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Abstract1

The persistence over space and time of flash flood disasters – flash floods that have2

caused either economical or life losses, or both – is a diagnostic measure of areas subjected3

to hydrological risk. The concept of persistence can be assessed via clustering analyses,4

performed here to analyse the national inventory of flash flood disasters in China occurred in5

the period 1950-2015. Specifically, we investigated the spatiotemporal pattern distribution6

of the flash flood disasters and their clustering behavior by using both global and local7

methods: the first, based on the Ripley’s K-function, and the second on Scan Statistics. As8

a result, we could visualize patterns of aggregated events, estimate the cluster duration and9

make assumptions about their evolution over time, also with respect precipitation trend.10

Due to the large spatial (the whole Chinese territory) and temporal (66 years) scale of the11

dataset, we were able to capture whether certain clusters gather in specific locations and12

times, but also whether their magnitude tends to increase or decrease. Overall, the eastern13

regions in China are much more subjected to flash flood disasters compared to the rest of14

the country. Detected clusters revealed that these phenomena predominantly occur between15

July and October, a period coinciding with the wet season in China. The number of detected16

clusters increases with time, but the associated duration drastically decreases in the recent17

period. This may indicate a change towards triggering mechanisms which are typical of18

short-duration extreme rainfall events. Finally, being flash flood disasters directly linked to19

precipitation and their extreme realization, we indirectly assessed whether the magnitude20

of the trigger itself has also varied through space and time, enabling considerations in the21

context of climatic changes.22
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1 Introduction25

Flash floods are among the most destructive surface processes around the world, especially26

in mountainous areas (Au, 1998; Borga et al., 2011; Gomez and Kavzoglu, 2005; Jonkman,27

2005). They are mainly initiated by rapid and intense rainfall, often discharged in few hours28

(e.g., Borga et al., 2007; Bout et al., 2018; He et al., 2018; Lóczy et al., 2012), and by complex29

interactions of the climatic conditions with topography and hydrology (e.g., Hatheway et al.,30

2005). Because of the very rapid raise in water levels caused by flash floods, it is challenging31

to take timely and effective actions to contain the associated damage. Flash flood disasters32

are essentially flash floods that have caused losses either in terms of human lives or economy,33

or both (Gaume et al., 2009; Jonkman and Kelman, 2005; Kelman and Spence, 2004). In34

China, approximately 70% of the total area is covered by mountains and hills, which exposes35

a substantial surface of the national territory to flash flood disasters’ risk (Liu et al., 2018).36

Additionally, the more frequent extreme precipitation associated with climate change has37

increased the number of flash flood disasters in recent decades (Sampson et al., 2015).38

Historical inventories of flash flood disasters are a precious source of information allow-39

ing to investigate their spatiotemporal pattern distribution and evolution. Furthermore,40

this information can be related with the geomorphological setting of the area and the cli-41

matic/meteorological conditions to detect triggering factors, highlight the more vulnerable42

areas, and to prevent and forecast their effects in the future.43

The susceptibility to hydro-geomorphological processes is commonly assessed by consid-44

ering only the spatial distribution of observed events (Cama et al., 2015, 2017; Santangelo45

et al., 2012; Zaharia et al., 2017). However, this is purely a convenient assumption from the46

modeling perspective. Recently, a growing amount of evidence indicates that these events47

tend to aggregate in space conditioned by the temporal variability, attesting for an inter-48

action between space and time on event frequency and distribution (Gariano and Guzzetti,49

2016; Kouli et al., 2010; Zhang and Cong, 2014; Fuchs et al., 2015; Merz et al., 2016; Tonini50

and Cama, 2019). In other words, when an event occurs at a specific location, a tempo-51

rary increase in the probability that other events will cluster at nearby locations should52

be accounted for. This increase in probability can be captured through clustering analy-53

ses and various examples already exist in literature where this has been done at different54

spatial and temporal scales and via different analytical approaches. Notably, this type of55

application spans in many areas of natural hazards and have become mainstream in case56

of seismicity (e.g., Fischer and Horálek, 2003; Georgoulas et al., 2013; Varga et al., 2012;57

Woodward et al., 2018; Yang et al., 2019), joint sets and their orientation in rock outcrops58

(e.g., Tokhmechi et al., 2011; Zhan et al., 2017), groundwater monitoring (Chambers et al.,59

2015), wildfires (e.g., Orozco et al., 2012; Costafreda-Aumedes et al., 2016; Fuentes-Santos60
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et al., 2013; Tonini et al., 2017), and landslides (e.g., Lombardo et al., 2018, 2019a; Tonini61

and Cama, 2019). In the specific case of flooding, Zhao et al. (2014) used the projection62

pursuit theory to cluster spatial data and to build a dynamic risk assessment model for flood63

disasters. Moreover, Renard (2017) detected flood vulnerability accounting for clustering64

effects in key areas with high flood risk. Pappadà et al. (2018) also investigated the flood65

risks in a given region and identified clusters where the floods show a similar behavior with66

respect to multivariate criteria. Gu et al. (2016a,b) indicated the floods in Tarim River basin67

showed evident inter-annual clustering pattern. Another example can be found in Merz et al.68

(2016) where the authors analyzed the inter-annual and intra-annual flood clustering in Ger-69

many. All these examples confirm a substantial scientific interest in recent years dedicated70

to investigate the clustering behaviors of flash floods and the associated risk; and, more71

generally, to concurrently analyze their spatial and temporal persistence. However, despite72

the scientific efforts, detecting flash flood patterns at long temporal scale is still scarce in73

literature, mainly because of technical limitations. In fact, limited information and records74

are available in digital form reporting locations and dates of flash floods (and flash flood75

disasters), especially over long periods. Nevertheless, very recent advances in data collection76

and sharing techniques are gradually filling this gap, and an increasing number of databases77

are being published and made available to the scientific community with the records of his-78

torical and hydro-geomorphological disasters at the global, continental, or regional scale over79

long periods (Archer et al., 2019; de Bruijn et al., 2019; Gourley et al., 2013; Haigh et al.,80

2017; Nowicki Jessee et al., 2020; Vennari et al., 2016; Wood et al., 2020).81

Typically, flash flood disasters (as many other hydro-geomorphological disasters) can be82

considered as a stochastic point processes (Stoyan, 2006) acting in both spatial and tempo-83

ral dimensions (e.g., Lombardo et al., 2019b). Point patterns can be analyzed in terms of84

their random distribution, dispersion and clustering behaviour (Merz et al., 2016; Tonini and85

Cama, 2019). Several methods can be implemented to deal with stochastic properties. Some86

classic models, such as Moran’s I (Moran, 1950), Ripley’s K-function (Ripley, 1977), fractal87

dimension (Lovejoy et al., 1986), and Allan factor (Allan, 1966), have been used to detect88

clustering behaviour in space and in time. Representative models for local clustering analysis89

(i.e. allowing to detect clusters and their specific location) include Geographical Analysis90

Machine (GAM, Openshaw et al., 1987), Turnbull’s Cluster Evaluation Permutation Proce-91

dure (CEPP, Turnbull et al., 1990), Scan Statistics (Kulldorff, 1997), and DBSCAN (Ester92

et al., 1996). For flash floods, which are triggered by storms, the temporal dependency among93

persistent events is mainly driven by climatic and meteorological conditions. However, global94

cluster indicators only take into consideration one dimension, disregarding the interaction95

between space and time. In this sense, spatiotemporal Scan Statistics is a good tool to detect96

clusters since it allows to identify statistically significant excess of observations thanks to a97

moving cylindrical window that scans all locations both in space and time (Kulldorff et al.,98

1998). Therefore, it is especially useful to investigate hydro-geomorphological processes such99

as flash floods. For such phenomena, the detection of events aggregated over a given region100
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and in a specific period, generally yields more informative results than the purely spatial or101

temporal analysis. Furthermore, understanding the magnitude of the persistence for flash102

flood disasters is an important requirement to predict where, when and how their highest103

probability to occur distributes in the future.104

In this study, we explored the spatiotemporal pattern distribution of flash flood disasters105

which have caused either or both life and economic losses in China over the period 1950-106

2015. Firstly, the deviation of flash flood disasters from a spatiotemporal random process107

is explored by applying the spatiotemporal Ripley’s K-function. Then, the Scan Statistics108

was applied to detect statistically significant spatiotemporal clusters. Finally, the possible109

relationship between the detected clusters and local climatic proxy factors is discussed. To110

the best of our knowledge, it is the first time that such a long-term inventory is analysed to111

explore the spatiotemporal patterns of flash flood disasters, especially in China. This study112

provide useful insights on flood dynamics over a large spatiotemporal domain. Moreover,113

because of the long time-span, results can be useful to indicate how flash flood disasters have114

evolved in response to climate changes.115

2 Material and methods116

2.1 Data description117

2.1.1 Study area118

China lies between latitudes 18◦ and 54◦ N, and longitudes 73◦ and 135◦ E. With an area of119

about 9.6 million square kilometers, it is the world’s third-largest country. The landscape120

varies significantly across this vast area, ranging from the Gobi and Taklamakan deserts in the121

north to the subtropical forests in the wetter south. The eastern plains and southern coasts122

are the location of most of China’s agricultural land and settlements. The southern areas123

consist of hilly and mountainous terrain. The west and north of the country are dominated124

by sunken basins (such as the Gobi and the Taklamakan desert), towering massifs and rolling125

plateaus, including part of the highest tableland on earth, the Tibetan Plateau. Based on126

its topography, China can be divided into six homogeneous geomorphological macro-regions127

(Wang et al., 2020): eastern plain, southeastern hills, southwestern mountains, north-central128

plains, northwestern basins and Tibetan Plateau. Mountains (33% of the territory), plateaus129

(26%) and hills (10%) account together for nearly 70% of the entire surface.130

In recent years, the precipitation intensity shows an increasing trends over China (Zhang131

and Cong, 2014). Influenced by the East Asian summer monsoon and the geomorphologic132

settings, the climatic condition across the whole country varies considerably (Wu et al., 2019).133

In general, the wet season in China lasts from May to September (Song et al., 2011b). In134

the Eastern area, the annual rainfall decreases from south to north with an average annual135

precipitation that ranges from 250 to 750 mm (Zhang et al., 2007). In the west and central136

part of North China, due to its far distance away from ocean, the climate tends to be more137

4

https://doi.org/10.5194/nhess-2020-238
Preprint. Discussion started: 25 August 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 1: Distribution of flash flood disasters and background setting of China.

arid and the landscape transitions to large deserts. The Tibetan plateau is characterized by138

wet and humid summers with cool and dry winters. More than 60–90% of the annual total139

precipitation falls between June and September (Xu et al., 2008).140

2.1.2 Flash flood disasters inventory141

The dataset used in this study has been collated and made accessible for the present research142

as part of a national effort carried out by the Chinese Institute of Water Resources and143

Hydropower Research (Liu et al., 2018). It reports flash flood occurrences in China since 1950144

until 2015 together with available information, namely longitude and latitude, date, fatalities145

and economic losses. Due to the lack of specific terminology and/or detailed descriptions of146

the disaster process in the database, the data does not differentiate the initial mechanism, be147

it water floods or debris floods/flows (e.g., Fernández and Lutz, 2010; Gartner et al., 2014).148

The only common information is that for each specific case, a large amount of overland flows,149

mixed with an unspecified solid fraction, rapidly flooded a given area with disastrous effects150
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(e.g., Chang et al., 2011; Pierson et al., 1987).151

To better understand the spatiotemporal dynamics of flash floods and associated disas-152

ters, as well as the relationship with the triggering factors, the date of occurrence is of vital153

importance. Therefore, for consistency reasons, we considered only the records whose meta-154

data contained a full temporal description (year-month-day) resulting in a subset of 32,473155

flash flood disasters (accounting for 68% of the entire dataset) precisely located in space and156

time (Figure 1). We further defined the impact of flash flood disasters as the combination157

of fatalities and economic losses (see Table 1), and we refer to this classification throughout158

the manuscript.159

Table 1: Impact of flash flood disasters (RMB = renminbi, the official currency of China).

Economic Loss 

(104RMB) 

Number of Fatalities 

0 0-5 5-10 10-50 50-100 ≥100 

0 --  F1 F2 F3 F4 F5 

0-100 F1 F1 F2 F3 F4 F5 

100-1000 F2 F2 F2 F3 F4 F5 

1000-10000 F3 F3 F3 F3 F4 F5 

10000-100000 F4 F4 F4 F4 F4 F5 

≥100000 F5 F5 F5 F5 F5 F5 

2.2 Methodological overview160

2.2.1 Spatiotemporal K-function161

The Ripley’s K-function (K(s)) is largely applied in environmental studies to analyse the162

pattern distribution of spatial point processes and to detect deviation from spatial random-163

ness. K(s) allows to determine if a set of mapped punctual events show a random, dispersed164

or cluster distribution pattern over increasing distance values (Ripley, 1977). It is computed165

as the ratio between the expected number of events falling at a distance r from an arbitrary166

event and the average number of points per unit area, corresponding to the intensity of the167

spatial point process (λ). In the same way, it is possible to define the temporal K-function168

(K(t)) allowing to asses for the randomness of events in time. The spatiotemporal K-function169

(K(s,t)) is a generalization of the univariate Repley’s K-function which allows to test for the170

independence between two variables, space (s) and time (t). Therefore, the K(s,t) is a suitable171

tool to investigate the clustering behaviour of a set of events occurred in a given area at a172

given time. For a point process X with intensity λ, according to equation 1, it is defined as173

the number of expected further events (E) occurring within a distance r and time t from an174

arbitrary event u, where a define the contouring circle.175
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K(s,t) = 1/λ× E[n(X ∩ a(u, r, t)u)|u ∈ X] (1)

To illustrate the interaction between space and time, it can be useful to evaluate the176

value D(s,t), defining the difference between the spatiotemporal K-function and the product177

of the purely spatial and the purely temporal K-function (see equation 2).178

D(s,t) = K(s,t) −K(s) ×K(t) (2)

If space and time are independent variables, this value equals to zero. Otherwise, positive179

values of D(s,t) indicates the interaction among events in space and in time. In other words,180

events closer in space are more likely to occur in a closer time. On the contrary, the negative181

values means a dispersed pattern.182

In this study, spatiotemporal K-function analyses were performed with the package “Spa-183

tial and Space-Time Point Pattern Analysis” (splancs, Rowlingson and Diggle, 2017) in R184

(R Team et al., 2019).185

2.2.2 Spatiotemporal scan statistics186

Scan statistic was originally developed by Naus (1965a,b) to detect cluster in a one-187

dimensional point process. Subsequently Kulldorff (1997) extended this approach to multi-188

dimensional point process, introducing the use of scanning windows. The procedure was189

implemented into a free software, SaTScanTM (satscan.org) which can handle a purely spa-190

tial, purely temporal or spatiotemporal datasets and includes different probability models191

depending on the nature of the data and the scope of the research (e.g. for prospective or192

retrospective cluster detection). In the purely spatial case, the aim of scan statistics is the193

early detection of clusters, allowing one to map them and to assess their statistical signif-194

icance. Moving windows scan the region increasing their radius up to a fixed limit (Rmax)195

and count the number of events falling inside and outside the area. The probability that196

a window contains more observations than expected is assessed via the likelihood ratio, by197

comparing with the background population. Then, the null hypothesis of randomness is198

tested by Monte Carlo experiments, based on repeated random sampling. The spatiotempo-199

ral scan statistic use cylinders instead of circular windows, where the height of the cylinder200

account for the temporal dimension. In order to deal with flash foods, the retrospective201

spatiotemporal permutation scan statistics (STPSS, Kulldorff et al., 2005) seems to be the202

most adequate model. Indeed, for environmental processes, the definition of the background203

population at risk needed for the statistical significance assessment of the detected clusters204

is quite problematic. STPSS assesses the expected number of cases using only the observed205

cases by permutation, supposing that each event has the same probability for all the times.206

Computationally, if C is the total number of observer cases and czd the number of cases207

observed in a zone z and a day d, the expected number of cases per zone and day (µzd) is:208
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µzd =
1

C

(∑

z

czd

)(∑

d

czd

)
(3)

It follows that, for a spatiotemporal cylinder A, the expected number of cases µA can be209

estimated as the sum of each µzd inside the cylinder A:210

µA =
∑

z ,d∈A

µzd (4)

If CA is the number of observed cases in A, considered as Poisson-distributed with mean211

µA, the Poisson generalized likelihood ratio (GLR) can be computed as:212

GLR =

(
cA
µA

)cA
(
C − cA
C − µA

)C−cA

(5)

This ratio is calculated and maximized for every possible scanning cylinder. Then, the213

Monte Carlo simulations are performed and the statistical significance of the detected clusters214

is assigned by ranking the clusters according to their GLR-value.215

3 Results216

3.1 Deviation from a random process217

In the present study the spatiotemporal K-function is used to assess the interaction between218

the two variables, space and time, in generating clusters at increasing distances. Figure 2219

(panel a) shows the 3D-plot of D(s,t) with a zoom up to 2000 km (panel b). Positive values220

indicate that space and time interact in generating clusters: in other words, events closer221

in space are also closer in time. This is the case at any increasing distance, from hundred222

meters to thousands meters and from few years to decades.223

In addition, we computed the spatiotemporal K-function separately for the eastern and224

western side of China (Figure 3). We did this because the southeastern area, which is225

the rainiest part of the country, is highly affected by flash floods, while the northwestern226

area is predominantly desert and flash floods are less frequent. It results that, although227

events are clustered in both the areas, in the southeastern area (panel a) clusters arise at a228

shorter spatial distance and closer in time than in the northwestern area (panel b). More229

specifically, in the southeast China the spatiotemporal interaction generates clusters starting230

from 200 km and a plateau is reached at about 1800 km. In Northwest China the global231

cluster behaviour is more evident from about 1000 km to higher distances. As regards the232

temporal dimension, the two part of the country show a similar cluster behaviour, with a233

strong attraction among events during the first 20 years lasting in time with a more relaxed234

clustering behaviour.235

To summarize, the spatiotemporal K-function reveals a deviation of flash flood disasters236

and associated spatiotemporal pattern distribution from a random process at specific scales,237
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Figure 2: Three dimensional summary of flash flood disasters in China during 1950-2015.

Figure 3: Three dimensional summary of flash flood disasters in China, separated between
two eastern and western sectors and with a maximum spatial bandwidth of 2000 km.

measured and quantified both in space, as distances-values, and in time, as yearly periods.238

These values can provide a useful indication to set up the parameters for further clustering239

algorithms, acting at local scale such as, for example, the spatiotemporal scan statistics.240

3.2 Spatiotemporal clusters241

3.2.1 Cluster detection and spatial distribution242

Scan statistics was performed to detect spatiotemporal clusters of flash flood disasters. The243

size and the duration of the detected clusters are influenced by the input parameters of the244

scanning windows, namely the maximum radius (Rmax), the maximum temporal duration245

(Tmax), and the time aggregation (Tagg). Indeed, values of Rmax exceeding the 50% of the246

total area or, for Tmax, the 50% of the entire study period, can result in an exceptionally low247

rate outside the scanning window rather than detecting an exceptionally high rate inside.248
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Figure 4: Significant (p<0.005) spatiotemporal clusters of flash flood disasters in China
during 1950-2015.

Tagg is used to adjust the aggregation of the data over time and allows adjusting for cyclic249

temporal trends: for example, a time aggregation of one year automatically adjusts for the250

seasonal variability, while the contrary happen with monthly aggregations. Moreover, both251

spatial and temporal aggregations can highly reduce the computer processing time. Following252

the results obtained by the spatiotemporal K-function and discussed above, few radii for each253

area (southeast and northwest China) were tested. Performed analyses indicated that the254

effect onto the detected clusters were negligible and finally we considered the spatiotemporal255

distribution of flash flood disasters as a whole rather than splitting the Chinese territory256

in two areas. We opted for a set of possible combinations of Rmax and Tmax, keeping Tagg257

fixed to one year. More specifically, to compare the combination of these parameters, and to258

obtain reasonable clusters, we tested three Rmax values equal to 100, 200 and 300km, and259

three Tmax values equal to 1, 3 and 5 years. The choice for Rmax is corroborated by Zhang260

et al. (2010) who report measurements constantly less than 500 km for the radius of typical261

convective storms in the Chinese mainland, which can trigger flash floods. Results of STPSS262

for each of the nine combinations of these parameters are shown in Figure 4.263
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Table 2: Number of detected spatiotemporal clusters of flash flood disasters in China during
1950-2015 using different parameters.

Rmax (km) 
Tmax (years) 

1 3 5 
100 131 128 130 
200 85 77 75 
300 58 54 53 

The largest variation in the number of detected clusters is mainly associated with Rmax –264

as Rmax increases, the detected flash flood disaster clusters exhibit a clear decrease – rather265

than with Tmax. This result is summarized in Table 2. More specifically, large Rmax values266

affect the detection of clusters acting at a fine scale, which tend to be missed or merged into267

larger ones; conversely, very large clusters, acting at a coarse spatial scale, are still detected.268

This is geographically visible in the south-easternmost sector of China (Figure 4). Changes269

on Tmax have almost no effect on the number of clusters since, even allowing for a maximum270

duration of 5 years, almost all the clusters do not exceed one year. As complementary271

information, Table 3 presents the temporal duration, expresses as start and end date, for the272

first ten clusters of flash flood disasters using Tmax equals to 3 years and for increasing values273

of Rmax, equal to 100, 200 and 300 km. Results confirm that the cluster duration does not274

exceed one year. The most significant cluster was detected in 1975, while the rating for the275

following clusters can change in the three cases. Nevertheless, it is important to notice that276

the top-ten clusters are well distributed over the entire study period, with the oldest one277

detected between 1963 and 1969.278

3.2.2 Clusters characterization279

Detected clusters where further analyzed by considering the impact of flash flood disasters.280

To this end, we examined only clusters detected by using Rmax = 200km and Tmax = 3years.281

The choice of a Tagg = 1year was originally meant to focus our analyses on effects that may282

exhibit a yearly cycle. However, this would have smoothed nested effects acting at the283

seasonal scale. For this reason, we opted to carry out additional analyses using a Tagg of284

three months (hereafter referred as monthly model). Results are shown in Figure 5 where285

information on the spatial distribution of the detected clusters is combined with the impact286

related to the single flash flood events (see Table 1). Overall, the clusters chiefly appear287

along the main river systems in China, namely the Yangtze, the Yellow, the Pearl and the288

Yarlung Zangbo Rivers. In addition, some clusters stand out on high mountains such as the289

Qinling-Daba and the Changbai Mountains.290

Forcing the model parameterization to aggregate the time over a fraction of the year (three291

months) allows us to investigate potential seasonal effects. Indeed, even if the maximum292

temporal duration is still of one year, looking at the ten most significant clusters detected293
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Table 3: Temporal duration of the first 10 clusters of flash flood disasters detected via three
different models (left: Rmax = 100km; center: Rmax = 200km; right: Rmax = 300km)

ID Radius Start 

date 

End 

date 

ID Radius Start 

date 

End date ID Radius Start 

date 

End 

date 

1 81.04 1975/1 1975/12 1 81.04 1975/1 1975/12 1 81.04 1975/1 1975/12 

2 64.51 2010/1 2010/12 2 146.06 1998/1 1998/12 2 146.06 1998/1 1998/12 

3 60.73 2006/1 2006/12 3 64.51 2010/1 2010/12 3 64.51 2010/1 2010/12 

4 72.76 2010/1 2010/12 4 60.73 2006/1 2006/12 4 60.73 2006/1 2006/12 

5 94.42 1998/1 1998/12 5 72.76 2010/1 2010/12 5 72.76 2010/1 2010/12 

6 73.13 1969/1 1969/12 6 73.13 1969/1 1969/12 6 73.13 1969/1 1969/12 

7 56.67 1963/1 1963/12 7 176.96 1982/1 1982/12 7 176.96 1982/1 1982/12 

8 49.51 1996/1 1996/12 8 70.57 1984/1 1984/12 8 70.57 1984/1 1984/12 

9 70.57 1984/1 1984/12 9 129.06 1996/1 1996/12 9 129.06 1996/1 1996/12 

10 35.27 1987/1 1987/12 10 157.14 2010/1 2010/12 10 157.14 2010/1 2010/12 

Table 4: Temporal duration of the first 10 clusters of flash flood disasters during 1950-2015
(Rmax = 200km, Tmax = 1year, Tagg = 3months).

ID Radius Start date End date 

1 54.88 2010/10/1 2010/12/31 

2 81.04 1975/4/1 1975/9/30 

3 72.76 2010/7/1 2010/9/30 

4 146.06 1998/4/1 1998/9/30 

5 60.73 2006/7/1 2006/9/30 

6 73.13 1969/4/1 1969/9/30 

7 178.05 1982/7/1 1982/9/30 

8 199.88 1996/4/1 1996/6/30 

9 157.14 2010/7/1 2010/9/30 

10 67.05 1984/4/1 1984/9/30 
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Figure 5: Significant (p<0.005) spatiotemporal clusters of flash flood disasters in China
during 1950-2015 (Rmax = 200km, Tmax = 3years, Tagg = 3months). Each event belonging
to a single cluster is further resized as a function of its impact, in accordance to Table 1.
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under the monthly model (Table 4), it results that all of them have a duration of three294

(six clusters) or six (four clusters) months. Notably, almost every cluster (nine clusters)295

encompass the period from July to September, with an earlier start date (in April) for the296

ones which have a longer duration.297

3.2.3 Temporal duration of detected clusters298

The temporal variation in the duration of the detected clusters could have been driven by299

the precipitation regime. In additional, spatiotemporal dependency may have been induced300

by the geomorphological setting of the area and by anthropogenic pressures, but these last301

factors should have a minor effect compared to the rainfall pattern, which acts as the primary302

triggering factor of flash floods. Therefore, in the present study we assume the precipitation303

as the main driver for flash floods detected clusters, and results are interpreted and discussed304

on the basis of this hypothesis. Allowing for Tmax = 3years in the parameterization of the305

yearly models, the temporal duration of the detected clusters ranges from one to three years306

(see Figure 6). The cluster detection pattern appears quite clear and well defined. However,307

since 1980 some clusters partially overlap. This can lead to two separate interpretations.308

Firstly, the relative small number of clusters detected between 1950 and 1980 may imply that309

the data acquisition and report in the Chinese database of hydro-morphological disasters was310

not fully operational at the time. Conversely, from 1980 to present days the Chinese database311

has evolved into a mature and detailed geographic information system. Secondly, the same312

pattern can be justified as a result of climatic changes. In fact, overlapping clusters of one,313

two and three years duration essentially appear only after 1980. These concurrent clusters314

may reflect similar synchronous variations of the climate settings and rainfall regimes across315

China in the recent period.316
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Figure 6: Temporal duration of flash flood disasters clusters in China during 1950-2015
(Rmax = 200km, Tagg = 1year, Tmax = 3years).

We summarized the same results for the monthly model in Figure 7. To better visualize317

the seasonality trend, we opted for a cyclic representation of the detected clusters, plotting318

their pattern in four temporal duration classes of 3, 6 and 9 months as well as one year. Most319

clusters show a 3-months duration, concentrated in the period between July and October,320

and an increasing density after 1980. Furthermore, clusters of 6-months temporal duration321

are most likely to occur from January to July or from April to October. As for clusters322

with 9-months temporal duration, these mostly cover the period of July-August-September,323

irrespective of the starting month. Ultimately, as noticed for the yearly model, also in the324

monthly model much more clusters were detected in the late period, mainly from 2000.325

Moreover, the vast majority of flash flood disasters clusters happened between July and326

October, a period coinciding with the wet season in China.327

3.2.4 Recurrence of clusters at decades-scale328

The analyses run in the previous sections were all voted to search for clusters in a relatively329

small temporal window. However, environmental changes, and especially those related to330

climate change, usually act on a longer time-span. To better investigate this effect, we consid-331

ered a temporal subdivision of the dataset into six subsets, each one lasting ten years (start-332

ing from 1956). For each decade (1956-1965, 1966-1975, 1976-1985, 1986-1995, 1996-2005,333

2006-2015) the following parameter for the scanning widows were imposed: Rmax = 200km,334

Tmax = 2years and Tagg = 1year. As shown in Figure 8, the number of detected clusters335
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Figure 7: Seasonal effect of flash flood disasters clusters in China during 1950-2015 (Rmax =
200km, Tmax = 1year, Tagg = 3months).

increases from the early to recent periods. These are compared with the rainfall distribution,336

derived from the daily rainfall data provided by the China Meteorological Administration337

(http://data.cma.cn/). In the present study, only the weather stations (a total of 699 rain338

gauges) with complete data for the period 1955-2015 were considered. The mean monthly339

and annual rainfall were computed for each station and this data were then regionalized on a340

2km × 2km lattice, via Ordinary Kriging interpolation. It results that flash floods detected341

clusters are mainly located in the southeastern most humid regions in every period. However,342

in the last two decades, clusters appear also in the northwestern arid regions. Even if the343

rainfall distribution, averaged over each decades, does not allow to discover clear changes344

along the subsequent periods, these newly detected clusters can be due to the intensification345

of the extreme rainfall events occurring in the area in recent periods. This assumption is346

confirmed by the statistics on clusters duration (Figure 9). From the boxplot summarizing347

the descriptive statistics it is evident that the median values of clusters duration tends to348

slightly decrease from 46 days (1956-1965), to 17 days (1986-1995), to stabilise at a value349

around 20 days in the two last decades. At the same time, the overall duration, measured350

as difference between the maximum and the minimum value, is higher in the late periods351

(140 days in 1956-1965, and 93 and 74 days respectively in the two following decades) than352

in the early periods (about 65 days for the last two decades). This is even more evident353
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Figure 8: Significant (p < 0.005) spatiotemporal clusters of flash flood disasters in China
every ten years. The size of the circles indicates the impact of flash flood disasters according
to the classification proposed in Table 1.

looking at the inter quantile ranges, which decrease with time. To resume, from these analy-354

ses, the number of detected clusters globally increase in time, but their duration drastically355

decreases in the recent period, indicating a possible activation induced by short-duration356

extreme rainfall events.357

Figure 9: Boxplots summarizing the descriptive statistics of the duration of clusters reported
on Figure 8.
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Figure 10: Catchments with clusters detected more than once (a) and return period for the
clusters (b).

We further explored how many times the clusters detected from the previous investiga-358

tion overlap, considering the catchment level. Results provide an useful information on the359

recurrence of clusters of flash flood disasters every ten years. To perform this analysis, the360

centroid of each cluster (with reference to Figure 8) was extracted and intersected with the361

catchment boundaries. In a second step, the number of repeated clusters per catchment362

was computed and their distribution investigated through the time. Results are shown in363

Figure 10, where panel (a) reports the number of repeated clusters and panel (b) reports the364

information on their relative occurrence across time (similarly to the concept of return time365

but in the context of spatiotemporal clustering).366

Figure 10a shows that, as for the spatial trends of the detected clusters, the catchments367

with recurrent clusters are mainly located in the southeast sector and essentially in the368

coastal mountains. From Figure 10b it emerges that, on average, most of the repeated369

cluster occur with an interval between 10-20 and 20-50 years.370

4 Discussions371

The present study aims at exploring the spatiotemporal clustering characteristics of flash372

flood disasters in China. For this purpose, we analyzed the official historical inventory, which373

covers a very long period (from 1950 to 2015). Results are interpreted with a particular regard374

to the rainfall distribution, being these two processes highly related (Wei et al., 2018). The375

spatiotemporal K-function was fist computed to assess the deviation of flash flood pattern376

distribution from a random process. This revealed a clustering behavior at specific spatial377

distances and yearly periods. Scan Statistics, the spatiotemporal permutation model we378

adopted, was then performed to identify statistically significant clusters together with their379

duration (start and end date). This allowed us to detect areas and periods more susceptible380
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to flash flood disasters. We opted for a set of possible combinations for the maximum spatial381

and temporal extension of the scanning windows, while the data were aggregated both at382

yearly and at seasonal scale. More specifically, we tested three Rmax values equal to 100, 200383

and 300 km, and three Tmax values equal to 1, 3 and 5 years for the yearly model, with an384

aggregation of three months for the monthly model. The most significant cluster resulting385

from the yearly model was detected in 1975, while the rating for the following clusters can386

change by varying Rmax; nevertheless, it is important to note that the top-ten clusters are387

well distributed over the entire study period, with the oldest one detected in 1963-1969.388

Results of the monthly model show that the top-ten detected clusters have a duration of389

three (six clusters) or six (four clusters) months. Notably, almost every cluster encompasses390

the period from July to September, a period coinciding with the wet season in China, with391

an earlier start date (in April) for the ones which have a longer duration. Globally, much392

more clusters were detected in the late period, mainly from 2000. Overall, clusters are chiefly393

located along the main river systems in China (the Yangtze, the Yellow, the Pearl and the394

Yarlung Zangbo Rivers). In addition, some clusters stand out on high mountains such as395

the Qinling-Daba and the Changbai Mountains.396

Finally, to detect changes acting at a larger temporal scale, dates were grouped each ten397

years over the last six decades (from 1956 to 2015). As for the previous analyses, detected398

clusters are mainly located in the southeastern most humid regions in every period. However,399

in the last two decades, clusters appear also in the northwestern arid regions. These newly400

detected clusters can be due to the intensification the extreme rainfall events occurring in401

the area in recent periods, as a consequence of climate changes (Song et al., 2011a). This402

important fact is confirmed by checking the descriptive statistics of the duration of clusters:403

globally, the number of detected clusters increases in time, but the duration drastically de-404

creases in recent periods, indicating a possible activation induced by short-duration extreme405

rainfall events. Our analyses reveled that the catchments with recurrent clusters are mainly406

located in the southeast sector and essentially in the coastal mountains. China is indicated407

as one of the hotspot with global flood-exposed coastal population (Van Coppenolle and408

Temmerman, 2020). Therefore, we can assume these catchments to be exposed at the high-409

est potential risk across the whole Chinese territory also in the short to long term future.410

Nevertheless, catchments with repeated clusters in a shorter time-span (5 to 10 years) may411

also pose a relevant threat, especially in the near future.412

In the present study spatiotemporal clusters of flash floods were detected chiefly on the413

basis of two parameters (Rmax and Tmax), without featuring terrain attributes, precipitation414

regimes and anthropogenic pressure. However, these factors may have played and still play a415

significant role to explain the distribution of flash flood disasters. For instance, the approach416

we adopted may over-rely on spatial distances to detect clusters. In fact, the natural land-417

scape has mountain belts that can act as orographic barriers to the incoming cloudbursts,418

effectively limiting the rainfall distribution – hence flash flood occurrences – on one or the419

other side of a catchment divide (at various scales). As for the temporal scale, due to the420
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large time-span, the detected temporal patterns may reflect more information due to long-421

term climatic variations rather than specific conditions. For this reason, we are planning to422

extend our spatiotemporal cluster analyses to more complex models, which can concurrently423

capture multivariate contributions featuring environmental effects, even at the latent level424

(Lombardo et al., 2018, 2019a).425

5 Conclusion426

In this work, we explore the national archive of flash flood disasters in China from 1950 to427

2015. The term disaster is meant to describe the destructiveness of the flash floods, since428

each record in this archive has produced economic, life losses, or both.429

The clustering procedure highlighted distinct spatial and temporal patterns at different430

scales. For instance, flash flood disasters cluster in specific regions and closely follow the431

mean rainfall distribution. Additionally, we were also able to distinguish seasonal, yearly432

and even long-term flash flood persisting behaviors. The persistence of disasters is a crucial433

information because it indicates the risk that a community may undergo in response to a434

flash flood. Moreover, we studied the cycle of such disasters with particular emphasis on435

their repeated occurrence per catchment. This complementary information can be further436

used in relation to engineering and structural design. In fact, infrastructure is usually built437

to sustain the damage of an event of certain return time. In our analyses, we show that the438

very same area has been hit and incurred losses up to six times in the last 66 years. This may439

suggest locally-tailored structural improvements which may lengthen the life expectancy of440

specific infrastructure as well as reduce the number of victims.441

We would like to stress that, as advanced as it may be, our clustering framework is essen-442

tially a descriptive tool. And yet, the amount of information one can draw from a descriptive443

tool can be extremely valuable. Nowadays, the hazard community’s effort is mainly dedi-444

cated to predictive modeling of various natures and purposes, thus leaving under-explored445

or even unexplored some basic concepts and interpretative conclusions that data description446

and visualization can provide. Long time series of national hazard phenomena are one of447

these examples where studying variations over space and time can highlight very important448

environmental dynamics, even in the direction of climate change and its implications.449
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