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Abstract1

The persistence over space and time of flash flood disasters – flash floods that have caused2

either economical or life losses, or both – is a diagnostic measure of areas subjected to hydro-3

logical risk. The concept of persistence can be assessed via clustering analyses, performed4

here to analyze the national inventory of flash flood disasters in China that occurred in the5

period 1950-2015. Specifically, we investigated the spatiotemporal pattern distribution of the6

flash flood disasters and their clustering behavior by using both global and local methods:7

the first, based on the Ripley’s K-function, and the second on Scan Statistics. As a result,8

we could visualize patterns of aggregated events, estimate the cluster duration, and make9

assumptions about their evolution over time, also with respect to the precipitation trend.10

Due to the large spatial (the whole Chinese territory) and temporal (66 years) scale of the11

dataset, we were able to capture whether certain clusters gather in specific locations and12

times, but also whether their magnitude tends to increase or decrease. Overall, the eastern13

regions in China are much more subjected to flash flood disasters compared to the rest of14

the country. Detected clusters revealed that these phenomena predominantly occur between15

July and October, a period coinciding with the wet season in China. The number of de-16

tected clusters increases with time, but the associated duration drastically decreases in the17

recent period. This may indicate a change towards triggering mechanisms which are typical18

of short-duration extreme rainfall events. Finally, being flash flood disasters directly linked19

to precipitation and their extreme realization, we indirectly assessed whether the magnitude20

of the trigger itself has also varied through space and time, enabling considerations in the21

context of climatic changes.22
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1 Introduction25

Flash floods are among the most destructive surface processes around the world, especially26

in mountainous areas (Au, 1998; Borga et al., 2011; Gomez and Kavzoglu, 2005; Jonkman,27

2005). They are mainly initiated by rapid and intense rainfall, often discharged in few hours28

(e.g., Borga et al., 2007; Bout et al., 2018; He et al., 2018; Lóczy et al., 2012), and by complex29

interactions of the climatic conditions with topography and hydrology (e.g., Hatheway et al.,30

2005). Because of the very rapid raise in water levels caused by flash floods, it is challenging31

to take timely and effective actions to contain the associated damage. Flash flood disasters32

are essentially flash floods that have caused losses either in terms of human lives or economy,33

or both (Gaume et al., 2009; Jonkman and Kelman, 2005; Kelman and Spence, 2004). In34

China, approximately 70% of the total area is covered by mountains and hills, which exposes35

a substantial surface of the national territory to flash flood disasters’ risk (Liu et al., 2018).36

Additionally, the more frequent extreme precipitation associated with climate change has37

increased the number of flash flood disasters in recent decades (Sampson et al., 2015).38

The susceptibility to hydro-geomorphological processes is commonly assessed by consid-39

ering only the spatial distribution of observed events (Cama et al., 2015, 2017; Santangelo40

et al., 2012; Zaharia et al., 2017). However, this is purely a convenient assumption from the41

modeling perspective. Recently, a growing amount of evidence indicates that these events42

tend to aggregate in space conditioned by the temporal variability, attesting for an inter-43

action between space and time on event frequency and distribution (Gariano and Guzzetti,44

2016; Kouli et al., 2010; Zhang and Cong, 2014; Fuchs et al., 2015; Merz et al., 2016; Tonini45

and Cama, 2019). In other words, when an event occurs at a specific location, a tempo-46

rary increase in the probability that other events will cluster at nearby locations should47

be accounted for. This increase in probability can be captured through clustering analy-48

ses and various examples already exist in literature where this has been done at different49

spatial and temporal scales and via different analytical approaches. Notably, this type of50

application spans in many areas of natural hazards and have become mainstream in case51

of seismicity (e.g., Fischer and Horálek, 2003; Georgoulas et al., 2013; Varga et al., 2012;52

Woodward et al., 2018; Yang et al., 2019), joint sets and their orientation in rock outcrops53

(e.g., Tokhmechi et al., 2011; Zhan et al., 2017), groundwater monitoring (Chambers et al.,54

2015), wildfires (e.g., Orozco et al., 2012; Costafreda-Aumedes et al., 2016; Fuentes-Santos55

et al., 2013; Tonini et al., 2017), and landslides (e.g., Lombardo et al., 2018, 2019; Tonini56

and Cama, 2019). In the specific case of flooding, Zhao et al. (2014) used the projection57

pursuit theory to cluster spatial data and to build a dynamic risk assessment model for flood58

disasters. Moreover, Renard (2017) detected flood vulnerability accounting for clustering59

effects in key areas with high flood risk. Pappadà et al. (2018) also investigated the flood60
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risks in a given region and identified clusters where the floods show a similar behavior with61

respect to multivariate criteria. Gu et al. (2016a,b) indicated the floods in Tarim River basin62

showed evident inter-annual clustering pattern. Another example can be found in Merz et al.63

(2016) where the authors analyzed the inter-annual and intra-annual flood clustering in Ger-64

many. All these examples confirm a substantial scientific interest in recent years dedicated65

to investigate the clustering behaviors of flash floods and the associated risk; and, more66

generally, to concurrently analyze their spatial and temporal persistence. However, despite67

the scientific efforts, detecting flash flood patterns at long temporal scale is still scarce in68

literature, mainly because of technical limitations. In fact, limited information and records69

are available in digital form reporting locations and dates of flash floods (and flash flood70

disasters), especially over long periods. Nevertheless, very recent advances in data collection71

and sharing techniques are gradually filling this gap, and an increasing number of databases72

are being published and made available to the scientific community with the records of his-73

torical and hydro-geomorphological disasters at the global, continental, or regional scale over74

long periods (Gourley et al., 2013; Haigh et al., 2017; Vennari et al., 2016; Liu et al., 2018;75

Archer et al., 2019; de Bruijn et al., 2019; Nowicki Jessee et al., 2020; Wood et al., 2020).76

Among these, Chinese historical inventories of flash flood disasters are a precious source of77

information allowing to investigate their spatiotemporal pattern distribution and evolution.78

Furthermore, this information can be related with the geomorphological settings of the area79

and the climatic/meteorological conditions to detect triggering factors, highlight the more80

vulnerable areas, and to prevent and forecast their effects in the future.81

Typically, flash flood disasters (as many other hydro-geomorphological disasters) can be82

considered as a stochastic point processes (Stoyan, 2006) acting in both spatial and tem-83

poral dimensions (e.g., Lombardo et al., 2020). Point patterns can be analyzed in terms of84

their random distribution, dispersion and clustering behaviour (Merz et al., 2016; Tonini and85

Cama, 2019). Several methods can be implemented to deal with stochastic properties. Some86

classic models, such as Moran’s I (Moran, 1950), Ripley’s K-function (Ripley, 1977), fractal87

dimension (Lovejoy et al., 1986), and Allan factor (Allan, 1966), have been used to detect88

clustering behaviour in space and in time. Representative models for local clustering analysis89

(i.e. allowing to detect clusters and their specific location) include Geographical Analysis90

Machine (GAM, Openshaw et al., 1987), Turnbull’s Cluster Evaluation Permutation Proce-91

dure (CEPP, Turnbull et al., 1990), Scan Statistics (Kulldorff, 1997), and DBSCAN (Ester92

et al., 1996). For flash floods, which are triggered by storms, the temporal dependency among93

persistent events is mainly driven by climatic and meteorological conditions. However, global94

cluster indicators only take into consideration one dimension, disregarding the interaction95

between space and time. In this sense, spatiotemporal Scan Statistics is a good tool to detect96

clusters since it allows to identify statistically significant excess of observations thanks to a97

moving cylindrical window that scans all locations both in space and time (Kulldorff et al.,98

1998).99

Therefore, it is especially useful to investigate large spatiotemporal inventories of hydro-100
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and geo-morphological processes, such as flash floods. Indeed, the detection of clusters101

originated by events closer both in space and in time can be more informative that the102

simply investigation of their purely temporal and purely spatial pattern distribution. For103

example, understanding the duration of the spatiotemporal clusters of flash floods is key tool104

to investigate their dynamic and to highlight more vulnerable area and frame period.105

In light of this, the main objective of the present research is to explore the pattern106

distribution of flash flood disasters which have caused life and/or economic losses in China107

over a 66-years period (daily data from 1950 to 2015). Firstly, the Ripley’s K-function was108

applied to explore the deviation of flash flood disasters from a random process. Results109

allow to assess at which spatial and temporal scales events are clustered. Then, a local110

cluster indicator, namely Scan Statistics, was implemented to map statistically significant111

spatiotemporal clusters. To the best of our knowledge, this study represents the first attempt112

of investigating the spatiotemporal cluster behaviour of flash flood disasters affecting a huge113

area, such as the entire Chinese territory. Moreover, the volume of the data that we analyzed114

represents an additional challenge allowing to provide useful insights on flood dynamics over115

a large spatiotemporal domain and enabling considerations in the context of climatic changes.116

To this end, we finally compared the dynamic of the clusters, detected from the early to the117

recent period, with the extreme rainfall evolution, computed each 10-years, which is assumed118

as a local climatic proxy factors.119

2 Material and methods120

2.1 Data description121

2.1.1 Study area122

China lies between latitudes 18◦ and 54◦ N, and longitudes 73◦ and 135◦ E. With an area of123

about 9.6 million square kilometers, it is the world’s third-largest country. The landscape124

varies significantly across this vast area, ranging from the Gobi and Taklamakan deserts in125

the north to the subtropical forests in the wetter south. The eastern plains and southern126

coasts are the location of most of China’s agricultural land and settlements. The southern127

areas consist of hilly and mountainous terrain. The west and north of the country are128

dominated by sunken basins (such as the Gobi and the Taklamakan desert), towering massifs129

and rolling plateaus, including part of the highest tableland on earth, the Tibetan Plateau.130

Based on its topography, China can be divided into six homogeneous geomorphological131

macro-regions (Wang et al., 2020): eastern plain, southeastern hills, southwestern mountains,132

north-central plateaus, northwestern basins and Tibetan Plateau. Mountains (33% of the133

territory), plateaus (26%) and hills (10%) account together for nearly 70% of the entire134

surface.135

In recent years, the precipitation intensity shows an increasing trends over China (Zhang136

and Cong, 2014). Influenced by the East Asian summer monsoon and the geomorphologic137
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settings, the climatic condition across the whole country varies considerably (Wu et al., 2019).138

In general, the wet season in China lasts from May to September (Song et al., 2011b). In139

the Eastern area, the annual rainfall decreases from south to north with an average annual140

precipitation that ranges from 250 to 750 mm (Zhang et al., 2007). In the west and central141

part of North China, due to its far distance away from ocean, the climate tends to be more142

arid and the landscape transitions to large deserts. The Tibetan plateau is characterized by143

wet and humid summers with cool and dry winters. More than 60–90% of the annual total144

precipitation falls between June and September (Xu et al., 2008).145

2.1.2 Flash flood disaster inventory146

The dataset used in this study has been collated and made accessible for the present research147

as part of a national effort carried out by the Chinese Institute of Water Resources and148

Hydropower Research (Liu et al., 2018). It reports flash flood occurrences in China since 1950149

until 2015 together with available information, namely longitude and latitude, date, fatalities150

and economic losses. Due to the lack of specific terminology and/or detailed descriptions of151

the disaster process in the database, the data does not differentiate the initial mechanism, be152

it water floods or debris floods/flows (e.g., Fernández and Lutz, 2010; Gartner et al., 2014).153

The only common information is that for each specific case, a large amount of overland flows,154

mixed with an unspecified solid fraction, rapidly flooded a given area with disastrous effects155

(e.g., Pierson et al., 1987; Chang et al., 2011).156

To better understand the spatiotemporal dynamics of flash floods and associated dis-157

asters, as well as the relationship with the triggering factors, the date of occurrence is of158

vital importance. Therefore, for consistency reasons, we considered only the records whose159

metadata contained a full temporal description (year-month-day) resulting in a subset of160

32,473 flash flood disasters (accounting for 68% of the entire dataset) precisely located in161

space and time (Figure 1).162

2.2 Methodological overview163

2.2.1 Spatiotemporal K-function164

The Ripley’s K-function (K(s)) is largely applied in environmental studies to analyse the165

pattern distribution of spatial point processes and to detect deviation from spatial random-166

ness. K(s) allows to determine if a set of mapped punctual events show a random, dispersed167

or cluster distribution pattern over increasing distance values (Ripley, 1977). It is computed168

as the ratio between the expected number of events falling at a distance r from an arbitrary169

event and the average number of points per unit area, corresponding to the intensity of the170

spatial point process (λ). In the same way, it is possible to define the temporal K-function171

(K(t)) allowing to asses for the randomness of events in time. The spatiotemporal K-function172

(K(s,t)) is a generalization of the univariate Ripley’s K-function which allows to test for the173

independence between two variables, space (s) and time (t). Therefore, the K(s,t) is a suitable174
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Figure 1: Distribution of flash flood disasters and background setting of China. Dashed lines
correspond to the geo-political boundary of China.
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tool to investigate the clustering behaviour of a set of events occurred in a given area at a175

given time. For a point process X with intensity λ, according to equation 1, it is defined as176

the number of expected further events (E) occurring within a distance r and time t from an177

arbitrary event u, where a define the contouring circle.178

K(s,t) = 1/λ× E[n(X ∩ a(u, r, t)u)|u ∈ X] (1)

To illustrate the interaction between space and time, it can be useful to evaluate the179

value D(s,t), defining the difference between the spatiotemporal K-function and the product180

of the purely spatial and the purely temporal K-function (see equation 2).181

D(s,t) = K(s,t) −K(s) ×K(t) (2)

If space and time are independent variables, this value equals to zero. Otherwise, positive182

values of D(s,t) indicates the interaction among events in space and in time. In other words,183

events closer in space are more likely to occur in a closer time. On the contrary, the negative184

values means a dispersed pattern.185

In this study, spatiotemporal K-function analyses were performed with the package “Spatial186

and Space-Time Point Pattern Analysis” (splancs, Rowlingson and Diggle, 2017) in R (R187

Core Team, 2019).188

2.2.2 Spatiotemporal scan statistics189

Scan statistic was originally developed by Naus (1965a,b) to detect cluster in a one-190

dimensional point process. Subsequently Kulldorff (1997) extended this approach to multi-191

dimensional point process, introducing the use of scanning windows. The procedure was192

implemented into a free software, SaTScanTM (satscan.org) which can handle a purely spa-193

tial, purely temporal or spatiotemporal datasets and includes different probability models194

depending on the nature of the data and the scope of the research (e.g. for prospective or195

retrospective cluster detection). In the purely spatial case, the aim of scan statistics is the196

early detection of clusters, allowing to map them and to assess their statistical significance.197

Moving windows scan the region increasing their radius up to a fixed limit (Rmax) and count198

the number of events falling inside and outside the area. The probability that a window con-199

tains more observations than expected is assessed via the likelihood ratio, by comparing with200

the background population. Then, the null hypothesis of randomness is tested via Monte201

Carlo simulations, based on repeated random sampling. The spatiotemporal scan statistic202

use cylinders instead of circular windows, where the height of the cylinder account for the203

temporal dimension.204

In order to deal with flash floods, the retrospective spatiotemporal permutation scan205

statistics (STPSS, Kulldorff et al., 2005) seems to be the most adequate model. Indeed,206

for environmental processes, the definition of the background population at risk needed for207

the statistical significance assessment of the detected clusters is quite problematic. STPSS208
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assesses the expected number of cases using only the observed cases by permutation, sup-209

posing that each event has the same probability for all the times. Computationally, if C is210

the total number of observed cases and czd the number of cases observed in a specific zone211

z and a day d, the expected number of cases per zone and day (µzd) is equal to:212

µzd =
1

C

(∑
z

czd

)(∑
d

czd

)
(3)

It follows that, for a spatiotemporal cylinder A, the expected number of cases µA can be213

estimated as the sum of each µzd inside the cylinder A:214

µA =
∑
z ,d∈A

µzd (4)

If CA is the number of observed cases in A, considered as Poisson-distributed with mean215

µA, the Poisson generalized likelihood ratio (GLR) can be computed as:216

GLR =

(
cA
µA

)cA
(
C − cA
C − µA

)C−cA
(5)

This ratio is calculated and maximized for every possible scanning cylinder. The cylinder217

with the highest GLR-value is the most likely cluster, that is, the cluster least likely to be218

due to chance, while the following are secondary clusters. Then, Monte Carlo simulations are219

performed and the statistical significance (p-value) of the detected clusters can be assigned220

by comparing the rank (R) of GLR from the real data set with the GLR from the simulated221

one. Thus, the p-value can be estimated by dividing R by the number, plus one, of performed222

simulations.223

3 Results224

3.1 Deviation from a random process225

In the present study, the spatiotemporal K-function was used to assess the global cluster226

behavior of flash flood disasters generated by the interaction between these two variables.227

To this end, the perspective 3D-plot of D(s,t) represents a useful visual tool allowing to228

estimate the distribution pattern of events along the spatial and the temporal dimensions.229

In more details, positive values attest for a cluster distribution, while values close to zero230

indicate a random pattern, with no interaction between space and time. In our case, the231

3D-plot (Figure 2) shows that at any distance, from hundred to thousands meters, and232

from few years to decades, flash flood disasters display a cluster behaviour, which is more233

pronounced at increasing distance-values. In addition, the spatiotemporal K-function was234

computed considering individually the southeastern and the northwestern area in China,235

given that the first corresponds to the rainiest zone, highly affected by flash floods, while the236
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second is predominantly desert. It results that (Figure 3) in the southeastern China (panel237

a) clusters arise at a shorter spatial distance and closer in time than in the northwestern238

China (panel b). As regards the temporal dimension, the two areas show a similar cluster239

behaviour, with a strong attraction among events up to 10-years, and than lasting in time240

with a more relaxed clustering behaviour.241

To summarize, the spatiotemporal K-function reveals a deviation of flash flood disasters242

and associated spatiotemporal pattern distribution from a random process at specific scales,243

measured and quantified both in space, as distances-values, and in time, as yearly periods.244

These values can provide a useful indication to set up the parameters for further clustering245

algorithms, acting at local scale such as, for example, the spatiotemporal scan statistics.246

Figure 2: Perspective 3D-plot of flash flood disasters in China during 1950-2015 (panel a)
with a zoom up to 2000 km (panel b).

Figure 3: Perspective 3D-plot of flash flood disasters in the southeast (panel a) and northwest
China (panel b).
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3.2 Spatiotemporal cluster detection247

3.2.1 Cluster parametrization and their spatial distribution248

Scan statistics was performed to detect spatiotemporal clusters of flash flood disasters. The249

size and the duration of the detected clusters are influenced by the input parameters of the250

scanning windows, namely the maximum radius (Rmax), the maximum temporal duration251

(Tmax), and the time aggregation (Tagg). Indeed, values of Rmax exceeding the 50% of the252

total area or, for Tmax, the 50% of the entire study period, can result in an exceptionally low253

rate outside the scanning window rather than detecting an exceptionally high rate inside.254

Tagg is used to adjust the aggregation of the data over time and allows adjusting for cyclic255

temporal trends: for example, a time aggregation of one year automatically adjusts for the256

seasonal variability, while the contrary happen with monthly aggregations. Moreover, both257

spatial and temporal aggregations can highly reduce the computer processing time. Different258

values for Rmax were tested for the southeast and northwest areas in China, as suggested by259

looking at the respective perspective 3D-plot. Nevertheless, the performed analyses indicated260

that the effect onto the detected clusters were negligible and that finally the distribution of261

spatiotemporal clusters of flash flood disasters in the country can be analysed as a whole. A262

set of possible combinations of Rmax and Tmax was tested, while Tagg was initially fixed to263

one year.264

More specifically, since results of the K-function revealed that flash floods disasters in the265

study area and investigated period are globally clustered even at short distances, we chose266

Rmax of 100, 200 and 300km, and Tmax equals to 1, 3 and 5 years. The choice for Rmax is267

corroborated by Zhang et al. (2010) who report measurements constantly less than 500 km268

for the radius of typical convective storms in the Chinese mainland, which can trigger flash269

floods. Results of STPSS for each of the nine combinations of these parameters are shown270

in Figure 4.271

Table 1: Number of detected spatiotemporal clusters of flash flood disasters in China during
1950-2015 using different parameters, as indicated.

Rmax (km) 
Tmax (year) 

1 3 5 

100 131 128 130 

200 85 77 75 

300 58 54 53 

As shown in Table 1, the largest variation in the number of detected clusters is mainly272

associated with Rmax rather than with Tmax; as Rmax increases, the number of detected273

clusters decrease. Indeed, large Rmax values affect the detection of clusters acting at a fine274
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Figure 4: Significant (p<0.005) spatiotemporal clusters of flash flood disasters in China
during 1950-2015.
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scale, by merging small cluster close each others into big ones or eventually by neglecting275

very small flash floods aggregations. Conversely, very large clusters, acting at a coarse276

spatial scale, are detected for any value of Rmax, as can be geographically visualised in the277

south-easternmost sector of China (Figure 4). Changes of Tmax have almost no effect on the278

number of detected clusters since, even allowing for a maximum duration of 5 years, almost279

all the clusters do not exceed the duration of one year.280

To confirm this finding, we computed the temporal duration of the first ten clusters of281

flash flood disasters detected by applying a Tmax equals to 3 years and for the three models,282

defined by using values of Rmax equal to 100, 200 and 300 km (Table 2). Results confirm283

that clusters duration, expresses as start and end date, never exceed one year. The most284

significant cluster (ranked as ID=1) is the same for any model and dated to 1975. Secondary285

clusters (just from the second to the tenth) are almost the same using Rmax of 200 or 300 km,286

while, reducing the radius at 100km, their size and ranking can change, due to the merging287

of small clusters into bigger ones. Finally, it is worth noting that the top-ten clusters are288

well distributed over the entire study period, with the oldest one detected between 1963 and289

1969 and the latest in 2010.290

Table 2: Temporal duration of the first 10 clusters of flash flood disasters detected via three
different models (left: Rmax = 100km; center: Rmax = 200km; right: Rmax = 300km).

ID Radius 
Start 
date 

End date ID Radius 
Start 
date 

End date ID Radius 
Start 
date 

End date 

1 81.04 1975/1/1 1975/12/31 1 81.04 1975/1/1 1975/12/31 1 81.04  1975/1/1 1975/12/31 

2 64.51 2010/1/1 2010/12/31 2 146.06 1998/1/1 1998/12/31 2 146.06  1998/1/1 1998/12/31 

3 60.73 2006/1/1 2006/12/31 3 64.51 2010/1/1 2010/12/31 3 64.51  2010/1/1 2010/12/31 

4 72.76 2010/1/1 2010/12/31 4 60.73 2006/1/1 2006/12/31 4 60.73  2006/1/1 2006/12/31 

5 94.42 1998/1/1 1998/12/31 5 72.76 2010/1/1 2010/12/31 5 72.76  2010/1/1 2010/12/31 

6 73.13 1969/1/1 1969/12/31 6 73.13 1969/1/1 1969/12/31 6 73.13  1969/1/1 1969/12/31 

7 56.67 1963/1/1 1963/12/31 7 176.96 1982/1/1 1982/12/31 7 176.96  1982/1/1 1982/12/31 

8 49.51 1996/1/1 1996/12/31 8 70.57 1984/1/1 1984/12/31 8 70.57  1984/1/1 1984/12/31 

9 70.57 1984/1/1 1984/12/31 9 129.06 1996/1/1 1996/12/31 9 157.14  2010/1/1 2010/12/31 

10 35.27 1987/1/1 1987/12/31 10 157.14 2010/1/1 2010/12/31 10 56.18  1960/1/1 1960/12/31 

We opted to carry out additional analyses using a Tagg of three months (hereafter referred291

as monthly model). Results are shown in Figure 5 where information on the spatial distri-292

bution of the detected clusters is shown. Overall, the clusters chiefly appear along the main293

river systems in China, namely the Yangtze, the Yellow, the Pearl and the Yarlung Zangbo294

Rivers. In addition, some clusters stand out on high mountains, such as the Qinling-Daba295

and the Changbai Mountains.296
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Figure 5: Significant (p<0.005) spatiotemporal clusters of flash flood disasters occurring in
China during 1950-2015 (Rmax = 200km, Tmax = 3years, Tagg = 3months).
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3.2.2 Temporal characterization of detected clusters297

It emerges that clusters detected by using the different parameters for the scanning cylinders298

overlap both in space and in time. Therefore, in the present analysis, seeking at investigating299

in more details the years of occurrence and the temporal duration of detected clusters of flash300

floods, only results from the model with Rmax = 200km, Tagg = 1year and Tmax = 3year are301

presented. Considering all the statistically significant clusters, they emerged during almost302

the each year of the investigated period, but are more frequent starting from 1980. The303

relative small number of clusters detected between 1950 and 1980 may imply that the data304

acquisition and report in the Chinese database of hydro-morphological disasters was not305

fully operational at the time. Conversely, from 1980 to present days the Chinese database306

has evolved into a mature and detailed geographic information system. Another factors307

explaining this distribution can be the more frequent extreme precipitations observed in308

the recent decades, which can have increased the frequency of flash flood disasters in this309

last period. The precipitation regime can also explain the variation in the duration of the310

detected clusters. Indeed some clusters have a temporal extent up to three years, which311

could results from a persistent precipitation pattern over a delimited prone area.312

Figure 6: Temporal duration of flash flood disaster clusters detected via the yearly model
(Rmax = 200km, Tagg = 1year, Tmax = 3years).

To highlight the influence of the seasonal variability in cluster detection, we carried out313

additional analyses using a Tagg of three months (hereafter referred as monthly model). As314

shown on 5, the detected clusters are spread along the main river systems in China, namely315
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the Yangtze, the Yellow, the Pearl and the Yarlung Zangbo Rivers. In addition, some clusters316

stand out on high mountains such as the Qinling-Daba and the Changbai Mountains.317

Table 3: Temporal duration of the first 10 clusters of flash flood disasters detected via the
monthly model (Rmax = 200km, Tmax = 1year, Tagg = 3months)).

ID Radius Start date End date 
1 54.88 2010/10/1 2010/12/31 
2 81.04 1975/4/1 1975/9/30 
3 72.76 2010/7/1 2010/9/30 
4 146.06 1998/4/1 1998/9/30 
5 60.73 2006/7/1 2006/9/30 
6 73.13 1969/4/1 1969/9/30 
7 178.05 1982/7/1 1982/9/30 
8 199.88 1996/4/1 1996/6/30 
9 157.14 2010/7/1 2010/9/30 

10 67.05 1984/4/1 1984/9/30 

Forcing the model parameterization to aggregate over three months allows to investigate318

potential seasonal effects. Indeed, even if the maximum temporal duration is still of one319

year, looking at the ten most significant clusters detected under the monthly model (Table320

3), it results that all of them have a duration of three (six clusters) or six (four clusters)321

months. Notably, almost every cluster (nine clusters) encompass the period from July to322

September, with an earlier start date (in April) for the ones which have a longer duration.323

To visualize the seasonality trend, we summarized these result using a cyclic represen-324

tation (Figure 7). The majority of the cluster have a 3-months duration, concentrated in325

the period between July and October. Furthermore, clusters of 6-months temporal duration326

are most likely to occur from January to July or from April to October. As for clusters327

with 9-months temporal duration, these mostly cover the period of July-August-September,328

irrespective of the starting month. Ultimately, as noticed for the yearly model, also in the329

monthly model much more clusters were detected in the recent period. Overall, the vast330

majority of flash flood disasters clusters happened between July and October, a period co-331

inciding with the wet season in China.332

3.2.3 Clusters pattern evolution at decade-scale333

The previous analyses allowed to detect yearly and seasonal clusters. However, environmental334

changes usually act on a longer time-span. To better investigate this factor, we considered a335

temporal subdivision of the dataset into six subsets, each one lasting ten years (starting from336

1956). Each subset was analysed separately, using the following parameter for the scanning337

widows: Rmax = 200km, Tmax = 1year, while no temporal aggregation was applied. This338

allowed to precisely evaluate the temporal duration of each cluster, given as number of days339
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Figure 7: Seasonal effect of flash flood disaster clusters detected via the monthly model
(Rmax = 200km, Tmax = 1year, Tagg = 3months).

between the earliest and the latest flash flood single event within a cluster. As shown in340

Figure 8, the number of detected clusters increases from the early to recent periods. These341

are compared with the rainfall distribution, derived from the daily rainfall data provided342

by the China Meteorological Administration (http://data.cma.cn/). In the present study,343

only the weather stations (a total of 699 rain gauges) with complete data for the period344

1955-2015 were considered. From these, we computed the extreme precipitation as follows.345

Out of the rainfall records available per weather station, we initially extracted 5% of the346

time series corresponding to the rainfall values greater than the 95th percentile (Karl and347

Easterling, 1999; Klein Tank and Können, 2003). Then we cumulated these values per348

station over decadal time periods corresponding to 1956-1965, 1966-1975, 1976-1985, 1986-349

1995, 1996-2005 and 2006-2015. From these cumulated extreme rainfall values per station350

and per decade, we computed the mean over the ten year time span and then interpolated351

over the whole spatial domain under consideration via a Ordinary Kriging. The data was352

regionalized on a 2km × 2km lattice. The procedure returned six maps of the mean extreme353

events per decade over the Chinese territory. It results that flash floods detected clusters354

are mainly located in the southeastern most humid regions in every period. However, in355

the last two decades, clusters appear also in the northwestern arid regions. Even if the356

rainfall distribution, averaged over each decades, does not allow to discover clear changes357
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along the subsequent periods, these newly detected clusters can be due to the intensification358

of the extreme rainfall events occurring in the area in recent periods. This assumption is359

confirmed by the statistics on clusters duration (Figure 9). From the boxplot summarizing360

the descriptive statistics it is evident that the median values of clusters duration tends to361

slightly decrease from 46 days (1956-1965), to 17 days (1986-1995), to stabilise at a value362

around 20 days in the two last decades. At the same time, the overall duration, measured as363

difference between the maximum and the minimum value, is higher in the late periods (140364

days in 1956-1965, and 93 and 74 days respectively in the two following decades) than in the365

early periods (about 65 days for the last two decades). This is even more evident looking366

at the inter quantile ranges, which decrease with time. To resume, from these analyses, it367

results that the number of detected clusters globally increase in time, but their duration368

drastically decreases in the recent period.369

Figure 8: Significant (p < 0.005) spatiotemporal clusters of flash flood disasters in China
every ten years. The size of the circles indicates the spatial coverage of the flash flood clusters
we detected.

Spatiotemporal clusters of flash flood disasters detected in China by decades were further370

assembled in a unique image. To this end, the centroid of each cluster (with reference to371

Figure 8) was extracted and intersected with the catchment boundaries. Then, we computed372

the total number of clusters per catchment (Figure 10, panel (a)) as well as the average373

interval of time at which two consecutive clusters have been detected in the same catchment374

(Figure 10, panel (b)). It results that the catchments mainly affected by clusters of flash375

floods along several decades are mainly located in the southeast sector and essentially in the376

coastal mountains and that, on average, most of the cluster occur within an interval of 10-20377
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Figure 9: Boxplots summarizing the descriptive statistics of the duration of clusters reported
on Figure 8.

years.378

Figure 10: Number of time a cluster has been detected by catchment and by decade (a).
Average time-interval between two clusters detected over the same catchment by decade (b)

4 Discussions379

The present study aims at exploring the spatiotemporal clustering characteristics, in terms380

of spatial location and temporal duration, of flash flood disasters in China. For this purpose,381

we analyzed the official historical inventory, which covers a several decades from 1950 to382

2015. Results are interpreted with a particular regard to the extreme rainfalls distribution,383

being these two processes highly related (Wei et al., 2018). Actually the spatiotemporal384
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pattern distribution of flash floods can also been induced by the geomorphological setting385

of the area and by anthropogenic pressures, such as land use and land cover changes (Yang386

and Tian, 2009). However, in the present study we are considering both the spatial and387

the temporal dimension with the aim of detecting clusters occurring as a consequence of388

the interaction between these two variables. Therefore these clusters are likely to be related389

with dynamic factors such as rainfalls, which is the only triggering factors that covers and390

varies across the same spatiotemporal domain as the clusters themselves. Thus, our results391

are interpreted and discussed on the basis of this hypothesis.392

The spatiotemporal K-function firstly computed reveals a deviation of flash flood dis-393

asters from a random process at specific scales, measured and quantified both in space, as394

distances-values, and in time, as yearly periods. Nevertheless this indicator can not provide395

the location at which clusters appears, or their duration. To this end, the spatiotemporal396

permutation Scan Statistics was then performed. Results allowed to identify statistically397

significant clusters together with the start and end date of their occurrence, and to detect398

areas and periods more susceptible to flash flood disasters. We opted for a set of possible399

combinations for the maximum spatial and temporal extension of the scanning windows,400

while dates were aggregated both at yearly and at seasonal scale (i.e. over three months).401

Among the dozens or even hundreds of clusters detected by the different models, the top402

ten most significant clusters resulting from the yearly model were analysed in detail. These403

appears to be almost the same for any increasing value of Rmax, even if their size and ranking404

can change. This is a consequence of the fact that small clusters detected when using an405

Rmax of 100km can merge into bigger cluster when Rmax increases at 200 and 300 km. As for406

the occurrence time, these top-ten clusters are well distributed over the entire study period,407

with the earliest one dated to 1963 and the latest to 2010. Results of the monthly model408

show that the top ten most significant clusters have a duration of three (six clusters) or six409

(four clusters) months. Notably, almost every cluster encompasses the period from July to410

September, coinciding with the wet season in China, with an earlier start date (in April)411

for the clusters that have a longer duration. The same behaviour can be observed for the412

subsequent secondary clusters detected under the monthly model which, in addition, reveals413

an increasing number on cluster detected in the recent period.414

Overall, clusters are chiefly located along the main river systems in China (the Yangtze,415

the Yellow, the Pearl and the Yarlung Zangbo Rivers). In addition, some clusters stand out416

on high mountains such as the Qinling-Daba and the Changbai Mountains.417

Finally, to monitor the cluster pattern evolution, data were grouped and analysed by418

decades. As for the previous analyses, detected clusters are mainly located in the south-419

eastern most humid regions in every period. However, in the last two decades, clusters420

appear also in the northwestern arid regions. These newly detected clusters can be due to421

the intensification the extreme rainfall events occurring in the area in recent periods, as a422

consequence of climate changes (Song et al., 2011a). This important fact is confirmed by423

checking the descriptive statistics of the duration of clusters: globally, the number of de-424
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tected clusters increases in time, but the duration drastically decreases in recent periods,425

indicating a possible activation induced by short-duration extreme rainfall events. Another426

factor that can induce flash floods in China are the tropical cyclones (Hu et al., 2018). In-427

deed, it is well known tropical cyclones induce torrential rains which are a major trigger of428

catastrophic flood hazards in many coastal regions around the world (Rappaport, 2000; Dare429

et al., 2012; Zhang et al., 2019). A recent study by Lai et al. (2020) show that slow-moving430

tropical cyclones, characterized by lower translation speed, occurred more frequently after431

1990 in the Pearl River Delta in southern China. In addition, their findings suggest that432

these cyclones tends to elevate local rainfall totals and thus impose greater flood risks at433

the regional scale. Essentially clusters results to be outnumbered in the last three decades,434

but their duration drastically decreases in the recent period, indicating a possible activation435

induced by short-duration extreme rainfall events.436

As concern the spatial distribution of detected clusters, our analyses revealed that the437

more affected catchments with frequent clusters are mainly located in the southeast sector438

and essentially in the coastal mountains. China is indicated as one of the hotspot with global439

flood-exposed coastal population (Van Coppenolle and Temmerman, 2020). Therefore, we440

can assume these catchments to be exposed at the highest potential risk across the whole441

Chinese territory also in the short to long term future. In addition, catchments with clusters442

occurring within a short interval (5 to 10 years) may also pose a relevant threat, especially443

in the near future.444

In the present study spatiotemporal clusters of flash floods were detected chiefly on the445

basis of two parameters (Rmax and Tmax), without featuring terrain attributes, precipitation446

regimes and anthropogenic pressure. However, these factors may have played and still play a447

significant role to explain the distribution of flash flood disasters. For instance, the approach448

we adopted may over-rely on spatial distances to detect clusters. In fact, the natural land-449

scape has mountain belts that can act as orographic barriers to the incoming cloudbursts,450

effectively limiting the rainfall distribution – hence flash flood occurrences – on one or the451

other side of a catchment divide (at various scales). As for the temporal scale, due to the452

large time-span, the detected temporal patterns may reflect more information due to long-453

term climatic variations rather than specific conditions. For this reason, we are planning to454

extend our spatiotemporal cluster analyses to more complex models, which can concurrently455

capture multivariate contributions featuring environmental effects, even at the latent level456

(Lombardo et al., 2018, 2019).457

5 Conclusion458

In this work, we explore the national archive of flash flood disasters in China from 1950 to459

2015. The term disaster is meant to describe the destructiveness of the flash floods, since460

each record in this archive has produced economic, life losses, or both.461

The clustering procedure highlighted distinct spatial and temporal patterns at different462
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scales. For instance, the statistically significant clusters of flash flood disasters detected in463

the present study occur in specific area and have a characteristic duration which closely follow464

the extreme rainfall patterns. The performed analyses allowed us to distinguish seasonal,465

yearly and even long-term flash flood persisting behaviors. The persistence of disasters is a466

crucial information because it indicates the risk that a community may undergo in response467

to a flash flood. Moreover, we studied the cycle of such disasters with particular emphasis468

on their repeated occurrence per catchment and by decade. As a result, we highlighted that469

the south-easternmost sector of China is subjected to a much larger number of flash flood470

clusters compared to the rest of the country. However, in terms of how these clusters are471

manifested through time with regards to their average re-occurrence time, the catchments472

in the south-eastern sector suffer from flash floods as frequently as the rest of the central473

and eastern sectors of the country. This complementary information can be further used474

in relation to engineering and structural design. In fact, infrastructure is usually built to475

sustain the damage of an event of certain return time. In our analyses we show that at476

catchment level, the very same area can be affected by clusters at least two up to six times477

in the last 60 years, considering a time-unit of ten years. This may suggest locally-tailored478

structural improvements which may lengthen the life expectancy of specific infrastructure as479

well as reduce the number of victims.480

We would like to stress that, as advanced as it may be, our clustering framework is essen-481

tially a descriptive tool. And yet, the amount of information one can draw from a descriptive482

tool can be extremely valuable. Nowadays, the hazard community’s effort is mainly dedi-483

cated to predictive modeling of various natures and purposes, thus leaving under-explored484

or even unexplored some basic concepts and interpretative conclusions that data description485

and visualization can provide. Long time series of national hazard phenomena are one of486

these examples where studying variations over space and time can highlight very important487

environmental dynamics, even in the direction of climate change and its implications.488
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