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Abstract. Recently, many remote-sensing (RS) based datasets providing features of individual fire events from gridded global 10 

burned area products have been released. Although very promising, these datasets still lack a quantitative estimate of their 

accuracy with respect to historical ground-based fire databases. Here, we compared three state-of-the-art RS datasets (Fire 

Atlas, FRY and GlobFire) with high-quality ground databases compiled by regional fire agencies (AG) across the Southwestern 

Mediterranean basin (2005-2015). We assessed the spatial and temporal accuracy in estimated RS burned area (BA) and 

number of fires (NF) aggregated at monthly and 0.25° resolutions, considering different individual fire size thresholds ranging 15 

from 1 to 500 ha. Our results show that RS datasets were highly correlated with AG in terms of monthly BA and NF but 

severely underestimated both (by 38% and 96%, respectively) when considering all fires > 1 ha. Stronger agreement was found 

when increasing the fire size threshold, with fires > 100 ha denoting higher correlation and much lower error (BA 10%; NF 

35%). The agreement between RS and AG was also the highest during the warm season (May to October) in particular across 

the regions with greater fire activity such as the Northern Iberian Peninsula. The Fire Atlas displayed a slightly better 20 

performance, with a lower relative error, although uncertainty in gridded BA product largely outpaced uncertainties across the 

RS datasets. Overall, our findings suggest a reasonable agreement between RS and ground-based datasets for fires larger than 

100 ha, but care is needed when examining smaller fires at regional scales.  

1     Introduction 

Vegetation fires are a common and destructive hazard in the Southwestern Mediterranean basin. Over the last four decades, 25 

about 47,766 fires were responsible every year for 413,209 ha burned in this region (San-Miguel-Ayanz et al., 2017) causing 

extensive economic and ecological losses, and even human casualties (Keeley et al., 2011; Molina-Terrén et al., 2019). Fire is 

a complex phenomenon due to the confluence of several factors including climate, weather, human activities and vegetation 

(Bowman et al., 2009). The Mediterranean fire regime is dominated by human-caused ignitions (Ganteaume et al., 2013) with 

most of the total burned area (BA) linked to a small number of large fires during the summer (Turco et al., 2016). These large 30 

fire events are facilitated by dry conditions and high temperatures, which are both expected to increase in the future under the 
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ongoing climate change (Dupuy et al., 2020; Ruffault et al., 2020; Turco et al., 2018a). Additional factors such as landscape 

changes as well as changes in forest and fire management may also shape future fire activity (Moreira et al., 2020; Pausas and 

Fernández-Muñoz, 2012). However, there is still much uncertainty in the projected change of fire activity, and modeling efforts 

across broad geographical scales are needed to better understand processes and mechanisms conductive to fire ignition and 35 

spread. 

One of the main limitations in fire modeling lies in the lack of reliable and harmonized information on fire activity (Hantson 

et al., 2016; Williams and Abatzoglou, 2016). This is particularly true in Europe where the lack of data sharing as well as the 

lack of consistent quality-control procedures of national ground-based fire datasets has hampered analysis of fire regimes 

across broader regional or continental scales (Mouillot and Field, 2005; Turco et al., 2016). To overcome this challenge, the 40 

European Forest Fire Information System (EFFIS; San-Miguel-Ayanz et al., 2015) is increasingly relying on remote-sensing 

(RS) techniques for monitoring fire incidence across Europe. 

In the last decade, RS has contributed to ‘fill the gap of knowledge’ fostering fire-related products with spatial and temporal 

consistency, and global coverage (Chuvieco et al., 2019; Mouillot et al., 2014). The MODIS sensor outstands as one of the 

best data provider for most applications such as MCD64A1 (Giglio et al., 2018) and FireCCI50 (Chuvieco et al., 2018). In 45 

particular, the latest generation of BA mapping products, the MCD64A1v006, sets the basis for an exhaustive global estimation 

of fire-related carbon emissions, compiled in the GFED4 database (Giglio et al., 2013; Randerson et al., 2015; van der Werf 

et al., 2017). Although BA products typically offer information about the pixels that burned in a given day, they do not provide 

information such as starting/ending dates or final extent of individual fire events (Mouillot et al., 2014). This has hampered 

distinguishing fire regimes dominated by different fire sizes as both small but frequent fires and large but rare fires may 50 

contribute equally to total burned area.  

In this sense, global datasets of individual fires derived from pixel-level BA information have recently emerged as an important 

resource for the fire community, improving our understanding of fire regime (Laurent et al., 2018a). Unlike raw BA products, 

RS datasets of individual fires provide information beyond the BA, like fire shape, rate of spread and the number of fires (NF). 

The Fire Atlas (Andela et al., 2019a, 2019b), FRY (Laurent et al., 2018a, 2018b) and GlobFire (Artés et al., 2019; Artés 55 

Vivancos and San-Miguel-Ayanz, 2018) represent the most recent RS individualized fire datasets. These datasets were built 

from specific algorithms to reconstruct fire patches from MCD64A1 pixel-based BA. In spite of using different methodologies 

and different assumptions, these datasets shared a common objective: aggregate neighbouring burned pixels with sequential 

burn dates into individual fire patches. 

Though very promising, RS datasets of individual fires have been sparingly compared to historical ground-based fire databases, 60 

that are generally thought to be  the most reliable source of data regarding fire occurrence and fire extent (Moreira et al., 2011; 

Mouillot et al., 2014). Previous studies indicated that rigorous evaluation of satellite estimates with ground-based data is 

needed to assess the reliability of the RS information at regional scale (Turco et al., 2019). Most validation procedures of these 

RS datasets were based on comparisons between different satellite products (Andela et al., 2019b; Laurent et al., 2018a), with 

however scarce attention to independent ground-based observations (Artés et al., 2019).  65 
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In this work, we compared the three most recent RS datasets of individual fires (Fire Atlas, FRY and GlobFire) with high-

quality fire databases compiled by regional agencies across the most active fire region in Europe (i.e. Southwestern 

Mediterranean basin) during the common period of observations (2005 to 2015). We sought to provide a solid answer to the 

following questions. (i) Are RS datasets capturing the actual pattern of fire occurrence and burned area? (ii) To what extent is 

their accuracy dependent on fire size? (iii) Can we rely on RS datasets to analyze fire regimes? To answer these questions, we 70 

assessed the spatial and temporal uncertainty in estimated RS BA and NF aggregated at monthly and 0.25° resolutions across 

a range of individual fire size thresholds (1 to 500 ha). This study may inform end-users about RS limitations, and provide 

guidance on the correct usage of global RS information at regional scale. 

2     Data and Methods 

2.1     Ground-based fire data 75 

The ground-based dataset was built from multiple regional/national sources, including fire records from Portugal, Spain, 

France and Sardinia in Italy (Table 1). All these ground monitoring systems provide high-quality datasets that have been 

extensively used in previous studies across France (Curt et al., 2014), Portugal (Pereira et al., 2011), Sardinia (Salis et al., 

2013) and Mediterranean basin (Rodrigues et al., 2020; Turco et al., 2016). Although not free of errors, these datasets constitute 

the most accurate source of historical information about fires available in Europe.   80 

 

Table 1. Description of regional fire agencies and reference link to the data used to build the ground-based database across Southwest 
Mediterranean basin. 

Agency  Country Coverage Reference link  

DECIF Portugal National 
http://www2.icnf.pt/portal/florestas/dfci/inc/estat-sgif 

(last access: 10 January 2020) 

 

EGIF Spain National 

https://www.mapa.gob.es/va/desarrollo-

rural/estadisticas/Incendios_default.aspx 

(last access: 18 December 2019) 

 

Prométhée France Regional 
https://www.promethee.com/ 

(last access: 16 December 2019) 

 

Regione Sardegna Italy Regional 
 http://webgis2.regione.sardegna.it/download/ 

(last access: 22 January 2020) 

 

 

A harmonized database was constructed from the aforementioned fire agencies (AG) datasets. We extracted the following 85 

information from each regional datasets: the day of ignition, the fire size, and location of the fire event. To ensure consistency 

across regions and scales, we analyzed the overlapping recording period among the datasets, i.e., 2005–2015. Small fires (<1 

ha) were discarded to ensure the coherence of the analysis since these were not reported systematically by agencies over the 
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studied period. The harmonized database contained 95,561 fire records, including only events that required a firefighting 

response (i.e., disregarding agricultural and prescribed fires) (see Fig. 1).  90 

 

 

Figure 1. (a) Mean annual burned area (BA, depicted by circle size) and mean annual number of fires (NF, depicted by color) at 0.25° 
resolution over the study period (2005-2015). Note the logarithmic scale. (b) Orography (in meters). 

2.2     Remotely-sensed fire data 95 

We used the most recent RS datasets of individual fires: Fire Atlas (Andela et al., 2019a, 2019b), FRY (Laurent et al., 2018a, 

2018b) and GlobFire (Artés et al., 2019; Artés Vivancos and San-Miguel-Ayanz, 2018). These datasets provide the date and 

the spatial extent of individual fires from the pixel-based burned area MODIS product MCD64A1 Collection 6 (Table 2). The 

Terra and Aqua combined MCD64A1 is derived from the surface reflectance imagery and active fires observation. It provides 

a global coverage of burned area estimation at a resolution of 500 m (Giglio et al., 2018). The RS datasets of individual fires 100 

were derived using different algorithms such as a progression-based algorithm (Andela et al., 2019), a flood-fill algorithm 

(Laurent et al., 2018), and data mining (Artés et al., 2019) that share a common objective: assemble burned pixels that were 

adjacent in both space and time to identify and outline individual fire events. All RS dataset provide fire starting and ending 

dates, location and the final burned area for each retrieved fire event. 

A key parameter of these algorithms is the cut-off value, which is defined as the maximum burn date difference allowed 105 

between two neighbouring pixels to be considered as belonging to the same fire event. This cut-off influences the size, shape 

and the degree of clumpiness and fragmentation of individual fire events (Laurent et al., 2018a; Oom et al., 2016). Fire Atlas 

used spatially varying cut-off thresholds (4 to 10 days) depending on the fire frequency (Andela et al., 2019b), while the FRY 

algorithm processed four different cut-off scenarios (3, 5, 9 and 14 days), used in previous studies (Archibald and Roy, 2009; 
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Hantson et al., 2015; Nogueira et al., 2017). Finally, GlobFire defined a fire event as a set of burned pixels that are connected 110 

within a 5-day window and have not been burned over the 16 previous days (Artés et al., 2019). For simplicity, we only 

reported the FRY cut-off value that performed the best (5 days). The comparison with all FRY cut-off values is available in 

the Supplementary material (Fig S1). 

 

Table 2. Description of the remote-sensing (RS) datasets of individual fires, including the digital object identifier (DOI) and reference of 115 
each dataset. FA: Fire Atlas; FRY_M05: FRY MODIS (5 days) and GF: GlobFire. 

RS dataset Methodology Cut-off values Period Dataset DOI Reference 

FA 
Progression-

based algorithm 
4 to 10 days 2003-2016 

https://doi.org/10.3334/ORNLDA

AC/1642 

(Andela et al., 2019a, 

2019b) 

FRY_M05 
Flood-fill 

algorithm 
5 days 2000-2017 

https://doi.org/10.15148/0e999ffc

-e220-41ac-ac85-76e92ecd0320  

(Laurent et al., 2018a, 

2018b) 

GF Data mining 5  and 16 days 2000-2019 
https://doi.org/10.1594/PANGAE

A.895835  

(Artés et al., 2019; Artés 

Vivancos and San-Miguel-

Ayanz, 2018) 

 

2.3     Methodology 

We compared burned area (BA) and number of fires (NF) estimated by RS datasets of individual fires, with the reference 

ground-based dataset (AG; Fig. 2). We evaluated the ability of RS estimates to reproduce observed temporal and spatial 120 

patterns of fire activity observed in AG by fitting ordinary least squares (OLS) linear regressions and using different metrics 

(OLS slope, R-squared correlation, and bias) to measure RS accuracy. Only the common period between RS datasets and AG 

records has been considered in the following (2005–2015).  

We applied a land cover filter to the RS data using CORINE Land Cover (CLC) 2006 and 2012 to exclude fires located within 

agricultural or artificial lands that are not always reported by fire agencies. Sensitivity analysis to the land-cover filter is shown 125 

in the Supplementary material (Fig S2). 

As RS datasets are prone to omit smaller fires due to the coarse spatial resolution of MODIS and other limitations, we 

investigated different fire size thresholds increasing from 1 to 500 ha. Analyses were repeated for each size-filtered sample 

(i.e. excluding fires smaller than a given threshold). 

 130 
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Figure 2. The general framework for comparison of RS estimated burned area and number of fires with AG ground-based observations 
across a range of individual fire size thresholds (1 to 500 ha).  

2.3.1     Temporal agreement  135 

All datasets were aggregated to monthly scale over the whole study area. We retrieved the slope coefficient of OLS regressions 

and the coefficient of determination (R-squared) as a proxy of agreement between RS and AG. Slope values greater than 1 

indicated an underestimation of fire activity as seen by AG datasets and vice versa. A slope equal to 1 would imply perfect 

agreement. We also calculated the relative error (ε) as: 

 140 

 𝜀 = 100 × 
𝑅𝑆−𝐴𝐺

𝐴𝐺
                                                                                                                                                                                         (1) 

 

where, RS is the total BA or NF detected by remote-sensing datasets and AG is the BA or NF reported by the agencies over 

the study period.    

2.3.2     Spatial agreement 145 

There is much uncertainty in estimating the ignition point from satellite data, mainly due to the spatial and temporal proximity 

of fire pixels and the possibility of multiple ignition points in a single fire event (Benali et al., 2016). Likewise, AG databases 

do not provide systematically ignition points. Thus, to overcome this limitation, we aggregated both RS and AG datasets onto 

a 0.25° grid (≈ 25 km), setting a common ground for both datasets.  
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To examine the spatial agreement between RS and AG, we calculated the relative error (Eq. 1) for each grid cell. Finally, we 150 

estimated the overall spatial error, computed as the ε averaged across all grid cells for each dataset.    

3     Results 

3.1    Temporal agreement   

We first analyzed the monthly distributions of RS and AG observations for all fires (>1 ha) aggregated across the whole studied 

area. Fig. 3 shows that RS estimates follow a similar variability in terms of monthly BA but systematically underestimate the 155 

NF with respect to AG. The best agreement between RS estimates and AG occurs mainly during the warm season (May to 

October; see Fig. 4). This is usually the period experiencing the largest fires, which account for the bulk of BA in the region 

(Turco et al., 2016). Conversely, the poorest agreement was found during the cool season (November to April), a period 

dominated mainly by small fires linked to agricultural activities. 

 160 

Figure 3. (a) Monthly burned area and (b) number of fires (>1 ha) in each fire dataset across the Southwest Mediterranean basin over 2005-
2015. 
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Figure 4. (a) Seasonal monthly error (ε) for burned area and (b) number of fires estimates of each RS dataset for all fires >1 ha in the studied 
area. Cool season from November to April and warm season from May to October. Dashed lines represent the perfect agreement between 165 
the datasets. 

Table 3 presents the total BA and NF as well as monthly and annual correlation for all fires (>1 ha). Monthly correlations 

showed a stronger agreement for BA (R2 ≈ 0.98) than for NF (R2 ≈ 0.89). Annual correlations, where the effect of the seasonal 

cycle was removed, also showed very high values (R2 ≈ 0.99). Despite the fact that RS underestimated the total BA by 38% 

and the NF by 96% for all fires, they reproduced almost perfectly the temporal variability on both monthly and annual basis. 170 

The difference in absolute numbers thus relates to undetected small fires in RS datasets.   

 

Table 3. Temporal correlation of monthly and annual burned area and number of fires between RS and AG datasets for all fires (>1 ha) 
between 2005 and 2015 across the study domain. 

Dataset 

Burned area Number of fires 

Total (ha) Mo.  correlation Yr. correlation Total (n) Mo. correlation Yr. correlation 

       

AGENCIES 2,527,603 - - 95,561 - - 

FA 1,609,267 0.99 0.99 3,875 0.90 0.99 

FRY_M05 1,524,171 0.99 0.99 2,134 0.88 0.99 

GF 1,562,001 0.98 0.99 4,637 0.90 0.99 

 175 

The monthly agreement of BA and NF (Fig. 5) varies with fire size thresholds (1, 50, 100 and 500 ha). The positive slope of 

the linear trends indicates that RS generally underestimate both BA and NF when accounting for all fires (> 1 ha). However, 
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they become progressively more accurate as the fire size threshold increases, a feature that is particularly evident in NF 

estimates (Fig. 5 e-h).  

 180 

Figure 5. Comparison of AG and RS monthly burned area (top) and the number of fires (bottom) when considering a) all fires (> 1 ha), b) 
fires >50 ha, fires >100 ha and d) fires >500 ha. (e-h) Same as a-d) but for the number of fires. The 1:1 dashed lines represent the perfect fit 
between the datasets. 

Fig. 6 shows the evaluation of RS datasets through different metrics over the continuum of fire size thresholds. Except for the 

R-Squared (Fig. 6, middle) which saturates for fires >100 ha for NF, all metrics present a similar behavior showing better 185 

agreement when increasing the fire size threshold. Generally, BA (Fig. 6, top) presented better accuracy than NF (Fig. 6, 

bottom). Despite the different methodologies used to reconstruct individual fires, all datasets followed similar scores, albeit 

FA displayed lower relative error (ε) for NF. 
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Figure 6. Evaluation of RS datasets through different metrics including the slope (left), R-squared correlation (middle) and relative error 190 
(right) for both burned area (top) and the number of fires (bottom) over a range of individual fire size thresholds (1 to 500 ha). Dashed lines 

indicate a perfect fit between RS and AG fire data. 

3.2     Spatial agreement   

Fig. 7 shows the spatial distribution of the relative error (ε) for BA over different individual fire size thresholds (for all fire 

size thresholds see Supplementary Data). As expected from previous results, RS datasets strongly underestimated BA, 195 

especially when including smaller fires. However, a few exceptions are seen for fires < 50 ha mainly over eastern Spain, 

suggesting that RS detect in that case more fires than AG. This may be related to a few small prescribed fires that are not 

reported in AG. Also, we found much lower relative errors in regions with higher fire activity, such as the Northern Iberian 

Peninsula. This is rather expected, as an absolute change in regions with high (low) baseline will result into a small (large) 

percentage change. 200 
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Figure 7. The relative error (ε) of the total burned area computed as the relative difference between RS and AG data over different individual 
fire size thresholds (1, 50, 100 and 500 ha). The overall ε is indicated on each map.  

Likewise, RS strongly underestimated NF (Fig. 8), likely disregarding those smaller fires not detected by MODIS. 

Surprisingly, a few areas showed positive differences in NF for fires >100 ha across parts of Spain. This overestimation of 205 

large fires may be related to the fact that RS algorithms are likely to split larger fires into multiple events. Nevertheless, the 

overall relative error between RS and AG decreases when focussing on larger fires for both NF and BA, highlighting the 

important role of fire size on RS accuracy.  
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Figure 8. Same as Fig. 7 but for NF. 210 

4     Discussion 

The necessity to properly understand global changes in fire activity calls for efficient and harmonized approaches to record 

fire incidence. Satellite-borne spectral and thermal sensors offer several global fire products, evolving from BA mapping and 

active fire detection to novel developments post-processing BA products into single fire datasets (Chuvieco et al., 2019). The 

ongoing challenge lies in determining their reliability and usefulness. Here, we compared RS with ground-based datasets across 215 

the Southwestern Mediterranean basin to better understand RS datasets limitations and guide end-users. 

Our results demonstrate that individual fire size plays a major role in the fire detection from RS. Focusing on larger fires (fire 

typically > 100 ha), RS datasets were in a stronger agreement with AG regardless of the evaluated metrics. Fires > 100 ha 

denoted much lower error (BA 10%; NF 35%). Likewise, larger fires denoted higher spatial coherence. As expected, the error 

was lower in areas with higher fire activity such as the northwest of the Iberian Peninsula or the south of Sardinia (Fig.7- 220 
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Fig.8). Our findings are in agreement with previous studies, which pointed at fire size as the primary limiting factor for RS 

estimates (Rodrigues et al., 2019; Ying et al., 2019; Zhu et al., 2017). 

The ability of RS datasets to identify individual fires depends mainly on two features: the processing algorithm and the 

underlying reliability of the BA product. The relatively low capacity of the latter to detect small fires is related to the coarse 

spatial resolution (500 m) of the MODIS sensor. Several recent studies have shown that MODIS products rather reliably detect 225 

fires over 40–120 ha but miss a number of smaller fires (Fusco et al., 2019; Giglio et al., 2018; Rodrigues et al., 2019; Zhu et 

al., 2017). Although other BA products, such as FireCCI50 (Chuvieco et al., 2018), provide finer spatial resolution (250 m), a 

substantial number of small and/or highly fragmented fires remain undetected, leading to a considerable underestimation of 

BA (Roteta et al., 2019). In addition, all space-borne BA products face many other well-documented limitations such as the 

variability in orbital coverage, satellite overpass time, and satellite view obstruction (Cardoso et al., 2005; Padilla et al., 2014). 230 

In this sense, detectability may vary regionally across the globe and without ground-based fire datasets, it may be difficult to 

properly validate their reliability (Turco et al., 2019). Nonetheless, the limitations of MCD64A1 are inherent to all RS dataset, 

since all of the analyzed products were built on this basis. Hence, differences among RS datasets are rather expected to be 

associated with the underlying algorithm used to identify single fire events.                           

RS datasets were found to better simulate BA than NF. This disparity relies on the complexity of extracting individual fires 235 

from BA products, including factors that may influence the sensor detection power, resulting in a break in BA continuity 

thereby increasing the risk of artificially splitting single fires into different fire events. Likewise, if a fire lasts longer than the 

defined cut-off window, it will be automatically split into different events (Oom et al., 2016). In addition, if multiple fires 

occur simultaneously in the same region, the parameterization of the RS algorithms may merge multiple individual fires 

(Archibald et al., 2013). Lastly, regional features of the fire regime may constrain RS accuracy. For instance, the Mediterranean 240 

fire regime is known for hosting numerous small fires, which are unlikely to be detected by RS. These fires do not contribute 

very much to the total annual burned area but significantly harm the performance of the RS datasets in terms of NF (Turco et 

al., 2016).  

Even though the selection of an appropriate fire size threshold depends on the objectives of each analysis, we can generally 

recommend a minimum size of 100 ha, which outstands as a change point in multiple statistics (Fig.6 to Fig.8), with the relative 245 

error sharply (dowdily) decreasing in both BA and NF above this threshold. Among the analyzed RS datasets, FA displayed a 

slightly better performance, with a lower relative error. This may arises from the use of a spatially explicit cut-off threshold, 

taking both fire spread rate and satellite coverage into account to track the extent of individual fires (Andela et al., 2019b). 

However, uncertainty in MODIS largely outpaces the uncertainties across the RS datasets. 

The spatio-temporal aggregation applied in our study is expected to increase the signal-to-noise ratio and thus decrease the 250 

uncertainty in RS estimates. According to Turco (2019), the spatial agreement between AG and RS increases at lower 

resolutions, being generally best when aggregating the data onto a 1° grid (approximately 110 km) or beyond. Likewise, 

aggregating the data over time (either monthly or annually) also increases the signal-to-noise ratio by filtering out the temporal 

stochastic noise (Spadavecchia and Williams, 2009). Evaluating RS datasets on shorter timescales and/or finer spatial 
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resolutions would likely deteriorate the agreement with AG. Nevertheless, a spatio-temporal aggregation, such as the one 255 

employed here, has been extensively used in previous studies analyzing fire regimes at regional (Barbero et al., 2014; Jiménez-

ruano et al., 2020; Parisien et al., 2014) and global scales (Bedia et al., 2015; Di Giuseppe et al., 2016; Turco et al., 2018b).  

Further studies are still needed to examine RS estimates at the fire patch level (i.e. assign individual fires from RS to AG) in 

order to more precisely quantify RS accuracy at the fire scale. 

5      Data availability 260 

The above described fire datasets, their characteristics and reference to access the data can be found in Tables 1 and 2. All 

these fire datasets are open access except one of the ground-based datasets (EGIF) that is available upon request. The different 

data producers host the data in different ways, typically using websites or data repositories. The harmonized AG database used 

here as ground-based reference is available at https://doi.org/10.5281/zenodo.3905040 (Galizia et al., 2020).  

6      Conclusion 265 

In this work, we built upon previous research and investigated the reliability of three RS datasets of individual fires over a 

range of fire size thresholds across the Southwestern Mediterranean basin. Overall, RS datasets were able to capture reasonably 

well the temporal and spatial patterns of fire activity, with however limited ability to outline small-to-mid fire events. Despite 

the different methodologies used to reconstruct fire patches, all datasets (FA, FRY and GlobFire) performed similarly and 

were increasingly accurate when focusing on larger fires. Specifically, when considering fires > 100 ha, RS denoted reasonable 270 

agreement with observed AG data.  

Generally, the RS underestimation of BA and NF for smaller fires is related to the coarse spatial resolution (500 m) of the 

pixel-based BA product and other observation limitations, preventing the detection of small fires. Features of fire regime at 

regional scales may also influence the RS accuracy (e.g. fire size, density, and spread rate). In this sense, our analysis was 

framed in the Mediterranean region to capture homogeneous conditions in terms of fire regimes, even though local signals do 275 

exist. 

We found a better agreement during the warm season (May to October), the main fire season in Southern Europe, especially 

in regions with higher fire activity (Northern Iberian Peninsula and Southern Sardinia). Also, RS were found to better estimate 

BA than NF. This is rather expected as numerous small fires, which are not detected by satellites, do not contribute very much 

to the total burned area across the study region.  280 

Our results may provide guidance for end-users. A quantitative estimate of uncertainty is crucial to the correct interpretation 

of RS datasets and users should take into account their limitations. Our findings suggested that global RS datasets of individual 

fires can be used for fire modeling, however caution is advised when drawing from smaller fires (< 100 ha) across the 
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Mediterranean region. Future studies using high-quality ground-based fire data in other regions of the world featuring different 

fire regimes would provide further insights on RS uncertainties.  285 
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