane so that the non-exceedance

probability of the dataset events (namely the occurrence probability of debris flows related to (I,D) points located below the120

threshold) is equal to a given value. The final expression is:

I = aD−b (12)

in which a < â.

For more details on the BDA and the frequentist method, we refer the reader to the above-mentioned references.

125

3 Study area and data

The study area and data used in this analysis are the same as those used in Rosatti et al. (2019). In particular, the study area is

the Trentino-Alto Adige/Südtirol region, in the north east of the Italian Alps (Fig. 2(a)). The region covers 13607 km2, has an

altitude range between 40 and 3900 m a.s.l. with mean about 1600 m a.s.l. (Fig. 2(b)) and a climate characterised mostly by a

continental regime (Bisci et al., 2004; Nikolopoulos et al., 2014).130
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Figure 2. (a) Location of Trentino-Alto Adige/Südtirol region (Italy) and (b) the Macaion radar and debris-flow events: red dots show all

debris flows while yellow circles highlight the suitable ones for the study.

The regional agencies between 2006 and 2016 have reported 161 debris flows (Fig. 2(b)) but only 139 events present the

survey of the deposits, whose volumes range between 100 m3 and 50000 m3. In every event, sediments are characterised by

the absence or, at least, the negligible presence of silt and clay thus resulting in stony debris flows.

The rainfall data related to these events derives from a radar located in a central position with respect to the region, on

the Mt. Macaion at 1866 m a.s.l. (Fig. 2(b)). A C-band Doppler weather radar measures the reflectivity Z over an area of135

120 km of radius and the rainfall is computed converting Z into precipitation intensity I (e.g. Uijlenhoet, 2001). Since radar

data in mountain regions are typically affected by the beam shielding (Germann et al., 2006), which can cause errors in the

measurements, the debris-flow events located in an area with a weakening of the signal greater than 90% have been excluded

from the dataset. Overall, the debris flows suitable for the analysis were 84 and are highlighted in Fig. 2(b) with circles.

Additional data required for the BDA, namely if , Ab, ψ and i(t), was defined for each event in the following way. The basin140

outlet was located downstream of a segment with a sufficiently constant slope just upstream of the deposition area and the

upstream basin area was determined. Then, if was calculated as the mean slope of the last 50 m of the torrent upstream of the

outlet point. Besides, due to the scarcity of sediments information, ψ was assumed to be equal to 35◦ for all the events. The

hyetograph i(t) was computed at each instant averaging over the respective basin area the radar intensities. In this way, both

the spatial and temporal variability of the rainfall were taken into account.145

Starting from this data and setting the non-exceedance probability equal to 5%, Rosatti et al. (2019) obtained the following

threshold:

I = 6.2D−0.67 (13)
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From now on, the quantities involved in the calibration performed by Rosatti et al. (2019) will be considered as reference

values and they will be indicated with a subscript r.150

4 Method

As described in Sect. 2, the BDA-based threshold calibration starts from the definition of the following input parameters

and data for each considered event: if , Ab, Vdep, ψ and i(t). Subsequently, based on these values, what we call the “event

characteristics” are computed for each analysed debris flow: first c (Eq. (2)) and E (Eq. (4)), and then D (Eq. (9)) and I (Eq.

(10)). Finally, the (I,D) couples of the events are used to calibrate the threshold, namely to quantify the threshold coefficients155

a and b of Eq. (12).

Coherently to the estimate procedure, the uncertainty analysis of the BDA-based threshold calibration is divided into three

parts (Fig. 3). First, the uncertainty characterisation of the input parameters and data is determined (Fig. 3(a)). Then, for each

debris flow, the uncertainty analysis of the event characteristics is performed with an MC simulation, starting from the above-

defined uncertain quantities (Fig. 3(b)). Finally, a further MC simulation is carried out to perform the uncertainty analysis of160

the threshold, using as input the (I,D) couples of the events obtained from the first MC simulation (Fig. 3(c)). In this way, the

impact of the uncertain parameters and data on the threshold is quantified. All the analyses are performed using the R software

(R Core Team, 2013).

Regarding the uncertainty characterisation, as explained in the Introduction, the focus of this study is on the uncertainty in

the physical and morphological parameters and data used in the BDA to describe ,in a simplified way, the debris-flow dynamic.165

Therefore, in this analysis, the variables considered are if , Ab, Vdep and ψ. According to their estimate, described in Sect. 3,

these variables are mainly affected by epistemic uncertainty due to measurement and estimate errors and lack of information

(Oberkampf et al., 2004). The characterization of the uncertainty in the variable, namely the probability distribution function

(pdf) of their values, has to be defined both in term of distribution type and statistical quantities (e.g. mean and variation

coefficient CV ) (Fig. 3(a)). Lacking certain data concerning the pdfs, according to Marino et al. (2008), all the variables are170

assumed to be uniformly distributed and, for each event, the means of the distributions are set equal to the corresponding

reference values. Regarding the deviations from the means, ψ is the only variable whose variability is constrained by a validity

range: for stony debris flow, according to Lane (1953) and Blijenberg (1995), ψ can vary between 32◦ and 38◦. Assuming 35◦

as the mean of the ψ distribution, the variability range (32◦, 38◦) can be obtained by imposing CV equals to about 5%. The

uncertainty in Vdep can not be accurately estimated since the survey methodology, and the related measurement errors, used175

by regional agencies, is not univocal (Marchi et al., 2019). However, Brardinoni et al. (2012) has proposed, for a similar study

area, a relative error of 10% in the estimate of Vdep, namely a corresponding CV equals to about 5%. Therefore, we assume

that this uncertainty value is valid for this analysis. Moreover, the uncertainty in if and Ab is hardly quantifiable given their

computation method. For these reasons and homogeneity, the degree of uncertainty of ψ and Vdep is considered suitable also

for if and Ab. The resulting uncertainty characterization is summarized in Table 1.180
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Uncertainty 
characterization

(a)

Uncertainty analysis of the rainfall conditions 
(b.2) Propagation of samples

(b)
(b.1) Generation of samples

Uncertainty analysis of the threshold

(c.2) Propagation of samples

(c)

(c.1) Generation of samples

Figure 3. Scheme of the uncertainty analysis performed with two cascade MC simulations. (a) Uncertainty characterization of the parameters

and data: the non-dimensional form of the uncertain parameters and data, obtained by dividing the variables by the reference values, are

assumed to be uniformly distributed. (b) First MC simulation to compute the uncertainty analysis of the event characteristics for each debris

flow: (b.1) samples generation performing the Latin Hypercube Sampling (LHS) and (b.2) propagation of samples to compute the event

characteristics. The dots size in the log-log ID plane indicates the absolute frequency of obtaining the (I,D) couples. (c) Second MC

simulation to perform the uncertainty analysis of the threshold: (c.1) random samples S generation (one of the previous obtained (I,D)

couples for each event) and (c.2) propagation of samples to estimate the thresholds T .
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Table 1. Probability distributions of the uncertain variables for each event. if,r , Ab,r and Vdep,r are the event reference values of the average

slope, the basin area and the deposited sediments respectively.

Variable Probability distribution function

if Uniform(if,r (1− 5%
√
3), if,r (1+ 5%

√
3))

Ab Uniform(Ab,r (1− 5%
√
3), Ab,r (1+ 5%

√
3))

Vdep Uniform(Vdep,r (1− 5%
√
3), Vdep,r (1+ 5%

√
3))

ψ Uniform(32◦, 38◦) ∼ Uniform(35◦ (1− 5%
√
3), 35◦ (1+ 5%

√
3))

The procedure used to assess the propagation of the uncertainty in if , Ab, Vdep and ψ on the event characteristics (i.e. D, I ,

c and E), related to each debris flow, is schematized in Fig. 3(b) and it is composed of two main steps. First, the input samples,

namely the ordered sets of variable values in the form (if , Ab, Vdep, ψ), must be obtained. These samples are generated

by using the Latin Hypercube Sampling (LHS) (Fig. 3(b.1)), introduced by McKay et al. (2000). This method produces N

samples starting with a division of each variable uncertainty range into N disjoint intervals of equal probability. Then, one185

value is randomly selected within every interval, thus obtaining N values for each variable. These values are then arranged in

the LHS matrix, composed of N rows and k columns, where k is the number of the variables (four, in the specific case). In

each column, the N values relevant to a single variable are inserted in random order (Helton et al., 2006). Each row of this

matrix gives one of the N variable samples. According to Marino et al. (2008), to ensure accuracy, the sample size N should

be at least greater than k. In this study, N is set to 100 and the (100× 4) LHS matrix is generated for each event, based on the190

previously established pdfs.

Second, the event characteristics are obtained starting from each input sample, resulting in 100 (I,D) couples (Fig. 3(b.2)),

together with the related c andE values, for each event. Therefore, the overall total of (I,D) couples obtained is 100·84 = 8400,

where 84 is the number of considered debris flows.

The uncertainties propagation in the threshold estimate is then quantified with a further MC procedure. In this case, a195

sample is generated selecting randomly one of the possible 100 (I,D) couples for each event, resulting from the previous MC

simulation (Fig. 3(c.1)). Hence, one sample consists of 84 (I,D) couples. Following this procedure, 5000 samples are created

and used to estimate as many thresholds (Fig. 3(c.2)), namely 5000 (a,b) couples.

5 Results and discussion

5.1 Variability of the event characteristics200

As described in Sect. 4, the outputs of the first MC simulation applied to the dataset are 100 possible event characteristics (i.e.

D, I , c and E) for each debris flow. The relative variability of all these outputs is quantified through the computation of the

CV of each event characteristics distribution. This allows providing a complete inspection and interpretation of all outputs.

Then, the absolute variability is quantified through the computation of the variability range given by the difference between the
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minimum and the maximum values of the variable and it is evaluated only for the D and I distributions. This analysis allows205

highlighting the variability of the (I,D) couples in the ID plane for each event.

The CV , by definition, is a standardized measure of dispersion (Håkanson, 2000) and allows comparing the relative vari-

ability of the results independently of their measurement units (Abdi, 2010) and of their means. For this reason, the CV is

chosen as the statistical quantity for comparing the relative variability between both the same characteristic of different events

and different characteristics of the same event. The CV s of the distributions of D, I , E and c for each event are shown in Table210

2. In the following, the trends and the differences in the CV s are highlighted and justified on the basis of some event aspects:

– the D distributions have the largest and most variable CV s with respect to all the other event characteristics: CVD vary

between 0% and 157.5%. The reason for this behaviour will be clarified further on;

– the distributions of I are characterised by a lower spread with respect to the D distributions, being all the CVI values

within 0% and 30.0%. The reason for this behaviour is connected to the fact that I , by definition, is an average and215

therefore the effects of the variables uncertainty are smoothed by the averaging. Also the reason why CVI can be zero

will be explained further on;

– also the concentration distributions show a low spread. As c is characterised by an upper bound (i.e. 0.9cb), the CVc

is strictly related to the proximity of cr to this maximum value and consequently, according to Eq. (2), to the value of

if,r. As shown in Fig. 4, until the if,r is less than about 0.3, the CVc tends to go up by increasing the if,r since cr is220

sufficiently smaller than 0.9cb. Instead, if the if,r is between about 0.3 and 0.4, the CVc tends to decrease by increasing

the if,r as c reaches the maximum and it is equal to 0.9cb for an increasing number of if samples. Finally, the CVc

becomes 0% if the if,r is greater than about 0.4 as c is always equal to 0.9cb independently from the values of the if

samples. However, even in the worst conditions in terms of variability, CVc is small and reaches a maximum value of

14.3%;225

– the distributions of the volumes per unit area have CVEs that vary between 7.1% and 64.6%. It is worth noting that high

uncertainty in the estimation of E does not necessarily imply large CVD and/or CVI (e.g. event 12) and vice versa (e.g.

event 38). This suggests that the relative variability in I and D does not depend only on the relative variability in the

needed rainfall volume per unit area but also on how the available rainfall volume is distributed into the hyetograph time

intervals.230

To better understand the variability of D and I , we classify the events into three categories based on the CVD values:

1. events with zero variability: CVD = 0%;

2. events with low variability: 0%<CVD ≤ 30%;

3. events with high variability: CVD > 30%.
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Table 2. Coefficients of variation of the event characteristics related to each debris flow expressed as a percentage. CVD is the coefficient of

variation of the duration distribution, CVI of the intensity distribution, CVc of the concentration distribution and CVE of the rainfall volume

per unit area distribution.

Event CVD CVI CVc CVE Event CVD CVI CVc CVE Event CVD CVI CVc CVE

1 0.0 0.0 0.0 7.1 29 0.0 0.0 12.6 26.6 57 0.0 0.0 10.6 15.6

2 34.6 5.5 11.6 18.3 30 0.0 0.0 12.5 26.9 58 157.5 14.9 14.1 35.4

3 34.2 7.9 13.3 30.7 31 0.0 0.0 0.0 7.1 59 0.0 0.0 10.6 15.9

4 23.0 6.2 11.1 17.8 32 0.0 0.0 11.3 18.4 60 0.0 0.0 0.4 8.8

5 7.1 1.5 9.1 12.6 33 13.8 4.1 11.2 17.2 61 16.1 4.4 9.5 13.4

6 0.0 0.0 0.0 7.1 34 30.9 9.7 13.1 28.1 62 0.0 0.0 11.1 18.1

7 39.6 13.5 13.8 36.3 35 24.8 22.7 9.8 14.2 63 0.0 0.0 7.0 55.5

8 26.4 2.8 12.0 20.9 36 0.0 0.0 7.9 58.4 64 7.8 1.0 0.0 7.1

9 0.0 0.0 0.0 7.1 37 0.0 0.0 3.6 34.2 65 0.0 0.0 14.0 43.5

10 26.6 15.7 10.3 14.7 38 74.7 30.0 10.1 14.4 66 0.0 0.0 10.0 14.4

11 0.0 0.0 12.9 27.0 39 0.0 0.0 0.0 7.1 67 110.1 28.2 13.6 35.5

12 0.0 0.0 11.6 55.9 40 0.0 0.0 0.0 7.1 68 32.9 4.6 13.8 35.9

13 0.0 0.0 0.0 7.1 41 35.3 15.1 12.4 24.7 69 37.1 12.3 13.9 36.2

14 15.6 2.6 9.5 13.2 42 0.0 0.0 13.3 30.0 70 0.0 0.0 13.7 36.1

15 0.0 0.0 11.2 17.8 43 0.0 0.0 0.0 7.1 71 0.0 0.0 6.6 54.8

16 0.0 0.0 0.0 7.1 44 0.0 0.0 1.0 15.0 72 0.0 0.0 12.9 54.7

17 0.0 0.0 13.3 34.6 45 25.3 10.0 12.5 22.8 73 16.0 0.6 12.0 21.6

18 0.0 0.0 12.7 25.0 46 0.0 0.0 0.0 7.1 74 0.0 0.0 13.2 29.5

19 13.3 3.0 10.4 15.1 47 16.7 4.9 9.0 12.1 75 0.0 0.0 13.2 31.4

20 41.7 4.7 7.1 54.9 48 0.0 0.0 10.8 16.4 76 37.7 18.9 8.9 12.3

21 0.0 0.0 8.8 11.7 49 15.9 4.3 9.7 13.1 77 31.1 9.4 9.5 13.1

22 0.0 0.0 11.0 17.8 50 39.9 11.0 14.3 42.4 78 0.0 0.0 14.2 38.7

23 0.0 0.0 9.3 13.0 51 25.1 8.6 11.2 18.9 79 0.0 0.0 13.0 26.4

24 17.3 5.7 9.5 13.3 52 0.0 0.0 9.6 63.1 80 25.2 9.4 13.4 31.1

25 0.0 0.0 0.0 7.1 53 35.4 1.6 10.1 14.5 81 0.0 0.0 9.8 64.6

26 62.4 16.9 14.1 44.8 54 0.0 0.0 0.0 7.2 82 0.0 0.0 0.7 10.1

27 72.1 25.7 12.9 26.3 55 22.6 10.6 9.3 12.7 83 0.0 0.0 11.4 18.4

28 0.0 0.0 12.9 26.2 56 0.0 0.0 0.0 7.1 84 16.1 1.0 9.4 13.2
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Figure 4. Reference slope if,r , reference concentration cr and CVc of each event. The events have been sorted with increasing if,r .

The first category comprises 48 events for which the 100 MC simulations have provided always the same (I,D) couple. For235

these events, the propagation of the variables uncertainty does not affect the (I,D) couple estimation resulting in CVD =

CVI = 0%. This type of result is related to two conditions:

– regardless of the uncertainty of the variable, the concentration is always equal to 0.9cb. In this case, also CVc is equal to

zero (e.g. events 1, 13 and 25) and the variation in E is only due to the propagation of Ab and Vdep uncertainty (Eq. (4)),

namely CVE ' 7.1%. For these 14 events, such a small variation in E results in the constant computation of the same240

(I,D) couple;

– despite CVc is not zero and the CVE is greater than 7.1% (e.g. event 28), the condition of Eq. (8) is satisfied, in all the

100 simulations, considering always the same hyetograph time intervals. 34 events fall into this condition.

For the 19 events that belong to the second category, the uncertainty in the variables results in the computation of more (I,D)

couples that, however, are relatively close to the mean values: the I andD distributions are characterised by a standard deviation245

much smaller than the mean.

The third category includes 17 events for which the uncertainty in the variables implies high values of CVD. This means

that, for these events, the number of time intervals needed to satisfy the condition of Eq. (8) varies greatly with respect to the

mean one: the variables uncertainty has a relative great impact on the computation of D. Moreover, the highest values of CVD

highlight the presence of extremes in theD distribution, namely of values ofD very distant from the mean. Indeed, CV is very250

sensitive to the extremes (e.g. Chau et al., 2005; Arachchige et al., 2020), mainly if they are located in the right-hand tail of the

distribution (Bendel et al., 1989). For instance, the effect of the extremes on the CVD is evident in event 58: the D distribution

of this event has an extreme much greater than the mean (Fig. 5(a)). This is due to the presence of zero-intensity temporal

instants in the middle of the hyetograph that must be considered (for two out of a hundred samples) to reach the highest values

of E (Fig. 5(b)). This results in a high value of the standard deviation with respect to the mean, namely a high value of the255
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Figure 5. (a) Duration distribution histogram and (b) hyetograph of the event 58. The histogram shows the presence of an extreme isolated

from the mass of the distribution. This extreme (D = 3.75 h) is shown in the hyetograph and compared with the mean (D = 0.32 h).

CVD. It is worth noting that the effects of this condition on I are smaller thanks to the mean carried out to obtain this event

characteristic.

Regarding the absolute variability, the (I,D) couples variability ranges, in the ID plane, allow us to get an idea of how

variable an event as a whole is and to presume how this variability may affect the threshold estimate. Consistently with the

relative variability, the events with CVD = CVI = 0% have also zero-length absolute variability ranges. The non-zero ranges260

are shown in Fig. 6. As evident, the length of the ranges varies greatly depending on the event. In term of intensity, the

maximum length is 66.21 mm h−1 and it is reached with the event 67 while, for the duration, the event 38 is characterised by

the maximum length that is equal to 5.25 h. Besides, the length of the range forD is less than 1 h in all but 8 events while for I it

is less than 20 mm h−1 in all but 7 events. Moreover, in most cases, the mean is located neither vertically nor horizontally in the

middle of the variability ranges, namely the D and I distributions are asymmetrical. To quantify their asymmetry, the related265

skewness SKD and SKI are computed for each event and shown in Fig. 7. The events with zero variability are characterised by

SKD = 0 and SKI = 0. Moreover, in most cases, SKD is positive while SKI is negative: the longest tail of the distributions

of D and I tends to be located on the right and the left of the mean respectively. This suggests that, given an event, the majority

of the D values are characterized by duration shorter than the mean and the greatest contribution to the absolute variability is

given by the longest durations (i.e. by the D distribution right extremes) as in event 38. Consistently, comparing Fig. 7 and270

Table 2, the events with the highest positive SKD are the events with the highest CVD (e.g. events 58 and 67). Instead, given

an event, the concentration of the intensity values is greater towards the highest values and the smallest intensities (i.e. the I

distribution left extremes) mostly contribute to the absolute variability (e.g. event 20 and 73). However, as said before, the I
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Figure 6. Absolute variability in the (I,D) couples. The symbols are the mean values and the horizontal and vertical lines are respectively

the duration and intensity variability ranges. To make the graph clearer, the events with ranges equal to zero have not been represented and

the linear scale is used for both axis.

extremes have a slight impact on the absolute variability of I thanks to the mean procedure necessary for its computation that

reduces the interval ranges.275

5.2 Correlation between the D and I absolute variability and some event features

Despite the specificity of each considered event, it’s possible to identify some event features that are correlated with the D and

I absolute variability. It is worth noting that, in general, correlation does not imply causation (Wiedermann and Von Eye, 2016)

but it is a starting point to understand if causality between the variables can be established.

We define Eav as the rainfall volume per unit area available in the “main part of the hyetograph”, namely the integral of the280

rainfall intensity on the smallest time interval comprising the peak and included between two instants with null intensities. We

can then introduce the ratio Er/Eav . As shown in Fig. 8, the absolute variability of D and Er/Eav are positive correlated. A

small value of Er/Eav means that the main part of the hyetograph is amply able to provide Er (i.e. to satisfy the condition of

Eq. (8) in the reference conditions). This tends to avoid having to consider null intervals to achieve the values of E resulting

from the MC simulation, namely to avoid D extremes. The opposite situation occurs if the ratio takes high values.285

Regarding the intensity, we define Imax as the hyetograph maximum intensity and Imean as the mean intensity of the

main part of the hyetograph for each event. The ratio Imax/Imean provides a quantitative measure of the shape of the event

hyetograph or, equivalently, of how impulsive the event is. As shown in Fig. 9, a positive correlation subsists between the non-

zero absolute variability of I and Imax/Imean. If the shape of the hyetograph around the peak is flat, and the ratio Imax/Imean
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Figure 7. Skewness of the distributions of D and I for each event.

Table 3. Mean, standard deviation, variation coefficient CV and mean 95% confidence interval CI of the coefficients a and b of Eq. (12),

computed performing the second MC simulation.

Coefficient Mean Standard deviation CV (%) 95% mean confidence interval

a 6.0056 0.3882 6.46 0.0108

b 0.6834 0.0199 2.91 0.0006

is low, the variability of I , connected to the variability of D, is small since the average procedure, necessary to compute I ,290

involves similar intensities intervals. The opposite occurs when the event is impulsive and the ratio is high. This consideration

is valid only for events with non-zero absolute variability in I andD and tends to explain why some events with high variability

in D have small variability in I (e.g. event 26).

5.3 Variability of the threshold

The result of the second MC simulation is 5000 (a,b) couples. The main statistical quantities of their distributions are given295

in Table 3. The relative variability is quantified through the CV that is equal to 6.46% for a and 2.91% for b. The low spread

nature of a and b, highlighted by the small CV values, is also evident in the scatter plot and in the 3D histogram, respectively

shown in Fig. 10(a) and 10(b). In addition, to analyse the absolute variability of the I-D threshold relation, the intensity values

for each (a,b) couple are calculated for D values spanning from five minutes to six hours with a five minutes time step. In

this way, for each duration, we obtain an intensity distribution composed of 5000 samples. Then, the 2.5 and 97.5 percentiles300
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Figure 8. Positive correlation between the absolute variability of D and Er/Eav , where Eav is the rainfall volume per unit area available

in the main part of the hyetograph. Spearman correlation coefficient equals to 0.82 (p < 2.2× 10−16). To make the graph clearer, the events

with absolute variability of D equals to zero are represented with the same symbol.
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Figure 9. Positive correlation between the non-null absolute variability of I and Imax/Imean. Imax is the maximum intensity and Imean is

the mean intensity of the main part of the hyetograph. Spearman correlation coefficient equals to 0.48 (p= 0.0035).
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Figure 11. (a) Log-log and (b) semi-log plot of the threshold absolute variability. The blue line is the rainfall threshold obtained using the

mean value of a and b (Table 3). The shaded area represents the threshold absolute variability whose upper and lower bounds have been

computed considering the 2.5 and 97.5 percentiles of the intensity distributions for fixed durations.

of these distributions are chosen as upper and lower bounds of the threshold absolute variability. The result is shown in Fig.

11. According to the substantially symmetrical distributions of a and b (Fig. 10(a)), the threshold computed with the mean

values of a and b (Table 3) is essentially equidistant from the lower and upper bounds. The variability bandwidth decreases

monotonically by increasing the duration and varies between 5.61 mm h−1 and 0.64 mm h−1.
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Hence, both the relative and the absolute variability highlight that the effect of the uncertainty in the variables on the threshold305

estimate is small. This is mainly due to the zero variability in the D and I distributions of 48 events out of 84: since the (I,D)

points of these events are located in the same positions in all the 5000 MC simulations, they propagate zero uncertainty in the

threshold computation.

5.4 Reference values versus MC means

Finally, a comparison between the results of the first and second MC simulation and the reference values is carried out. In310

particular, we compare:

– the means of the D and I distributions (Fig. 6) to the corresponding reference ones, for each event;

– the mean threshold (i.e. threshold computed with the mean values of a and b) and the threshold absolute variability

bounds (Fig. 11) to the reference threshold (i.e. Eq. (13)).

As regards D and I , according to Marra (2019), the bias of the duration BD and the intensity BI are computed for each315

event as:

BD =
Dm

Dr
BI =

Im
Ir

(14)

where the subscripts m represent the mean of the MC D and I distributions. The result is shown in Fig. 12: BD deviates

between 0.8 and 1.5 (Fig. 12(a)) while BI between 0.86 and 1.15 (Fig. 12(b)). Consistently with the variability analysis

described in Sect. 5.1, most events (48) are characterised by BD =BI = 1. This means that for these zero-variability events,320

the reference duration and intensity are exactly the MC mean values of I andD, namely the only MC (I,D) couple. Moreover,

most of the remaining events have BD > 1 and BI < 1. This signifies that the MC (I,D) mean couples tend to be located

lower and more to the right than the reference ones in the log-log ID plane.

Regarding the threshold, the differences between the MC intensities IMC,k, where k stands for mean, upper bound and lower

bound, and the reference threshold ones It,r are carried out for the same durations used to define the absolute variability of the325

threshold:

Diff(k,D) = IMC,k (D)− It,r (D) , k = mean, upper bound, lower bound (15)

The result is shown in Fig. 13(a). For almost all durations, the intensities of the mean threshold are slightly lower than the

reference threshold ones: a positive difference occurs only for the first time interval. Consistently with the obtained a and b

mean values (Table 3) and the BD and BI trends, in the log-log ID plane the mean threshold is respectively slightly more330

downward translated and clockwise rotated than the reference one. Instead, the upper and lower bounds are respectively always

higher and lower than the reference threshold.

Subsequently, the percentage changes, defined as:

% change(k,D) =

(
Diff(k,D)

It,r (D)

)
· 100, k = mean, upper bound, lower bound (16)
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Figure 12. Bias of (a) duration BD and (b) intensity BI between the mean values of the D and I distributions obtained performing the first

MC simulation and the corresponding reference values for each event.
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Figure 13. (a) Difference between the MC intensities (upper bound, lower bound and mean) and the reference threshold ones as a function

of the duration; (b) percentage change of the MC intensities respect the reference threshold ones, as a function of the duration.

are computed to figure out how much the second MC outcomes deviate relatively from the reference threshold. The percentage335

changes are plotted in Figure 13(b): the mean threshold deviates between 0.14% and−5.44%, the upper bound between 8.06%

and 12.31% and the lower bound between −8.34% and −22.94% from the reference one.

It can therefore be generally stated that the outcomes of the uncertainty analyses, both (I,D) couples and threshold estimate,

are consistent with the reference ones. Coherently with the previous analysis, also in this comparison, the duration is the
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quantity with the highest bias values. However, the mean threshold and the reference one are very close, pointing out the small340

effects of the differences between Dm and Dr on the threshold computation.

5.5 Further elements of uncertainty

In the calibration of the BDA-based threshold and in the assumptions of the developed method used to assess the uncertainty,

it is possible to identify some elements that may introduce further uncertainty, beyond that considered in this analysis, in the

calculation of the event characteristics and, consequently, in the estimate of the threshold. Firstly, the variability ranges and345

the probability distributions of the parameters and data, namely the uncertainty characterisation of the variables, are uncertain.

Secondly, the equations of the BDA may be uncertain since they are based on some simplifications and hypothesis. Finally,

the radar data may be affected by uncertainty due to other sources of error, beyond the beam shielding one (considered in this

analysis), such as signal attenuation in heavy rain or wet radome attenuation (Marra et al., 2014). Nevertheless, at the present

state of the research, it is not possible to assess the impact of these uncertainties on the event characteristics estimate and further350

study is required.

6 Conclusions

This study has aimed to assess the effects of the uncertainty in the physical and morphological parameters and data on the

BDA-based threshold calibration to evaluate the method robustness. To that end, a suitable methodology composed of two MC

cascade simulations has been developed and applied to a specific study area and dataset. The first MC simulation has allowed355

examining the uncertainty propagation in the event characteristics estimate. The results have highlighted that most of the events

(i.e 48 events out of 84) are characterised by zero variability in the estimation of the (I,D) couples while the duration and the

intensity related to the remaining events are affected by variability, that can be low or high depending on the event. Overall,

the duration has found to be the most variable outcome in relative term while I , thanks to the average procedure, has a lower

relative variability. In absolute term, the variability of the (I,D) couples differs greatly between the events and the D and I360

distributions tend to be skewed to the right and left respectively. Moreover, considering the mean values of the events with

non-zero variability (36 events out of 84), the uncertainty in the variables tends to provide slightly longer durations and slightly

smaller intensities with respect to the reference ones. Notwithstanding, the second MC simulation has shown that the threshold

computation is affected by small variability. The low dispersion of the threshold coefficients is mainly due to the 48 events with

zero variability. As a result, the BDA method, applied to the considered dataset, can be described as robust since it provides365

a calibrated threshold low sensitive to the considered uncertainty in the parameters and data. This is also highlighted from the

consistency between the uncertainty analysis mean threshold and the reference one.

Overall, the results of this analysis can be useful to calibrate a BDA-based threshold for a different study area since the

investigation has highlighted the main elements that could undermine the BDA robustness. In particular, given a debris flow

and the related rainfall event, it was noted that some event features are correlated with the variability ofD and I . The percentage370

of the needed rainfall volume and the available one in the main part of the hyetograph is positive correlated with the absolute
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variability of D. Moreover, the shape of the main part of the hyetograph, described by the ratio between the maximum and

the mean intensity, is positive correlated with the non-null absolute variability of I . Therefore, given an event, these trends can

be used to presume the possible variability in the estimate of D and I , without carrying out a specific uncertainty analysis. In

other words, if an event is characterised by (i) low availability of rainfall volume in the main part of the hyetograph with respect375

to the needed one and (ii) a peak intensity much greater than the mean one, variations in the parameters and data is likely to

result in high variability in D and I estimate. The presence of many events of this type could undermine the BDA robustness.

Therefore, in these cases, it is advisable to put care in the estimate of the parameters and data.

Besides, given an event, further elements likely affecting the estimate of event characteristics have been highlighted in this

study: (i) the variability ranges and the probability distributions of the parameters and data, (ii) the equations constituting the380

BDA model and (iii) radar data. These elements can be affected by uncertainty and impact the event characteristics estimate.

The uncertainty analysis performed in this study does not provide quantitative information on these impacts. Further analysis

will assess how these three elements affect the (I,D) couple estimate and, consequently, the threshold calibration.

Moreover, the developed method, composed of two cascade MC simulations, can be applied to assess the uncertainty related

to other threshold calibration approaches whose event characteristics estimate is based not only on the hyetograph but also385

on other variables (e.g. the one proposed by Zhang et al. (2020)). Indeed, the developed method allows considering the entire

range of uncertainty of the variables and, therefore, avoiding the analysis by scenarios, quite widespread in the literature for the

uncertainty analysis of rainfall thresholds (e.g. Nikolopoulos et al., 2014; Peres et al., 2018). Analysing by scenarios may not be

suitable if the uncertain parameters have a continuous range of variability. Indeed, a low number of input values combinations

may not provide an overall assessment of the variability of the outputs.390

Finally, it is worth noting that the results of this analysis are not useful to check the forecast capability of the threshold.

Indeed, the variability in the threshold estimate due to the uncertainty of the inputs is not related to its forecast effectiveness

but only to its robustness. The threshold forecast capability can be proved only by performing a proper validation analysis,

essential to make this tool operational. Since the calibration method applied to the specific study area is proved to be robust,

further analysis will assess the forecast capability of the threshold, developing an appropriate validation method.395
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