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Abstract. Recently, many remote-sensing datasets providing features of individual fire events from gridded global burned 10 

area products have been released. Although very promising, these datasets still lack a quantitative estimate of their accuracy 

with respect to historical ground-based fire datasets. Here, we compared three state-of-the-art remote-sensing datasets (RSD; 

Fire Atlas, FRY and GlobFire) with a harmonized ground-based dataset (GBD) compiled by fire agencies monitoring systems 

across the Southwestern Mediterranean basin (2005-2015). We assessed the agreement between RSD and GBD with respect 

to both burned area (BA) and number of fires (NF). RSD and GBD were aggregated at monthly and 0.25° resolutions, 15 

considering different individual fire size thresholds ranging from 1 to 500 ha. Our results show that all datasets were highly 

correlated in terms of monthly BA and NF but RSD severely underestimated both (by 38% and 96%, respectively) when 

considering all fires > 1 ha. The agreement between RSD and GBD was strongly dependent on individual fire size and 

strengthened when increasing the fire size threshold, with fires > 100 ha denoting higher correlation and much lower error (BA 

10%; NF 35%). The agreement was also higher during the warm season (May to October) in particular across the regions with 20 

greater fire activity such as the Northern Iberian Peninsula. The Fire Atlas displayed a slightly better performance, with a lower 

relative error, although uncertainty in gridded BA product largely outpaced uncertainties across the RSD. Overall, our findings 

suggest a reasonable agreement between RSD and GBD for fires larger than 100 ha, but care is needed when examining smaller 

fires at regional scales.  

1     Introduction 25 

Vegetation fires are a common and destructive hazard in the Southwestern Mediterranean basin. Over the past four decades, 

there were, on average,  47,766 fires and 413,209 ha burned annually in this region (San-Miguel-Ayanz et al., 2017) causing 

extensive economic and ecological losses, and even human casualties (Keeley et al., 2011; Molina-Terrén et al., 2019). Fire is 

a complex phenomenon due to the confluence of several factors including climate, weather, human activities and vegetation 

(Bowman et al., 2009). The Mediterranean fire regime is dominated by human-caused ignitions (Ganteaume et al., 2013) with 30 

most of the total burned area (BA) linked to a limited number of large fires during the summer (Turco et al., 2016). These large 
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fire events are facilitated by dry conditions and high temperatures, which are both expected to increase in the future under 

climate change (Dupuy et al., 2020; Ruffault et al., 2020; Turco et al., 2018a). Additional factors such as landscape changes 

as well as changes in forest and fire management may also shape future fire activity (Moreira et al., 2020; Pausas and 

Fernández-Muñoz, 2012). Projecting future changes to fire activity requires modeling efforts across broad geographical scales 35 

to better understand processes and mechanisms conductive to fire ignition and spread. However, one of the main limitations 

in fire modeling lies in the lack of reliable and homogeneous information on fire activity across space (Hantson et al., 2016; 

Williams and Abatzoglou, 2016). This is particularly true in Europe where the lack of data sharing as well as the lack of 

consistent quality-control procedures of national ground-based fire datasets has hampered analysis of fire regimes across 

broader regional or continental scales (Mouillot and Field, 2005; Turco et al., 2016). To overcome this challenge, the European 40 

Forest Fire Information System (EFFIS; San-Miguel-Ayanz et al., 2015) is increasingly using remote-sensing techniques for 

monitoring fire activity across Europe. 

In the last decade, remote-sensing has contributed to foster fire-related products with spatial and temporal consistency, and 

global coverage (Chuvieco et al., 2019; Mouillot et al., 2014). The MODIS sensor outstands as one of the best data providers 

for most burned area products such as MCD64A1 (Giglio et al., 2018) and FireCCI50 (Chuvieco et al., 2018). In particular, 45 

the latest generation of BA products, the MCD64A1v006, sets the basis for an exhaustive global estimation of fire-related 

carbon emissions, compiled in the GFED4 database (Giglio et al., 2013; Randerson et al., 2015; van der Werf et al., 2017). 

Although BA products typically offer information about the pixels that burned in a given day, they do not provide information 

such as starting/ending dates or final extent of individual fire events (Mouillot et al., 2014). This limitation has hampered 

distinguishing fire regimes dominated by different fire sizes as both small but frequent fires and large but rare fires may 50 

contribute equally to total burned area.  

In this sense, global datasets of individual fires derived from pixel-level BA information have recently emerged as an important 

resource for the fire community, improving our understanding of fire regime (Andela et al., 2019b; Artés et al., 2019; Laurent 

et al., 2018a). Unlike raw BA products, remote-sensing datasets of individual fires provide information beyond the BA, such 

as fire shape, rate of spread and the number of fires (NF). The Fire Atlas (Andela et al., 2019a, 2019b), FRY (Laurent et al., 55 

2018b, 2018a) and GlobFire (Artés et al., 2019; Artés Vivancos and San-Miguel-Ayanz, 2018) represent the most recent 

individualized fire datasets. These datasets were built from specific algorithms to reconstruct fire patches from MCD64A1 

pixel-based BA. In spite of using different methodologies and different assumptions, these datasets shared a common objective: 

aggregate neighbouring burned pixels with sequential burn dates into individual fire patches. 

Although very promising, remote-sensing datasets of individual fires have been sparingly compared to historical ground-based 60 

fire databases, that are generally thought to be the most reliable source of data regarding fire occurrence and fire extent (Moreira 

et al., 2011; Mouillot et al., 2014). Previous studies indicated that rigorous evaluation of satellite data with ground-based data 

is needed (Turco et al., 2019). Most validation procedures of these remote-sensing datasets were based on comparisons between 

different satellite products (Andela et al., 2019b; Laurent et al., 2018a), with however scarce attention to independent ground-

based observations (Artés et al., 2019).  65 
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In this work, we compared for the first time the three most recent remote-sensing datasets of individual fires (Fire Atlas, FRY 

and GlobFire) with quality-controlled fire databases compiled by regional agencies across the most active fire region in Europe 

(i.e. Southwestern Mediterranean basin) during the common period of observations (2005 to 2015). While most previous 

studies have evaluated remote-sensing data on a fire-by-fire basis, this study aggregates individual fires across months and 

pixels (0.25°) and seeks to estimate to what extent the temporal variability in both fire frequency and burned area are captured 70 

by remote-sensing datasets. We sought to provide a solid answer to the following questions. (i) Are remote-sensing datasets 

capturing the actual pattern of fire occurrence and burned area? (ii) To what extent is their accuracy dependent on fire size? 

To answer these questions, we examined the agreement between remotely-sensed and ground-based fire datasets aggregated 

at monthly and 0.25° resolutions across a range of individual fire size thresholds (1 to 500 ha). This study may inform end-

users about remote-sensing datasets' ability to proxy actual fire activity but also on their limitations. 75 

2     Data and Methods 

2.1     Ground-based fire data 

The ground-based dataset (GBD) was built from multiple fire agencies sources, including fire records from Portugal, Spain, 

France and Sardinia in Italy (Table 1). All these ground monitoring systems provide high-quality datasets that have been 

extensively used in previous studies across France (Curt et al., 2014), Portugal (Pereira et al., 2011), Sardinia (Salis et al., 80 

2013) and the Mediterranean basin (Rodrigues et al., 2020; Turco et al., 2016). Although not free of errors, these datasets 

constitute the most accurate source of historical information about fires available across the region.   

 

Table 1. Fire agencies and reference links to the data used to build the harmonized ground-based dataset (GBD) across the Southwest 

Mediterranean basin. 85 

Agency  Country Coverage Reference link  

DECIF Portugal National 
http://www2.icnf.pt/portal/florestas/dfci/relat/rel-if 

(last access: 10 January 2020) 

 

EGIF Spain National 

https://www.mapa.gob.es/va/desarrollo-

rural/estadisticas/Incendios_default.aspx 

(last access: 18 December 2019) 

 

Prométhée France Regional 
https://www.promethee.com/ 

(last access: 16 December 2019) 

 

Regione Sardegna Italy Regional 
 http://webgis2.regione.sardegna.it/download/ 

(last access: 22 January 2020) 

 

 

We extracted the following information from each regional datasets: the day of ignition, the fire size, and the location of each 

fire. To ensure consistency across regions and scales, we analyzed the overlapping recording period among the datasets, i.e., 

https://www.mapa.gob.es/va/desarrollo-rural/estadisticas/Incendios_default.aspx
https://www.mapa.gob.es/va/desarrollo-rural/estadisticas/Incendios_default.aspx
https://www.promethee.com/
http://webgis2.regione.sardegna.it/download/
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2005–2015. Small fires (<1 ha) were discarded to ensure the coherence of the analysis since these were not reported 

systematically by agencies over the studied period. The harmonized dataset contained 95,561 fire records, including only 90 

events that required a firefighting response (i.e., disregarding agricultural and prescribed fires) (see Fig. 1).  

  

Figure 1. (a) Mean annual burned area (BA, depicted by circle size) and mean annual number of fires (NF, depicted by color) at 0.25° 

resolution over the study period (2005-2015). (b) Spatial extent of the study area. 

2.2     Remotely-sensed fire data 95 

We used the most recent remote-sensing datasets (RSD) of individual fires: Fire Atlas (Andela et al., 2019a, 2019b), FRY 

(Laurent et al., 2018a, 2018b) and GlobFire (Artés et al., 2019; Artés Vivancos and San-Miguel-Ayanz, 2018). These datasets 

provide the date and the spatial extent of individual fires from the pixel-based burned area MODIS product MCD64A1 

Collection 6 (Table 2). The Terra and Aqua combined MCD64A1 is derived from the surface reflectance imagery and active 

fires observation. It provides a global coverage of burned area estimation at a resolution of 500 m (Giglio et al., 2018). Fires 100 

were individualized from different algorithms such as a progression-based algorithm (Andela et al., 2019), a flood-fill 

algorithm (Laurent et al., 2018), and data mining (Artés et al., 2019) that share a common objective: assemble burned pixels 

that were adjacent in both space and time to identify and outline individual fire events. All RSD provide fire starting and 

ending dates, location and the final burned area for each retrieved fire event. 

A key parameter of these algorithms is the cut-off value, which is defined as the maximum burn date difference allowed 105 

between two neighbouring pixels to be considered as belonging to the same fire event. This cut-off influences the size, shape 

and the degree of clumpiness and fragmentation of individual fire events (Laurent et al., 2018a; Oom et al., 2016). Fire Atlas 

used spatially varying cut-off thresholds (4 to 10 days) depending on the fire frequency (Andela et al., 2019b), while the FRY 
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algorithm processed four different cut-off scenarios (3, 5, 9 and 14 days), used in previous studies (Archibald and Roy, 2009; 

Hantson et al., 2015; Nogueira et al., 2017). Finally, GlobFire defined a fire event as a set of burned pixels that are connected 110 

within a 5-day window and have not been burned over the 16 previous days (Artés et al., 2019). For simplicity, we only 

reported the FRY cut-off value that performed the best (5 days). The comparison with all FRY cut-off values is available in 

Appendix A (Fig A1). 

 

Table 2. Description of the remote-sensing datasets (RSD) of individual fires, including the digital object identifier (DOI) and reference of 115 
each dataset. FA: Fire Atlas; FRY_M05: FRY MODIS (5 days) and GF: GlobFire. 

RSD Methodology Cut-off values Period Dataset DOI Reference 

FA 
Progression-

based algorithm 
4 to 10 days 2003-2016 

https://doi.org/10.3334/ORNLDA

AC/1642 

(Andela et al., 2019b, 

2019a) 

FRY_M05 
Flood-fill 

algorithm 
5 days 2000-2017 

https://doi.org/10.15148/0e999ffc

-e220-41ac-ac85-76e92ecd0320  

(Laurent et al., 2018a, 

2018b) 

GF Data mining 5  and 16 days 2000-2019 
https://doi.org/10.1594/PANGAE

A.895835  

(Artés et al., 2019; Artés 

Vivancos and San-Miguel-

Ayanz, 2018) 

 

2.3     Methodology 

We compared burned area (BA) and number of fires (NF) estimated by RSD, with the ground-based reference GBD (Fig. 2). 

Only the common period between RSD and GBD records (2005–2015) has been considered.  We evaluated the ability of RSD 120 

to reproduce the temporal and spatial patterns of fire activity observed in GBD by fitting ordinary least squares (OLS) linear 

regressions and using different metrics (OLS slope, R-squared correlation, and relative error) to measure RSD accuracy. We 

calculated the relative error (ε) as:  

 

𝜀 = 100 ×
𝐵𝐴𝑅𝑆𝐷−𝐵𝐴𝐺𝐵𝐷

𝐵𝐴𝐺𝐵𝐷
                                                                                                                                                           (1) 125 

 

where, 𝐵𝐴𝑅𝑆𝐷  represents the BA detected by remote-sensing datasets (RSD) and 𝐵𝐴𝐺𝐵𝐷 represents the BA registered in the 

ground-based dataset (GBD) over the study period. The analysis was repeated for the number of fires (NF).  

 

We applied a land cover filter to the RSD data using CORINE Land Cover (CLC) to exclude fires located within agricultural 130 

or artificial lands that are not always reported by fire agencies. To account for the land cover changes over the study period, 

we used CLC 2006 as a reference to filter RSD from the 2005-2009 period and CLC 2012 from 2010-2015. Sensitivity analysis 

to the land-cover filter is shown in Appendix A (Fig. A2). 
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As RSD are prone to omit smaller fires (<25 ha) due to the coarse spatial resolution of MODIS product MCD64A1 (500 m) 

and other limitations, we investigated different fire size thresholds increasing from 1 to 500 ha. Analyses were repeated for 135 

each size-filtered sample (i.e. excluding fires smaller than a given threshold). 

 

 

 

Figure 2. The general framework for comparison of RSD with GBD in terms of burned area (BA) and number of fires (NF) across a range 140 
of individual fire size thresholds (1 to 500 ha).  

2.3.1     Temporal agreement  

All datasets were aggregated to monthly scale over the whole study area. We retrieved the slope coefficient of OLS regressions 

and the coefficient of determination (R-squared) as a proxy of agreement between RSD and GBD. Slope values greater than 1 

indicated an underestimation of fire activity as seen by GBD and vice versa. A slope equal to 1 would imply a perfect 145 

agreement.  

2.3.2     Spatial agreement 

We then sought to examine how the agreement between RSD and GBD datasets varies across space. There is much uncertainty 

in estimating the ignition point from satellite data, mainly due to the spatial and temporal proximity of fire pixels and the 

possibility of multiple ignition points in a single fire event (Benali et al., 2016). Likewise, GBD do not provide systematically 150 

ignition points. Thus, to overcome this limitation, we aggregated both RSD and GBD onto a 0.25° grid (≈ 25 km), setting a 

common ground for both datasets.  



7 

 

To examine the spatial agreement between RSD and GBD, we calculated the relative error (Eq. 1) for each grid cell. Finally, 

we estimated the overall spatial error, computed as the ε averaged across all grid cells for each dataset.    

3     Results 155 

3.1    Temporal agreement   

We first analyzed the monthly distributions of BA and NF for all fires (>1 ha) aggregated across the whole studied area. Fig. 

3 shows that RSD follow a similar variability in terms of monthly BA but systematically underestimate BA and NF with 

respect to GBD. The best agreement between RSD and GBD occurs mainly during the warm season (May to October; see Fig. 

4). This is usually the period experiencing the largest fires, which account for the bulk of BA in the region (Turco et al., 2016). 160 

Conversely, the poorest agreement was found during the cool season (November to April), a period dominated mainly by small 

fires linked to agricultural activities. 

  

Figure 3. (a) Monthly burned area and (b) number of fires (>1 ha) in each fire dataset across the Southwest Mediterranean basin over 2005-

2015. 165 
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Figure 4. (a) Median and inter-quartile range of the seasonal error (ε) observed each year for burned area and (b) number of fires estimates 

of each RSD for all fires >1 ha in the studied area. Cool season from November to April and warm season from May to October. Dashed 

lines represent the perfect agreement between the datasets. 

Table 3 presents the total BA and NF as well as monthly (i.e. including the seasonal cycle) and annual correlation (i.e. excluding 170 

the seasonal cycle) between RSD and GBD for all fires (>1 ha). Monthly correlations showed a stronger agreement for BA 

(R2 ≈ 0.98) than for NF (R2 ≈ 0.89). Annual correlations, where the effect of the seasonal cycle was removed, also showed 

very high values (R2 ≈ 0.99). Despite the fact that RSD underestimated the total BA by 38% and the NF by 96% for all fires, 

they reproduced almost perfectly the temporal variability on both monthly and annual basis. The difference in absolute numbers 

thus relates to undetected small fires in RSD.   175 

 

Table 3. Correlation between RSD and GBD of monthly and annual burned area and number of fires for all fires (>1 ha) between 2005 and 

2015. 

Dataset 

Burned area Number of fires 

Total (ha) Mo.  correlation Yr. correlation Total (n) Mo. correlation Yr. correlation 

       

AGENCIES 2,527,603 - - 95,561 - - 

FA 1,609,267 0.99 0.99 3,875 0.90 0.99 

FRY_M05 1,524,171 0.99 0.99 2,134 0.88 0.99 

GF 1,562,001 0.98 0.99 4,637 0.90 0.99 

 

The monthly agreement of BA and NF (Fig. 5) strongly varies with fire size thresholds (1, 50, 100 and 500 ha). The positive 180 

slope of the linear trends indicates that RSD generally underestimate both BA and NF when accounting for all fires (> 1 ha). 
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However, they become progressively more accurate as the fire size threshold increases, a feature that is particularly evident in 

NF estimates (Fig. 5 e-h).  

  

Figure 5. Comparison of GBD and RSD in respect to monthly burned area (top) and the number of fires (bottom) when considering a) all 185 
fires (> 1 ha), b) fires >50 ha, fires >100 ha and d) fires >500 ha. (e-h) Same as a-d) but for the number of fires. The 1:1 dashed lines represent 

the perfect fit between the datasets. 

Fig. 6 shows the evaluation of RSD through different metrics over the continuum of fire size thresholds. Except for the R-

Squared (Fig. 6, middle) which saturates for fires >100 ha for NF, all metrics present a similar behavior showing better 

agreement when increasing the fire size threshold. Overall, BA (Fig. 6, top) presented better accuracy than NF (Fig. 6, bottom). 190 

Despite the different methodologies used to reconstruct individual fires, all datasets showed similar scores, albeit FA displayed 

lower relative error (ε) for NF. 
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Figure 6. Evaluation of RSD through different metrics including the slope (left), R-squared correlation (middle) and relative error (right) 

for both burned area (top) and the number of fires (bottom) over a range of individual fire size thresholds (1 to 500 ha). Dashed lines indicate 195 
a perfect fit between RS and AG fire data. 

3.2     Spatial agreement   

Fig. 7 shows the spatial distribution of the relative error (ε) for BA over different individual fire size thresholds (for all fire 

size thresholds see Supplementary material). As expected from previous results, RSD strongly underestimated BA, especially 

when including smaller fires. However, a few exceptions are seen for fires < 50 ha mainly over eastern Spain, suggesting that 200 

RSD detect in that case more fires than GBD. This may be related to a few and small prescribed fires that were not reported in 

GBD. Also, we found much lower ε in regions with higher fire activity, such as the Northern Iberian Peninsula. This is rather 

expected, as an absolute change in regions with high (low) baseline will result into a small (large) percentage change. 
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Figure 7. The relative error (ε) of the total burned area computed as the relative difference between RSD and GBD data over different 205 
individual fire size thresholds (1, 50, 100 and 500 ha). The overall ε is indicated on each map.  

Likewise, RSD strongly underestimated NF (Fig. 8), likely disregarding those smaller fires not detected by MODIS. 

Surprisingly, a few areas showed positive differences in NF for fires >100 ha across parts of Spain. This overestimation of 

large fires may be related to the fact that RSD algorithms are likely to split larger fires into multiple events. Nevertheless, the 

overall relative error between RSD and GBD decreases when focussing on larger fires for both NF and BA, highlighting the 210 

important role of fire size on RSD accuracy. 
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Figure 8. Same as Fig. 7 but for number of fires. 215 

4     Discussion 

Understanding global changes in fire activity calls for efficient and harmonized approaches to record fire activity. Satellite-

borne spectral and thermal sensors offer several global fire products, evolving from BA mapping and active fire detection to 

novel developments post-processing BA products into single fire datasets (Chuvieco et al., 2019). The ongoing challenge lies 

in determining their reliability and usefulness. Here, we compared RSD with GBD across the Southwestern Mediterranean 220 

basin to better understand RSD limitations and guide end-users. 
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Although RSD may miss a substantial number of fires, the temporal variations in both NF and BA match very well with 

ground-based observations. Our results also demonstrate that agreement between RSD and GBD is strongly dependent on 

individual fire size. Focusing on larger fires (fire typically > 100 ha), RSD were in stronger agreement with GBD regardless 

of the evaluated metrics. Fires > 100 ha denoted much lower error (BA 10%; NF 35%), especially in regions with higher fire 225 

activity such as the northwest of the Iberian Peninsula or the south of Sardinia. Our findings are in agreement with previous 

studies, which pointed at fire size as the primary limiting factor for remotely-sensed fire data  (Campagnolo et al., 2021; 

Rodrigues et al., 2019; Ying et al., 2019; Zhu et al., 2017).  

The ability of RSD to identify individual fires depends mainly on two features: the processing algorithm and the underlying 

reliability of the BA product. The relatively low capacity of the latter to detect small fires is related to the coarse spatial 230 

resolution (500 m) of the MODIS sensor. Several recent studies have shown that MODIS products rather reliably detect fires 

over 40–120 ha but miss a number of smaller fires (Fusco et al., 2019; Giglio et al., 2018; Rodrigues et al., 2019; Zhu et al., 

2017). Although other BA products, such as FireCCI50 (Chuvieco et al., 2018), provide finer spatial resolution (250 m), a 

substantial number of small and/or highly fragmented fires remain undetected, leading to a considerable underestimation of 

BA (Roteta et al., 2019). In addition, all space-borne BA products face many other well-documented limitations such as the 235 

variability in orbital coverage, satellite overpass time, and satellite view obstruction (Cardoso et al., 2005; Padilla et al., 2014). 

In this sense, detectability may vary regionally across the globe and without ground-based fire datasets, it may be difficult to 

properly validate their reliability (Turco et al., 2019). Nonetheless, the limitations of MCD64A1 are inherent to all RSD, since 

all of the analyzed products were built on this basis. Hence, differences among RSD are rather expected to be associated with 

the underlying algorithm used to identify single fire events.                           240 

RSD were found to better estimate BA than NF. This disparity relies on the complexity of extracting individual fires from 

gridded BA products. Environmental conditions (e.g. topography, cloud/smoke cover) may influence the sensor detection 

power, resulting in a break in BA continuity thereby increasing the risk of artificially splitting single fires into different fire 

events. Likewise, if a fire lasts longer than the defined cut-off window, it will be automatically split into different events (Oom 

et al., 2016). In addition, if multiple fires occur simultaneously in the same region, the parameterization of the RSD algorithms 245 

may merge multiple individual fires (Archibald et al., 2013). Lastly, regional features of the fire regime may constrain RSD 

accuracy. For instance, the Mediterranean fire regime is known for hosting numerous small fires, which are unlikely to be 

detected by satellite observations (Turco et al., 2016). These fires do not contribute very much to the total annual burned area 

but significantly harm the performance of the RSD in terms of NF.  

The selection of an appropriate fire size threshold depends on the objectives of each analysis. However, in this study, we can 250 

generally recommend a minimum size of 100 ha, which outstands as a change point in multiple statistics (Fig.6 to Fig.8), with 

the relative error sharply (dowdily) decreasing in both BA and NF above this threshold. Among the analyzed RSD, FA 

displayed a slightly better performance, with a lower relative error. This may arise from the use of a spatially explicit cut-off 

threshold, taking both fire spread rate and satellite coverage into account to track the extent of individual fires (Andela et al., 

2019b). However, uncertainty in MODIS largely outpaces the uncertainties across the RSD. The low capacity of gridded BA 255 
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products to detect small-mid fire events (< 100 ha) can be improved by the generation of products based on higher resolution 

sensors in the range of 10–30m (Roteta et al., 2019). RSD of individual fires derived from finer gridded BA would provide 

better accuracy in the fire metrics, specifically for NF. In addition, the MCD64A1 product already incorporates the uncertainty 

of detection as an auxiliary variable of gridded BA data (Giglio et al., 2018). RSD could benefit from this and report similar 

information at individual fire level. 260 

The spatio-temporal aggregation applied in our study is expected to increase the signal-to-noise ratio and thus decrease the 

uncertainty in RSD estimates. According to Turco (2019), the spatial agreement between remotely-sensed and ground-based 

fire data increases at lower resolutions, being generally best when aggregating the data onto a 1° grid (approximately 110 km) 

or beyond. Likewise, aggregating the data over time (either monthly or annually) also increases the signal-to-noise ratio by 

filtering out the temporal stochastic noise (Spadavecchia and Williams, 2009). Evaluating RSD on shorter timescales and/or 265 

finer spatial resolutions would likely deteriorate the agreement with GBD. Nevertheless, the spatio-temporal aggregation, such 

as the one employed here, has been extensively used in previous studies analyzing fire regimes at regional (Barbero et al., 

2014; Jiménez-Ruano et al., 2020; Parisien et al., 2014) and global scales (Bedia et al., 2015; Di Giuseppe et al., 2016; Turco 

et al., 2018b).  

Further studies are still needed to examine RSD spatio-temporal variability at the fire patch level (i.e. assign individual fires 270 

from RSD to GBD) in order to more precisely quantify the dataset accuracy at the fire scale. 

5      Data availability 

The above described fire datasets, their characteristics and reference to access the data can be found in Tables 1 and 2. All 

these fire datasets are open access except one of the ground-based datasets (EGIF) that is available upon request. The different 

data producers host the data in different ways, typically using websites or data repositories. The harmonized GBD used here 275 

as the ground-based reference is available at https://doi.org/10.5281/zenodo.3905040 (Galizia et al., 2020).  

6      Conclusion 

In this work, we built upon previous research and investigated the reliability of three RSD of individual fires over a range of 

fire size thresholds across the Southwestern Mediterranean basin. Overall, RSD contain only a small fraction of the total 

number of fires documented by GBD. However, they capture reasonably well the temporal variability of fire activity across 280 

monthly and annual scales. Despite the different methodologies used to reconstruct fire patches, all RSD performed similarly 

and were increasingly accurate when focusing on larger fires. Specifically, when considering fires > 100 ha, RSD denoted 

reasonable agreement with GBD.  

Generally, the RSD underestimation of BA and NF for smaller fires is related to the coarse spatial resolution (500 m) of the 

pixel-based BA product and other observation limitations, preventing the detection of small fires. Features of fire regime at 285 

https://doi.org/10.5281/zenodo.3905040
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regional scales may also influence the accuracy (e.g. fire duration, density, and spread rate). In this sense, our analysis was 

framed in the Mediterranean region to capture homogeneous conditions in terms of fire regimes, even though local signals do 

exist. 

We found a better agreement during the warm season (May to October), the main fire season in Southern Europe, especially 

in regions with higher fire activity (Northern Iberian Peninsula and Southern Sardinia). Also, RSD were found to better 290 

estimate BA than NF. This is rather expected as numerous small fires, which are not detected by satellites, do not contribute 

very much to the total burned area across the study region.  

In practical applications, our results may provide guidance for end-users. A quantitative estimate of uncertainty is crucial to 

the correct interpretation of RSD and users should take into account their limitations Our findings suggested that global RSD 

of individual fires can be used to proxy variations in fire activity on monthly or annual timescales, however caution is advised 295 

when drawing from smaller fires (< 100 ha) across the Mediterranean region. Fire agencies may also benefit from the spatial 

and temporal consistency of remote-sensing data to support their operational fire mapping system at regional/national level. 

Future studies using high-quality ground-based fire data in other regions of the world featuring different fire regimes would 

provide further insights on RSD uncertainties.  

7      Appendix A 300 
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Figure A1. Evaluation of RSD including all FRY cut-off values (3 to 14 days) through different metrics including the slope (left), R-squared 

correlation (middle) and relative error (right) for both burned area (top) and the number of fires (bottom) over a range of individual fire size 

thresholds (1 to 500 ha). Dashed lines indicate a perfect fit between RSD and GBD. 

 305 

 

Figure A2. Evaluation of “raw” RSD (i.e. without the land cover filter) through different metrics including the slope (left), R-squared 

correlation (middle) and relative error (right) for both burned area (top) and the number of fires (bottom) over a range of individual fire size 

thresholds (1 to 500 ha). Dashed lines indicate a perfect fit between RSD and GBD. 
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