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1) RESPONSE TO COMMENTS BY ANONYMOUS REFEREE #1 (2nd iteration: minor 
revisions) 

 
1.1) para 140, line 2 - I think 'disaster' should be hazard? 
 
We agree to this comment and will correct the sentence as follows: 
L. 137f:  
“Asset exposure for the assessment of direct economic risk is represented by the spatially explicit 
monetary value potentially impacted by a disaster hazard” 
 
1.2) Data and methods - I think that some consistency is needed in the data and methods 

section as well as the conclusion in the use of passive vs active voice. In some sections 
it is written passively (para 85) and in other paragraphs (175 and 180) 'we' is used 
extensively. I do not have a problem with the active voice as it makes one realise that 
there are people behind the science, ha!, but I think it could be minimised when talking 
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about objective data treatments vs the choices made in the study or results that you 
uncover. This could be very easily and quickly revised and it will just help the narrative 
flow. 

 
Thank you for pointing out inconsistencies in the use of active and passive voice. We have 
revised the manuscript, replacing most uses of “we” with the passive voice in the Section Data 
and methods as well as the first sentences of the Conclusion, where the method is summarized. 
In some places of the method section as well as the case study and the main part of the 
conclusion, we still find the active voice most adequate and leave these parts unchanged.  
Please find all changes in the text below. Please also note that some sentences required some 
paraphrasing to maintain or even improve the readability of the sentences in the passive voice: 
 
Data and methods: 
L. 104f: “We use Here, CLIMADA was used for the pre-processing […]” 
 
L. 123f: “We model windWind speed was simulated at a horizontal resolution of 10 x 10 km 
from historical TC tracks as a function of time, […]” 
 
L. 129f: “[…] we selected and processed 4’098 historical TC tracks from 1980 to 2017 were 
selected based on data completeness criteria […]” 
 
L. 132: “Out of the 4’098 TCs, we identified a total number of 1’538 landfalling events with 
the potential of causing damage was identified.” 
 
L. 171ff: “Therefore, we use the a sigmoidal function is applied in this study. We define aThe 
default impact function with Vthresh = 25.7 ms-1 and Vhalf = 74.7 ms-1 that is used for a first, 
uncalibrated, simulation of global TC damages, and as a starting point for calibration. While Vhalf 
is fitted during the calibration process, we keep the lower threshold Vthresh is kept constant 
throughout the study.” 
 
L. 178ff: “Since we are not looking at single buildings but at a grid with a resolution of 10 km by 
10 km, we don’t necessarily expect full damage to occur to all buildings in a grid cell. On the 
chosen 10 km by 10 km grid, single buildings are not resolved. Therefore, damage is 
aggregated over several buildings in a grid cell and not all buildings are expected to be 
damaged to the same degree. However, the wind-speed dependent impact function is also 
implicitly accounting for the damage caused by storm surge and torrential rain, when calibrated 
against reported damage data. For these two reasons, we allow for values of 𝑉"#$%  lower and 
larger than the literature range for pure wind induced building damage in the calibration. By 
varying  𝑉"#$%  with 𝑉"#$% > 𝑉'"()*" , we are looking forTo find the functional slope best fit to 
simulate the direct economic damage of TCs in regional clusters of countries a region, 𝑽𝒉𝒂𝒍𝒇 is 
varied step-wise with 𝑽𝒉𝒂𝒍𝒇 > 𝑽𝒕𝒉𝒓𝒆𝒔𝒉 (c.f. Sect. 2.3.3, Calibration of regional impact 
functions).” 
 
L. 203f: “Due to a lack of global time series of wealth data, we apply reported damage is 
normalized by means of a GDP scaling for normalization.” 
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L. 226f: “Generally, we found the difference between simulated and reported damage per 
matched event to span several orders of magnitude.” 
 
Conclusion and outlook: 
L. 613ff: “In this article, we improved the global TC risk assessment of TC risk was improved 
by regionalizing the vulnerability component of the TC impact assessment. To better account for 
regional differences, we calibrated a TC impact model was calibrated by fitting regional impact 
functions.” 
 
1.3) para 275 am measure - a measure 
 
L. 276: “The RMSF is am measure of the […]” 
 
1.4) para 505 that [space] sector 
 
L. 505: We added the missing space between the words “that” and “sector”. 
 
 
 

 

2) ADDITIONAL PROPOSED MINOR CORRECTIONS TO REVISED MANUSCRIPT 
(2nd iteration: minor revisions) 

 
L.134: add space: 
“worldmap world map” 
 
L. 532: correct typo: 
“an overestimation” 
 
L. 650, 656, 662: correct spelling of “color” in figure captions: 
“colour” 
 
L. 696: add missing space: 
“[…] largest normalized reported damage:storm damage: storm name […]” 
 
L. 716f: 
In report #2, both referees chose the following option: “Anonymous in Acknowledgements of 
published article: YES” 
We therefore adjust the acknowledgements as follows: 
 
“We would like to thank Andrew Gettelman and one anonymous referee two anonymous 
referees for their thorough and valuable reviews.” 
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Abstract 

Assessing the adverse impacts caused by tropical cyclones has become increasingly important, as both climate change and 

human coastal development increase the damage potential. In order to assess tropical cyclone risk, direct economic damage 10 
is frequently modelled based on hazard intensity, asset exposure and vulnerability, the latter represented by impact functions. 

In this study, we show that assessing tropical cyclone risk on a global level with one single impact function calibrated for the 

USA – which is a typical approach in many recent studies – is problematic, biasing the simulated damages by as much as a 

factor of 36 in the North West Pacific. Thus, tropical cyclone risk assessments should always consider regional differences 

in vulnerability, too. This study proposes a calibrated model to adequately assess tropical cyclone risk in different regions by 15 
fitting regional impact functions based on reported damage data. Applying regional calibrated impact functions within the 

risk modelling framework CLIMADA at a resolution of 10 km worldwide, we find global annual average direct damage 

caused by tropical cyclones to range from 51 up to 121 billion USD (current value of 2014, 1980-2017), with the largest 

uncertainties in the West Pacific basin, where the calibration results are the least robust. To better understand the challenges 

in the West Pacific and to complement the global perspective of this study, we explore uncertainties and limitations entailed 20 
in the modelling setup for the case of the Philippines. While using wind as a proxy for tropical cyclone hazard proves to be a 

valid approach in general, the case of the Philippines reveals limitations of the model and calibration due to the lack of an 

explicit representation of sub-perils such as storm surge, torrential rainfall, and landslides. The globally consistent 

methodology and calibrated regional impact functions are available online as a Python package, ready for application in 

practical contexts like physical risk disclosure and providing more credible information for climate adaptation studies. 25 

1 Introduction 

Tropical cyclones (TCs) are highly destructive natural hazards affecting millions of people each year (Geiger et al., 2018; 

Guha-Sapir, 2018) and causing annual average direct damages in the order of 29 to 89 US$ billions (Cardona et al., 2014; 

Gettelman et al., 2017; Guha-Sapir, 2018). Climate change and coastal development could significantly increase the impact 

of TCs in the future (Gettelman et al., 2017; Mendelsohn et al., 2012). Increasing risks from TCs and other extreme weather 30 
events pose a challenge to exposed population and assets, but also to governments and investors as actors in globally 

connected economies. Governments, companies, and investors increasingly express the need to understand their physical risk 

under current and future climatic conditions (Bloomberg et al., 2017). Thus, quantitative risk assessments require a globally 

consistent representation of the economic impact of TCs and other natural hazards. 

 35 
Probabilistic risk models can provide the quantitative basis for risk assessments and adaptation studies. Since the mid-2000s, 

there have been increasing scientific efforts in developing and improving global scale natural hazard risk assessments 
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(Cardona et al., 2014; Gettelman et al., 2017; Ward et al., 2020). Risk from natural hazards is frequently modelled as a 

function of severity and occurrence frequency, which can be computed by combining information on hazard, exposure, and 

vulnerability (IPCC, 2014). Global and regional scale TC risk models often represent hazard as the spatial distribution of the 40 
maximum sustained surface wind speed per TC event (Aznar-Siguan and Bresch, 2019; Ward et al., 2020). In past studies, 

wind fields modelled from historical TC tracks were used to assess economic risk in the Global Assessment Report (GAR) 

2013 (Cardona et al., 2014; UNDRR, 2013) and to quantify affected population (Geiger et al., 2018), among others. For the 

assessment of future risk, historical TC records can be complemented with events simulated in downscaling experiments 

based on the output of global climate models (Gettelman et al., 2017; Korty et al., 2017), or synthetic resampling algorithms 45 
(Bloemendaal et al., 2020). The exposure component can be represented by the spatial distribution of people, assets or 

economic values potentially affected by TCs (Geiger et al., 2018; Ward et al., 2020). For the modelling of direct economic 

damage, exposure is usually derived from building inventories for local risk assessments (Sealy and Strobl, 2017), or 

estimated by spatially disaggregating national asset value estimates (De Bono and Mora, 2014; Eberenz et al., 2020; 

Gettelman et al., 2017). 50 
 

The vulnerability of an exposed value to a given hazard can be represented by impact functions, also called damage 

functions or vulnerability curves, relating hazard intensity to impact. Impact functions for the assessment of direct economic 

damage caused by TCs usually relate wind speed to relative damage (Emanuel, 2011). For the USA, TC impact functions are 

available specific to different building types (Federal Emergency Management Authority [FEMA], 2010; Yamin et al., 55 
2014), as well as on an aggregate level (Emanuel, 2011). Emanuel (2012) found a lack of sensitivity of simulated TC 

damage to the exact shape of the impact function for the USA. However, due to global heterogeneities in the tropical cyclone 

climatology (Schreck et al., 2014), building codes, and other socioeconomic vulnerability factors (Yamin et al., 2014),  

it is inadequate to use a single universal impact function for global TC risk assessments. Bakkensen et al. (2018b) used 

reported damage data to calibrate TC impact functions for China, highlighting both the potential of this approach and the 60 
considerable uncertainties related to the quality of reported damage data. Still, there is a lack of globally consistent and 

regionally calibrated impact functions. Due to this lack, impact functions calibrated for the USA have been used in a variety 

of local and regional studies outside the USA, i.e. the Caribbean (Aznar-Siguan and Bresch, 2019; Bertinelli et al., 2016; 

Ishizawa et al., 2019; Sealy and Strobl, 2017), China (Elliott et al., 2015), and the Philippines (Strobl, 2019). A similar 

impact function has also been applied for modelling TC damages on a global level (Gettelman et al., 2017).  65 
For the GAR 2013, building type specific impact functions from FEMA were assigned to exposure points based on global 

data based on development level, complexity of urban areas, and regional hazard level at each location (De Bono and Mora, 

2014; Yamin et al., 2014). However, the impact functions were not calibrated regionally against reported damage data. 

Furthermore, the required complexity in exposure data exceeds the scope of many risk assessments. 

 70 
Can globally consistent TC impact modelling be improved by calibrating the vulnerability component on a regional level? 
This article addresses this question by calibrating regional TC impact functions in a globally consistent TC impact modelling 

framework, as implemented within the open-source weather and climate risk assessment platform CLIMADA (Aznar-Siguan 

and Bresch, 2019). This study contributes to reaching the goal of consistent global TC risk modelling and a better connection 

of global and regional impact studies. The objectives of this study are to (1) calibrate a global TC impact model by 75 
regionalizing the impact function; (2) assess the annual average damage per region and compare the results to past studies; 

and (3) evaluate the robustness of the calibration and discuss the limitations and uncertainties of both the model setup and 

the calibration. To inform the discussion of uncertainties, we complement aggregated calibration results (Sect. 3) with an 

event level case study for the Philippines (Sect. 4). While the attribution of vulnerability to regional drivers is outside the 
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scope of this study, the results can serve as a starting point for further research disentangling the socio-economic and 80 
physical drivers determining vulnerability to TC impacts locally and across the globe. 

2 Data and Method 

To regionally calibrate TC impact functions, simulated damages are compared to reported damages, as illustrated in Figure 

1:  In a first step, direct economic damage caused by TCs are simulated in the impact modelling framework CLIMADA (Fig. 

1a-d,  Sect. 2.1 to 2.2.2) with one single default impact function applied globally to start from (Sect. 2.2.3). Then, damage 85 
data points per country and storm are assigned to entries of reported damage (Fig. 1e-f, Sect. 2.3.1). For the matched events, 

the ratio between simulated and reported damage is calculated (Fig. 1g, Sect. 2.3.2). For calibration, countries are clustered 

into regions and two complementary cost functions are optimized based on the damage ratios, by regionally fitting the slope 

of the impact function (Fig. 1h, Sect. 2.3.3). 

 90 
Figure 1: Schematic overview of the data and methods applied to calibrate regional TC impact functions in a globally consistent 
manner. From left to right: TC event damages are first simulated within the CLIMADA framework based on TC  
hazard (a), asset exposure (b), and a default impact function (c), c.f. Sect. 2.1 to 2.2.3. Resulting simulated damages (d) are 
compared to reported damage data from EM-DAT (e) for 473 matched TC events (f) by means of the damage ratio (g), c.f. Sect. 
2.2.4 to 2.3.2. During calibration (h), steps (c) to (g) are repeated several times with varied impact functions for each region, 95 
optimizing the cost functions TDR and RMSF (c.f. Sect. 2.3.3) . The result is a set of best fitting impact functions for nine world 
regions (Sect. 3.2). Finally, the calibrated impact functions are plugged into CLIMADA once more (dashed arrow)to compute 
annual average damage per region (Sect. 3.3). 

 

2.1 CLIMADA – spatially explicit TC risk modelling 100 

The CLIMADA (CLIMate ADAptation) impact modelling framework has been developed at ETH Zurich as a free, open-

source software package (Aznar-Siguan and Bresch, 2019). It is written in Python 3.7 and made available online both on 

GitHub (Bresch et al., 2019a) and the ETH Data Archive (Bresch et al., 2019b). We useHere, CLIMADA was used for the 

pre-processing of hazard and exposure data, and for the spatially explicit computation of direct damage on a global grid at 10 

km resolution. The setup works equally well at higher chosen resolution, but given uncertainties especially in calibration 105 
data and computational constraints justify the chose resolution. In the CLIMADA framework, damage is defined as the 

product of  exposed assets and a damage ratio. The damage ratio is an impact function multiplied with hazard intensity. 

(f) Matched events
Assigning 473 data points 
between simulated and reported 
damage per TC and country

CLIMADA – Risk modeling framework

(a) TC Hazard
Wind fields modelled 
from 4098 unique 
TC tracks (1980-2017)

(b) Asset exposure
Gridded physical 
asset value 
(as of 2014)

(c) Impact Function
Generic impact function 
mapping wind speed 
to direct damage

(d) Simulated damage
Direct economic 
damage per TC 
event and country 

(e) Reported damage
Direct economic damage 
per TC event and country 
(992 entries from 1980-2017) (g) Damage Ratio

• EDR: ratio per event
à root-mean-squared fraction (RMSF)

• TDR: total ratio per region

!"#$%&'() *&#&+(
,-.#&%"/() 0(1-.'() *&#&+(

(h) Calibration
• Regional impact functions 

are fitted based on TDR and RMSF
optimization

• Uncertainty estimation based on 
spread of EDR
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In our case, damage per TC event and country is simulated as following: For each grid cell and event, damage is calculated 

as the product of total exposed asset values and the mean damage ratio. The mean damage ratio (0 to 100%) results from 110 
plugging the hazard intensity (maximum sustained wind speed) into the impact function. Finally, damage per event is 

aggregated over all grid cells within the country. Please refer to Sect. 2.1 and 2.2.3 in Aznar-Siguan and Bresch (2019) for a 

more detailed description of impact calculation. 

2.2 Data 

2.2.1 TC Hazard 115 

TCs typically inflict damage due to strong sustained surface winds, storm surge inundation, and torrential rain (Bakkensen et 

al., 2018a; Baradaranshoraka et al., 2017; Park et al., 2013). Next to maximum wind speed, storm size is an important factor 

controlling TC impacts (Czajkowski and Done, 2013). Since the severity of surge and rain are to a certain extend correlated 

to wind speed and storm size (Czajkowski and Done, 2013), the latter are often taken as a proxy hazard intensity (Emanuel, 

2011; Gettelman et al., 2017).  120 
 

Here, TC hazard intensity is represented by wind fields, i.e. the geographical distribution of the 1-min sustained wind speed 

per TC event, referred to as “wind speed” or “hazard intensity” in the following. We model windWind speed was simulated 

at a horizontal resolution of 10 x 10 km from historical TC tracks as a function of time, location, radius of maximum winds, 

and central and environmental pressure, based on the revised hurricane pressure-wind model by Holland (2008). Please also 125 
refer to Geiger et al. (2018) for a detailed description and illustration of the wind field model and its limitations. 

 

Historical TC tracks were obtained from the International Best Track Archive for Climate Stewardship (IBTrACS) (Knapp 

et al., 2010). As data quality and global coverage improved after approximately 1980 (Geiger et al., 2018), we selected and 

processed 4’098 historical TC tracks from 1980 to 2017 was selected based on data completeness criteria with regards to 130 
data fields provided within IBTrACS, following the approach described by Geiger et al. (2018) and Aznar-Siguan and 

Bresch (2019). Out of the 4’098 TCs, we identifieda total number of 1’538 landfalling events with the potential of causing 

damage were identified. Potential damage is given if at least one grid cell of a TCs wind field with an intensity of 25.7 ms-1 

(~50 knots) or more coincides with an asset exposure value larger than zero. A worldmapworld map showing the maximum 

intensity per grid cell for all tracks is shown in the Supplement (Fig. S1). 135 

2.2.2 Asset exposure 

Asset exposure for the assessment of direct economic risk is represented by the spatially explicit monetary value potentially 

impacted by a disasterhazard. Here, we use gridded asset exposure value at a resolution of 10 km x 10 km. The dataset is 

based on the disaggregation of national estimates of total asset value (TAV, Table A3) proportional to the product of 

nightlight intensity and population count (Eberenz et al., 2020). Following the approach in GAR 2013 (De Bono and Mora, 140 
2014), the TAV per country is represented by produced capital stock of 2014 from the World Bank Wealth Accounting 

(World Bank, 2019a). Out of the 62 countries used for calibration, 32 come with produced capital estimates. For the 

remaining 30, an estimate of non-financial wealth is used as a fall back (Eberenz et al., 2020), based on GDP of 2014 from 

the World Bank Open Data portal (World Bank, 2019b) combined with an GDP-to-wealth factor from the Global Wealth 

Report (Credit Suisse Research Institute, 2017). The asset exposure dataset utilized here and a detailed overview over 145 
limitations and data availability per country is documented in Eberenz et al. (2020).  
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2.2.3 Impact Function 

In CLIMADA, vulnerability is represented by impact functions. They are used to compute damage for each TC event at each 

exposed location by relating hazard intensity to relative impact. Since no directly wind induced damage is expected for low 

wind speeds, TC impact functions for the spatial explicit modelling of direct damages can be constrained by a minimum 150 
threshold Vthresh for the occurrence of impacts and an upper bound of a 100% direct damage (Emanuel, 2011). Empirical 

studies suggest a high power-law function for the slope, i.e. the increase of damage with wind speed (Pielke, 2007). An 

idealized sigmoidal impact function satisfying these constraints was proposed by Emanuel (2011): 

 

𝑓 =
𝑣$%

1 + 𝑣$%
 , with 𝑣$ =

𝑀𝐴𝑋[(𝑉 − 𝑉/01230), 0]
𝑉089: − 𝑉/01230

 
              (Equation 1) 

 155 
Equation 1 defines the impact function 𝑓 as a function of wind speed 𝑉. The function takes two shape parameters as inputs: 

Vthresh and Vhalf. A lower threshold Vthresh	of 25.7 ms-1 (50 kn) was proposed for the USA by Emanuel (2011) and empirically 

supported for China (Elliott et al., 2015). The slope parameter Vhalf signifies the wind speed at which the function’s slope is 

the steepest and a damage ratio of 50% is reached (Fig. 2). It should be noted that the effects of varying Vthresh and Vhalf on 

resulting impacts are not linearly independent.  160 

 
Figure 2: Idealized TC impact function based on Emanuel (2011). Vhalf is the hazard intensity (i.e. maximum sustained wind speed) 
at which the relative impact reaches 50% of the exposed asset value. No impact occurs for an intensity below Vthresh. 
  

Based on the reference data provided by FEMA (2010), Vhalf for damage to buildings can range from 52 to 89 ms-1 165 
depending on building type and surface roughness (Elliott et al., 2015). Applying FEMA impact functions that were verified 

with reported damage data for US Hurricanes Andrew [1992], Eric [1995], and Fran [1996], Sealy and Strobl (2017) 

estimated Vhalf to range from 71.7 to 77.8 ms-1, depending on building type, with a mean value of 74.7 ms-1. 

 

In a comparison of calibration results based on a sigmoidal impact function with a more complex 12-step staircase function, 170 
Lüthi (2019) found no improvement of calibration skill with the more complex function. Therefore, we use thea sigmoidal 

function is applied in this study. We define aThe default impact function with Vthresh = 25.7 ms-1 and Vhalf = 74.7 ms-1 that is 

used for a first, uncalibrated, simulation of global TC damages, and as a starting point for calibration. While Vhalf is fitted 

during the calibration process, we keep the lower threshold Vthresh is kept constant throughout the study. This is based on the 

finding by Lüthi (2019) that the variation of more than one of the linearly dependent parameters most likely results in an 175 
overfitting during calibration, with physically implausible values for Vthresh in some world regions. 
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Since we are not looking atOn the chosen 10 km by 10 km grid, single buildings but at a grid with a resolution of 10 km by 

10 km, we don’t necessarily expect fullare not resolved. Therefore, damage to occur to is aggregated over several buildings 

in a grid cell and not all buildings in a grid cell.are expected to be damaged to the same degree.  However, the wind-speed 180 
dependent impact function is also implicitly accounting for the damage caused by storm surge and torrential rain, when 

calibrated against reported damage data. For these two reasons, we allow for values of 𝑉089:  lower and larger than the 

literature range for pure wind induced building damage in the calibration. By varying  𝑉089:  with 𝑉089: > 𝑉/01230 , we are 

looking for To find the functional slope best fit to simulate the direct economic damage of TCs a region, 𝑉089:  is varied step-

wise with 𝑉089: > 𝑉/01230 (c.f. Sect. in 2.3.3, Calibration of regional clusters of countries for a regional calibration of the 185 
impact function (functions). 

Sect. 2.3.3). 

2.2.4 Reported damage data 

Reported damage data for historical TC events are required on a global level to calibrate TC impact functions.  

Reported damage estimates for disasters worldwide are available from the International Disaster Database EM-DAT (Guha-190 
Sapir, 2018). EM-DAT provides data per event and country, including disaster type and subtype, date of the event, and 

impact estimates. The main data sources of EM-DAT are UN agencies, governmental and non-governmental agencies, 

reinsurance companies, research institutes, and the press. 

 

EM-DAT provides one entry per country and event. Therefore, one meteorological TC can be listed in EM-DAT several 195 
times, with one entry for each country affected. In the following, each of these entries per storm and country will be referred 

to as single ‘TC events’. For instance, Hurricane Irma comes with 17 events in EM-DAT (Disaster no. 2017-0381), as it 

impacted 16 Caribbean countries and the USA. From 1980 to 2017, there are 1650 TC events reported in EM-DAT of which 

991 come with a reported monetary damage value. 

 200 
The EM-DAT database provides total damage per event and country in current USD. In contrast, the asset exposure data 

used for the modelling of damage is kept fixed at a current USD value of 2014 (Sect. 2.3). To allow for a comparison of 

reported and simulated damages that is independent of economic development, reported damage values need to be 

normalized to a reference year.  For instance, Weinkle et al. (2018) applied two normalization methodologies for hurricane 

damage in the continental USA 1900-2017, adjusting reported impact for inflation, per-capita wealth, and the population of 205 
affected counties (Collins and Lowe, 2001; Pielke et al., 2008). Due to a lack of global time series of wealth data, we 

applyreported damage is normalized by means of a GDP scaling for normalization. This is based on a less prerequisite 

approach applied in Munich Re’s NatCat, where recorded damages are normalized proportional to regionalized GDP 

(Munich Re, 2018). This normalization approach assumes that timeseries in current GDP serve as a first order approximation 

of economic development, implicitly accounting for inflation, changes in wealth per capita and population. To obtain 210 
estimates of normalized reported damage per event E, reported damage (RD) is scaled proportional to the affected country’s 

change in GDP between the year of occurrence y and the year 2014: 

 

𝑁𝑅𝐷@ = 𝑅𝐷	@ ∗
BCDEFGH
BCDI

            (Equation 2) 

 215 
We found that GDP scaling removes the significant positive trend from the yearly impacts in the USA (p-values of 0.04 

before and 0.14 after normalization). This is in agreement with the findings of existing normalization studies for past TC 

impacts in the USA (Pielke et al., 2008; Weinkle et al., 2018). 
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2.3 Methods 

2.3.1 Event Matching: Assigning reported damage data to simulated TC events 220 

For the comparison of simulated and reported TC damage, reported events from EM-DAT per TC and country need to be 

assigned to TC tracks from IBTrACS. Tracks were matched based on the country affected and timestamps (Lüthi, 2019): (1) 

In a first step, the impacted countries per TC track is determined, i.e. in which countries a storm does make landfall. (2) 

Subsequently, the best fitting tracks are assigned to the reported events, based on an iterative comparison of start dates 

provided in the datasets. Given that countries are hit by several TCs in a relatively short time, the assignment certainty 225 
varies. Finally, (3) tracks with a low assignment certainty are double checked manually for removal or re-assigning.  

In total, we matched 848 EM-DAT events to their respective tracks. These events account for 913 billion USD reported 

economic damages out of the total 959 billion USD from the 991 EM-DAT events (95%). For 534 of the 848 assigned 

events, there is an economic damage larger than zero simulated in CLIMADA with the respective TC track. Generally, we 

found the difference between simulated and reported damage per matched event to span several orders of magnitude. 230 
Extreme outliers are likely to be associated either to a mismatch or flawed values of reported damage. Therefore, we exclude 

61 extreme outliers from calibration, i.e. all events that come with a deviation of more than factor 1’000 between normalized 

reported damage and damage simulated with the default impact function. 

Eventually, a total of 473 assigned events remain for analysis, referred to as ‘matched events’ in the following. These 

matched events, representing damage per TC and country, are based on 376 TC tracks making landfall in 53 countries (One 235 
TC can make landfall in several countries). The total reported damage from these 473 matched events accounts to 91% of the 

sum of all TC-related reported damages from 1980 to 2017 in EM-DAT (76% after normalization). Damage simulated for 

the 376 TCs with the default impact function amount to 58% of the total global simulated damage from all 4’098 TC tracks. 

2.3.2 Damage Ratios: EDR and TDR 

For the analysis of regional differences in TC vulnerability, event damages are simulated with CLIMADA for all matched 240 
events with the default impact function (Sect. 2.4). The event damage ratio (EDR) is computed per matched event E as the 

ratio of simulated event damage (SED) over normalized reported damage (NRD):  

𝐸𝐷𝑅@ =
K@CL
MNCL

           (Equation 3) 

An EDR of 1.0 indicates a perfect fit between SED and NRD. An EDR greater (smaller) than 1.0 indicates an overestimation 

(underestimation) of the simulations as compared to reports. As there are considerable deviations between the distribution of 245 
EDRs between countries, the median of EDR per country is used to define calibration regions in Sect. 2.3.3. 

To compare the aggregated damage on a global or regional level, we use total damage ratio (TDR) defined as the sum of 

simulated damages divided by the sum of normalized reported damages: 

𝑇𝐷𝑅N =
∑ K@CLQ
LRG

∑ MNCLQ
LRG

           (Equation 4) 

Where N is the number of matched events E in a region R. 250 
The distribution of EDR and TDR before calibration as well as TDR after calibration is shown per region in Figures 6 and 

S4 and per country in the supplementary Figure S2. 

2.3.3 Calibration of regional impact functions 

As a first step towards regional calibration of the TC impact model, distinct calibration regions were defined based on three 

criteria regarding (1) geography, (2) data availability, and (3) patterns in damage ratios before calibration: (1) We clustered 255 
countries by hemispheric ocean basins. This results in five high level regions: North Atlantic and East Pacific oceans (NA), 
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North Indian Ocean (NI), Oceania (OC), South Indian Ocean (SI), and North West Pacific (WP). This first geographical 

separation is applied to account for differences in TC characteristics and data sources between the ocean basins (Schreck et 

al., 2014). The five basins are then subdivided based on (2) a minimum desired number of 30 data points (matched TC 

events) per region; and (3) the median EDR per country. Applying criteria 2,  three countries come with a sufficient amount 260 
of data points to be calibrated for themselves: China (N=69), the Philippines (N=83), and the USA (N=43, including three 

events in Canada). Applying criterion 3, the remaining countries in WP are further subdivided into two regions: South East 

Asia with median EDR<1.2 and the rest of the North West Pacific with EDR>5 (see Fig S2d in the Supplement). In 

summary, the nine calibration regions are the Caribbean with Central America and Mexico (NA1), the USA and Canada 

(NA2), North Indian Ocean (NI), Oceania with Australia (OC), South Indian Ocean without Australia (SI), South East Asia 265 
(WP1), the Philippines (WP2), China mainland (WP3), and the North West Pacific (WP4) (see Fig. 3 and Table A1). 

 
Figure 3: World map highlighting the 53 countries used for calibration, color coded per calibration region. The tracks of 376 TCs 
used for calibration are plotted as red lines. The number of resulting matched events N is displayed per region. Regions by color: 
red: the Caribbean with Central America and Mexico (NA1); blue: the USA and Canada (NA2); green: North Indian Ocean (NI); 270 
purple: Oceania with Australia (OC); orange: South Indian Ocean (SI); yellow: South East Asia (WP1), brown: the Philippines 
(WP2), rose: China Mainland (WP3); black: rest of North West Pacific Ocean (WP4). The countries per region are listed in Table 
A1. 
 

Regional impact functions are calibrated following two complementary approaches, based on (1) minimizing the spread of 275 
EDR and (2) the optimization of TDR. For the first calibration approach, the root-mean-squared fraction (RMSF) is 

introduced as a cost function: 

𝑅𝑀𝑆𝐹 = 𝑒𝑥𝑝 XYZ
M
∑ [ln	(𝐸𝐷𝑅@)]]M
@^Z _        (Equation 5) 

Input variables are the number of events N and the natural logarithm of EDR (c.f. Eq. 3). The RMSF is ama measure of the 

spread in EDR, i.e. the relative deviation between modelled and reported damage for all matched events in a region. In the 280 
computation of RMSF, each event E has the same weight, independent of the absolute damage values. The natural logarithm 

ensures that an overestimation is penalized the same as an underestimation. RMSF is optimized by identifying the impact 

function associated to the lowest value of RMSF. A value of 1 would indicate perfect fit of all events. For the second 

calibration approach, TDR is optimized. A TDR larger than 1 implies that the summed simulated damage exceeds the 

reported values and vice versa. Therefore, TDR is optimized by identifying the impact function associated to a TDR as close 285 
to 1 as possible. As TDR is a ratio of damage aggregated over several events, the TDR approach is biased towards better 

representing events with large absolute damage values. In both calibration approaches, the slope of the generic impact 

function (Fig. 2) is calibrated by fitting the parameter Vhalf in Equation 1. An increase in Vhalf corresponds to a flattening of 

the function and thus lower resulting simulated damage (c.f. Fig. 2). For the fitting of Vhalf, damage is simulated for all 

matched events and an array of Vhalf ranging from 25.8 ms-1 to 325.7 ms-1 in increments of 0.1 ms-1. For each increment, 290 
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EDR is computed for all matched events. Consequently, the values of the cost functions RMSF and TDR are computed for 

each region and increment of Vhalf. Subsequently, the value of Vhalf associated to optimal results for each cost function is 

identified. Vhalf optimized per region is used to calculate fitted impact functions per region. The calibrated impact functions 

are used to compute the annual average damage (AAD) per region, allowing for the comparison of results with other studies 

in Section 3.3. 295 

3 Results 

3.1 Damage ratio with default impact function 

The comparison of TC damage simulated globally with a default impact function (Eq. 1 with Vhalf = 74.7 ms-1) reveals (1) 

inter-regional differences and (2) considerable uncertainties in CLIMADA’s ability to reproduce the reported damage values 

per event. The distribution of uncalibrated EDR per region is shown in Figure 4. EDR per matched event is shown in Figure 300 
A1, the distribution of EDR per country is shown in Figure S2 in the Supplement. 

 
Figure 4: Spread of event damage ratio (EDR, boxplot) and total damage ratio (TDR) per region before calibration (Vhalf=74.7 ms-

1) per region. The plots are based on data from 473 TC events affecting 53 countries. The EDR boxplots show the median (green 
line), the first and third quartiles (IQR, blue box), data points outside the IQR but not more than 1.5·IQR distance from either the 305 
first or the third quartile (black whiskers), and outliers (black circles). The additional markers show TDR before calibrated (green 
diamond). The regions are the Caribbean with Central America and Mexico (NA1); the USA and Canada (NA2); North Indian 
Ocean (NI); Oceania with Australia (OC); South Indian Ocean (SI); South East Asia (WP1), the Philippines (WP2), China 
Mainland (WP3); rest of North West Pacific Ocean (WP4). 
 310 

3.1.1 Inter-regional differences 

Both the ratios EDR and the cost functions RMSF and TDR show inter-regional differences with regard to the deviation of 

the damages simulated with the default impact function from reported damages (Fig. 4 and 6). For most regions, total 

simulated and normalized reported damage deviates less than one order of magnitude (Table A2). The outliers are the 

regions WP4 (TDR=35.6; Hongkong, Japan, Macao, South Korea, Taiwan) and WP2 (TDR=25.9; the Philippines). For those 315 
two regions, the large value of TDR reveals a mean overestimation of simulated damage as compared to reported damage. In 

regions with TDR<1,  the uncalibrated model potentially underestimates the damages caused by TCs. These regions are the 

Indian Ocean (SI and NI), South East Asia (WP1), Oceania with Australia (OC), and the Caribbean (NA1). The region SI 

(Madagascar and Mozambique) shows the overall lowest TDR of 0.2, indicating an underestimation of damages by a factor 

of 5. 320 
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3.1.2 Intra-regional uncertainties 

The EDR values within each region show a large spread over several orders of magnitudes (Fig 4). There is no significant 

correlation between EDR and NRD (Fig. A3), suggesting that the over- and underestimation of simulated event damages is 

not related to TC severity. The largest spread, as expressed by the RMSF, can again be found in the regions WP4 and WP2 

(Fig. 6c). The lowest RMSF was found for the regions NI, NA2, and NA1, i.e. the North Indian and North Atlantic basins. 325 
While the large inter-regional differences show the need for a regional calibration of  impact functions, the spread of EDR 

within some regions point towards uncertainties and limitations of the modelling setup that will not be removed by 

calibrating the impact function alone. 

 
3.2 Regional impact functions 330 
We calibrated regional impact functions to address inter-regional differences in TDR. The resulting impact functions 

calibrated with two complementary approaches are shown in Figure 5. The resulting impact functions vary between the 

regions, both in slope and level of uncertainty, with Vhalf ranging from 46.8 to 190.5 ms-1 (Fig. 6a and Table A2). Additional 

to the regional impact functions, global impact functions were fitted based on all 473 data points combined, resulting in Vhalf 

ranging from 73.4 (RMSF optimization, i.e. RMSF=min.) to 110.1 ms-1 (TDR optimization, i.e. TDR=1). Applying the 335 
regional impact functions, TDR calculated for all regions combined is 4.7 for the default impact function and 2.2 for the 

RMSF optimized impact functions (Fig. 6b). With the calibration based on TDR optimization, the bias in aggregated 

simulated damages can be removed, i.e. an impact function is fitted that leads to TDR=1. This does not mean that the 

simulated damage of each single event is equal to the reported damage. In fact, there is a large spread in the values of Vhalf 

that would fit best for individual events. This uncertainty is visualized by the interquartile range of the array of impact 340 
functions fitted to the individual events per region (shading in Fig. 5). For the individual fitting per event, the value of Vhalf is 

determined by what would be required to obtain an EDR equal to 1. The sensitivity of TDR and RMSF per region to changes 

in Vhalf is visualized in the Supplement: Regions with a large uncertainty, i.e. a large spread of EDR, generally show a 

relatively low robustness of the cost functions (Fig. S3). On a globally aggregated level, calibration reduces the spread of 

EDR to a certain degree, placing more than half of events in the EDR range from 10-1 to 10. 345 
 

The comparison of complementary calibration approaches gives an indication of the robustness of the calibration per region. 

In all regions, the calibrated impact functions based on both approaches lie within the interquartile range of the individually 

fitted curves (Fig. 5). However, the difference between Vhalf for the two approaches ranges from 3 ms-1 (region NA2) to 104 

ms-1 (WP2). The largest uncertainties were found in the fitting of Vhalf for regions WP2-4 in the North West Pacific. In these 350 
regions, the TDR optimization fits values of Vhalf that are much larger than for the RMSF optimization (Fig. 6a). This 

corresponds to rather flat impact functions as shown in the bottom row of Figure 5. Since TDR gives larger weight to events 

with large damage values, these results indicate that these events are systematically overestimated by the model in the 

regions WP2-4. The flat calibrated impact functions partly compensate this overestimation. As a further indication of large 

uncertainties, TDR optimization in these three regions returns RMSF values that are larger than with the uncalibrated impact 355 
function (Fig. 6c). Possible reasons for the uncertainties in the model are explored in a case study for the Philippines in Sect. 

4 and further discussed in Sect. 5. 
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Figure 5: Regional impact functions for nine calibration regions, based on complementary calibration approaches: RMSF 
optimized (blue), TDR optimized (red), and the median Vhalf obtained from fitting impact functions for each individual event to 360 
obtain an EDR of 1 (dashed). The shading demarcates the range containing 50% of the individually fitted impact functions per 
region, i.e. the interquartile range (IQR). 
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Figure 6: Calibration results and cost functions for nine calibration regions and all regions combined, each shown before (grey) 365 
and after calibration (blue and red): (a) Vhalf: fitted impact function parameter; (b) TDR: ratio of total simulated and normalized 
reported damage; (c) RMSF: root-mean-squared fraction; and (d) AAD: normalized reported (green) and simulated annual 
expected damage (AAD). AAD is computed from all events available in EM-DAT (N=1650, green) and IBTrACS (N=4098), not 
just the 473 matched events used for calibration (a-c). Please refer to Tables 1 and A2 for numerical values. The regions are the 
Caribbean with Central America and Mexico (NA1); the USA and Canada (NA2); North Indian Ocean (NI); Oceania with 370 
Australia (OC); South Indian Ocean (SI); South East Asia (WP1), the Philippines (WP2), China Mainland (WP3); rest of North 
West Pacific Ocean (WP4). 
 

 

 375 
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3.3 Annual average damage AAD  

Despite considerable interannual variability of TC occurrence and impacts, AAD is often used as a reference value for the 

mean risk per country or region. Here, we compare AAD computed with the regionalized TC impact model to values from 

EM-DAT and literature (Table 1). AAD from EM-DAT represents values normalized to 2014, based on all 991 damaging 380 
events reported in the database from 1980-2017.  Based on the calibrated impact functions, direct damage is simulated based 

on the full set of TC tracks (N=4’096) and all countries. AAD values per country are provided in the Supplement. The 

computation of global AAD considers all countries, not only those used for calibration. Thereby, the regionally calibrated 

impact functions are used for other countries in the same region (c.f. Table A1). AAD in countries not attributed to any 

region is calculated with impact functions calibrated globally. The resulting AAD for the calibration regions and the global 385 
aggregate are shown in Figure 6d and Table 1. The standard deviation of AAD is generally of the same order of magnitude 

as AAD (Table 1). 

 

For the years 1980 to 2017, we find aggregated global AAD to range from 51 up to 121 billion USD (current value of 2014). 

In comparison, global AAD from EM-DAT is 46 billion USD. Values from GAR 2013 and Gettelman (2017) range from 390 
67.0 to 88.9 billion USD. It should be noted, however, that the two studies consider different time periods than our study 

(1950 to 2010 and 1979 to 2012, respectively), as well as deviant TAVs per country. Global TAV for 224 countries 

aggregates to 251 trillion USD, as compared to 156 trillion USD in Gettelman et al. (2017) and only 96 trillion USD in GAR 

2013 (Table 1). Therefore, the comparison of AAD relative to TAV is a better measure to compare the results of the three 

studies. Relative to TAV, simulated global AAD amounts to 0.2-0.5‰ in our calibrated model, as compared to 0.4-0.5‰ in 395 
Gettelman et al. (2017) and 0.9‰ in GAR 2013 (Table 1). 

 

The aggregated region with the largest simulated AAD is East Asia (WP, 17-71 billion USD), followed by the USA with 19-

22 billion USD and the North Indian Ocean with 4-9 billion USD. The regions WP2 and WP4 show the largest discrepancy 

in AAD simulated with the two alternative calibrated impact functions. This is consistent with the large uncertainties found 400 
for these regions during calibration (Sect. 3.1 and 3.2). In the most southern regions NI, SI, OC, and WP1, simulated relative 

AAD is consistently larger than in GAR 2013. This indicates that the calibration corrects for a systematic underestimation of 

TC vulnerability in these regions. For the Philippines (WP2), the largest AAD relative to TAV was simulated (22.3‰ with 

the RMSF optimized impact function). While the damage estimates simulated for WP2 come with large uncertainties, the 

range of relative AAD (1.3-22.3‰) entails the 11.0‰ for the Philippines in GAR 2013. The case of the Philippines will be 405 
further analyzed and discussed in the following Sect. 4. 
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Table 1: Annual average damage (AAD) from calibrated CLIMADA, as well as AAD from EM-DAT (normalized to 2014), GAR 
2013 and Gettelman et al. (2017). Total AAD and the standard deviation of annual damage (in brackets) per region is given in 410 
current billion USD ($B). AAD relative to total asset value (TAV, c.f. Table A3) is provided in permille (‰). TAV values per 
region and study are reported in Table A3. Please note that both GAR 2013 and Gettelman et al. (2017) included synthetic TC 
tracks in their analysis, which are based on historical tracks. The last row (world) considers all countries. AAD values by country 
are provided in the Supplement. 
*) USA and Bermuda, without Canada. 415 
 

Region 

AAD  

EM-DAT 

AAD  

Calibrated CLIMADA: 

RMSF optimized  

AAD  

Calibrated CLIMADA: 

TDR optimized 

AAD  

GAR 2013 

AAD  

Gettelman et al. (2017) 

 
$B (2014) $B (2014) ‰ of TAV $B (2014) ‰ of TAV $B (2005) ‰ of TAV $B (2015) ‰ of TAV 

NA1 5.3 (14.2) 10.3 (16.1) 2.2 6.9 (11.7) 1.5 4.6 2.1 9.5 (17.8) 0.3-1.1 

NA2 19.7 (43.1) 22.4 (32.5) 0.4 19.4 (28.2) 0.3 11.8 0.5 11.0 (15.5) 
 

0.2* 

NI 2.3 (3.8) 8.6 (13.9) 1.4 4.1 (6.7) 0.6 0.3 0.2 
  

OC 0.7 (0.8) 2.6 (3.6) 0.4 1.1 (1.6) 0.2 0.1 0.1 
  

SI 0.1 (0.3) 0.3 (0.6) 5.7 0.1 (0.4)  3.2 0.0 2.8 
  

WP1 0.7 (1.2) 2.2 (3.4) 1.0 1.1 (1.6) 0.5 0.0 0.0 
  

WP2 1.1 (1.8) 14.0 (34.6) 22.3 0.8 (2.3) 1.3 2.0 11.0 
  

WP3 11.9 (14.8) 32.9 (39.4) 1.0 8.6 (10.3) 0.3 9.0 2.0 
  

WP4 3.0  (4.0) 21.9 (24.3) 0.8 6.6 (7.3) 0.2 60.0 3.1 
  

S WP 16.8 71.0 1.2 17.0 0.3 71.1 2.8 61.4 (53.8) 0.9-1.0 

S all 45.0 (54.8) 115.2 (72.4) 0.8 48.6 (33.2) 0.3 87.9 1.6   

World 46.3 (55.6) 120.9 (73.9) 0.5 50.6 (33.6) 0.2 88.9 0.9 84.6 (63.9) 0.4-0.5 

 

4. Explorative case study: the Philippines 

For a better understanding of the uncertainties involved in the TC impact function calibration, we exploratively examine 

simulated and reported damages of matched events in the Philippines (region WP2). The Philippines is the region with the 420 
least robust calibration results, with a large spread in EDR and the largest discrepancy between the two calibration approaches: 

The difference in Vhalf between the two calibration approaches exceeds 100 ms-1 (Fig. 6a). Consequently, there is a large spread 

in simulated AAD, ranging from 0.8 to 14 billion USD (Table 1). This corresponds to an underestimation of annual risk by 

0.3 billion USD up to an overestimation by 21.2 billion USD as compared to normalized values from EM-DAT with an AAD 

of 1.1 billion USD. 425 
The goal of this explorative case study is to better understand what drives these uncertainties in the TC impact model within 

the region, discuss the limitations of the calibrated model, and identify points for improvement for the future development of 

global TC impact models. Thereby, we assess the following hypotheses: (1) Potential differences between urban and rural 

exposures and vulnerabilities as considered in the GAR 2013 (De Bono and Mora, 2014) are not fully resolved in the model. 

(2) The simplified representation of the TC hazard intensity with wind speed alone is not capable to adequately model the 430 
impact of TCs with over-proportional damage caused by sub-perils like storm surge and torrential rainfall (Baradaranshoraka 

et al., 2017; Park et al., 2013). In the following, we explore these hypotheses by the example of 83 matched TC events in the 

Philippines, while keeping in mind that the model setup is not designed to represent single events perfectly, due to the large 

inherent stochastic uncertainty. To explore these hypotheses, we review reports and literature on TC impacts in the 

Philippines, and examine the relationship between EDR per event with the spatial distribution of the wind field and 435 
subsequent simulated damages associated to each single event. 



 

15 

 

 

4.1 Tropical cyclones in the Philippines 

The Republic of the Philippines is one of the most TC-prone countries in the world (Blanc and Strobl, 2016). From 1951 to 

2014, an annual average of 19.4 TCs entered the Philippine Area of Responsibility (Cinco et al., 2016), with six to nine TCs 440 
making landfall in the Philippines each year (Blanc and Strobl, 2016; Cinco et al., 2016). This is a relative high frequency 

compared to five to eight landfalls in China (Zhang et al., 2009), and an average of three landfalls per year in the North 

Indian Ocean region (Wahiduzzaman et al., 2017) as well as in the USA (Lyons, 2004). The north and east of the Philippines 

are the regions most exposed to TC landfalls, with most TCs crossing the Philippines from east to west (Cinco et al., 2016; 

Espada, 2018). Rainfalls associated to TCs contribute around 35% of annual precipitation in the Philippines, with regional 445 
values ranging from 4 % to 50 % (Cinco et al., 2016). 

In total, 83 matched TCs making landfall in the Philippines were used for calibration. For 11 of the 21 most damaging TC 

events, reports and scientific literature on associated sub-perils and impacts were reviewed (Table A4). In summary, TCs 

making landfall in the Philippines cause damage due to large wind speed, storm surge, as well as rain induced floods and 

landslides. Meteorologically, the storm systems interact with the monsoon season, affecting both dynamics and the severity of 450 
torrential rain (Bagtasa, 2017; Cayanan et al., 2011; Yumul et al., 2012). TCs in the Philippines inflict damage on several 

sectors, most costly on housing and agriculture, but also on schools and hospitals, power and water supply, roads, and bridges 

(Table A4). Single events were also reported to damage and disrupt airports and ports (Typhoon Haiyan) and dikes (Nesat and 

Xangsane). This complexity of how and where TCs cause damage in the Philippines is in stark contrast to the relatively simple 

representation of hazard and exposure in our modelling setup. It is therefore not surprising, that our calibrated TC impact 455 
model is over- and underestimating the damage of individual events, as illustrated for the Philippines by the wide spread of 

EDR. In the following, we will take a closer look at events with over- and underestimated simulated damage to explore the 

two hypotheses above. 

 

4.2 Urban vs. rural exposure 460 

Most of the asset exposure value of the Philippines is concentrated around the metropolitan area of Manila (Metro Manila). 

Located around 14.5°N, 121.0°E (Fig. 7a), Metro Manila is Philippine’s political and socio-economic center (Porio, 2011). 

The Typhoons Angela (1995), Xangsane (2006), and Rammasun (2014) are prominent TCs hitting the Metro Manila directly. 

In our analysis, these TCs come with particularly large EDRs, i.e. an overestimation of simulated vs reported damages, even 

with calibrated impact functions (Table A4). All three typhoons show maximum sustained wind speeds in Manila larger than 465 
50 ms-1 (Fig. 7b,e,f), corresponding to relative damage ranging from 6 up to 37 % of asset exposure value with the calibrated 

impact function. These large relative damages in combination with the concentration of asset exposure value in the Manila 

region are likely to explain the large EDRs of these events. The analysis of all 83 TC events used for calibration support this 

hypothesis, underpinning the crucial role the large asset exposure values in the Metro Manila plays for the wind-based damage 

simulation: An overestimation of simulated damages (e.g. EDR>10) consistently coincides with large wind speeds over Metro 470 
Manila : Out of 19 TCs affecting Manila directly, we find 16 (84%) with an EDR>10 and zero occurrences of EDR<0.1 (Fig. 

8). In contrast, only 9 of 64 TCs not affecting Manila directly come with an EDR>10. In summary, we found simulated damage 

of an event more usual to substantially exceed normalized reported damage if the event hit Manila directly. This confirms 

hypothesis (1) that a special treatment of the impact functions for urban areas could improve the TC impact model. 
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 475 
Figure 7: Maps of the Philippines showing (a) the spatial distribution of asset exposure value in the Philippines [current US dollar 
of 2014] based on Eberenz et al (2020); and (b-f) mapped TC impacts for Typhoon Rammasun (b), Typhoon Haiyan (c), Tropical 
Storm Ketsana (d), Typhoon Xangsane (e), and Typhoon Angela (f). For each event, the map shows the TC track from IBTrACS 
(bold solid line), the spatial distribution of simulated maximum sustained wind speed in ms-1 (dashed lines at 25, 50, and 70 ms-1), 
and simulated direct damage at a 10km resolution (color shading). Coast lines and the location of major cities based on Cartopy 480 
(Met Office, 2010).  
 
 

 
Figure 8: Distribution of the event damage ratio (EDR) for 83 TCs making landfall in the Philippines from 1980 to 2017. The 485 
number of events for three ranges of EDR are compared, differentiating whether Manila was directly affected by the TC’s wind 
field (orange) or not (purple). Manila is considered to be affected if the hazard intensity exceeds 25 ms-1 at 14.5°N, 121.0°E. 
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4.3 Impact of storm surge and torrential rain 

While urban vulnerability to strong winds in Metro Manila appears to be overestimated by the calibrated impact function, 490 
Metro Manila is known to be highly exposed and vulnerable to regular, large scale flooding (Porio, 2011). The main drivers 

of flood vulnerability are its geographical setup, largely unregulated urban growth and sprawl, and substandard sewerage 

systems, especially in low-income areas (Porio, 2011). Tropical Storm Ketsana, locally known as Ondoy (2009) is an 

example with very low simulated damages coinciding with large reported damages associated to flood in Metro Manila: 

Ketsana’s EDR is 0.002, i.e. simulated damage is more than two orders of magnitude smaller than reported. The large 495 
reported damage (NRD=401 million USD) was mainly due to floods and landslides. Torrential rainfall caused severe river 

flooding in Metro Manila and landslides around Baguio City, resulting in severe damages (Abon et al., 2011; Cruz and 

Narisma, 2016; Nakasu et al., 2011; NDCC, 2009a). The flood damages were not resolved by the wind-based impact model, 

with intensities well below 50 ms-1 and neither affecting Manila nor the northern Baguio City directly (Fig. 7d). Notably, 

even for TCs with large overestimation of simulated damage due to high wind speeds in Metro Manila, namely Fengshen 500 
and Xangsane, a substantial part of the reported damage was actually caused by pluvial flooding and landslides and not by 

wind alone (Yumul et al., 2008, 2011, 2012). 

 

For the most severe TC in the recent history of the Philippines, Typhoon Haiyan (2013), normalized reported damage and 

simulated damage are in the same order of magnitude resulting into an EDR of 0.17. Haiyan, with sustained 1-min surface 505 
wind speeds up to 87.5 m/s, caused thousands of casualties and around 10 billion USD of economic damage in the 

Philippines (Guha-Sapir, 2018; Mas et al., 2015). Devastating wind and storm surge associated to Haiyan caused damage to 

multiple sectors, including ports and an airport. It should be noted thatsectorthat sector specific impacts are not resolved in 

the impact model and Haiyan did not affect Manila directly. Relatively large damages were simulated around Tacloban City, 

Leyte, which was actually devastated by Haiyan’s storm surge. Large wind impacts were also simulated further West around 510 
the cities Iloilo and Cebu (Fig. 7c) that were not as exposed to surge as Leyte province. The relatively good performance of 

the model in the case of Haiyan is thus not explained by a perfect location and representation of the impact in the model. It is 

rather based on overestimated urban wind damages partly balancing the lack of damages caused by storm surge. 

4.4 Conclusions from the case study 

The case of the Philippines reveals limitations of the model and calibration due to the lack of an explicit representation of sub-515 
perils such as storm surge, torrential rainfall, and landslides (Sect. 4.3). The flood damage caused by Ketsana is a showcase 

example for severe damages associated with a TC with relatively low wind speeds, that is, an event that cannot be adequately 

reproduced with a wind-based impact function. Adding to the stochastic uncertainty, the magnitude of rainfall during a TC 

events in the Philippines is not only determined by the intensity of the TC event, but also by the coinciding monsoon season, 

as in the case of the Typhoons Fengshen and Haiyan (Espada, 2018; IFRC, 2009; Yumul et al., 2012).  520 

Next to a lack of representation of all components of hazard intensity, differences in exposure and vulnerability between urban 

and rural areas exposed to TCs are likely to contribute to the large spread in EDR and subsequently uncertainty in the impact 

function calibration. This has been illustrated in Sect. 4.2: The large overestimation of simulated event damage of TCs affecting 

the Manila metropolitan area points towards relevant sources of epistemic uncertainty: On the one hand, a large share of 

exposed asset values in the model is concentrated in urban areas, while exposed agricultural assets in rural areas are neglected. 525 
On the other hand, one single impact function might not be sufficient to represent both urban and rural building vulnerability. 

Another factor contributing to the high simulated damages in Manila could be the wind field model: Manila is located in a bay 

on the west coast of the main island Luzon. Most TCs are approaching Luzon from the east. The wind field model adapted 

from Holland (2008) does however not take into account variation in topography and surface roughness. This could lead to an 
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overestimation of simulated wind speeds downstream of elevated land, as in the case of Manila. A better representation of 530 
wind speed over land could mitigate this problem (Done et al., 2019). 

5 Discussion 

5.1 Relevance for TC risk assessments 

In this study, we showed how the regionalization of impact functions improves the assessment of TC risk in numerous world 

regions, correcting aan overestimation of aggregated TC damages by a factor of potentially up to 36 in the North West Pacific, 535 
and an underestimation by the factor 5 in the South Indian Ocean. To complement the global perspective, we explored the 

limitations of the TC impact modelling setup by the case study of TC events in the Philippines. 

 

The calibration resulted in large regional differences in the slope of impact functions, with considerable consequences on the 

magnitude of simulated damages. In Sect. 3.2, we compared average damages simulated with regionalized impact functions 540 
to results from literature. While the comparison is limited by differences in the model setups, we found that regional damage 

estimations relative to the exposed asset values generally agree well to the results of previous studies. However, the results for 

the North West Pacific region (WP4), consisting of Japan, South Korea, Macao, Hongkong, and Taiwan, deviate substantially 

from GAR 2013. Simulated relative AAD in the region ranges from 0.2-0.8 ‰ as compared to 3.1 ‰ in GAR 2013. This 

difference implies that, besides the use of building type specific impact functions, the TC impact model of GAR 2013 545 
substantially overestimates TC damages in WP4 compared to reported data. Consistent with this finding, the uncalibrated 

simulation showed the largest overestimation of aggregated damages in this region. Assuming that the order of magnitude of 

reported direct damages from EM-DAT is reasonable, the regionalization of impact functions presented here is an improvement 

for TC risk assessments in the region. 

 550 
For calibration, two complementary approaches were employed: The optimization of aggregated simulated compared to 

reported damages (TDR), and the minimization of the spread of damage ratios of single events (RMSF). 

Annual average damage simulated based on the TDR optimized set of impact functions are generally closer to the values 

found in EM-DAT than the values based on RMSF optimization. This is not surprising, since TDR is designed to represent 

aggregated damage per region. For the assessment of TC risk on an aggregated level, it is therefore most appropriate to 555 
employ the more conservative TDR optimized model, even though single events can be massively underestimated with the 

flatter impact functions. Complementary, impact functions based on RMSF optimization and the spread of individually event 

fitting can be included in risk assessments for sensitivity analysis. 

 

5.2 Uncertainties and limitations 560 

The deviation between the results of the two calibration approaches indicates how robust the calibration is with regards to 

the model’s ability to represent the correct order of magnitude of single event damage. Whereas the model setup returns 

reasonable risk estimates and consistent calibration results for Central and North America, we found an extensive spread in 

EDR and calibration results for other regions, especially in East Asia. While the correlation between simulated and reported 

event damages is improved by the calibration, the simulated damage of single TC events can deviate several orders of 565 
magnitude from reported damages (Fig. 4, A1 and A2). In the regions of the North West Pacific (WP2-4), the fitted impact 

functions are ambiguous, with large discrepancies between the two calibration approaches. The low robustness found for 

these regions stems from multiple causes, including the stochastic uncertainty in TCs as natural phenomena, as well as 
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epistemic uncertainties located in the hazard, exposure, and vulnerability components of the impact model. An additional 

source of uncertainties is located in the reported damages used for reference. Future improvement of the TC impact model 570 
and a sound judgement of the limitations of the calibrated impact functions requires better understanding of the epistemic 

uncertainties. In the following, we will discuss these uncertainties for the different components of the model. 

 

The case of the Philippines provides insights into the uncertainties located in the model setup, both in the representation of 

hazard intensity and in differences between the structure and vulnerability of exposed assets in urban and rural areas (Sect. 575 
4). The hazard is represented by wind fields modelled from TC track data and the same impact functions are applied in urban 

and rural areas. These are considerable simplifications of the actual interaction of cyclones with the natural and built 

environment. To reduce these uncertainties, the hazard component could be improved by considering topography (Done et 

al., 2019) and complementing wind speed with sub-perils like storm surge, torrential rain, and landslides. For a better 

representation of urban assets, building type specific impact functions, and a differentiation of urban and rural exposure as 580 
applied for GAR 2013 (De Bono and Mora, 2014) could be beneficial. Furthermore, geospatial agricultural yield data could 

be added to the exposure data, albeit reported damage for calibration is mostly not available at such sectoral granularity. 

Next to the model setup, the reported damage data obtained from EM-DAT are another relevant source of uncertainty. 

Reported damage data are expected to come with considerable uncertainties, partly due the heterogeneity of data sources, the 

blending of direct and indirect economic damages, as well as  political and structural reporting biases (Guha-Sapir and 585 
Below, 2002; Guha-Sapir and Checchi, 2018). Further uncertainty is introduces by the lack of international standards for 

reported damage datasets, leading to inconsistencies between data providers (Bakkensen et al., 2018b). These uncertainties 

limit our understanding of the robustness of the calibration. For future calibration studies relying on reported damage data, 

calibration robustness could be increased by combining datasets from different sources in an ensemble of datasets (see 

Zumwald et al., 2020). 590 
 

In this study we did not explicitly quantify the uncertainties related to the model setup, the input data for hazard and 

exposure, as well as the reported data used as reference data for calibration. Rather, the robustness of the calibrated impact 

functions was judged based on the deviation between the two calibration approaches and the spread of impact functions 

fitted to the individual TC events. Based on the limitations discussed above, we conclude that the resulting array of 595 
regionalized impact functions should be applied with caution, being aware that the model setup is not suitable to represent 

single TC events adequately. However, the calibrated impact functions mark an improvement for the modelling of 

aggregated risk estimates, such as the annual average damage. Impact functions sampled from the range of calibration results 

can be applied for a more probabilistic modelling of TC impacts. It should also be noted that the impact functions calibrated 

for the years 1980-2017 cannot be expected to be stable in the future. Applying these impact functions for the assessment of 600 
future TC risk requires a ceteris paribus assumption with regard to vulnerability. 

 

While the results of this study are not specific to the CLIMADA modeling framework, the precise shape and scaling of the 

calibrated impact functions are, however, to a certain degree specific to the choices and input data of the modeling setup: (1) 

The choice of free parameters in the impact function (c.f. Section 2.2.3 and Lüthi, 2019); (2) The TAVs (c.f. Table A3): 605 
impact functions would scale differently with a different assumed inventory of exposed assets; (3) spatial resolution; and (4) 

the representation of hazard intensity: The regionalized impact functions presented here were calibrated for wind-based 

damage modelling on a spatially aggregated level. Model setups with an explicit representation of related sub-perils like 

storm surge or torrential rain require different (i.e. flatter) impact functions for the wind-induced share of TC damage, as 

well as additional impact functions for all sub-perils. Likewise, impact models with an explicit representation of building 610 
types and agricultural assets require a more differentiated set of impact functions. Considering the irreducible stochastic 
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uncertainties in the system, it remains to be shown to which degree the large inter-regional differences in calibrated impact 

functions found in this study can be explained by regional differences in building types and standards, physical TC 

characteristics, or other factors. 

6 Conclusion and outlook 615 

In this article, we improvedthe global TC risk assessment of TC risk was improved by regionalizing the vulnerability 

component of the TC impact assessment. To better account for regional differences, we calibrated a TC impact model was 

calibrated by fitting regional impact functions. The impact functions were calibrated within the CLIMADA risk modelling 

framework, using reported direct economic damage estimates from the EM-DAT dataset as reference data. For calibration, 

two complementary optimization approaches were applied, one aiming at minimizing the deviation of single event damages 620 
from the reported data and one aiming at minimizing the deviation for total damage aggregated over 38 years of data. By 

fitting impact functions, we were able to reduce regional biases as compared to reported damage data, especially for 

countries in the North West Pacific and South Indian Ocean regions. The substantial over-estimation of TC damages in the 

North West Pacific with the default impact function opens the question for the drivers of the apparently lower vulnerability 

in this region. Considering the inability of the model setup to directly represent the impacts from TC surge and pluvial 625 
flooding, one would rather expect aggregated calibrated impact functions to be steeper than the default wind impact function. 

Therefore, we suggest investigating interregional differences in possible other drivers, including building standards but also 

damage reporting practices. A study combining the empirical evidence provided by reported damage data on the one hand 

with socio-economic indicators on the other hand would be desirable but rather challenging, as this would add even more 

layers of complexity and cascading uncertainties to the calibration, especially on a global level. 630 
The calibrated model comes with considerable uncertainties related both to the impact model setup and the reported damage 

data. The largest uncertainties were found for the North West Pacific regions, while the calibration produced consistent 

results for the North Atlantic regions. The spread of fitted impact functions within each region can be exploited to better 

account for these uncertainties in probabilistic risk assessments. Based on our findings, we recommend to always consider 

inter-regional differences in vulnerability for the application in global TC impact models. For model setups comparable to 635 
the one described here, we recommend the use of TDR optimized functions for risk assessments on an aggregated level. The 

resulting simulated damage can complement reported damage data. Assuming that reported damages are more likely to 

underestimate actual impacts, it could be advisable to sample impact functions from the range between the complementary 

calibration results. For probabilistic impact modelling, a random sampling from the array of impact functions fitted to 

individual events could be considered. This becomes especially relevant for regions with large uncertainties attached to the 640 
calibration results, such as the North West Pacific and Oceania. Limitations of our research motivate future work. For TC 

impact models, we echo the call for a more refined representation of TC hazard as a combination of wind, surge, and rain 

induced flood and landslide events. When modeling multiple TC sub-perils, aggregated reported damage data are not 

sufficient to constrain impact function calibration. This might be resolved by consulting socio-economic and engineering 

type data and knowledge. Furthermore, our case study for the Philippines suggests that differentiating between urban and 645 
rural asset exposure, considering topography in wind speed estimations, and the inclusion of exposed agricultural assets 

could further increase model accuracy. 
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Appendix A 650 

 
Figure A1: Event damage ratio (EDR) from 1980 to 2017 for matched 473 TC events worldwide. The nine calibration regions are 
differentiated by colourcolor. The area size of the dots represents the absolute normalized reported damage (NRD) per event. The 
green shading demarcates the range from EDR=0.1 to 10. 
 655 

 
Figure A2: Simulated event damage (SED) vs normalized reported damage (NRD) for 473 TC events worldwide computed with 
three different sets of impact functions: (a) uncalibrated default (Vhalf=74.7 ms-1), (b) RMSF optimized, and (c) TDR optimized. 
The nine calibration regions are differentiated by colourcolor. 
 660 

 
Figure A3: No significant correlation between event damage ratio (EDR) and normalized reported damage (NRD) was found. The 
scatter plots show the relationship for 473 TC events worldwide computed with three different sets of impact functions: (a) 
uncalibrated default (Vhalf=74.7 ms-1), (b) RMSF optimized, and (c) TDR optimized. The nine calibration regions are 
differentiated by colourcolor. 665 

(a) default IF (b) RMSF optimized (c) TDR optimizedR =0.262 R =0.342 R =0.532
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Table A1: List of countries per calibration region. Countries marked with an asterisk (*) are considered for calibration (53 in 
total). 

Region 

N 
countries 
(calib-
ration) Countries 

North Atlantic 1 
(NA1) 

48 (21) Anguilla; Antigua and Barbuda*; Argentina; Aruba; Bahamas*; Barbados; Belize*; 
Bermuda*; Bolivia, Plurinational State of; Cabo Verde*; Cayman Islands; Chile; 
Colombia; Costa Rica; Cuba*; Dominica*; Dominican Republic*; Ecuador; El 
Salvador; Falkland Islands (Malvinas); French Guiana; Grenada; Guadeloupe; 
Guatemala; Guyana; Haiti; Honduras*; Jamaica*; Martinique; Mexico*; 
Montserrat*; Nicaragua*; Panama; Paraguay; Peru; Puerto Rico*; Saint Helena, 
Ascension and Tristan da Cunha; Saint Kitts and Nevis*; Saint Lucia*; Saint 
Vincent and the Grenadines*; Sint Maarten (Dutch part); Suriname; Trinidad and 
Tobago*; Turks and Caicos Islands*; Uruguay; Venezuela, Bolivarian Republic of; 
Virgin Islands, British*; Virgin Islands, U.S.* 

North Atlantic 2 
(NA2) 

2 (2) Canada*; United States of America* 

North Indian 
(NI) 

36 (6) Afghanistan; Armenia; Azerbaijan; Bahrain; Bangladesh*; Bhutan; Djibouti; 
Eritrea; Ethiopia; Georgia; India*; Iran, Islamic Republic of; Iraq; Israel; Jordan; 
Kazakhstan; Kuwait; Kyrgyzstan; Lebanon; Maldives; Mongolia; Myanmar*; 
Nepal; Oman*; Pakistan; Qatar; Saudi Arabia; Somalia; Sri Lanka*; Syrian Arab 
Republic; Tajikistan; Turkmenistan; Uganda; United Arab Emirates; Uzbekistan; 
Yemen* 

Oceania 
(OC) 

26 (11) American Samoa; Australia*; Cook Islands; Fiji*; French Polynesia*; Guam*; 
Kiribati; Marshall Islands; Micronesia, Federated States of*; Nauru; New 
Caledonia*; New Zealand; Niue; Norfolk Island; Northern Mariana Islands; Palau; 
Papua New Guinea*; Pitcairn; Samoa*; Solomon Islands*; Timor-Leste; Tokelau; 
Tonga*; Tuvalu; Vanuatu*; Wallis and Futuna 

South Indian 
(SI) 

11 (2) Comoros; Congo, Democratic Republic of the; Eswatini; Madagascar*; Malawi; 
Mali; Mauritius; Mozambique*; South Africa; Tanzania, United Republic of; 
Zimbabwe 

North West Pacific 1 
(WP1) 

6 (4) Cambodia*; Indonesia; Lao People's Democratic Republic; Malaysia*; Thailand*; 
Viet Nam* 

North West Pacific 2 
(WP2) 

1 (1) Philippines* 

North West Pacific 3 
(WP3) 

1 (1) China, Mainland* 

North West Pacific 4 
(WP4) 

5 (5) Hong Kong*; Japan*; Korea, Republic of*; Macao*; Taiwan, Province of China* 

 670 
 
 
  



 

23 

 

Table A2: Resulting impact function slope parameter vhalf and optimization metrics RMSF and TDR per region for (a) the global 
default impact function (uncalibrated), (b) calibrated by optimizing RMSF, and (c) calibrated by optimizing TDR. The regions 675 
NA1 to WP4 are defined in Table A1. The row “combined” summarizes results for all regions combined based on the regionalized 
calibration; the row “global” is based on one unified global calibration based on all matched TC 473 events. RMSF: root-mean-
squared fraction; TDR: total damage ratio. 
 

Region Number of Vhalf [ms-1] RMSF TDR 

 
countries events (a) (b) (c) (a) (b) (c) (a) (b) (c) 

NA1 21 73 74.7 59.6 66.3 11.8 9.8 10.3 0.68 1.44 1.0 

NA2 2 43 74.7 86 89.2 9.5 8.7 8.7 2.11 1.16 1.0 

NI 6 31 74.7 58.7 70.8 7.8 6 7.2 0.85 2.03 1.0 

OC 11 48 74.7 49.7 64.1 22.5 14.7 17.7 0.6 2.31 1.0 

SI 2 19 74.7 46.8 52.4 20.1 8.6 9.1 0.2 1.8 1.0 

WP1 4 43 74.7 56.7 66.4 15.2 11.3 12.6 0.62 2.05 1.0 

WP2 1 83 74.7 84.7 188.4 38.2 36.7 104.9 25.89 16.44 1.0 

WP3 1 69 74.7 80.2 112.8 15.2 14.8 20.5 5.32 3.83 1.0 

WP4 5 64 74.7 135.6 190.5 73.8 35.9 43.8 35.56 3.35 1.0 

combined 53 473 74.7 - - 22.2 16.8 24.4 4.69 2.15 1.0 

global calibration 53 473 74.7 73.4 110.1 22.2 22.2 33.1 4.69 4.84 1.0 

 680 
 
Table A3: Total asset exposure values (TAV) per region. First column: TAV based on Eberenz et al. (2020) as used in this study. 
Second and third column: Reference values of TAV from GAR 2013 and Gettelman et al. (2017). The unit is 1012 US dollars ($T) in 
the current value of the year noted in brackets. AAD relative to TAV is reported in Table 1. *) USA and Bermuda 
 685 

Region 

TAV 

Eberenz et al. (2020) 

TAV 

GAR 2013 

TAV 

Gettelman et al. (2017) 

 
$T of 2014 $T of 2005 $T of 2015 

NA1 4.66 2.19 8.6 

NA2 62.19 24.06 73.3* 

NI 6.32 1.64 
 

OC 5.94 1.85 
 

SI 0.04 0.01 
 

WP1 2.27 0.83 
 

WP2 0.63 0.19 
 

WP3 31.40 4.51 
 

WP4 26.98 19.51 
 

WP 61.28 25.04 58.8 

GLB 250.88 96.45 155.9 
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Table A4: Detailed information on the 21 TCs in the matched events list with the largest normalized reported damage: storm 
name (local name in brackets) and year, normalized reported damage (NRD), simulated event damage (SED, simulated with 690 
Vhalf=84.7 ms-1), event damage ratio (EDR), simulated intensity for the capital city Manila (at 14.5°N, 121.0°E), associated disasters 
according to literature and EM-DAT as well as affected sectors and asset types as reported by literature. Sources of information: 
1) peer-reviewed study; 2) public report 3) data field ‘associated disasters’ in EM-DAT. 
 

Event SED 
[mio 

USD] 

NRD3 
[mio 

USD] 

EDR 

`
𝑺𝑬𝑫
𝑵𝑹𝑫

f 

Vwind 

Manila 

[m/s] 

Associated 

disasters 

Affected sectors & 

assets 

Reference 

Rammasun 

(Glenda), 2014 
39,528 821 48.17 52.8 Wind1, Flood3 

Agriculture2, buildings 

(664k)2, power supply2, 

and roads and bridges2 

(Espada, 2018; 

NDRRMC, 2014) 

Haiyan 

(Yolanda), 

2013 

1,804 10,469 0.17 - 
Wind1, 

Surge1,2,3 

Agriculture2, buildings 

(1.1m)1,2, airport1,2, power 

supply2, roads2, bridges2, 

ports2 

(Blanc and Strobl, 

2016; Espada, 2018; 

Lagmay et al., 2015; 

Mas et al., 2015; 

NDRRMC, 2013; 

Soria et al., 2015) 

Bopha (Pablo), 

2012 
1,060 1,022 1.04 - Wind2, Flood2  

Agriculture2, buildings 

(217k)2, power and water 

supply2, and roads and 

bridges2 

(NDRRMC, 2012) 

 

Nesat 

(Pedring), 2011 
172 437 0.39 - 

Wind2, Flood2, 

Surge2, Slide2,3 

Agriculture2, buildings 

(44k)2, power supply2, 

dikes2, roads and bridges2 

(NDRRMC, 2011) 

Megi (Juan), 

2010 
526 393 1.34 - 

Wind2, Flood2, 

Slide2 

Agriculture2, buildings 

(104k)2, power supply2, 

and roads and bridges2 

(NDRRMC, 2010) 

Parma 

(Pepeng), 2009 
23 990 0.02 - Flood1,3, Slides1 

Agriculture2, buildings 

(61k)2, power supply2, 

dikes2, roads and bridges2 

(Abon et al., 2011; 

Cooper and Falvey, 

2009; Cruz and 

Narisma, 2016; 

Espada, 2018; 

Inokuchi et al., 2011; 

Nakasu et al., 2011; 

NDCC, 2009a, 

2009b) 

Ketsana 

(Ondoy), 2009 
1 401 0.002 - 

Flood1,3 

(Manila), 

Slides3 

Agriculture2, buildings 

(185k)2, power supply2, 

dikes2, roads and bridges2 

Fengshen 

(Frank), 2008 
9,286 465 19.96 41.2 

Flood1,2,3, 

Surge2, Slides1,2 

Agriculture2, buildings 

(407k)2, power and water 

supply2, and roads and 

bridges2 

(Espada, 2018; 

IFRC, 2009; Yumul 

et al., 2012) 

Xangsane 

(Milenyo), 

2006 

100,440 263 381.70 63.9 Flood1,3, Slides1 Dikes1, power supply1 (Yumul et al., 2008) 

Angela 

(Rosing), 1995 
156,750 937 167.32 77.2 

Flood2, Surge2, 

Slides2 

Agriculture2, buildings 

(>96k)2, power supply2, 

dams2, and roads and 

bridges2 

(Joint Typhoon 

Warning Center, 

1995) 
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Teresa 

(Katring), 1994 
17,731 299 59.24 46.5 Flood3 No report evaluated  

Flo (Kadiang), 

1993 
120 984 0.12 - Slide3 No report evaluated  

Ruth (Trining), 

1991 
95 564 0.17 -  No report evaluated  

Gordon 

(Goring), 1989 
347 408 0.85 -  No report evaluated  

Dan (Saling), 

1989 
20,398 396 51.55 48.6  No report evaluated  

Skip (Yoning), 

1988 
182 1,120 0.16 -  No report evaluated  

Nina (Sisang), 

1987 
5,643 480 11.75 29.8  No report evaluated 

(Espada, 2018) 

 

Georgia 

(Ruping), 1986 
2 343 0.01 -  No report evaluated  

Agnes 

(Undang), 1984 
174 875 0.20 -  No report evaluated  

Irma (Anding), 

1981 
305 279 1.09 22.8  No report evaluated  

Betty (Aring), 

1980 
173 897 0.19 18.3 Slide3 No report evaluated 

(Espada, 2018) 
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Code availability and data availability 

The full array of fitted impact function parameters can be found as a Supplement of this paper. The scripts reproducing the 

main results of the paper and the figures are available at https://github.com/CLIMADA-project/climada_papers (Aznar-

Siguan et al., 2020). The CLIMADA repository (Aznar-Siguan and Bresch, 2019; CLIMADA-Project, 2019) is openly 700 
available (https://github.com/CLIMADA-project/climada_python) under the GNU GPL license (GNU Operating System, 

2007). The documentation is hosted on Read the Docs (https://climada-python.readthedocs.io/en/stable/), including a link to 

the interactive tutorial of CLIMADA. CLIMADA v1.4.1 was used for this publication, which is permanently available at the 

ETH Data Archive: http://doi.org/10.5905/ethz-1007-252 (Bresch et al., 2020). 
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