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Response to Reviewer comments by Nadav Wetzler: 1 

Thank you for your time in reviewing our paper. Below is our response to your comments and description of the 2 
modifications we made to address them. 3 

I would expect a more deterministic approach to validate the resulted faults geometry.   I think that exploring a small region 4 
using FMS data + mapped fault will be much appreciated to judge, is method is more capable to detect the natural faults 5 
network? 6 

We agree with the sentiment that focal mechanism solutions (FMS) can reveal important information regarding the geometry 7 
of the faults under investigation. Deterministic measures that investigate the compatibility between reconstructed faults and 8 
the focal mechanisms of the events have been introduced and extensively studied by our group in research by Wang et al 9 
2013. The FMS are greatly dependent on the location and the velocity model used for the inversions. Thus it would be 10 
inconsistent to use the solutions obtained using cross-correlation based relative locations with our absolute location catalog 11 
obtained using a different velocity model. That is why we focused on validations based on information criteria and cross 12 
correlation.  13 

In an effort to address your comment we updated Figure 5 (now Figure 6) by adding the fault trace of the Landers fault as 14 
obtained from the Community Fault Model of southern California. We also added the following text to inform the reader 15 
about FMS based validation approaches.  16 

“It is also possible to employ metrics based on consistency of focal mechanism solutions to evaluate the reconstructed faults. 17 
For a detailed application of such metrics the reader is referred to the detailed work by Wang et al.(2013). In this study, 18 
since we do not have focal mechanism solutions for our target catalog, we focus on information criteria metrics and out of 19 
sample forecast tests.” 20 

Specific comments: L. 33: The use of “large durations” is confusing. Please clarify. Fig.  10:  It seems that the colors of the 21 
ellipses is correlated with the size of the kernel. If so, a color bar is useful here. 22 

We have clarified the term to express catalogs covering long time spans. In Figure 10 (now Figure 11) have added a color 23 
bar and also supplemented the figure caption to indicate that the color axis unit. 24 

“Clusters are colored according their density (data point per km
3
) where the volume is estimated as the product of standard 25 

deviations along the principal component axes.” 26 

References: 27 

 28 

Wang, Y., G. Ouillon, J. Woessner, D. Sornette, and S. Husen (2013), Automatic reconstruction of fault networks from 29 

seismicity catalogs including location uncertainty, J. Geophys. Res. Solid Earth, 118(11), 5956–5975, 30 

doi:10.1002/2013JB010164. 31 

 32 

 33 

34 
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Response to Reviewer comments by Leandro C. Gallo: 35 

Thank you for taking the time to review our paper and providing detailed suggestions. Below is our response to your 36 
comments and description of the modifications we made to address them. 37 

Its application to a single synthetic experiment is practical for making the whole workflow understood, however, it has no 38 
statistical significance in terms of method’s sensitivity.  Being that the synthetic experiment features a relatively small 39 
number of data points, I would rather advise the authors to apply the technique to a larger number of models featuring a 40 
different number of faults with diverse characteristics or orientations –without prior knowledge this would be 41 
computationally inexpensive.  Assessing discrepancies between the true and the inferred plane segments in a number large 42 
enough would then allow statistically meaningful results that, in my opinion, would make the whole manuscript more robust. 43 

We agree with you that the synthetics provided previously did not allow for conclusions about the sensitivity and robustness 44 
of the method. We have therefore supplemented the synthetics section with a more elaborate study where we gradually 45 
increase the sampling of a ground truth fault network under different background noise levels and investigate the method’s 46 
clustering performance using the Rand index. This is now covered in section 3.1 and the results are provided in Figure 5. 47 

L. 52: The contribution of source code to this section as supplementary materials –or open-access code repositories like 48 
GitHub or Zenodo- would boost scientific progress and reproducibility.   49 

Based on your suggestions we have made publicly available the codes for the agglomerative clustering and the codes for the 50 
generation and evaluation of the synthetic sensitivity analysis. The links are included in the “Code availability” section. 51 

L. 53:  I don’t see this subsection appropriate for the “methods” section.   52 

We have moved this part to a separate section after the introduction. 53 

L.86-88: The criterion applied for merging two clusters involves the minimum squared Euclidean distances, was this 54 
criterion chosen for any particular reason?  Is there any other metric to use instead for clustering? I’m thinking about the 55 
Eigen-based parameters of the covariance matrix.  It would be valuable some extra explanation.   56 

Our selection of the Ward’s criterion was motivated by its characteristic of producing regular sized clusters. This is 57 
important for the atomization procedure because we want all clusters to have the same potential to merge and grow into 58 
bigger structures. Initially we also investigated using the Mahalanobis distance with single linkage, and using the Gaussian 59 
associated with the location uncertainty of each event without atomization. These methods were not successful in 60 
reconstructing the synthetic networks in the presence of background noise; hence we focused our attention on atomization 61 
using the Ward creation. We have added the following sentence to the method section. 62 

“While there are many different linkage methods and distance metrics, here we have chosen to use the Ward’s criterion 63 
because it produces clusters with regular sizes. This is important for the atomization procedure as we want clusters to have 64 
similar potentials to merge and grow into bigger structures.” 65 
 66 
L.110, Figure 2:  for those who are unfamiliar with the method, the hierarchical, binary cluster tree is most easily understood 67 
when viewed graphically.  It would be helpful for the understanding of those who are not familiar to add the associated 68 
dendrogram to this figure. 69 

We have added the dendrograms for both datasets to Figure 2. 70 



3 

 

Fault Network Reconstruction using Agglomerative Clustering: 71 

Applications to South Californian Seismicity 72 

Yavor Kamer
1,a

, Guy Ouillon
2
, Didier Sornette

1
 73 

1
ETH Zurich, Switzerland 74 

2
Lithophyse, Nice, France 75 

a
now at: RichterX.com 76 

Correspondence to: Yavor Kamer (yaver.kamer@gmail.com) 77 

Abstract 78 

In this paper we introduce a method for fault network reconstruction based on the 3D spatial distribution of 79 

seismicity. One of the major drawbacks of statistical earthquake models is their inability to account for the highly anisotropic 80 

distribution of seismicity. Fault reconstruction has been proposed as a pattern recognition method aiming to extract this 81 

structural information from seismicity catalogs. Current methods start from simple large scale models and gradually increase 82 

the complexity trying to explain the small scale features. In contrast the method introduced here uses a bottom-up approach, 83 

thatapproach that relies on initial sampling of the small scale features and reduction of this complexity by optimal local 84 

merging of substructures.  85 

First, we describe the implementation of the method through illustrative synthetic examples. We then apply the 86 

method to the probabilistic absolute hypocenter catalog KaKiOS-16, which contains three decades of South Californian 87 

seismicity. To reduce data size and increase computation efficiency, the new approach builds upon the previously introduced 88 

catalog condensation method that exploits the heterogeneity of the hypocenter uncertainties. We validate the obtained fault 89 

network through a pseudo prospective spatial forecast test and discuss possible improvements for future studies. The 90 

performance of the presented methodology attests the importance of the non-linear techniques used to quantify location 91 

uncertainty information, which is a crucial input for the large scale application of the method. We envision that the results of 92 

this study can be used to construct improved models for the spatio-temporal evolution of seismicity. 93 

1. Introduction 94 

Owing to the continuing advances in instrumentation and improvement of seismic networks coverage, earthquake 95 

detection magnitude thresholds have been decreasing while the number of recorded events is increasing. As governed by the 96 

Gutenberg-Richter law, the number of earthquakes above a given magnitude increases exponentially as the magnitude is 97 

decreased (Ishimoto and Iida, 1939; Gutenberg and Richter, 1954). Recent studies suggest that the Gutenberg-Richter law 98 

might hold down to very small magnitudes corresponding to interatomic-scale dislocations (Boettcher et al., 2009; Kwiatek 99 

et al., 2010). This implies that there is practically no upper limit on the amount of seismicity we can expect to record as our 100 

instrumentation capabilities continue to improve. Although considerable funding and research efforts are being channeled 101 
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into recording seismicity, when we look at the uses of the end product (i.e. seismic catalogs) we often see that the vast 102 

majority of the data (i.e. events with small magnitudes) are not used in the analyses. For instance, probabilistic seismic 103 

hazard studies rely on catalogs with large durationscontaining events detected over long terms, which increases the minimum 104 

magnitude that can be considered due to the higher completeness magnitude levels in the past. Similarly, earthquake 105 

forecasting models are commonly based on the complete part of the catalogs. For instance, in their forecasting model, 106 

(Helmstetter et al., 2007) use only M>2 events, which corresponds to only ~30% of the recorded seismicity. The forecasting 107 

skills of the current state-of-the-art models can well be hindered not only due to our limited physical understanding of 108 

earthquakes, but also due to this data censoring.  109 

In this conjecture, fault network reconstruction can be regarded as an effort to tap into this seemingly neglected but 110 

vast data source, and extract information in the form of parametric spatial seismicity patterns. We are motivated by the 111 

ubiquitous observations that large earthquakes are followed by aftershocks that sample the main rupturing faults, and 112 

conversely that these faults become the focal structures of following large earthquakes. In other words, there is a relentless 113 

cycle as earthquakes occur on faults that themselves grow by accumulating earthquakes. By using each earthquake, no 114 

matter how big or small, as a spark in the dark, we aim to illuminate and reconstruct the underlying fault network. If the 115 

emerging structure is coherent, it should allow us to better forecast the spatial distribution of future seismicity and also to 116 

investigate possible interactions between its constituent segments. 117 

The paper is structured as follows. First, we give an overview of recent developments in the field of fault network 118 

reconstruction and spatial modeling of seismicity. In Section 2, we describe our new clustering method and demonstrate its 119 

performance using a synthetic example. In Section 3, we apply the method to the recently relocated southern California 120 

catalog KaKiOS-16 (Kamer et al., 2016) and discuss the obtained fault network. In Section 4, we perform a pseudo-121 

prospective forecasting test using four years of seismicity that was recorded during 2011-2015 and was not included in the 122 

KaKiOS-16 catalog. In the final Section, we conclude with an outlook on future developments. 123 

2. Recent developments in fault reconstruction 124 

In the context the work presented here, we use the term "fault" as a three-dimensional geometric shape or kernel 125 

optimized to fit observed earthquake hypocenters. Fault network reconstruction based on seismicity catalogs was introduced 126 

by (Ouillon et al., 2008). The authors presented a dynamical clustering method based on fitting the hypocenters distribution 127 

with a plane, which is then iteratively split into an increasing number of subplanes to provide better fits by accounting of 128 

smaller scale structural details. The method uses the overall location uncertainty as a lower bound of the fit residuals to avoid 129 

over fitting. (Wang et al., 2013) made further improvements by accounting for the individual location uncertainties of the 130 

events and introducing motivated quality evaluation criteria (based, for instance, on the agreement of the planes orientations 131 

with the events focal mechanisms). (Ouillon and Sornette, 2011) proposed an alternative method based on probabilistic 132 

mixture modeling (Bishop, 2007) using 3D Gaussian kernels. This method introduced notable improvements, such as the use 133 

of an independent validation set to constrain the optimal number of kernels to explain the data (i.e. model complexity) and 134 
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diagnostics based on nearest-neighbors tetrahedra volumes to eliminate singular clusters that cause the mixture likelihood to 135 

diverge. While our method is inspired by these studies, and in several aspects builds upon their findings, we also note an 136 

inherent drawback of the iterative splitting approach that is common to all the previously mentioned methods. This can be 137 

observed when an additional plane (or kernel), introduced by splitting, fails to converge to the local clusters and is instead 138 

attracted to the regions of high horizontal variance (see Figure 1 for an illustration in the case of Landers' seismicity).  139 

 140 

 141 

Figure 1 Iterative splits on the 1992 Landers aftershock data. Points with different colors represent seismicity associated with each plane. 142 

Black dots show the center points of the planes resulting from the next split. Notice how in steps b. to c. step the planes fail to converge to 143 

the local branches (shown with arrows), and the method prefers to introduce a horizontal plane to fit a more complex local pattern. 144 

This deficiency has motivated us to pursue a different concept. Instead of starting with the simplest model (i.e. a 145 

single plane or kernel) and increasing the complexity progressively by iterative splits, we propose just the opposite: start at 146 

the highest possible complexity level (as many kernels as possible) and gradually converge to a simpler structure by iterative 147 

merging of the individual substructures. In this respect, the new approach can be regarded as a “bottom-up” while the 148 

previous ones are “top-down” approaches. 149 

3. The agglomerative clustering method 150 

3.1. Method description 151 

The method shares the basic principles of agglomerative clustering (Rokach and Maimon, 2005) with additional 152 

improvements to suit the specifics of seismic data, such as the strong anisotropy of the underlying fault segments. We 153 

illustrate the method by applying it to a synthetic dataset obtained by sampling hypocenters on a set of five plane segments, 154 
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and potentially adding uncorrelated background points which are uniformly distributed in the volume (see Figure 2). The 155 

implementation follows the successive steps described below: 156 

i) For a given dataset featuring N hypocenters, we first construct an agglomerative hierarchical cluster (AHC) tree 157 

based on Ward’s minimum variance linkage method (Ward, 1963). Such a tree starts out with a cluster for each data-point 158 

(i.e., with zero variance) and then progressively branches into an incrementally decreasing number of clusters (see Figure 2 159 

c,d). At any step, the merging of two clusters is based on a criterion involving the minimum distance Dw criterion given by: 160 

        
2 22

,
ij i j

w i j ij i j

x C x C x C

D C C x r x r x r
  

         (1) 

In this equation, Cij is the cluster formed by merging clusters Ci and Cj, x represents the set of hypocenters, and r (with 161 

proper subscript) is the centroid of each cluster. Hence, clusters i and j are merged if the sum of squares in Eq. (1) is 162 

minimized after they are merged into a single cluster ij. The number of branches in the tree is thus reduced by one, and the 163 

remaining clusters are used to decide which ones will be merged at the next iteration. This merging of clusters/branches 164 

continues until there remains only a single cluster. "Cutting" the AHC tree at the Dw level corresponding to the desired 165 

number of branches allows one to choose the number of clusters (from 1 to N) used to represent the original dataset. While 166 

there are many different linkage methods and distance metrics, here we have chosen to use Ward’s criterion because it 167 

produces clusters with regular sizes. This is important for the atomization procedure as we want clusters to have similar 168 

potentials to merge and grow into bigger structures. 169 

 ii) Since our goal is to obtain a fault network where segments are modeled by Gaussian kernels, we begin by 170 

estimating how many such kernels can be constructed with the clusters featured in the AHC tree. At its most detailed level 171 

(N clusters) no such kernel exists as they would collapse on each data point, becoming singular. At the next level (N-1 172 

clusters), we have the same problem. We thus incrementally reduce the level, traversing AHC tree, until we get a first cluster 173 

featuring 4 hypocenters, which defines the first non-singular cluster. We then continue our traverse along the tree down 174 

replacing each cluster having more than 4 points by a Gaussian kernel. At each level on the tree, we count the number of 175 

these non-singular Gaussian kernels. The results are illustrated on Figure 2b where we consider two cases: first considering 176 

only the 5 planes, the second one including a set of uniformly distributed background points. In the first case, we see that the 177 

maximum number of Gaussian kernels (76) is obtained when we cut the tree so that the total number of clusters is 117. In the 178 

second case, in the presence of background points, the maximum number of Gaussian kernels (77) is obtained when we cut 179 

the tree at a level of 214 clusters. We refer to this maximum number is as the "holding capacity" of the dataset, and the 180 

corresponding configuration defines the starting point of the following iterative and likelihood-based clustering algorithm. 181 

The process of finding this optimum set of initial Gaussian proto-clusters (all containing more than 4 points) is coined as 182 

"atomization".  183 

 184 
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 185 

Figure 2  a) Synthetic fault network with 640 points created by uniform sampling of 5 faults, each shown with a different shade according 186 

to its total number of points. Empty circles represent the %20 uniformly random background points. b) Determination of the holding 187 

capacity (see main text) for the case with and without background points. c-d) Dendrograms showing the agglomerative hierarchical 188 

cluster tree for the data with no noise (c) and with noise (d). The horizontal length of each branch is the minimum distance Dw (see Eq.1) 189 

joining two clusters 190 

iii) Once we determine the holding capacity, all points that are not associated with any Gaussian kernel are assigned 191 

to a uniform background kernel that encloses the whole dataset. The boundaries of this kernel are defined as the minimum 192 

bounding box of its points. The uniform spatial density of this background kernel is defined as number of points divided by 193 

the volume (see Figure 3). The Gaussian kernels together with the uniform background kernel represent a mixture model 194 

where each kernel has a contributing weight proportional to the number of points that are associated with it (Bishop, 2007). 195 

This representation facilitates the calculation of an overall likelihood and allows us to compare models with different 196 

complexities using the Bayesian Information Criteria (BIC) (Schwarz, 1978) given by: 197 

 
2

log( ) log( )
N

k

i

BIC L N  
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where L is the likelihood of each data point, k is the number of free parameters of the mixture model and N is the total 198 

number of data points. The value of k is calculated as k=10NC-1 (where NC is the number of kernels in the mixture) since 199 

each kernel requires 3 (mean vector) + 6 (covariance matrix) + 1 (weight) = 10 free parameters. The same parameterization 200 

is also used to describe the background kernel, which is a uniformly dense cuboid with a size and orientation prescribed by 201 

its covariance matrix. The number of free parameters (k) is reduced by 1 because the weights have to sum to unity and hence 202 

knowing NC-1 of them is sufficient. 203 

 iv) At the holding capacity, the representation with the large number of kernels are is likely to constitute an 204 

overfitting model for the data set. Therefore, the we iteratively merge pairs of the Gaussian kernels until an optimal balance 205 

between fitness and model complexity is reached. We use the measure of information gain in terms of BIC to select which 206 

pair of kernels to merge. For any given pair of Gaussian kernels, the BIC gain resulting from their merger is calculated using 207 

Equation (3) where Lint is the likelihood of each data-point for the initial (unmerged) model and Lmrg is the likelihood in the 208 

case where the two candidate clusters are merged: 209 

 210 
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(3) 

Notice that each merging of a pair of kernels decreases k by 10, thus a given merger can be considered only if the reduction 211 

of the penalty term is greater than the decrease of likelihood (i.e. BICGain>0). 212 
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 213 

Figure 3  a) The initial protoclusters for the synthetic dataset given in Figure 2a. Notice that the number of clusters (78) includes the 214 

uniform background kernel as well. b) The BIC gain matrix calculated for all possible merging of pairs of kernels. 215 

Using this formulation, we calculate a matrix where the value at the intersection of i
th

 row and j
th

 column corresponds to the 216 

BIC gain for merging  clusters i and j. We merge the pair with the maximum BIC gain and then re-estimate the matrix since 217 

we need to know the BIC gains of the newly formed cluster. At each step, the complexity of the model is reduced by one 218 

cluster, and the procedure continues until there is no merging yielding a positive BIC gain. Figure 3b shows such a BIC gain 219 

matrix calculated for the initial model with 77 clusters. Notice that a Gaussian cluster it is not allowed to merge with the 220 

background kernel. The BICGain>0 criteria, which essentially drives and terminates the merging process, is similar to a 221 

likelihood ratio test (Neyman and Pearson, 1933; Wilks, 1938) with the advantage that the models tested do not need be 222 

nested.  223 

The computational demand of the BIC gain matrix increases quadratically with the number of data points. To make our 224 

approach feasible for large seismic datasets, we introduce a preliminary check that considers clusters as candidates for 225 

merging only if they are overlapping within a confidence interval of σ√12 in any of their principal component directions. 226 

The factor √12 is derived from the variance of an hypothetical uniform distribution over a planar surface (for details see 227 

(Ouillon et al., 2008)). 228 

During all steps of the merging procedure, the data points are in the state of soft clustering, meaning that they have a finite 229 

probability to belong to any given kernel. A deterministic assignment can be achieved by assigning each point to the kernel 230 

that provides the highest responsibility (as per the definition of a mixture model), which is referred to as hard clustering. 231 

This dichotomy between stochastic and deterministic inference gives rise to two different implementations for the merging 232 

criteria: 1) local criterion: considering only the two candidate clusters and the data-points assigned to them through hard-233 

clustering and 2) global criterion: considering the likelihood of all data-points for all clusters. In essence, the local criterion 234 
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tests the information gain for the case of two kernels versus one kernel on a subset, whereas the global criterion considers Nc 235 

versus Nc-1 kernels on the whole mixture and dataset. Figure 4 shows the resulting final reconstructions for the two criteria. 236 

 237 

 238 

Figure 4 The final models obtained using the local (a) and global (b) merging criteria for the dataset presented on Figure 2. That the 239 

number of clusters, including the uniform background kernel, is 11 and 6 for the local and global criteria respectively. 240 

For this synthetic dataset, we observe that both the local and global criteria converge to a similar final structure. The global 241 

criterion yields a model with the same number of clusters as the input synthetic, while the local criterion introduces four 242 

additional clusters in the under-sampled part of one of the faults. For most pattern recognition applications that deal with a 243 

robust definition of noise and signal, the global criterion may be the preferred choice since it is able to recover the true 244 

complexity level. However, since this method is indendted for natural seismicity, we also see a potential in the local 245 

criterion. For instance, consider the case where two fault segments close to each other are weakly active and thus have a low 246 

spatial density of hypocenters compared to other distant faults that are much more active. In that case, the global criterion 247 

may choose to merge the low-activity faults, while the local criterion may preserve them as separate.  248 

3.2. Sensitivity analysis 249 

In order to gain insight about the sensitivity and the robustness of the proposed method, we conduct a more elaborate 250 

synthetic test. We generate a set of 20 randomly oriented planes with their attributes varying in the following ranges: strike 251 

angle -90° to 90°, dip angle 45° to 90°, length 20 to 40 km, width 5 to 15 km. The fault planes span a region with the 252 

dimensions of 220 x 150 x 30 km. Each fault plane is sampled randomly with an increasing number of points; starting from 253 

0.1 point/km2 going up to 2 points/km
2
 in 15 steps, producing sets with a total number of points in the range of 609 to 254 

14,475. We also consider three different uniform background noise levels at 5%, 10% and 20% yielding a total of 45 255 

synthetic sets. We apply our clustering method to each of these sets and report the resulting performance using the Rand 256 

index. The Rand index measures the similarity between different clusterings and is expressed by the following equation 257 

  258 
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 259 

where a is the number of pairs that are in the same cluster in the two clusterings, b is the number of pairs that are in different 260 

clusters in the two clusterings and n is the number of points in the dataset. A Rand index of 1 indicates total match between 261 

the two groupings while a value of 0 indicates that all pairs are in disagreement. In our case, we are comparing the ground 262 

truth clustering, which is given by the 20 fault planes and the uniform background, and the clustering obtained by our 263 

method. Figure 5a shows the Rand index obtained using the local and the global criteria as a function of increasing sampling 264 

density for the three levels of background noise. As mentioned earlier, the performance of the global criterion is better than 265 

the local one, which degrades with increasing density as the method start introducing additional clusters. The Rand index of 266 

the global criterion saturates around 0.95 and starts decreasing as the density increases above ~1.25 points/km
2
. This 267 

saturation can be explained by the fact that additional Gaussian kernels are needed to fit the sharp corners of the rectangular 268 

planes as they become more pronounced with increased sampling. We can make an analogy with the Fourier series 269 

expansion of a square wave, where more terms are needed to fit the sharp edges. In our case, these additional terms (i.e. 270 

Gaussian kernels) increase the complexity and cause the Rand index to drop. To confirm this we repeat the synthetics by 271 

sampling Gaussian kernels with the eigenvectors corresponding to the rake and dip, and eigenvalues corresponding to the 272 

length, width and thickness of the rectangular planes. The results are shown in Figure 5b where we see no drop off in the 273 

Rand index. 274 

 275 

Figure 5 Clustering similarities between ground truth synthetic dataset and method results quantified by the Rand index. Global and local 276 

merging criteria are shown as solid and dashed lines respectively. Background noise amplitude is shown as shades of gray. Results for 277 

ground truth sampled from a) rectangular fault planes b) elliptic Gaussian kernels with similar dimensions. 278 
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These synthetics indicate that the method is robust in the presence of uniform background noise and that it is able to 279 

recover structures that are sufficiently sampled. In the presented case, the performance saturates around 0.5 points/km
2
, 280 

however this value can change based on the particular setting. For instance, if faults are very closely spaced and intersecting, 281 

higher sampling may be needed. On the other hand, if the structures are isolated, similar performance can be achieved at 282 

lower sampling. The MATLAB code used for generating the synthetics and evaluating the reconstruction’s Rand index is 283 

provided. Users may prefer to create synthetic cases that are informed by the properties of the actual data they are working 284 

on (such as numbers of points, spatial extend, etc.) 285 

4. Application to seismicity 286 

In this section, we apply our method to observed seismicity data. For this purpose, we use the KaKiOS-16 catalog 287 

(Kamer et al., 2016) that was obtained by probabilistic absolute location of nearly 479,000 Southern Californian events 288 

spanning the time period 1981-2011. We consider all events, regardless of magnitude, as each event samples some part of 289 

the fault network. Before tackling this vast dataset, however, we first consider the 1992 Landers sequence as a smaller 290 

dataset to assess the overall performance and computational demands. 291 

4.1. Small Scale application to the Landers aftershocks sequence 292 

We use the same dataset as (Wang et al., 2013) that consists of 3,360 aftershocks of the 1992 Landers earthquake. 293 

The initial atomization step produces a total of 394 proto-clusters that are iteratively merged using the two different criteria 294 

(local and global). The resulting fault networks are given in Figure 6 together with the fault traces available in the 295 

Community Fault Model of southern California (Plesch et al., 2007). Comparing the two fault networks, we observe that the 296 

local criterion provides a much detailed structure that is consistent with the large scale features in the global one. We also 297 

observe that, in the southern end, the global criterion produces thick clusters by lumping together small features with 298 

seemingly different orientations. These small scale features have relatively few points and thus low contribution to the 299 

overall likelihood. The global criterion favors these mergers to reduce the complexity penalty in Equation (2), which scales 300 

with the total number of points. In the local case, however, because each merger is evaluated considering only the points 301 

assigned to the merging clusters, the likelihood gain of these small scale features can overcome the penalty reduction and 302 

they remain unmerged. It is also possible to employ metrics based on consistency of focal mechanism solutions to evaluate 303 

the reconstructed faults. For a detailed application of such metrics the reader is referred to the detailed work by Wang et 304 

al.(2013). In this study, since we do not have focal mechanism solutions for our target catalog, we focus on information 305 

criteria metrics and out of sample forecast tests. 306 

 307 
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 308 

Figure 6  a): Top view of the 1992 Landers aftershocks. Fault networks obtained from these events using the local (b) and global (c) 309 

merging criterion, each resulting in 70 and 22 clusters respectively. d) Fault traces obtained from the Community Fault Model of southern 310 

California 311 

Our second observation is that the background kernel attains a higher weight of 11% using the local criterion 312 

compared to the global one yielding only 5%. Keeping in mind that both criteria are applied on the same initial set of proto-313 

clusters, and that there are no mergers with the background kernel, we argue that the difference between the background 314 

weights is due to density differences in the tails of the kernels. We investigate this in Figure 7 for the simple 1D case 315 

considering mergers between two boxcar functions (analogous for planes in 3D) approximated with Gaussian functions. We 316 

observe that the merged Gaussian has higher densities in its tails compared to its constituents. The effect is amplified when 317 

the distance between the merging clusters is increased (Figure 7b). Hence, in the local case, the peripheral points are more 318 

likely to be associated with the background kernel due to the lower densities at the tails of the small, unmerged clusters. 319 

 320 

 321 

Figure 7 Two uniform distributions (dotted gray lines), their Gaussian approximations (solid gray lines) and the Gaussian resulting from 322 

their merger (solid black line). Notice that the joint Gaussian has higher densities at the tails compared to its constituents. 323 
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Another important insight from this sample case was regarding the feasibility of a large scale application. As 324 

pointed out here and in previous studies (Ouillon and Sornette, 2011; Wang et al., 2013), the computational demand for such 325 

pattern recognition methods increases rapidly with the number of data-points. The Landers case with 3,360 points took ~5 326 

minutes on a 4-core, 2.2GHz machine with 16GB memory. Considering that our target catalog is nearly ~145 times larger, a 327 

quadratic increase would mean an expected computation time of more than two months. Even with a high performance 328 

computing cluster, we would have to tackle memory management and associated overhead issues. Although technically 329 

feasible, pursuing this path would limit the use of our method only to the few privileged with access to such computing 330 

facilities. In a previous work we proposed a new solution called "catalog condensation", that uses the location uncertainty 331 

estimates to reduce the length of a catalog while preserving its spatial information content (Kamer et al., 2015). In the 332 

following section, we will detail how we applied this method to the KaKiOS-16 catalog in order to make the clustering 333 

computations feasible. 334 

4.2. Condensation of the KaKiOS-16 catalog 335 

The condensation method reduces the effective catalog length by first ranking the events according to their location 336 

uncertainty and then successively condensing poorly located events onto better located ones (for detailed explanation see 337 

Kamer et al., 2015). The initial formulation of the method was developed considering the state of the art catalogs of the time. 338 

Location uncertainties in these catalogs are assumed to be normally distributed and hence expressed either in terms of a 339 

horizontal and vertical standard deviation, or with a diagonal  3x3 covariance matrix. With the development of the KaKiOS-340 

16 catalog, we extended this simplistic representation to allow arbitrarily complex location PDFs to be modeled with 341 

mixtures of Gaussians. Such mixture models, consisting of multiple Gaussian kernels, was were found to be the optimal 342 

representation for 81% percent of the events, which required an average of 3.24 Gaussian components (the rest was 343 

optimally modeled using a single Gaussian kernel). Therefore we first needed to generalize the condensation methodology, 344 

which was initially developed for single kernels, to accommodate the multiple kernel representation. In the original version, 345 

all events are initiated with equal unit weights. They are then ranked according to their isotropic variances and weights are 346 

progressively transferred from the high variance to the low variance events according to their overlap. In the generalized 347 

version, each event is represented by a number of Gaussian kernels that are initiated with their respective mixture weight (0-348 

1). All kernels are then ranked according to their isotropic variance and the weights are transferred as in the original method 349 

with the additional constraint that weight transfers between kernels of the same event are not allowed (see Figure 8a, b). This 350 

constraint is motivated by the fact that the kernels representing each event's location PDF are already optimized. Thus a 351 

weight transfer between those can lead only to a sub-optimal location representation. 352 

 353 
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 354 

Figure 8 Idealized schematic representations of 3 events with 1,2 and 3 Gaussian kernels each a) Condensation: each event is represented 355 

by a different shade, weight transfer is represented by the arrows; notice that there are no intra-event weight transfers b) Final condensed 356 

catalog: the total weight sum is preserved, one component is discarded. c) Sampling of the event PDFs: this step is done on the original 357 

catalog d) Each event is assigned to the condensed kernel that provides the maximum likelihood for most of its sampled points; three 358 

events are assigned to two condensed kernels. 359 

The KaKiOS-16 catalog contains 479,056 events whose location PDFs are represented by a total of 1,346,010 360 

Gaussian components (i.ei.e. kernels). Condensation reduces this number to 600,463 as weights from events with of high 361 

variance are transferred to better located ones. Nevertheless, in Figure 9 we see that nearly half of these components amount 362 

to only 10% of the total event weight. The computation time scales with the number of components, while the information 363 

content is proportional to number of events. Hence the large number of components amounting to a relatively low number of 364 

events would make the computation inefficient. A quick solution could be to take the components with the largest weights 365 

constituting 90% or 95% of the total mass, mimicking a confidence interval. Such a "solution" would depend on the arbitrary 366 

cutoff choice and would have the potential to discard data that may be of value for our application. 367 

 368 
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 369 

Figure 9 Cumulative weights of the 600,463 condensed KaKiOS-16 components representing a total of 479,056 events. The components 370 

are ranked according to increasing weights. 371 

We can avoid such an arbitrary cut-off by employing the fact that the condensed catalog is essentially a Gaussian 372 

mixture model (GMM) representing the spatial PDF of earthquake occurrence in South California. We can then, in the same 373 

vein as the hard clustering described previously, assign each event to its most likely GMM component (i.e. kernel). If we 374 

consider each event individually, the most likely kernel would be the one with the highest responsibility. However, for a 375 

globally optimal representation we need to find the best representative kernel for each event among all other kernels. To do 376 

this, we sample the original (uncondensed) PDF of each event with 1000 points and then calculate the likelihood of each 377 

sample point with respect to all the condensed kernels. The event is assigned to the kernel that provides the maximum 378 

likelihood for the highest number of sample points (see Figure 8c,d). As a result of this procedure, the 479,056 events are 379 

assigned to 93,149 distinct kernels. The spatial distribution of all the initial condensed kernels is given in Figure 10a, while 380 

the kernels assigned with at least one event after the hard clustering are shown in Figure 10b. Essentially, this procedure can 381 

be viewed as using the condensed catalog as a prior for the individual event locations. The use of accumulated seismicity as 382 

a prior for focusing and relocation has been proposed by Jones and Stewart (1997) and investigated in detail by Li et al. 383 

(2016). We can see the effect of this strategy more clearly in Figure 8, where starting from 3 different events in the catalog 384 

(Figure 8a), we finally converge to only 2 different final locations (Figure 8d).  385 
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 386 

Figure 10 a: Mean locations of condensed 600,463 Gaussian components shaded according to their weights. b: The same components 387 

shaded according to the total number of events assigned to them after the maximum likelihood assignment 388 

4.3. Large scale application to Southern California 389 

In previous works, we concluded that the spatial distribution of southern California seismicity is multifractal, i.e. it 390 

is an inhomogeneous collection of singularities (Kamer et al., 2015, 2016). The spatial features in Figure 10 can be seen as 391 

expressions of these singularities. Since we are interested in the general form of the fault network rather than the second 392 

order features (e.g. inhomogeneous seismicity rates along the same fault) we consider all the centers of all 93,149 kernels as 393 

individual points, effectively disregarding their weights. Considering the weight of each kernel would result in more 394 

complex structure with singularities that can be associated with the fractal slip distribution of large events (Mai and Beroza, 395 

2002) modulated through the non-uniform network detection capabilities. Thus, by disregarding the kernel weights we are 396 

considering only the potential locii of earthquakes, not their activity rates. 397 

Another important aspect, in the case of such a large scale application, is the uniform background kernel. The 398 

assumption of a single background kernel defined as the minimum bounding box of the entire dataset seems to be suitable 399 

for the case of Landers aftershocks, however it becomes evident that for whole Southern California such a minimum 400 

bounding box would overestimate the data extent (covering aseismic offshore areas) and would thus lead to an 401 

underestimated density. In addition, one can also expect the background density to vary regionally in such large domains. 402 

We thus extend our approach by allowing for multiple uniform background kernels. For this purpose, we make use of the 403 

AHC tree that is already calculated for the atomization of the whole dataset. We then cut the tree at a level corresponding to 404 

only a few clusters (5 or 30 in the following application), which allows to divide the original catalog into the smaller 405 

subcatalogs represented by each cluster. Each of these subsets is then atomized individually yielding its own background 406 

kernel. The atomized subsets are then brought together, to be is progressively merged. Naturally, we have no objective way 407 

of knowing how many background kernels a dataset may feature. However, in various synthetic tests, involving cuboid 408 
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backgrounds with known densities, we observe that inflating this number has no effect on the recovered densities, whereas a 409 

too low value causes underestimation. Apart from this justification, we are motivated to divide this large dataset into subsets 410 

for purely computational reasons as this allows for improved parallelization and computational efficiency. 411 

 412 

Figure 11 Fault network reconstructions for the KaKiOS-16 catalog. Top row shows results for the case of 5 initial subsets with (a) local 413 

and (b) global merging criterion. Bottom row shows the (c) local and (d) global  merging criterion for 30 initial subsets. The number of 414 

clusters, background weight and BIC per data point is given in the insets. Clusters are colored according their density (data point per km3) 415 

where the volume is estimated as the product of standard deviations along the principal component axes.  416 

Figure 11 shows the two fault networks obtained for two different initial settings: using 5 and 30 subsets. For each 417 

choice, we show the results of the local and global criterion; the background cuboids are not plotted to avoid clutter. Our 418 

Formatted: Superscript
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immediate observation is related to the events associated with the 1986 Oceanside sequence (Wesson and Nicholson, 1988) 419 

located at coordinates (-75,-125). The kernel associated with these events is virtually absent in the fault networks 420 

reconstructed from 5 initial subsets (Figure 11a,b). This can be explained in terms of the atomization procedure. In the case 421 

of 5 initial subsets, the offshore Oceanside seismicity falls in a subset containing onshore faults such as the Elsinore fault at 422 

coordinates (0,-75). Because these faults have a more coherent spatial structure compared to the diffused Oceanside 423 

seismicity, their proto-cluster holding capacity is higher. Hence the atomization procedure continues increasing the number 424 

of clusters while the Oceanside seismicity has actually reached its own holding capacity. This causes nearly all of the proto-425 

clusters within the Oceanside region to become singular and be discarded into the background. In the case of 30 subsets, the 426 

Oceanside seismicity is in a separate region and thus is able to retain a more reliable holding capacity estimation, yielding to 427 

the detection of the underlying structures. 428 

At this point, the natural question would be: which of these fault networks is a better model? The answer to this 429 

question would depend on the application. If one is interested in the correspondence between the reconstructed faults and 430 

focal mechanisms, or high resolution fault traces, which are expressions of local stress/strain conditions, then the ideal 431 

choice would be the local criterion. However, if the application of interest is an earthquake forecast covering the whole 432 

catalog domain, then one should consider the global criterion because it yields a lower BIC value, since it is formulated with 433 

respect to the overall likelihood. We leave the statistical investigation of the fault network parameters (e.g. fault length, dip, 434 

thickness distributions) as a subject for a separate study and instead focus on an immediate application of the obtained fault 435 

networks. 436 

5. Validation through a spatial forecast test 437 

Several methods can be proposed for the validation of a reconstructed fault network. One way could be to project 438 

the faults on the surface and check their correspondence with the mapped fault traces. This would be a tedious task since it 439 

would involve a case-by-case qualitative analysis. Furthermore, many of the faults illuminated by recent seismicity might not 440 

have been mapped or they may simply have no surface expressions. In the case of the 2014 Napa earthquake, there was also 441 

a significant disparity between the spatial distribution of aftershocks and the observed surface trace (Brocher et al., 2015). 442 

Another option would be to compare the agreement between the reconstructed faults and the focal mechanisms of the events 443 

associated with them. With many of the metrics already developed (Wang et al., 2013), this would allow for a systematic 444 

evaluation. However, the current focal mechanisms catalog for Southern California is based on the HYS-12 catalog 445 

(Hauksson et al., 2012; Yang et al., 2012) obtained by relative double-difference techniques. As previously discussed in our 446 

studies (Kamer et al., 2015, 2016), we have demonstrated that this catalog exhibits artificial clustering effects at different 447 

scales. Hence, any focal mechanism based on hypocenters from this relative location catalog would be inconsistent with the 448 

absolute locations of the KaKiOS-16 catalog.  449 

Therefore we are left with the eventual option: validation by spatial forecasting. For this purpose, we will use the 450 

global criterion model obtained from 30 subsets because it has the lowest BIC value of the four reconstructions presented 451 
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above. Our fault reconstruction uses all events in the KaKiOS-16 catalog, regardless of their magnitude. The last event in 452 

this catalog occurred on June 30
th

 2011. For target events, we consider all routinely located events by the Southern California 453 

Earthquake Data Center between July 1
st
 2011 and July 1

st
 2015 with magnitudes larger than M2.5. We limit our volume of 454 

interest arbitrarily to the region limited by latitudes [32.5, 36.0], longitudes [-121, -115] and depths in the range 0-20km. The 455 

likelihood scores of the target events are calculated directly from the fault network, which is essentially a weighted mixture 456 

of Gaussian PDFs and uniform backgrounds kernels. The only modification done to accommodate the forecast is aggregating 457 

all background kernels into a single cuboid covering the volume of interest. The weight of this cuboid is equal to the sum of 458 

all aggregated background kernel weights. To compare the spatial forecasting performance of our fault network we consider 459 

the simple smoothed seismicity model (TripleS) (Zechar and Jordan, 2010) that was proposed as a forecasting benchmark. 460 

This model is obtained by replacing each event with an isotropic, constant bandwidth Gaussian kernel. The bandwidth is 461 

then optimized by dividing the dataset into training and validation sets. As already pointed out by (Zechar and Jordan, 2010) 462 

the construction of the model involves several choices (e.g. choice of optimization function, choice of candidate bandwidths, 463 

etc...). To sidestep these choices we construct the TripleS model by optimizing the bandwidth parameter directly on the 464 

target set. Allowing this privilege of foresight, which would not be possible in a prospective setting, makes sure that the 465 

TripleS method is at its maximum attainable forecast skill. Figure 12 shows the forecast performances of our fault network, 466 

the TripleS model and a single uniformly dense cuboid. The performance is quantified in terms of negative log likelihood per 467 

target event for varying magnitude cut-offs of the target dataset. The reconstructed fault network performs better for all 468 

magnitude cut-off levels. We also observe a consistent relative performance increase with increasing magnitude cutoff, 469 

suggesting that the larger events tend to occur closer to the principal planes defined by the two largest eigenvalues of the 470 

fitting kernels. 471 
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 472 

Figure 12 Average Negative Log Likelihood for the target dataset limited to events above M2.5 (light gray), M3.0 (dark gray) and M3.5 473 

(black). Performance of the TripleS models is evaluated as a function of the isotropic kernel bandwidth (dotted lines). The fault network 474 

performance is plotted with constant level solid lines. The performance of a single uniformly dense cuboid is plotted with a dashed line. 475 

The superiority of our model with respect to TripleS can be understood in terms of model parameterization, i.e. 476 

model complexity. There is a general misconception regarding the meaning of “model complexity” in the earthquake 477 

forecasting community.as it relates to a statistical. The term is often used to express the degree of conceptual convolution 478 

employed while deriving the model. For instance, in their 2010 paper, Zechar and Jordan refer to the TripleS model as “a 479 

simple model” compared to models employing anisotropic or adaptive kernels (Kagan and Jackson, 1994, 2007). As a result, 480 

one might be inclined to believe that the model obtained by fault reconstruction presented in this study is far more complex 481 

than TripleS. However, it is important to notice that the complexity of a model is independent of the algorithmic procedures 482 

undertaken to obtain it. What matters is the number of parameters that are needed to communicate it, or in other words its 483 

minimum description length (Rissanen, 1978; Schwarz, 1978). TripleS is essentially a GMM model expressed by the 3D 484 

locations of its components and a constant kernel bandwidth. Hence it has a total of (3*479,056)+1=1,437,168 free 485 

parameters compared to the (10*385)-1=3,849 of our fault network. Thus, the difference in spatial forecasting performance 486 

can be understood in terms of the TripleS’ overparametrization compared to the optimal complexity criteria employed in 487 

reconstructing the fault network. It is true that, compared to our fault reconstruction method, the TripleS model is easier to 488 

formulate and obtain. However, the fact that the isotropic TripleS kernels are co-located with hypocenters of previous 489 

earthquakes does not reduce the complexity of the model. As an everyday analogy, consider for instance an image saved as 490 

Bitmap, where each pixel is encoded with an integer representing its color: Such a representation of an image, although 491 

much simpler to encode, would require larger storage space compared to one obtained by JPEG compression. Although the 492 
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JPEG compression is an elaborated algorithm, it produces a representation that is much simpler. In the same vein, the fault 493 

reconstruction method uses regularities in the data to obtain a simpler, more optimal representation. 494 

Another contributing factor to the performance of the fault network can be regarded as the utilization of location 495 

uncertainty information that facilitates condensation. This has two consequences: 1) decreasing the overall spatial entropy 496 

and thus providing a clearer picture of the fault network, and 2) reducing the effect of repeated events occurring on each 497 

segment, thus providing a more even prior on all segments. 498 

6. Conclusion 499 

We presented an agglomerative clustering method for seismicity-based fault network reconstruction. The method 500 

provides the following advantages: 1) a bottom-up approach that explores all possible merger options at each step and moves 501 

coherently towards a global optimum; 2) an optimized atomization scheme to isolate the background (i.e. uncorrelated) 502 

points; 3) improved computation performance due to geometrical merging constraints. We were able to analyze a very large 503 

dataset consisting of 30 years of South Californian seismicity by utilizing the non-linear location uncertainties of the events 504 

and condensing the catalog to ~20% of its initial size. We validated the information gain of the reconstructed fault network 505 

through a pseudo-prospective 3D spatial forecast test, targeting 4 years of seismicity.  506 

Notwithstanding these encouraging results, there are several aspects in which the proposed methodology can be 507 

further improved and extended. In the current formulation, the distinct background kernels are represented by the minimum 508 

bounding box of each subset, so that they tend to overlap and bias the overall background density. This can be improved by 509 

employing convex hulls, alpha shapes (Edelsbrunner and Mücke, 1994) or a Voronoi tessellation (Voronoi, 1908) optimized 510 

to match the subset borders. The shape of the background kernel could also be adapted to the specific application; for 511 

induced seismicity catalogs, it can be a minimum bounding sphere or an isotropic Gaussian since the pressure field diffuses 512 

more or less radially from the injection point (Király-Proag et al., 2016). Different types of proto-clusters such as Student-t 513 

kernels or copulas can be used in the atomization step or they can be introduced at various steps of the merger by allowing 514 

for data-driven kernel choices. 515 

The reconstructed faults can facilitate other fault related research by providing a systematic way to obtain planar 516 

structures from observed seismicity. For instance, analysis of static stress transfer can be aided by employing the 517 

reconstructed fault network to resolve the focal plane ambiguity (Nandan et al., 2016; Navas-Portella et al., 2020). Similarly, 518 

the orientation of each individual kernel can be used as a local prior to improve the performance of real-time rupture 519 

detectors (Böse et al., 2017). Studies relying on mapped fault traces to model rupture dynamics can be also extended using 520 

reconstructed fault networks that represent observed seismicity including its uncertainty (Wollherr et al., 2019).  521 

An important implication of the reconstructed fault network is its potential in modeling the temporal evolution of 522 

seismicity. The Epidemic Type Aftershock Sequence (ETAS) model can be simplified significantly in the presence of 523 

optimally defined Gaussian fault kernels. Rather than expressing the whole catalog sequence as the weighted combination of 524 

all previous events, we can instead coarse-grain the problem at the fault segment scale, and have multiple sequences 525 
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corresponding to each fault kernel, each of them being a combination of the activity on the other fault kernels.  Such a 526 

formulation would eliminate the need for the commonly used isotropic distance in the ETAS kernels, as this single degree 527 

kernel induces essentially the same deficiencies discussed in the case of the TripleS model. Thus, we can expect such an 528 

ETAS model, based on a fault network, to have significantly better forecasting performances compared to its isotropic 529 

variants. 530 

 531 

Code and data availability. The Matlab implementation of the agglomerative fault reconstruction method and the synthetic 532 

tests can be downloaded from http://www.mathworks.com/matlabcentral/fileexchange/81193 (last accessed October 2020). 533 

The KaKiOS-16 catalog can be downloaded from http://www.ykamer.xyz/kakios/ (last accessed July 2020). The Matlab 534 

implementation of the condensation method can be downloaded from 535 

http://www.mathworks.com/matlabcentral/fileexchange/48702 (last accessed July 2020).  536 
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