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Abstract. Flood risk management and planning decisions in many parts of the world have historically utilised flood hazard or 

risk maps for a very limited number of hazard scenarios (e.g. river water levels), mainly due to computational challenges. With 20 

the potentially massive increase in flood risk in future due to the combination of climate change effects (increasing the hazard) 

and increasing population and developments in floodplains (increasing the consequence), risk-informed flood risk 

management, which enables balancing the risk with the reward, is now becoming more and more sought after. This requires a 

comprehensive and quantitative risk assessment, which in turn demands multiple (thousands of) river and flood model 

simulations. Performing such a large number of model simulations is a challenge, especially for large, complex river systems 25 

(e.g. Mekong) due to the associated computational and resource demands. This article presents an efficient probabilistic 

modelling approach that combines a simplified 1D hydrodynamic model for the entire Mekong Delta with a detailed 1D/2D 

coupled model and demonstrates its application at Can Tho city in the Mekong Delta. Probabilistic flood hazard maps, ranging 

from 0.5 yr to 100 yr return period events, are obtained for the urban centre of Can Tho city under different future scenarios 

taking into account the impact of climate change forcing (river flow, sea-level rise, storm surge) and land subsidence. 30 

Results obtained under present conditions show that more than 12 % of the study area is inundated by the present-day 100 yr 

return period of water level. Future projections show that, if the present rate of land subsistence continues, by 2050 (under 

both RCP 4.5 and RCP 8.5 climate scenarios), the 0.5 yr and 100 yr return period flood extents will increase by around 15-

fold and 8-fold, respectively, relative to the present-day flood extent. However, without land subsidence, the projected 

increases in the 0.5 yr and 100 yr return period flood extents by 2050 (under RCP 4.5 and RCP 8.5) are limited to between a 35 
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doubling to tripling of the present-day flood extent. Therefore, adaptation measures that can reduce the rate of land subsidence 

(e.g. limiting groundwater extraction), would substantially mitigate future flood hazards in the study area. A combination of 

restricted groundwater extraction and the construction of a new and more efficient urban drainage network would facilitate 

even further reductions in the flood hazard. The projected 15-fold increase in flood extent projected by 2050 for the twice per 

year (0.5 yr return period) flood event implies that the “do nothing” management approach is not a feasible option for Can 40 

Tho. 

1 Introduction 

Flooding is one of the most frequently occurring and damaging natural disasters in the world (Hirabayashi et al., 2013; 

Kundzewicz et al., 2014; Arnell and Gosling, 2016; Alfieri et al., 2017; Forzieri et al., 2017; Mora et al., 2018). Coastal and 

delta areas are among the most flood hazard-prone areas of the world (Nicholls, 2004; Nicholls et al, 2007; Wong et al., 2014; 45 

Neumann et al., 2015; Pasquier et al., 2018), and flood intensity and frequency are already increasing, especially in coastal 

and delta cities, due to changes in river flows, downstream sea-level and local changes in rainfall and land use (Merz et al., 

2010; Balica et al., 2012; Huong and Pathirana, 2013; Chen et al., 2018). Coastal and delta regions are also among the most 

densely populated areas of the world, which have experienced a rapid expansion of settlements, urbanisation, infrastructure, 

economic activities, and tourism especially over the last 5 decades or so (Small and Nicholls, 2003; Valiela et al., 2006; 50 

Ranasinghe and Jongejan, 2018).  

Flood risk assessment is performed to facilitate the implementation of risk-informed measures aimed at minimizing (or 

mitigating) flood damage (Hall et al., 2003; Meyer et al., 2009, Bureau Reclamation, 2020; Mishra and Sinha, 2020). Flood 

hazard estimation, which computes the probability and intensity of a possible event (Pappenberger et al., 2012; Alfieri et al., 

2013; De Moel et al., 2015) is the first step in flood risk assessment (Penning-Rowsell et al., 2005; De Moel et al., 2015; 55 

Foudi et al., 2015; Kvočka et al., 2016). However, flood risk management and planning decisions in many parts of the world 

have historically utilised flood hazard or risk maps associated with one or two pre-determined return period water levels. While 

this may have been sufficient in the past, the need to move from stationary to innovative time-dependent (non-stationary) flood 

hazard and risk modelling approaches that can account for the uncertainty, arising from anthropogenic and climatic induced 

stressors, is rapidly increasing (Mosavi et al., 2018).  60 

Climate change is now recognized as a major global challenge in the 21st century and beyond. Future projections indicate that 

climate change will have implications on the trends of extreme events (e.g. extreme precipitation, hurricanes, etc.), which may 

lead to increases of flooding in the future (Panagoulia and Dimou, 1997; Menzel et al., 2002; Prudhomme et al., 2013; Alfieri 

et al., 2015). Besides the challenges posed by climate change, the population in coastal and delta zones is projected to increase 

in all Shared Socioeconomic Pathways (SSPs) by 2050, with especially the population living in the low elevated coastal zone 65 

projected to exceed one billion (by 2050) in all SSPs (Merkens et al., 2016) and likely to reach 1.4 billion by 2060 under the 

high end growth assumption (Neumann et al., 2015). Increases in population inevitably increase water demand, which is often 
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satisfied by excessive groundwater extraction, which, more often than not, leads to land subsidence, further exacerbating the 

flood hazard (due to increased inundation levels). The combination of increased flood hazard and increased 

population/infrastructure will, in turn, lead to an increase in flood risk in these vulnerable areas (Nicholls et al., 2007; Lenderink 70 

and Van Meijgaard, 2008; Syvitski et al., 2009; Min et al., 2011; Balica et al., 2012; Rojas et al., 2013; Wong et al., 2014; 

Takagi et al., 2016). However, projections of these trends contain uncertainties. This particularly holds for deltas due to their 

multi-faceted and dynamic character (Nicholls et al., 2020).  

The present study attempts to address the challenge of estimating non-stationary fluvial flood hazard in a way it can inform 

risk modelling via a computationally efficient modelling approach based on a simplified 1D hydrodynamic model for the entire 75 

Mekong Delta (area of 40,577 km2) that is coupled with a detailed 1D/2D coupled model and demonstrates its application at 

Can Tho city in the Mekong Delta. 

2. Essential elements for probabilistic assessment of flood hazards  

Robust quantification of flood risk assessment typically requires multiple (thousands of) river and flood model simulations to 

derive probabilistic flood hazard assessments. This constitutes a major challenge, especially for large river systems, such as 80 

the Mekong, due to the associated computational and resource demands. Although the last decade has witnessed a great 

improvement in computational capabilities and models, traditional modelling approaches still pose significant challenges in 

terms of computational time required to obtain fully probabilistic flood hazard estimates (Mcmillan and Brasington. 2007; 

Neal et al., 2012). Therefore developing computationally efficient modelling approaches to circumvent this particular 

bottleneck remains an important challenge.  85 

Many studies have attempted to improve the computational performance of 1D and 2D hydraulic models in different ways. 

These attempts include methods such as: 

(i) Model simplification – incorporating simpler representations of the physical processes to reduce the complexity of the 

model structure, e.g. ignoring certain terms such as inertia to simplify 2D shallow water equation (Bates and De Roo, 2000, 

Seyoum Solomon et al., 2012); applying Cellular Automata approaches in 1D drainage networks (Austin et al., 2014), and 2D 90 

overland flows (Ghimire et al., 2013); using conceptual models (Wolfs et al. 2013; Teng et al., 2015). 

(ii) Detail reduction – reducing the level of detail and input details of the model, and/or simulation time-step, e.g. using 

simplified drainage networks (Davidsen et al., 2017), simplified river networks (Ngo et al., 2018), or lower resolution 

topographic data (Savage et al., 2016). 

(iii) Using superior computational resources: parallel computation in 1D (Burger et al., 2014) and 2D models (Leandro et al., 95 

2014, Zhang et al., 2014), and Cloud computing (Glenis et al., 2013). 

These approaches significantly reduce model simulation times (Davidsen et al., 2017; Ngo et al., 2018), especially simplified 

models. However, simplifying the model also usually reduces the accuracy of the model. The appropriateness of a simplified 

model should be looked at in terms of the purpose of the intended model application. According to the “fit for purpose model” 

https://doi.org/10.5194/nhess-2020-242
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

Highlight
But also frequency, because inundation is likely to occur more often even without any change in water levels due to lower river banks.

Inserted Text
true



4 

 

concept, the choice of a model for flood simulation should be done such that the model that can provide predictions with an 100 

acceptable level of accuracy at a reasonable computational time and cost (Wright and Esward, 2013; Haasnoot et al., 2014). 

In addition to the computational performance of the models, the number of simulations is also a factor influencing the 

computational cost, especially time consuming 2D simulations. Flood risk assessment in the modern context often calculates 

flood water levels for different return periods (e.g. 5 yr, 10 yr, 20 yr, 50 yr, 100 yr, etc.). This reduces the number of 2D 

simulations that need to be executed while still achieving probabilistic flood hazard distributions. 105 

Availability of historical data is a factor that influences flood hazard and risk assessment, in terms of flood frequency analysis 

(Machado et al., 2015; Engeland et al., 2018). Flood frequency analysis is used to determine the peak of flood events 

corresponding to a specified return period (Bayliss and Reed, 2001) in order to design flood risk reduction measures. However, 

the length of observed data is not always enough for robust flood frequency analysis. However, synthetic data approaches, 

such as the synthetic streamflow generator developed by Giuliani et al. (2017), provide to the means to generate a large 110 

numbers of time series data based on limited historical data.  

In summary, key features of an effective non-stationary fluvial flood hazard modelling approach may therefore include (a) 

model reduction  a substantially simplified 1D model of the river system which can complete a simulation in short time span 

(e.g. completing a one year simulation of river flow (with hourly time step) in around a minute (Ngo et al., 2018)), (b) strategic 

use of limited input data (e.g. using a synthetic streamflow generator to generate a large number (e.g. 1000) time series of 115 

riverflow based on limited historical data (Giuliani et al., (2017)), (c) reduction of the number of time-consuming 1D/2D 

coupled model runs required to achieve probabilistic flood hazard results via flood frequency analysis while also considering 

flood hydrograph patterns, (d) derivation of probabilistic flood hazard quantification. The methodology adopted in this study 

included all of the above key features, and is summarized in Fig. 1. 

[Figure 1 about here.] 120 

Model reduction is achieved in this study by gradually reducing the complexity of the detailed 1D model of the river system, 

using trials with varying levels of complexity. Here the main river artery is retained while systematically removing small and 

medium tributaries, based on their size and/or distance from the target area (in this case, Can Tho city). In doing this, nodes at 

essential locations in the river system (e.g. at branching points, places at which the direction of flow changes, locations at 

which there are large change in river cross-sectional area, etc.) are retained, and nodes at less crucial positions are sequentially 125 

removed. After each stage of the model reduction, the model is run for a specific period. The model simulated water levels are 

compared with the measured water level data at the area of interest to evaluate the accuracy of the model. If the model 

performance is still good enough, the process of reduction is continued until the simplest level of detail that still provides 

accurate predictions of water levels in the area of interest is obtained. The final model thus obtained is referred to hereon as 

the simplified model. 130 

In this application, due to limited data availability, the synthetic streamflow generator developed by Giuliani et al. (2017) is 

used to generate 1000 synthetic river flow time series. Giuliani et al.’s  (2017) synthetic streamflow generator combines the 
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methods of Kirsch et al. (2013) and Nowak et al. (2010), wherein Kirsch’s method is used to generate flows on a monthly time 

step, and Nowak’s method is used to disaggregate these monthly flows to a daily time step. This synthetic streamflow generator 

is available on Github (https://github.com/julianneq/Kirsch-Nowak_Streamflow_Generator). Here, Matlab code is used to 135 

generate correlated synthetic historical data at multiple sites, while Python code is used to validate the synthetic historical data 

statistically (https://waterprogramming.wordpress.com/2017/08/29/open-source-streamflow-generator-part-i-synthetic-

generation/). 

3. Application of the fluvial flood hazard modelling approach in Can Tho, Vietnam  

Can Tho (population 1.6 million in 2016) is one of the five cities that are directly administered by the Central Government of 140 

Vietnam, and is located in the centre of the Mekong Delta, next to the Hau River (Bassac River) (Fig. 2a). In the coming 

decades, Can Tho is expected to be a dynamic city not only in the Mekong Delta but also in the entire southern region of 

Vietnam (Huong and Pathirana. 2013, Mekong Delta Plan. 2013). The city includes five urban districts (Ninh Kieu, Binh Thuy, 

Cai Rang, O Mon and Thot Not) and four rural districts (Phong Dien, Thoi Lai, Vinh Thanh, Co Do) (Fig. 2b). 

Situated in a tropical monsoon climate region, Can Tho has two distinct seasons: rainy and dry season. The rainy season usually 145 

starts from May and lasts until the end of November, with rainfall during this season accounting for 90 % of the annual rainfall 

(Can Tho City People’s Committee, 2010), while the dry season lasts from December to April with low rainfall.  

Frequent flooding is a major problem in Can Tho (Huong and Pathirana, 2013; Ngo et al., 2018), at least 2-3 times per year, 

with inundation depths of up to 50 cm at some places in the city centre. Although Can Tho city is some 80 km upstream from 

the ocean, it is impacted by tidal water level variations, thus making the city vulnerable to the effects of projected sea-level 150 

rise and storm surges. Additionally, Can Tho is already facing many challenges from rapid urbanization, population growth, 

and poor infrastructure (e.g. city flood drainage network) – all of which combine to increases the city’s vulnerability to floods. 

Figure 3 shows the highest observed flood water levels in Can Tho since 2000 and official flood water level alarms in Can 

Tho. 

This study focuses on a part of Ninh Kieu district (population 280,000 in 2019) which is the central area of Can Tho city (Fig. 155 

2c). Ninh Kieu is the most developed district of Can Tho and home to many trade centres, urban areas, and residential areas. 

[Figure 2 about here.] 

[Figure 3 about here.] 

 

To achieve the goal of producing probabilistic flood hazard estimates for the study area (for the present and 2050), the method 160 

adopted here broadly comprised four methodological steps: (a) Model reduction - a substantially simplified 1D model for the 

entire Mekong Delta developed and validated by Ngo et al. (2018) (b) strategic use of limited input data (seven years data of 
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river flow) to generate 1000 time series data of river flow at Kratie using the synthetic streamflow generator, (c) reduction of 

the number of 1D/2D coupled model runs required by flood frequency analysis while also considering the flood hydrograph 

patterns, and (d) derivation of probabilistic flood hazard quantification for the present and for 2050 under RCP 4.5 and 8.5, 165 

with and without land subsidence. The methodology adopted is summarized in Fig. 4. Data sources used for this study are 

shown in Table 1 and the way in which these data were used here is explained in detail below. 

[Figure 4 about here.] 

[Table 1 about here.] 

3.1 Model reduction  170 

A simplified 1D model for the entire Mekong Delta developed using the open-source dynamic rainfall-runoff simulation model 

SWMM (Storm Water Management Model, Rossman, 2015) is used to derive the river water levels at Can Tho. First, a detailed 

SWMM model of the entire Mekong Delta was built based on an existing ISIS model, which comprised 575 nodes and 592 

links. Using trials with the varying levels of complexity, nodes and links were systematically removed to arrive at a much 

reduced SWMM model comprising 37 nodes and 40 links which was able to accurately simulate 1-year of river water levels 175 

at Can Tho city in under one minute. The model was calibrated with the year 2000 observed water level data and then validated 

with the years measured water level data at Chau Doc, Tan Chau and Can Tho gauging stations in 2001, 2002 and 2011 (Ngo 

et al., 2018). Years 2001 and 2002 are years that typical flood events occurred, while 2011 is a year that an extreme event 

occurred (on 27th October) (Fig. 3). The simplified model was validated for the 2011 event with the goal of investigating the 

model’s capability to simulate the extreme events, which may occur more often in the future due to Climate change (Panagoulia 180 

and Dimou, 1997; Menzel et al., 2002; Prudhomme et al., 2013; Alfieri et al., 2015). The general model performance ratings 

with respect to the October 2011 event based on two indicators NSE (Nash-Sutcliffe efficiency) and RMAE (Relative Mean 

Absolute Error) are 0.77 (very good) and 0.04 (excellent), respectively (Ngo et al., 2018). 

3.2 Strategic use of limited input data 

Upstream boundary condition: 185 

In the application here, seven years (2000 – 2006) of observed flow data at the upper boundary location ‘Kratie’ were used as 

forcing for the above described simplified 1D model of the Mekong River. As seven years of data is not sufficient to derive 

probabilistic results, here a synthetic streamflow generator developed by Giuliani et al. (2017) was used to generate 1000 

synthetic flow time series (each one year long) for each scenario in Table 2 (current and future). While it is acknowledged that 

this approach does not fully replace the utility of long term observational data, due to the probabilistic nature of the streamflow 190 

generator, it nevertheless captures the statistical variation of upstream flows compared to simply using the seven years of 
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available data, which is important in flood hazard modelling. 

[Table 2 about here.] 

For the future simulations that include the effects of climate change, here we used the annual river discharge projections of 

Hoang et al. (2016) under RCP 4.5 and 8.5 as the basis for generating the future river flow data. Hoang et al.’s (2016) 195 

projections indicate that annual river flow for RCP 4.5 and RCP 8.5 at Kratie in 2050 are expected to change between 3 % to 

8 % and -7 % to 11 %, respectively, relative to the 1971-2000 baseline period adopted in that study. Future river flow data 

were generated by combining the flow of each year in seven years of observed flows used here with a randomly selected % 

change of these projected changes in the flow corresponding to each RCP. Subsequently, the streamflow generator was used 

to generate 1000 future riverflow time series (each one year long) corresponding to RCP 4.5 and RCP 8.5. 200 

Downstream boundary condition: 

Thirty six years (1979 -2014) of model simulated extreme sea level (tide + surge) data were extracted at the Mekong river 

mouths (Tran De, Ben Trai and An Thuan) from the GTSR data set presented by Muis et al. (2016) to use as the downstream 

boundary condition of the 1D model.  

For the future simulations, the above present-day extreme sea levels from the GTSR data were combined with the 2050 regional 205 

sea level rise projections presented by the Viet Nam Ministry of Nature Resource and Environment (MONRE, 2016) under 

RCP 4.5 and RCP 8.5 for the region containing the aforementioned river mouths. The projected regional sea level rise in the 

area by 2050 (relative to 1986-2005) for RCP 4.5 and RCP 8.5 are 13 to 32 cm and 16 to 35 cm, respectively. 

The simplified 1D model was then executed with one year time series of the above described boundary conditions to generate 

river water level at Can Tho. In all, 36,000 simulations were undertaken corresponding with the total number of possible 210 

combinations of upstream (1000 one-year time series of riverflow) and downstream (36 one-year time series of sea level) 

boundary conditions, resulting in 36,000 water level time series data (each one-year long) at Can Tho per considered scenario 

(current and future). 

3.3 Reduction of the number of 1D/2D model runs 

From the 36,000 one-year long water level time series at Can Tho, the maximum water level of each year in the 36,000 215 

simulation years was extracted and used to fit an extreme value distribution (Gumbel or Type I). The water level at Can Tho 

corresponding to each return period for each scenario (current or future) was determined based on the fitted Gumbel 

distribution.   

Apart from the maximum water levels, it is also important in flood hazard modelling to represent the shape of hydrograph 

around the peak water level. To achieve this, here we used a threshold-based method, as is commonly used in flood frequency 220 

analysis (Lang et al., 1999; Bezak et al., 2014). A threshold value of 2.15m (i.e. maximum measured water level at Can Tho, 

see Fig. 3) was adopted here and annual water level time series (of the full 36,000 series) that contain at least one water level 
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value exceeding 2.15m were identified. Two distinct flood hydrograph patterns were thus identified and from each of the 

extreme water level time series corresponding to RCP 4.5 and RCP 8.5 (41 and 162 for RCP 4.5 and RCP 8.5 respectively), 

24 h long time series around each peak value (12 h earlier to 12 h later) were extracted.  225 

3.4 Derivation of probabilistic flood hazard quantification 

Several different flood parameters can be used to quantify the flood hazard, including inundation level, flow velocity, 

frequency of flooding, and flood duration, etc. (Ramsbottom et al., 2006; Ward et al., 2011; Moel et al., 2015). Of these, 

inundation level (water depth) and flow velocity are considered the most important parameters (Penning-Rowsell et al., 1994; 

Wind et al., 1999; Merz et al., 2007; Kreibich et al., 2009). However, due to the relatively flat terrain combined with small 230 

inundation depths in Can Tho, the effect of the flow velocity is expected to be small compared to that of the flood inundation 

depth (Dinh et al., 2012). Hence, this study considers inundation levels as the main indicator of the flood hazard in the study 

area.  

To simulate the effect of flood drainage network on flooding in the study area, here we used the detailed 1D urban model 

developed for the study area by Huong and Pathirana (2013). This model comprises 479 junctions, 612 conduits, 48 outfalls, 235 

and 303 sub-catchments (Fig. 5). 

[Figure 5 about here.] 

The model parameters were calibrated for the flood event on the 17th of October 2016 based on the observed water depths (at 

one-minute measurement interval) in the manholes at Nguyen Van Cu and Tran Hung Dao streets (Fig. 5). These are the only 

available observed flood water depths in the study area. Here, SWMM5-EA software (Pathirana, 2014), was used to calibrate 240 

the most uncertain parameters, i.e. Manning’s roughness coefficient of conduits, Manning’s roughness coefficient of the 

previous/impervious surfaces of the sub-catchments and the slope of the sub-catchments. The calibrated 1D urban model was 

then used to establish an integrated 1D/2D model using PCSWMM software (http://www.chiwater.com/Software/PCSWMM). 

Flood simulations were undertaken for water levels with return periods ranging from 0.5 yr to 100 yr obtained from the flood 

frequency analysis described in Section 3.2 for each model scenario in Table 1. A 15 m resolution DEM developed by the 245 

Vietnam Institute of Meteorology, Hydrology and Environment was used in all simulations. In the simulations that include 

land subsidence, a subsidence rate of 1.6 cm/yr was used following Erban et al. (2014) and Minderhoud et al. (2015). 

For all model scenarios indicated in Table 1, flood inundation maps were first developed for water level return periods ranging 

from 0.5 yr to 100 yr (eight inundation maps for each model scenario). The flood maps thus obtained were added into ArcMap 

under shapefiles, which were then converted to raster files to extract the maximum inundation depths (during the flood events) 250 

corresponding to each return period by using the “Polygon to Raster” tool in Conversion tools of ArcToolbox. Subsequently, 

maximum inundation depths at all grid cells were aggregated to generate flood hazard maps for each return period. 

https://doi.org/10.5194/nhess-2020-242
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

Highlight
In this lowland low relief environment the duration of inundation might, or very likely also plays an important role for flood damage. This should be mentioned/discussed. see e.g.
Dung, N. V., Merz, B., Bárdossy, A., and Apel, H.: Handling uncertainty in bivariate quantile estimation – An application to flood hazard analysis in the Mekong Delta, Journal of Hydrology, 527, 704-717, http://dx.doi.org/10.1016/j.jhydrol.2015.05.033, 2015.


Highlight
This is too short. High water levels that cause inundation in Can Tho are usually caused by the interplay of high river water levels and high tidal level. The high tidal levels, which are particularly pronounced during spring tides, typically last for a couple of days. See e.g. 
Apel, H., Martínez Trepat, O., Hung, N. N., Chinh, D. T., Merz, B., and Dung, N. V.: Combined fluvial and pluvial urban flood hazard analysis: concept development and application to Can Tho city, Mekong Delta, Vietnam, Nat. Hazards Earth Syst. Sci., 16, 941-961, 10.5194/nhess-16-941-2016, 2016.
or 
Triet, N. V. K., Dung, N. V., Fujii, H., Kummu, M., Merz, B., and Apel, H.: Has dyke development in the Vietnamese Mekong Delta shifted flood hazard downstream?, Hydrol. Earth Syst. Sci., 21, 3991-4010, 10.5194/hess-21-3991-2017, 2017.

During this period the city is typically repeatedly inundated periodically during high tides (or completely if the river water level is constantly above bank level). This has an impact on the damage caused by the inundation (higher water levels, larger area flooded and longer duration of ponding water). You need to justify this short simulation time.

Highlight
What about the calibration or performance of the 2D inundation model? You don't make any statement about the procedure, data, or performance measures or at least a plausibility check of this model part. This needs to be addressed.  



9 

 

4 Results and Discussion 

Figure 6 shows flood frequency curves at Can Tho for the present, and for 2050 corresponding to RCP 4.5 and RCP 8.5, 

obtained from the Gumbel distributions that were fitted to the modelled maximum water level at Can Tho based on the results 255 

of 1D hydrodynamic model described in Section 3.1.  

[Figure 6 about here.] 

The water level at Can Tho with return periods ranging from 0.5 yr to 100 yr determined from the above flood frequency 

analysis for each model scenario are shown in Fig. 7. 

[Figure 7 about here.] 260 

The calibration results for the 1D urban drainage model for the flood event of Oct 2016 are shown in Fig. 8. The NSE indicator 

values between the measured and simulated (present conditions) water depths in the manholes at Nguyen Van Cu and Tran 

Hung Dao streets is 0.75 (good) and 0.95 (very good), respectively. Thus, the 1D urban drainage model performance for the 

study area can be considered to be sufficiently accurate.  

[Figure 8 about here.]  265 

Figure 9 shows the shape of the 24-h time series of all the modelled extreme water level (i.e. peaks greater than the threshold 

value of 2.15 m) time series at Can Tho (of all 36,000 annual time series) corresponding to RCP 4.5 and RCP 8.5. There are 

at least two dominant hydrograph shapes in the two RCPs considered (indicated by Pattern 1 and Pattern 2 in Fig. 9a and Fig. 

9b), but it is clearer in RCP 8.5. Hence, the response of different river water level hydrographs on flooding was examined, 

with results (Fig. 10) indicating that flood extent and inundation depths associated with Pattern 1 are greater than that associated 270 

with Pattern 2. The inundated area (for cells with maximum inundation depths ≥ 0.02m) corresponding to 100-year return 

period water level for RCP 4.5 and RCP 8.5 with Pattern 1 are 1.96 km2 and 2.30 km2, respectively. The corresponding flooded 

areas for Pattern 2 are lower at 1.41 km2 and 1.81 km2. Therefore, in this study, 24-h boundary condition time series for the 

1D/2D flood model for each modelled scenario was created by combining the calculated water levels corresponding to each 

return period and a typical river water level time series following Pattern 1. This was a necessary simplification to reduce the 275 

complexity and computational burden of computing flood inundation.  

[Figure 9 about here.]  

[Figure 10 about here.]  

Figures 11-13 show flood hazard maps corresponding to 0.5, 5, 50, 100 yr return period water levels (at Can Tho) for the 

present (model scenario #1), and 2050 under RCP 4.5 and RCP 8.5 (without land subsidence) (model scenarios #3 and #5 280 

https://doi.org/10.5194/nhess-2020-242
Preprint. Discussion started: 29 September 2020
c© Author(s) 2020. CC BY 4.0 License.

Highlight
What about the inefficiency and malfuntioning of the sewer system, as highlighted by Huong and Pathirana (2013). Is this considered in the model (explicitly, implicitly and not at all?). Or did the situation change since then?

Highlight
Figures 6 and 7 could be merged to a single figure with 4 panels.

Highlight
This figure is not required at this position. The maps are repeated in later figures. I suggest to delete this figure and insert a figure showing the differences in maximum inundation depths at present to future inundation depths at a later point in the MS.



10 

 

respectively). The remaining flood hazard maps which correspond to 1, 2, 10, 20 yr return period water levels for these 

scenarios are shown in the Appendix A (Figs. A1-A3). 

[Figure 11 about here.]  

[Figure 12 about here.]  

[Figure 13 about here.]  285 

[Figure 14 about here.]  

Figures 11a and 14 show that, under present conditions, 4.9 % of the study area will be flooded even with the 0.5 yr return 

period water level at Can Tho, especially some areas along the canals and lakes in the city that are connected to the Can Tho 

River and Cai Khe channel. Notably, there is a large area of Cai Khe ward (shown by the red circle of Fig. 11a), which is 

located close to the junction of Hau river, Can Tho river and Cai Khe channel (see Fig. 2c) that is inundated under this 290 

condition.  

At the other higher end of the modelled return periods under present conditions, Figs. 11d and 14 show that the inundated area 

with a 100 yr return period water level at Can Tho, is more than double that with a 0.5 yr return period water level at Can Tho 

increasing from 4.9 % (0.5 yr RP) to 12.7 % (100 yr RP), see Fig. 14).  

For the future modelled scenarios (without land subsidence; model scenarios #3 and #5), the % inundated areas for the 100 yr 295 

RP water level at Can Tho are 29.2 % and 34.2 %, under RCP 4.5 and RCP 8.5 respectively, representing more than a doubling 

of the inundated area by 2050, relative to the present.  

Flood hazard maps corresponding to 0.5, 5, 50, 100 yr return period water levels (at Can Tho) for the future scenarios (2050 - 

under RCP 4.5 and RCP 8.5) that do take into account land subsidence (model scenarios #2 and #4) are shown in Figs. 15 and 

16. The remaining flood hazard maps which correspond to 1, 2, 10, 20 yr return period water levels for these scenarios are 300 

shown in the Appendix A (Figs. A4 and A5). The difference is immediately visible with a large increase in the flood hazard 

compared to when land subsidence is not taken into account. 

[Figure 15 about here.]  

[Figure 16 about here.]  

[Figure 17 about here.]  305 

Figures 15 and 16 both show severe flooding in a vast majority of the study area for all return periods of water level. The 
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percentage area flooded by the 0.5 yr RP water level under RCP 4.5 and RCP 8.5 are 73.4 % and 75.3 % respectively (Fig. 

17), almost a 10-fold increase relative the comparable projections without land subsidence and a 15-fold increase relative to 

present-day flooding due to the same RP water level. For the 100 yr RP water level, the percentage area flooded under RCP 

4.5 and RCP 8.5 projected to be 95.2 % and 96.4 % respectively, representing a 3-fold increase relative to the comparable 310 

projections without land subsidence and a 8-fold increase relative to present-day flooding by the same RP water level. It is 

also noteworthy that the maximum inundation depths for the 100-year return period water level under RCP 4.5 and 8.5 are not 

much different at 3.17 m, and 3.20 m, respectively.  

The above results highlight that while climate change will increase the flood hazard in the study area, land subsidence has a 

much greater effect than climate change driven variations in river flow on the flood hazard in the study area. Furthermore, 315 

clearly, the existing urban drainage network is not able to effectively drain flood waters even for present-day conditions, and 

this will be felt more severely in the coming decades. A significant reduction in groundwater extraction, which is the main 

cause of land subsidence in Can Tho (Erban et al., 2014) combined with a new and substantially efficient urban drainage 

network may be able to mitigate the projected flood hazard in the study area. It is recommended that the efficacy of these 

mitigation measures be investigated in detail in future modelling studies. 320 

5 Conclusions 

An efficient modelling approach that combines a simplified 1D hydrodynamic model with a detailed 1D/2D coupled model 

was developed and demonstrated at Can Tho city in the Mekong Delta.  Key features of the modelling approach include (a) 

Model reduction - a substantially simplified 1D model for the entire Mekong Delta (area of 40,577 km2) which can simulate 

one year of riverflow (with an hourly time step) in under 60 seconds, (b) strategic use of limited input data (seven years data 325 

of river flow) to generate 1000 time series data of river flow at Kratie using the synthetic streamflow generator, (c) reduction 

of the number of 1D/2D coupled model runs required by performing flood frequency analysis while also considering flood 

hydrograph patterns, and (d) derivation of probabilistic flood hazard quantification for the present and for 2050 under RCP 4.5 

and 8.5, with and without land subsidence. The detailed 1D/2D coupled model was successfully validated against measured 

flood depths at two locations during the Oct 2016 flood event. 330 

Flood hazard maps showing the maximum inundation depth during a flood event were developed for water level return periods 

ranging from 0.5 yr to 100 yr. Analysis of the flood hazard maps indicate that even under present conditions, more than 12 % 

of the study area will be inundated by the 100 yr return period water level. With climate change, but without land subsidence, 

the 100 yr return period flood extent is projected to more than double by 2050, with not much of difference between the two 

climate scenarios considered (RCP 4.5 and RCP 8.5). However, if the present rate of land subsidence will continue in the 335 

future, by 2050 and under both RCP 4.5 and RCP 8.5, the 0.5 yr and 100 yr return period flood extents are projected to increase 

by around 15-fold and 8-fold respectively, relative to the present-day flood extent.  

These results indicate that reducing the rate of land subsidence, for example, by limiting ground water extraction, would 
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substantially mitigate future flood hazards in the study area. Combining such a measure with a new and more efficient urban 

drainage network would further reduce the flood hazard. Future modelling studies are needed to quantitatively assess the 340 

hazard and risk reduction afforded by these adaptation measures, which could directly feed into to risk informed adaptation 

measures and pathways. For Can Tho, the “do-nothing” management option does not appear to be an option given especially 

the 15-fold increase in flood extent projected by 2050 for even the twice per year (0.5 yr return period) flood event. 
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Appendix A 360 

[Figure A1 about here.] 

[Figure A2 about here.] 

[Figure A3 about here.] 

[Figure A4 about here.] 

[Figure A5 about here.] 365 
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Figure 1: The methodological framework adopted to derive probabilistic flood hazard estimates for the area of interest. 
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 600 

Figure 2: (a) Map of Mekong delta and surrounding provinces, (b) Can Tho city, (c) Study area (bounded by red line) within the 

Ninh Kieu district in Can Tho city (Base map is from Bing Maps satellite © Microsoft). 
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Figure 3: Highest measured water levels of the flooding years since 2000 and flood water level alarms in Can Tho (flood water level 

alarms are implemented following Decision No.632/QĐ-TTg issued on May 10th, 2010). 
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Figure 4: The methodological framework adopted to derive probabilistic flood hazard estimates for the study area. This process was 

applied for the present and for 2050 (RCP 4.5 and RCP 8.5 together with 3 different local land subsidence scenarios). 
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Figure 5: The detailed 1D urban flood drainage model for the study area developed by Huong and Pathirana, (2013) (Base map is 655 
from Bing Maps Road © Microsoft). 
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Figure 6: Flood frequency curves at Can Tho for Present (a), and for 2050 corresponding RCP 4.5 (b) and RCP 8.5 (c). Blue line 

indicates the fitted Gumbel distribution while the green line indicates 1D hydrodynamic model output.  
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Figure 7: The water level at Can Tho corresponding to each return period for Present, and for 2050 under RCP 4.5 and RCP 8.5. 
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Figure 8: Comparison between simulated and observed water depths in the manholes at Nguyen Van Cu (a) and Tran Hung Dao (b) 

streets on October 17, 2016.  
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Figure 9: Analysis of 24-h time series around modelled peak water levels indicating two flood hydrograph patterns in the future 

scenario, (a) – 2050 (RCP4.5), (b) – 2050 (RCP 8.5).  
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Figure 10: Flood hazard maps (i.e. maximum flood depths) for the 100-year return period of water level for hydrograph Pattern 1 

(left) and Pattern 2 (right) under RCP 4.5 (Fig. 9a, Fig. 9b) and RCP 8.5 (Fig. 9c, Fig. 9d) (without land subsidence). The inundated 

area (for cells with maximum inundation depths ≥ 0.02m) for RCP 4.5 and RCP 8.5 corresponding to Pattern 1 are 1.96 km2 and 725 
2.30 km2, respectively, while for Pattern 2 are 1.41 km2 and 1.81 km2, respectively. 
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Figure 11: Flood hazard maps for the present (model scenario #1) corresponding to each return period of water level, (a) 0.5 yr 

return period, (b) 5 yr return period, (c) 50 yr return period, (d) 100 yr return period. Red circle in Fig. 11a highlights a large 

inundated area (present for all return periods) of Cai Khe ward. 740 
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Figure 12: Flood hazard maps for 2050 under RCP 4.5 (model scenario #3) corresponding to each return period of water level, (a) 

0.5 yr return period, (b) 5 yr return period, (c) 50 yr return period, (d) 100 yr return period. 
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Figure 13: Flood hazard maps for 2050 under RCP 8.5 (model scenario #5) corresponding to each return period of water level, (a) 

0.5 yr return period, (b) 5 yr return period, (c) 50 yr return period, (d) 100 yr return period. 
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Figure 14: The inundated area and percentage of the flooded area relative to total study area (also indicated by numerics along the 

solid lines in the figure) corresponding to each return period of water level (without land subsidence). 780 
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Figure 15: Flood hazard maps for 2050 under RCP 4.5 (model scenario #2) corresponding to each return period of water level, (a) 

0.5 yr return period, (b) 5 yr return period, (c) 50 yr return period, (d) 100 yr return period. 
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Figure 16: Flood hazard maps for 2050 under RCP 8.5 (model scenario #4) corresponding to each return period of water level, (a) 

0.5 yr return period, (b) 5 yr return period, (c) 50 yr return period, (d) 100 yr return period. 
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Figure 17: The inundated area and percentage of the flooded area relative to total study area (also indicated by numerics along the 825 
solid lines in the figure) corresponding to each return period of water level for model scenarios (including land subsidence). 
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Figure A1: Flood hazard maps for the present (model scenario #1) corresponding to each return period of water level, (a) 1 yr return 

period, (b) 2 yr return period, (c) 10 yr return period, (d) 20 yr return period.  
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Figure A2: Flood hazard maps for 2050 under RCP 4.5 (model scenario #3) corresponding to each return period of water level, (a) 

1 yr return period, (b) 2 yr return period, (c) 10 yr return period, (d) 20 yr return period. 
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Figure A3: Flood hazard maps for 2050 under RCP 8.5 (model scenario #5) corresponding to each return period of water level, (a) 

1 yr return period, (b) 2 yr return period, (c) 10 yr return period, (d) 20 yr return period. 
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Figure A4: Flood hazard maps for 2050 under RCP 4.5 (model scenario #2) corresponding to each return period of water level, (a) 

1 yr return period, (b) 2 yr return period, (c) 10 yr return period, (d) 20 yr return period. 865 
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Figure A5: Flood hazard maps for 2050 under RCP 8.5 (model scenario #4) corresponding to each return period of water level, (a) 

1 yr return period, (b) 2 yr return period, (c) 10 yr return period, (d) 20 yr return period. 870 
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Table 1. Data source used in this study  

Data type Source Data description 

Discharge MRC Daily discharge data at upstream from 2000 to 2006 

Sea level (tide+surge) 
GTSR data set (Muis et 

al., 2016) 

Ten-minutely sea level data at the Mekong river mouths (Tran 

De, Ben Trai and An Thuan) from 1979 to 2014 

Water level  

National Hydro-

Meteorological Service 

of Viet Nam 

Hourly water level at Can Tho station on the 17th of October 

2016 

Observed water depth Measure 
Minutely obseverd water depths in the manholes at Nguyen Van 

Cu and Tran Hung Dao streets on the 17th of October 2016 

DEM 

Vietnam Institute of 

Meteorology, Hydrology 

and Environment 

15 m resolution DEM for Ninh Kieu district 

 

 

 

Table 2. Model scenarios adopted with the 1D/2D coupled flood PCSWMM model 885 

Model scenario Time Climate scenario Land subsidence rate 

1 Present - - 

2 2050 RCP 4.5 1.6 cm/yr 

3 2050 RCP 4.5 0 

4 2050 RCP 8.5 1.6 cm/yr 

5 2050 RCP 8.5 0 
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