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Abstract 7 

In this paper we introduce a method for fault network reconstruction based on the 3D spatial distribution of 8 

seismicity. One of the major drawbacks of statistical earthquake models is their inability to account for the highly anisotropic 9 

distribution of seismicity. Fault reconstruction has been proposed as a pattern recognition method aiming to extract this 10 

structural information from seismicity catalogs. Current methods start from simple large scale models and gradually increase 11 

the complexity trying to explain the small scale features. In contrast the method introduced here uses a bottom-up approach, 12 

that relies on initial sampling of the small scale features and reduction of this complexity by optimal local merging of 13 

substructures.  14 

First, we describe the implementation of the method through illustrative synthetic examples. We then apply the 15 

method to the probabilistic absolute hypocenter catalog KaKiOS-16, which contains three decades of South Californian 16 

seismicity. To reduce data size and increase computation efficiency, the new approach builds upon the previously introduced 17 

catalog condensation method that exploits the heterogeneity of the hypocenter uncertainties. We validate the obtained fault 18 

network through a pseudo prospective spatial forecast test and discuss possible improvements for future studies. The 19 

performance of the presented methodology attests the importance of the non-linear techniques used to quantify location 20 

uncertainty information, which is a crucial input for the large scale application of the method. We envision that the results of 21 

this study can be used to construct improved models for the spatio-temporal evolution of seismicity. 22 

1. Introduction 23 

Owing to the continuing advances in instrumentation and improvement of seismic networks coverage, earthquake 24 

detection magnitude thresholds have been decreasing while the number of recorded events is increasing. As governed by the 25 

Gutenberg-Richter law the number of earthquakes above a given magnitude increases exponentially as the magnitude is 26 

decreased (Ishimoto and Iida, 1939; Gutenberg and Richter, 1954). Recent studies suggest that the Gutenberg-Richter law 27 

might hold down to very small magnitudes corresponding to interatomic-scale dislocations (Boettcher et al., 2009; Kwiatek 28 

et al., 2010). This implies that there is practically no upper limit on the amount of seismicity we can expect to record as our 29 

instrumentation capabilities continue to improve. Although considerable funding and research efforts are being channeled 30 
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into recording seismicity, when we look at the uses of the end product (i.e. seismic catalogs) we often see that the vast 31 

majority of the data (i.e. events with small magnitudes) are not used in the analyses. For instance, probabilistic seismic 32 

hazard studies rely on catalogs with large durations, which increases the minimum magnitude that can be considered due to 33 

the higher completeness magnitude levels in the past. Similarly, earthquake forecasting models are commonly based on the 34 

complete part of the catalogs. For instance, in their forecasting model, (Helmstetter et al., 2007) use only M>2 events, which 35 

corresponds to only ~30% of the recorded seismicity. The forecasting skills of the current state-of-the-art models can well be 36 

hindered not only due to our limited physical understanding of earthquakes, but also due to this data censoring.  37 

In this conjecture, fault network reconstruction can be regarded as an effort to tap into this seemingly neglected but 38 

vast data source, and extract information in the form of parametric spatial seismicity patterns. We are motivated by the 39 

ubiquitous observations that large earthquakes are followed by aftershocks that sample the main rupturing faults, and 40 

conversely that these faults become the focal structures of following large earthquakes. In other words, there is a relentless 41 

cycle as earthquakes occur on faults that themselves grow by accumulating earthquakes. By using each earthquake, no 42 

matter how big or small, as a spark in the dark, we aim to illuminate and reconstruct the underlying fault network. If the 43 

emerging structure is coherent, it should allow us to better forecast the spatial distribution of future seismicity and also to 44 

investigate possible interactions between its constituent segments. 45 

The paper is structured as follows. First, we give an overview of recent developments in the field of fault network 46 

reconstruction and spatial modeling of seismicity. In Section 2, we describe our new clustering method and demonstrate its 47 

performance using a synthetic example. In Section 3, we apply the method to the recently relocated southern California 48 

catalog KaKiOS-16 (Kamer et al., 2016) and discuss the obtained fault network. In Section 4, we perform a pseudo-49 

prospective forecasting test using four years of seismicity that was recorded during 2011-2015 and was not included in the 50 

KaKiOS-16 catalog. In the final Section, we conclude with an outlook on future developments. 51 

2. The agglomerative clustering method 52 

2.1. Recent developments in fault reconstruction 53 

In the context the work presented here, we use the term "fault" as a three-dimensional geometric shape or kernel 54 

optimized to fit observed earthquake hypocenters. Fault network reconstruction based on seismicity catalogs was introduced 55 

by (Ouillon et al., 2008). The authors presented a dynamical clustering method based on fitting the hypocenters distribution 56 

with a plane, which is then iteratively split into an increasing number of subplanes to provide better fits by accounting of 57 

smaller scale structural details. The method uses the overall location uncertainty as a lower bound of the fit residuals to avoid 58 

over fitting. (Wang et al., 2013) made further improvements by accounting for the individual location uncertainties of the 59 

events and introducing motivated quality evaluation criteria (based, for instance, on the agreement of the planes orientations 60 

with the events focal mechanisms). (Ouillon and Sornette, 2011) proposed an alternative method based on probabilistic 61 

mixture modeling (Bishop, 2007) using 3D Gaussian kernels. This method introduced notable improvements, such as the use 62 
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of an independent validation set to constrain the optimal number of kernels to explain the data (i.e. model complexity) and 63 

diagnostics based on nearest-neighbors tetrahedra volumes to eliminate singular clusters that cause the mixture likelihood to 64 

diverge. While our method is inspired by these studies, and in several aspects builds upon their findings, we also note an 65 

inherent drawback of the iterative splitting approach that is common to all the previously mentioned methods. This can be 66 

observed when an additional plane (or kernel), introduced by splitting, fails to converge to the local clusters and is instead 67 

attracted to the regions of high horizontal variance (see Figure 1 for an illustration in the case of Landers' seismicity).  68 

 69 

 70 

Figure 1 Iterative splits on the 1992 Landers aftershock data. Points with different colors represent seismicity associated with each plane. 71 

Black dots show the center points of the planes resulting from the next split. Notice how in steps b. to c. step the planes fail to converge to 72 

the local branches (shown with arrows), and the method prefers to introduce a horizontal plane to fit a more complex local pattern. 73 

This deficiency has motivated us to pursue a different concept. Instead of starting with the simplest model (i.e. a 74 

single plane or kernel) and increasing the complexity progressively by iterative splits, we propose just the opposite: start at 75 

the highest possible complexity level (as many kernels as possible) and gradually converge to a simpler structure by iterative 76 

merging of the individual substructures. In this respect, the new approach can be regarded as a “bottom-up” while the 77 

previous ones are “top-down” approaches. 78 

2.2. Method description 79 

The method shares the basic principles of agglomerative clustering (Rokach and Maimon, 2005) with additional 80 

improvements to suit the specifics of seismic data, such as the strong anisotropy of the underlying fault segments. We 81 

illustrate the method by applying it to a synthetic dataset obtained by sampling hypocenters on a set of five plane segments, 82 

and potentially adding uncorrelated background points which are uniformly distributed in the volume (see Figure 2). The 83 

implementation follows the successive steps described below: 84 
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i) For a given dataset featuring N hypocenters, we first construct an agglomerative hierarchical cluster (AHC) tree 85 

based on Ward’s minimum variance linkage method (Ward, 1963). Such a tree starts out with a cluster for each data-point 86 

(i.e., with zero variance) and then progressively branches into an incrementally decreasing number of clusters. At any step, 87 

the merging of two clusters is based on a criterion involving the minimum distance Dw criterion given by: 88 

        
2 22

,
ij i j

w i j ij i j

x C x C x C

D C C x r x r x r
  

         (1) 

In this equation, Cij is the cluster formed by merging clusters Ci and Cj, x represents the set of hypocenters, and r (with 89 

proper subscript) is the centroid of each cluster. Hence, clusters i and j are merged if the sum of squares in Eq. (1) is 90 

minimized after they are merged into a single cluster ij. The number of branches in the tree is thus reduced by one, and the 91 

remaining clusters are used to decide which ones will be merged at the next iteration. This merging of clusters/branches 92 

continues until there remains only a single cluster. "Cutting" the AHC tree at the Dw level corresponding to the desired 93 

number of branches allows one to choose the number of clusters (from 1 to N) used to represent the original dataset. 94 

 ii) Since our goal is to obtain a fault network where segments are modeled by Gaussian kernels, we begin by 95 

estimating how many such kernels can be constructed with the clusters featured in the AHC tree. At its most detailed level 96 

(N clusters) no such kernel exist as they would collapse on each data point, becoming singular. At the next level (N-1 97 

clusters), we have the same problem. We thus incrementally reduce the level, traversing AHC tree, until we get a first cluster 98 

featuring 4 hypocenters, which defines the first non-singular cluster. We then continue our traverse along the tree down 99 

replacing each cluster having more than 4 points by a Gaussian kernel. At each level on the tree, we count the number of 100 

these non-singular Gaussian kernels. The result are illustrated on Figure 2b where we consider two cases: first considering 101 

only the 5 planes, the second one including a set of uniformly distributed background points. In the first case, we see that 102 

maximum number of Gaussian kernels (76) is obtained when we cut the tree so that the total number of clusters is 117. In the 103 

second case, in the presence of background points, the maximum number of Gaussian kernels (77) is obtained when we cut 104 

the tree at a level of 214 clusters. We refer to this maximum number is as the "holding capacity" of the dataset, and the 105 

corresponding configuration defines the starting point of the following iterative and likelihood-based clustering algorithm. 106 

The process of finding this optimum set of initial Gaussian proto-clusters (all containing more than 4 points) is coined as 107 

"atomization".  108 

 109 
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 110 

Figure 2  a) Synthetic fault network with 640 points created by uniform sampling of 5 faults, each shown with a different shade according 111 

to its total number of points. Empty circles represent the %20 uniformly random background points. b) Determination of the holding 112 

capacity (see main text) for the case with and without background points. 113 

iii) Once we determine the holding capacity, all points that are not associated with any Gaussian kernel are assigned 114 

to a uniform background kernel that encloses the whole dataset. The boundaries of this kernel are defined as the minimum 115 

bounding box of its points. The uniform spatial density of this background kernel is defined as number of points divided by 116 

the volume (see Figure 3). The Gaussian kernels together with the uniform background kernel represent a mixture model 117 

where each kernel has a contributing weight proportional to the number of points that are associated with it (Bishop, 2007). 118 

This representation facilitates the calculation of an overall likelihood and allows us to compare models with different 119 

complexities using the Bayesian Information Criteria (BIC) (Schwarz, 1978) given by: 120 

 
2

log( ) log( )
N

k

i

BIC L N  
 

(2) 

where L is the likelihood of each data point, k is the number of free parameters of the mixture model and N is the total 121 

number of data points. The value of k is calculated as k=10NC-1 (where NC is the number of kernels in the mixture) since 122 
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each kernel requires 3 (mean vector) + 6 (covariance matrix) + 1 (weight) = 10 free parameters. The same parameterization 123 

is also used to describe the background kernel, which is a uniformly dense cuboid with a size and orientation prescribed by 124 

its covariance matrix. The number of free parameters (k) is reduced by 1 because the weights have to sum to unity and hence 125 

knowing NC-1 of them is sufficient. 126 

 iv) At the holding capacity, the large number of kernels are likely to constitute an overfitting model for the data set. 127 

Therefore the we iteratively merge pairs of the Gaussian kernels until an optimal balance between fitness and model 128 

complexity is reached. We use the measure of information gain in terms of BIC to select which pair of kernels to merge. For 129 

any given pair of Gaussian kernels, the BIC gain resulting from their merger is calculated using Equation (3) where Lint is the 130 

likelihood of each data-point for the initial (unmerged) model and Lmrg is the likelihood in the case where the two candidate 131 

clusters are merged: 132 

 133 
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(3) 

Notice that each merging of a pair of kernels decreases k by 10, thus a given merger can be considered only if the reduction 134 

of the penalty term is greater than the decrease of likelihood (i.e. BICGain>0). 135 
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 136 

Figure 3  a) The initial protoclusters for the synthetic dataset given in Error! Reference source not found.. Notice that the number of 137 

clusters (78) includes the uniform background kernel as well. b) The BIC gain matrix calculated for all possible merging of pairs of 138 

kernels. 139 

Using this formulation, we calculate a matrix where the value at the intersection of i
th

 row and j
th

 column corresponds to the 140 

BIC gain for merging  clusters i and j. We merge the pair with the maximum BIC gain and then re-estimate the matrix since 141 

we need know the BIC gains of the newly formed cluster. At each step, the complexity of the model is reduced by one 142 

cluster, and the procedure continues until there is no merging yielding a positive BIC gain. Figure 3b shows such a BIC gain 143 

matrix calculated for the initial model with 77 clusters. Notice that a Gaussian cluster it is not allowed to merge with the 144 

background kernel. The BICGain>0 criteria, which essentially drives and terminates the merging process, is similar to a 145 

likelihood ratio test (Neyman and Pearson, 1933; Wilks, 1938) with the advantage that the models tested do not need be 146 

nested.  147 

The computational demand of the BIC gain matrix increases quadratically with the number of data points. To make our 148 

approach feasible for large seismic datasets, we introduce a preliminary check that considers clusters as candidates for 149 

merging only if they are overlapping within a confidence interval of σ√12 in any of their principal component directions. 150 

The factor √12 is derived from the variance of an hypothetical uniform distribution over a planar surface (for details see 151 

(Ouillon et al., 2008)). 152 

During all steps of the merging procedure, the data points are in the state of soft clustering, meaning that they have a finite 153 

probability to belong to any given kernel. A deterministic assignment can be achieved by assigning each point to the kernel 154 

that provides the highest responsibility (as per the definition of a mixture model), which is referred to as hard clustering. 155 

This dichotomy between stochastic and deterministic inference gives rise to two different implementations for the merging 156 

criteria: 1) local criterion: considering only the two candidate clusters and the data-points assigned to them through hard-157 

clustering and 2) global criterion: considering the likelihood of all data-points for all clusters. In essence, the local criterion 158 
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tests the information gain for the case of two kernels versus one kernel on a subset, whereas the global criterion considers Nc 159 

versus Nc-1 kernels on the whole mixture and dataset. Figure 4 shows the resulting final reconstructions for the two criteria. 160 

 161 

 162 

Figure 4 The final models obtained using the local (a) and global (b) merging criteria for the dataset presented on Figure 2. That the 163 

number of clusters, including the uniform background kernel, is 11 and 6 for the local global criteria respectively. 164 

For this synthetic dataset, we observe that both the local and global criteria converge to a similar final structure. The global 165 

criterion yields a model with the same number of clusters as the input synthetic, while the local criterion introduces four 166 

additional clusters in the under-sampled part of one of the faults. For most pattern recognition applications that deal with a 167 

robust definition of noise and signal, the global criterion may be the preferred choice since it is able to recover the true 168 

complexity level. However, since this method is indented for natural seismicity, we also see a potential in the local criterion. 169 

For instance, consider the case where two fault segments close to each other are weakly active and thus have a low spatial 170 

density of hypocenters compared to other distant faults that are much more active. In that case, the global criterion may 171 

choose to merge the low-activity faults, while the local criterion may preserve them as separate.  172 

3. Application to seismicity 173 

In this section, we apply our method to observed seismicity data. For this purpose, we use the KaKiOS-16 catalog 174 

(Kamer et al., 2016) that was obtained by probabilistic absolute location of nearly 479,000 Southern Californian events 175 

spanning the time period 1981-2011. We consider all events, regardless of magnitude, as each event samples some part of 176 

the fault network. Before tackling this vast dataset, however, we first consider the 1992 Landers sequence as a smaller 177 

dataset to assess the overall performance and computational demands. 178 

3.1. Small Scale application to the Landers aftershocks sequence 179 

We use the same dataset as (Wang et al., 2013) that consists of 3,360 aftershocks of the 1992 Landers earthquake. 180 

The initial atomization step produces a total of 394 proto-clusters that are iteratively merged using the two different criteria 181 

(local and global). The resulting fault networks are given in Figure 5. Comparing the two fault networks, we observe that the 182 
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local criterion provides a much detailed structure that is consistent with the large scale features in the global one. We also 183 

observe that, in the southern end, the global criterion produces thick clusters by lumping together small features with 184 

seemingly different orientations. These small scale features have relatively few points and thus low contribution to the 185 

overall likelihood. The global criterion favors these mergers to reduce the complexity penalty in Equation (2), which scales 186 

with the total number of points. In the local case, however, because each merger is evaluated considering only the points 187 

assigned to the merging clusters, the likelihood gain of these small scale features can overcome the penalty reduction and 188 

they remain unmerged. 189 

 190 

 191 

Figure 5  a: Top view of the 1992 Landers aftershocks. Fault networks obtained from these events using the local (b) and global (c) 192 

merging criterion, each resulting in 70 and 22 clusters respectively. 193 

Our second observation is that the background kernel attains a higher weight of 11% using the local criterion 194 

compared to the global one yielding only 5%. Keeping in mind that both criteria are applied on the same initial set of proto-195 

clusters, and that there are no mergers with the background kernel, we argue that the difference between the background 196 

weights is due to density differences in the tails of the kernels. We investigate this in Figure 6 for the simple 1D case 197 

considering mergers between two boxcar functions (analogous for planes in 3D) approximated with Gaussian functions. We 198 

observe that the merged Gaussian has higher densities in its tails compared to its constituents. The effect is amplified when 199 

the distance between the merging clusters is increased (Figure 6b). Hence, in the local case, the peripheral points are more 200 

likely to be associated with the background kernel due to the lower densities at the tails of the small, unmerged clusters. 201 

 202 

https://doi.org/10.5194/nhess-2020-231
Preprint. Discussion started: 23 July 2020
c© Author(s) 2020. CC BY 4.0 License.



10 

 

 203 

Figure 6 Two uniform distributions (dotted gray lines), their Gaussian approximations (solid gray lines) and the Gaussian resulting from 204 

their merger (solid black line). Notice that the joint Gaussian has higher densities at the tails compared to its constituents. 205 

Another important insight from this sample case was regarding the feasibility of a large scale application. As 206 

pointed out here and in previous studies (Ouillon and Sornette, 2011; Wang et al., 2013), the computational demand for such 207 

pattern recognition methods increases rapidly with the number of data-points. The Landers case with 3,360 points took ~5 208 

minutes on a 4-core, 2.2GHz machine with 16GB memory. Considering that our target catalog is nearly ~145 times larger, a 209 

quadratic increase would mean an expected computation time of more than two months. Even with a high performance 210 

computing cluster, we would have to tackle memory management and associated overhead issues. Although technically 211 

feasible, pursuing this path would limit the use of our method only to the few privileged with access to such computing 212 

facilities. In a previous work we proposed a new solution called "catalog condensation", that uses the location uncertainty 213 

estimates to reduce the length of a catalog while preserving its spatial information content (Kamer et al., 2015). In the 214 

following section, we will detail how we applied this method to the KaKiOS-16 catalog in order to make the clustering 215 

computations feasible. 216 

3.2. Condensation of the KaKiOS-16 catalog 217 

The condensation method reduces the effective catalog length by first ranking the events according to their location 218 

uncertainty and then successively condensing poorly located events onto better located ones (for detailed explanation see 219 

Kamer et al., 2015). The initial formulation of the method was developed considering the state of the art catalogs of the time. 220 

Location uncertainties in these catalogs are assumed to be normally distributed and hence expressed either in terms of a 221 

horizontal and vertical standard deviation, or with a diagonal  3x3 covariance matrix. With the development of the KaKiOS-222 

16 catalog, we extended this simplistic representation to allow arbitrarily complex location PDFs to be modeled with 223 

mixtures of Gaussians. Such mixture models, consisting of multiple Gaussian kernels, was found to be the optimal 224 

representation for 81% percent of the events, which required an average of 3.24 Gaussian components (the rest was 225 

optimally modeled using a single Gaussian kernel). Therefore we first needed to generalize the condensation methodology, 226 

which was initially developed for single kernels, to accommodate the multiple kernel representation. In the original version, 227 

all events are initiated with equal unit weights. They are then ranked according to their isotropic variances and weights are 228 

https://doi.org/10.5194/nhess-2020-231
Preprint. Discussion started: 23 July 2020
c© Author(s) 2020. CC BY 4.0 License.



11 

 

progressively transferred from the high variance to the low variance events according to their overlap. In the generalized 229 

version, each event is represented by a number of Gaussian kernels that are initiated with their respective mixture weight (0-230 

1). All kernels are then ranked according to their isotropic variance and the weights are transferred as in the original method 231 

with the additional constrain that weight transfers between kernels of the same event are not allowed (see Figure 7a, b). This 232 

constraint is motivated by the fact that the kernels representing each event's location PDF are already optimized. Thus a 233 

weight transfer between those can lead only to a sub-optimal location representation. 234 

 235 

 236 

Figure 7 Idealized schematic representations of 3 events with 1,2 and 3 Gaussian kernels each a) Condensation: each event is represented 237 

by a different shade, weight transfer is represented by the arrows; notice that there are no intra-event weight transfers b) Final condensed 238 

catalog: the total weight sum is preserved, one component is discarded. c) Sampling of the event PDFs: this step is done on the original 239 

catalog d) Each event is assigned to the condensed kernel that provides the maximum likelihood for most of its sampled points; three 240 

events are assigned to two condensed kernels. 241 

The KaKiOS-16 catalog contains 479,056 events whose location PDFs are represented by a total of 1,346,010 242 

Gaussian components (i.e kernels). Condensation reduces this number to 600,463 as weights from events with of high 243 

variance are transferred to better located ones. Nevertheless, in Figure 8 we see that nearly half of these components amount 244 
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to only 10% of the total event weight. The computation time scales with the number of components, while the information 245 

content is proportional to number of events. Hence the large number of components amounting to relatively low number of 246 

events would make the computation inefficient. A quick solution could be to take the components with the largest weights 247 

constituting 90% or 95% of the total mass, mimicking a confidence interval. Such a "solution" would depend on the arbitrary 248 

cutoff choice and would have the potential to discard data that may be of value for our application. 249 

 250 

 251 

Figure 8 Cumulative weights of the 600,463 condensed KaKiOS-16 components representing a total of 479,056 events. The components 252 

are ranked according to increasing weights. 253 

We can avoid such an arbitrary cut-off by employing the fact that the condensed catalog is essentially a Gaussian 254 

mixture model (GMM) representing the spatial PDF of earthquake occurrence in South California. We can then, in the same 255 

vein as the hard clustering described previously, assign each event to its most likely GMM component (i.e. kernel). If we 256 

consider each event individually, the most likely kernel would be the one with the highest responsibility. However, for a 257 

globally optimal representation we need to find the best representative kernel for each event among all other kernels. To do 258 

this, we sample the original (uncondensed) PDF of each event with 1000 points and then calculate the likelihood of each 259 

sample point with respect to all the condensed kernels. The event is assigned to the kernel that provides the maximum 260 

likelihood for the highest number of sample points (see Figure 7c,d). As a result of this procedure, the 479,056 events are 261 

assigned to 93,149 distinct kernels. The spatial distribution of all the initial condensed kernels is given in Figure 9a, while 262 

the kernels assigned with at least one event after the hard clustering are shown in Figure 9b. Essentially, this procedure can 263 

be viewed as using the condensed catalog as a prior for the individual event locations. The use of accumulated seismicity as 264 

a prior for focusing and relocation has been proposed by Jones and Stewart (1997) and investigated in detail by Li et al. 265 

(2016). We can see the effect of this strategy more clearly in Figure 7, where starting from 3 different events in the catalog 266 

(Figure 7a), we finally converge to only 2 different final locations (Figure 7d).  267 
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 268 

Figure 9 a: Mean locations of condensed 600,463 Gaussian components shaded according to their weights. b: The same components 269 

shaded according to the total number of events assigned to them after the maximum likelihood assignment 270 

4. Large scale application to Southern California 271 

In previous work, we concluded that the spatial distribution of southern California seismicity is multifractal, i.e. it is 272 

an inhomogeneous collection of singularities (Kamer et al., 2015, 2016). The spatial features in Figure 9 can be seen as 273 

expressions of these singularities. Since we are interested in the general form of the fault network rather than the second 274 

order features (e.g inhomogeneous seismicity rates along the same fault) we consider all the centers of all 93,149 kernels as 275 

individual point, effectively disregarding their weights. Considering the weight of each kernel would result in more complex 276 

structure with singularities that can be associated with the fractal slip distribution of large events (Mai and Beroza, 2002) 277 

modulated through the non-uniform network detection capabilities. Thus, by disregarding the kernel weights we are 278 

considering only the potential locii of earthquakes, not their activity rates. 279 

Another important aspect, in the case of such a large scale application, is the uniform background kernel. The 280 

assumption of a single background kernel defined as the minimum bounding box of the entire dataset seems to be suitable 281 

for the case of Landers aftershocks, however it becomes evident that for whole Southern California such a minimum 282 

bounding box would overestimate the data extent (covering aseismic offshore areas) and would thus lead to an 283 

underestimated density. In addition, one can also expect the background density to vary regionally in such large domains. 284 

We thus extend our approach by allowing for multiple uniform background kernels. For this purpose, we make use of the 285 

AHC tree that is already calculated for the atomization of the whole dataset. We then cut the tree at a level corresponding to 286 

only a few clusters (5 or 30 in the following application), which allows to divide the original catalog into the smaller 287 

subcatalogs represented by each cluster. Each of these subsets is then atomized individually yielding its own background 288 

kernel. The atomized subsets are then brought together, to be is progressively merged. Naturally, we have no objective way 289 

of knowing how many background kernels a dataset may feature. However, in various synthetic tests, involving cuboid 290 
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backgrounds with known densities, we observe that inflating this number has no effect on the recovered densities, whereas a 291 

too low value causes underestimation. Apart from this justification, we are motivated to divide this large dataset into subsets 292 

for purely computational reasons as this allows for improved parallelization and computational efficiency. 293 

 294 

Figure 10 Fault network reconstructions for the KaKiOS-16 catalog. Top row shows results for the case of 5 initial subsets with (a) local 295 

and (b) global merging criterion. Bottom row shows the (c) local and (d) global  merging criterion for 30 initial subsets. The number of 296 

clusters, background weight and BIC per data point is given in the insets. 297 

 298 
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 299 
Figure 10 shows the two fault networks obtained for two different initial settings: using 5 and 30 subsets. For each 300 

choice, we show the results of the local and global criterion; the background cuboids are not plotted to avoid clutter. Our 301 

immediate observation is related to the events associated with the 1986 Oceanside sequence (Wesson and Nicholson, 1988) 302 

located at coordinates (-75,-125). The kernel associated with these events is virtually absent in the fault networks 303 

reconstructed from 5 initial subsets ( 304 
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 305 
Figure 10a,b). This can be explained in terms of the atomization procedure. In the case of 5 initial subsets, the 306 

offshore Oceanside seismicity falls in a subset containing onshore faults such as the Elsinore fault at coordinates (0,-75). 307 

Because these faults have a more coherent spatial structure compared to the diffused Oceanside seismicity, their proto-308 

cluster holding capacity is higher. Hence the atomization procedure continues increasing the number of clusters while the 309 

Oceanside seismicity has actually reached its own holding capacity. This causes nearly all of the proto-clusters within the 310 

Oceanside region to become singular and be discarded into the background. In the case of 30 subsets, the Oceanside 311 

seismicity is in a separate region and thus is able to retain a more reliable holding capacity estimation, yielding to the 312 

detection of the underlying structures. 313 

At this point, the natural question would be: which of these fault networks is a better model? The answer to this 314 

question would depend on the application. If one is interested in the correspondence between the reconstructed faults and 315 
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focal mechanisms, or high resolution fault traces, which are expressions of local stress/strain conditions, then the ideal 316 

choice would be the local criterion. However, if the application of interest is an earthquake forecast covering the whole 317 

catalog domain then one should consider the global criterion because it yields a lower BIC value, since it is formulated with 318 

respect to the overall likelihood. We leave the statistical investigation of the fault network parameters (e.g. fault length, dip, 319 

thickness distributions) as a subject for a separate study and instead focus on an immediate application of the obtained fault 320 

networks. 321 

5. Validation through a spatial forecast test 322 

Several methods can be proposed for the validation of a reconstructed fault network. One way could be to project 323 

the faults on the surface and check their correspondence with the mapped fault traces. This would be a tedious task since it 324 

would involve a case-by-case qualitative analysis. Furthermore, many of the faults illuminated by recent seismicity might not 325 

have been mapped or they may simply have no surface expressions. In the case of the 2014 Napa earthquake, there was also 326 

a significant disparity between the spatial distribution of aftershocks and the observed surface trace (Brocher et al., 2015). 327 

Another option would be to compare the agreement between the reconstructed faults and the focal mechanisms of the events 328 

associated with them. With many of the metrics already developed (Wang et al., 2013), this would allow for a systematic 329 

evaluation. However, the current focal mechanisms catalog for Southern California is based on the HYS-12 catalog 330 

(Hauksson et al., 2012; Yang et al., 2012) obtained by relative double-difference techniques. As previously discussed in our 331 

studies (Kamer et al., 2015, 2016), we have demonstrated that this catalog exhibits artificial clustering effects at different 332 

scales. Hence, any focal mechanism based on hypocenters from this relative location catalog would be inconsistent with the 333 

absolute locations of the KaKiOS-16 catalog.  334 

Therefore we are left with the eventual option: validation by spatial forecasting. For this purpose, we will use the 335 

global criterion model obtained from 30 subsets because it has the lowest BIC value of the four reconstructions presented 336 

above. Our fault reconstruction uses all events in the KaKiOS-16 catalog, regardless of their magnitude. The last event in 337 

this catalog occurred on June 30
th

 2011. For target events, we consider all routinely located events by the Southern California 338 

Earthquake Data Center between July 1
st
 2011 and July 1

st
 2015 with magnitudes larger than M2.5. We limit our volume of 339 

interest arbitrarily to the region limited by latitudes [32.5, 36.0], longitudes [-121, -115] and depths in the range 0-20km. The 340 

likelihood scores of the target events are calculated directly from the fault network, which is essentially a weighted mixture 341 

of Gaussian PDFs and uniform backgrounds kernels. The only modification done to accommodate the forecast is aggregating 342 

all background kernels into a single cuboid covering the volume of interest. The weight of this cuboid is equal to the sum of 343 

all aggregated background kernel weights. To compare the spatial forecasting performance of our fault network we consider 344 

the simple smoothed seismicity model (TripleS) (Zechar and Jordan, 2010) that was proposed as a forecasting benchmark. 345 

This model is obtained by replacing each event with an isotropic, constant bandwidth Gaussian kernel. The bandwidth is 346 

then optimized by dividing the dataset into training and validation sets. As already pointed out by (Zechar and Jordan, 2010) 347 

the construction of the model involves several choices (e.g. choice of optimization function, choice of candidate bandwidths, 348 
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etc...). To sidestep these choices we construct the TripleS model by optimizing the bandwidth parameter directly on the 349 

target set. Allowing this privilege of foresight, which would not be possible in a prospective setting, makes sure that the 350 

TripleS method is at its maximum attainable forecast skill. Figure 11 shows the forecast performance of our fault network, 351 

the TripleS model and a single uniformly dense cuboid. The performance is quantified in terms of negative log likelihood per 352 

target event for varying magnitude cut-offs of the target dataset. The reconstructed fault network performs better for all 353 

magnitude cut-off levels. We also observe a consistent relative performance increase with increasing magnitude cutoff, 354 

suggesting that the larger events tend to occur closer to the principal planes defined by the two largest eigenvalues of the 355 

fitting kernels. 356 

 357 

Figure 11 Average Negative Log Likelihood for the target dataset limited to events above M2.5 (light gray), M3.0 (dark gray) and M3.5 358 

(black). Performance of the TripeS models is evaluated as function of the isotropic kernel bandwidth (dotted lines). The fault network 359 

performance is plotted with constant level solid lines. The performance of a single uniformly dense cuboid is plotted with a dashed line. 360 

The superiority of our model with respect to TripleS can be understood in terms of model parameterization, i.e. 361 

model complexity. There is a general misconception regarding the meaning of “complexity” as it relates to a statistical. The 362 

term is often used to express the degree of conceptual convolution employed while deriving the model. For instance, in their 363 

2010 paper, Zechar and Jordan refer to the TripleS model as “a simple model” compared to models employing anisotropic or 364 

adaptive kernels (Kagan and Jackson, 1994, 2007). As a result, one might be inclined to believe that the model obtained by 365 

fault reconstruction presented in this study is far more complex than TripleS. However, it is important to notice that the 366 

complexity of a model is independent of the algorithmic procedures undertaken to obtain it. What matters is the number of 367 

parameters that are needed to communicate it, or in other words its minimum description length (Rissanen, 1978; Schwarz, 368 

1978). TripleS is essentially a GMM model expressed by the 3D locations of its components and a constant kernel 369 
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bandwidth. Hence it has a total of (3*479,056)+1=1,437,168 free parameters compared to the (10*385)-1=3,849 of our fault 370 

network. Thus, the difference in spatial forecasting performance can be understood in terms of the TripleS’ 371 

overparametrization compared to the optimal complexity criteria employed in reconstructing the fault network. It is true that, 372 

compared to our fault reconstruction method, the TripleS model is easier to formulate and obtain. However the fact that the 373 

isotropic TripleS kernels are co-located with hypocenters of previous earthquakes does not reduce the complexity of the 374 

model. As an everyday analogy, consider for instance an image saved as Bitmap, where each pixel is encoded with an 375 

integer representing its color: Such a representation of an image, although much simpler to encode, would require larger 376 

storage space compared to one obtained by JPEG compression. Although the JPEG compression is an elaborated algorithm it 377 

produces a representation that is much simpler. In the same vein, the fault reconstruction method uses regularities in the data 378 

to obtain a simpler, more optimal representation. 379 

Another contributing factor to the performance of the fault network can be regarded as the utilization of location 380 

uncertainty information that facilitates condensation. This has two consequences: 1) decreasing the overall spatial entropy 381 

and thus providing a clearer picture of the fault network and 2) reducing the effect of repeated events occurring on each 382 

segment, thus providing a more even prior on all segments. 383 

6. Conclusion 384 

We presented an agglomerative clustering method for seismicity-based fault network reconstruction. The method 385 

provides the following advantages: 1) a bottom-up approach that explores all possible merger options at each step and moves 386 

coherently towards a global optimum; 2) an optimized atomization scheme to isolate the background (i.e. uncorrelated) 387 

points; 3) improved computation performance due to geometrical merging constrains. We were able to analyze a very large 388 

dataset consisting of 30 years of South Californian seismicity by utilizing the non-linear location uncertainties of the events 389 

and condensing the catalog to ~20% of its initial size. We validated the information gain of the reconstructed fault network 390 

through a pseudo-prospective 3D spatial forecast test, targeting 4 years of seismicity.  391 

Notwithstanding these encouraging results, there are several aspects in which the proposed methodology can be 392 

further improved and extended. In the current formulation, the distinct background kernels are represented by the minimum 393 

bounding box of each subset, so that they tend to overlap and bias the overall background density. This can be improved by 394 

employing convex hulls, alpha shapes (Edelsbrunner and Mücke, 1994) or a Voronoi tessellation (Voronoi, 1908) optimized 395 

to match the subset borders. The shape of the background kernel could also be adapted to the specific application; for 396 

induced seismicity catalogs, it can be a minimum bounding sphere or an isotropic Gaussian since the pressure field diffuses 397 

more or less radially from the injection point (Király-Proag et al., 2016). Different types of proto-clusters such as Student-t 398 

kernels or copulas can be used in the atomization step or they can be introduced at various steps of the merger by allowing 399 

for data-driven kernel choices. 400 

The reconstructed faults can facilitate other fault related research by providing a systematic way to obtain planar 401 

structures from observed seismicity. For instance, analysis of static stress transfer can be aided by employing the 402 
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reconstructed fault network to resolve the focal plane ambiguity (Nandan et al., 2016; Navas-Portella et al., 2020). Similarly, 403 

the orientation of each individual kernel can be used as a local prior to improve the performance of real-time rupture 404 

detectors (Böse et al., 2017). Studies relying on mapped fault traces to model rupture dynamics can be also extended using 405 

reconstructed fault networks that represent observed seismicity including its uncertainty (Wollherr et al., 2019).  406 

An important implication of the reconstructed fault network is its potential in modeling the temporal evolution of 407 

seismicity. The Epidemic Type Aftershock Sequence (ETAS) model can be simplified significantly in the presence of 408 

optimally defined Gaussian fault kernels. Rather than expressing the whole catalog sequence as the weighted combination of 409 

all previous events, we can instead coarse-grain the problem at the fault segment scale, and have multiple sequences 410 

corresponding to each fault kernel, each of them being a combination of the activity on the other fault kernels.  Such a 411 

formulation would eliminate the need for the commonly used isotropic distance in the ETAS kernels, as this single degree 412 

kernel induces essentially the same deficiencies discussed in the case of the TripleS model. Thus, we can expect such an 413 

ETAS model, based on a fault network, to have significantly better forecasting performances compared to its isotropic 414 

variants. 415 
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