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Abstract. Compiling and disseminating information about incidents and disasters is key to disaster management and relief. But

due to inherent limitations of the acquisition process, the required information is often incomplete or missing altogether. To fill

these gaps, citizen observations spread through social media are widely considered to be a promising source of relevant infor-

mation, and many studies propose new methods to tap this resource. Yet, the overarching question of whether, and under which

circumstances social media can supply relevant information (both qualitatively and quantitatively) still remains unanswered.5

To shed some light on this question, we review 37 large disaster and incident databases covering 27 incident types, organize

the contained data and its collection process, and identify the missing or incomplete information. The resulting data collection

reveals six major use cases for social media analysis in incident data collection: impact assessment and verification of model

predictions, narrative generation, enabling enhanced citizen involvement, supporting weakly institutionalized areas, narrowing

surveillance areas, and reporting triggers for periodical surveillance. Aside from this analysis, we discuss the advantages and10

disadvantages of the use of social media data for closing information gaps related to incidents and disasters.

Copyright statement. Copyright ©2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 Inter-

national (CC BY 4.0).

1 Introduction

A disaster is a hazardous incident, natural or man-made, which causes damage to vulnerable communities that lack sufficient15

coping and relief capabilities (Carter, 2008).1 Key elements to disaster management are preparedness, early detection, and

monitoring a disaster from its sudden, unexpected onset, to its unwinding, and its aftermath. Disaster-related data may be

obtained from sensor telemetry, occurrence metadata, situation reports, and impact assessments. Various stakeholders benefit
1The International Federation of Red Cross (IFRC, 2017) provides a more detailed definition: “A disaster is a sudden, calamitous event that seriously

disrupts the functioning of a community or society and causes human, material, and economic or environmental losses that exceed the community’s or

society’s ability to cope using its resources. Though often caused by nature, disasters can have human origins.”
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from receiving such data, including task forces, relief organizations, policymakers, investors, and (re-)insurers. Not only data

about ongoing incidents, but also past ones is crucial to enable forecasting efforts, and to better prepare for future incidents.20

The broad range of potential incidents and their ambient conditions require an equally broad range of monitoring techniques,

each with their benefits and limitations: Remote-sensing data provides spatial coverage, but is often heavily delayed and with

low resolution; ground-sensors and scientific staff are fast and precise, but costly and far from ubiquitous; and citizen observers

are ubiquitously available, but need training and an incentive to generate reliable, high-quality observations. As a consequence,

disaster monitoring is often spatially sparse and temporally offset. In addition, underfunding is a further reason for systematic25

disaster information gaps.

A rising trend in the disaster relief community is to fill the information gap through citizen observations, ranging from

the registration of tornado sightings and the verification of earthquake impact to reporting hail diameters and water levels.

The traditional way of acquiring this information is to actively carry out surveys and to operate hotlines, requiring significant

staff and a high level of engagement by citizens. In recent years, however, new information sources are increasingly being30

tapped: blogs, websites, news (Leetaru and Schrodt, 2013; Nugent et al., 2017), and “citizen sensors” on social media. The

promise of passively collecting disaster-related information from social media has spawned pioneering research, from detecting

earthquakes to estimating the impact of a flood. However, despite several statements of interest (GDACS, 2020) and early

applications, like Did You Feel It (DYFI) by the USGS (2020) to validate an earthquake’s impact, most practical attempts to

utilize disaster-related information from social media have yet to be acknowledged by professionals (Thomas et al., 2019).35

Given the many approaches that have already been proposed to exploit citizen observations from social media for disaster-

related tasks, it seems prudent to take inventory, and to refine our understanding of the information gap that is supposed to be

closed, by shedding light onto the following questions: (1) What information is missing, difficult or expensive to acquire, and

what information is frequently but incompletely collected by relief organizations? (2) Can these pieces of information be found

in social media? (3) How reliable is the information available from social media, and what risks are associated with them?40

The paper in hand contributes to answering these questions by collating the information extraction from social media to date,

and the observable gaps in the incident information collected by traditional means:

– We present a systematic, large-scale survey of 37 disaster and incident databases, covering a broad range of disasters,

hazardous incidents, regions, and timescales. Each one is categorized by the data collected, its origin, and the spatial and

temporal extent of monitoring; and assessed with respect to comprehensiveness per domain.45

– We infer six major opportunities for social media-based citizen observations to assist disaster relief: impact assessment

and model verification, narrative generation, reinforcing and committing to citizen involvement, supporting weakly in-

stitutionalized areas, narrowing surveillance areas, and reporting triggers for periodical surveillance.

– Concluding our assessments, we provide a systematic overview of the uncertainty introduced by social media data to

raise awareness of its limitations, i.e., because relevant information is not available, or, because of language ambiguities,50

misinformation, misuse, and misinterpretation.
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2 Related Work

Since the current landscape of disaster information systems has a variety of issues, there are also varied attempts at resolving

them. Some organizations created curated collections of disasters to provide a unified index (ACDR, 2019) and harmonize

disaster data (Below et al., 2010), to study disaster epidemiology (CRED, 2020), to cover new regions (La Red, 2019), or55

for profit (MunichRe, 2019; SwissRe, 2020; Ubyrisk Consultants, 2020). Other organizations started collaborations (GDACS,

2020), unified subordinates (NOAA, 2019; EU-JRC, 2020), or aggregate other resources (OCHA, 2019; RSOE, 2020). Even

citizens contribute collaboratively through the recent disasters list by Wikimedians for Disaster Response (2017), the Wikinews

(2020) collection on disasters, and the ongoing events and disaster categories of Wikipedia (2020).

Two recent meta-studies analyze the prerequisites of using social media for relief efforts by outlining the general patterns of60

social media usage during disasters: According to the first study by Eismann et al. (2016), the primary use case is always to

acquire and redistribute factual information, followed by any one of five incident-specific secondary uses: (1) to disseminate

information about relief efforts, fundraising activities, early warnings, and to raise awareness on natural disasters, (2) to evaluate

preparedness for natural disasters and biological hazards, (3) to provide emotional support during natural disasters and societal

incidents, (4) to discuss causes, consequences, and implications of biological hazards and technological and societal incidents,65

and (5) to connect with affected citizens during societal incidents. According to studies by Reuter et al. (2018) and Reuter and

Kaufhold (2017), these usage patterns can be categorized in a sender-receiver-matrix, describing four communication channels:

(1) information exchange between authorities and citizens, (2) self-help communities between citizens, (3) inter-organizational

crisis management, and (4) evaluation of citizen-provided information by authorities. The operators of disaster information

systems consider primarily the uni-directional channel of citizen-to-organization communication. One of those operators, the70

Global Disaster Alert and Coordination System (GDACS, 2020) of the United Nations and the European Commission remarks

that the extraction of citizen observations is the key benefit of social media for their own, sensor-based information system,

specifically regarding “assessing the impact of a disaster” on the population to extend and verify traditional models, and

“assessing the effectiveness of response” including the extraction of secondary events like building collapses. Reuter et al.

(2016) assess in another large survey that “the majority of emergency services have positive attitudes towards social media.”75

Most academic works since the pioneering publications by, for example, Palen and Liu (2007) conforms with the assessment

made by GDACS and focus on extracting information from citizen observations by studying how to infer influenza infection

rates (Lampos and Cristianini, 2012), track secondary events (Chen and Terejanu, 2018; Cameron et al., 2012), estimate dam-

ages and casualties (Ashktorab et al., 2014), enhance the situational awareness of citizens (Vieweg et al., 2010), coordinate

official and public relief efforts (Palen et al., 2010), disseminate information and refute rumors (Huang et al., 2015), generate80

summaries (Shapira et al., 2017), and create social cohesion via collaborative development (Alexander, 2014). Other research

scrutinizes the problem of incident- or region-specific information systems by studying methods to detect earthquakes (Wald

et al., 2013; Sakaki et al., 2010, 2013; Robinson et al., 2013; Flores et al., 2017; Poblete et al., 2018), wildfires, cyclones, and

tsunamis (Klein et al., 2013) from Twitter streams, map citizen sensor signals to locate these incidents (Sakaki et al., 2013;

Middleton et al., 2014), ingest disaster information systems for flash floods and civil unrest exclusively with social media data85
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(McCreadie et al., 2016), and explore the technical possibilities of combining social media streams with traditional informa-

tion sources in tailored information systems (Thomas et al., 2019). A comprehensive survey of the academic work in crisis

informatics has been presented by Imran et al. (2018). Despite significant prior work on techniques and algorithms to detect

hazardous incidents from social media streams and to extract corresponding information, the majority of approaches only ex-

plore a narrow selection of disaster types, based on little systematic discussion of the needs of traditional disaster information90

systems, and ignoring the wealth of established remote sensing methods. As of yet, there is little understanding of the potential

of social media in general, and whether computational approaches generalize to the full scope of hazardous incidents.

Several comprehensive monitoring systems have been proposed to generalize from studying particular events or focusing on

a singular region or analysis method and to effectively expose disaster management to social media data. Twitcident (Abel et al.,

2012) is a framework for filtering, searching, and analyzing crisis-related information that offers functionalities, like incident95

detection, profiling, and iterative improvement of the situational information extraction. Keyword-based Twitter data gathering

and a human-in-the-loop tweet relevance classification and tagging have been implemented for the Artificial Intelligence for

Disaster Response (AIDR) system (Imran et al., 2014). McCreadie et al. (2016) propose an Emergency Analysis Identification

and Management System (EAIMS) to enable civil protection agencies to easily make use of social media. The system comprises

a crawler, service, and user interface layer and enables real-time detection of emergency events, related information finding,100

and credibility analysis. Furthermore, machine learning is exploited over data gathered from past disasters to build effective

models for identifying new events, tracking developments within those events, and analyzing those developments to enhance

the decision making processes of emergency response agencies. The recently proposed decision support system Event Tracker

(Thomas et al., 2019) aims at providing a unified view of an event, integrating information from news sources, emergency

response officers, social media, and volunteers.105

There is an obvious need to identify current information gaps and issues of operational disaster information systems as well

as to investigate the potential of utilizing social media data to fill these gaps to augment traditionally used data sources, such

as in-situ data, satellite imagery, and news feeds with social media data. Recent research on event metadata extraction and

management (McCreadie et al., 2016) forms a starting point for their integration into established disaster information systems.

3 Survey Method110

The principal prerequisite for a deeper analysis of the gaps in collected incident information is a systematic compilation of

the data that is currently collected across disaster types. In a first step, we narrowed the scope of disaster types to a set of the

most relevant ones, while maintaining diversity. We started with the de-facto standard top-down taxonomy used by EM-DAT

(Below et al., 2009), which is based on work from GLIDE, DesInventar, NatCatSERVICE, and Sigma. It has also been closely

adapted by the IRDR (2020) and appears to be more scientifically sound than, for example, the glossary of PreventionWeb,115

the typology of RSOE, or the bottom-up Wikipedia category graphs. We reduced the dimensionality of the type spectrum to

a manageable degree by excluding exceedingly rare incident types (i.e. meteorite impacts) and combining types that are also

commonly combined in the other databases (i.e., coastal and riverine floods) without crossing over sub-type hierarchies.
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Table 1. List of disaster groups with corresponding disaster types and numbers of corresponding disasters in EM-DAT, GLIDE, Wikipedia,

Wikidata, and in incident databases since 2008. Unavailable or not applicable information is marked with –, and ∨ denotes that the disaster

counts are added to the disaster in the next row, due to type subsumption.

Disaster Group Disaster Type EM-DAT GLIDE Wikipedia Wikidata Incident DB Source

Biological Disease outbreak 301 312 – 67 33,667 CDC (2020); ECDC (2020)
Climatological Drought 182 94 37 27 29,922 SWDI (2020); EDO (2020); NDMC (2020)

Wildfire 105 34 195 393 3,402
GWIS (2020); SWDI (2020); GFW (2020)
EFFIS (2020); NIFC (2020)

Geophysical Earthquake 273 196 1,147 1,950 1.6 mio SWDI (2020); USGS (2020); IRIS (2020)
Landslide (dry) 6 94 117 78 6,789 SWDI (2020); NASA (2020)
Tsunami 12 13 89 21 10,094 NCTR (2020)
Volcanic 44 53 60 72 82 NCEI-V (2020); BGS (2020); GVP (2020)

Hydrological Landslide (wet) 213 9 78 30 2,011 SWDI (2020); ESSL (2020)

Flood 1680 848 169 196 61,558
SWDI (2020); Brakenridge (2020)
EFAS (2020); GLOFAS (2020)

Meteorological Blizzard 97 95 123 56 32,901 SWDI (2020); ESSL (2020)
Cold wave 130 – 75 30 16,737 SWDI (2020)
Dust storm 5 – 7 4 720 SWDI (2020)
Hail 16 – 103 13 99,002 SWDI (2020); ESSL (2020)
Heat wave 63 8 90 58 13,470 SWDI (2020)

Tornado 56 24 295 123 19,847
SPC (2019); ESSL (2020)
MRCC (2017); THP (2020)

Tropical storm 615 410 – 30 19,253 IBTrACS (2020); OCM (2020)
Fog/Haze 1 – – 1 6528 SWDI (2020)
Thunderstorm 132 – – – 145,470 SWDI (2020)
Rain 1 – – – 13,230 SWDI (2020)
Wind 101 – – – 37,671 SWDI (2020)

Industrial Chemical/Substance 25 ∨ – 81 8,655 EFSA (2020)
Radiation 0 ∨ 51 34 1,173 CNS (2020)
Structure hazards 239 47 – 300 – eMARS (2020)

Transportational Aviation 183 ∨ – 2,165 26,059 ICAO (2020)
Railway 98 ∨ – 20 2,992 ERAIL (2020)
Maritime 486 ∨ – 49 2,336 IMO (2020)
Traffic 764 154 – 66 – ITF (2020)

Table 1 shows the resulting taxonomy of disasters, and the number of corresponding entries within EM-DAT and GLIDE as

the largest expert-built disaster databases with global reach, as well as in Wikipedia and Wikidata, representing global bottom-120

up collaborative projects. The table also lists the existing incident databases and information systems of the major academic-

and public institutions and NGOs for each disaster type and their cumulative number of entries in the time frame. Only disasters

between 2008 and 2019 were counted since social media was relevant enough for the broad public and all surveyed databases

had consistent coverage from 2008 onward. The table illustrates the differences in size between disasters recorded by experts

in EM-DAT and Glide, by citizens in Wikipedia and Wikidata, and the notion of incidents in the other databases and which125

incident types are rarely covered systematically in the disaster databases. In total, we surveyed 33 incident databases over 27

disaster types in addition to the four disaster databases.

5

https://doi.org/10.5194/nhess-2020-221
Preprint. Discussion started: 17 July 2020
c© Author(s) 2020. CC BY 4.0 License.



Table 2. Taxonomy of the information commonly collected about disasters.

Dimension Category Definition Examples

Data Metadata Structured data about an event
Date, time, location, disaster type,
verification status, common name

Sensory Measured, type-specific information Magnitude, depth, and severity

Impact Effects on the population
Damages caused, fatalities, injuries,
displacements

Causal relations What caused the event Trigger, follow-up
Narrative Detailed description of the event Episode narrative, description
Assessment Reaction to the event Response action taken, lessons learned

Source Surveillance system Automatic detection Seismographs, buoys
Expert Assessment by trained persons Meteorologists, park rangers
Citizen observations Observations by untrained persons Call-ins, social media, newspaper

Resolution Spatially dense All areas are surveilled Satellite imagery, weather stations
Spatially punctual Only relevant areas are surveilled Plate boundaries, plane terminals

Temporally periodical
Area is preemptively surveilled,
without the need for a trigger

Seismograph, thermomether, buoys

To gain an overview of the data collected for the different incidents, we devised a taxonomy of incident data in Table 2,

selected the largest database of each incident type as a representative, and judged the existence and completeness of each

category in Table 3. The taxonomy organized the relevant information within three dimensions relevant to our research ques-130

tions: (1) The data collected for each incident type shows which information is in demand and which is difficult to acquire.

(2) The source of the occurrence information and who detected the incident shows where citizen observations are meaningful

and where surveillance systems or experts are preferable. (3) The spatial and temporal resolution shows the gaps in the acqui-

sition process that can be filled by social media data. Other dimensions, such as the typical presentation used for analysis, the

involvement of post-processing and validation, and weather reports are qualitatively or quantitatively, are beyond our scope.135

We scrutinized the pieces of information compiled in the aforementioned databases and organized them into unified cate-

gories to allow for rating across all databases, as shown in Table 2. The gaps in the collected data were determined by checking

each database for all categories and whether information from that category exists and is complete. To acknowledge the diver-

sity of disaster types, and to avoid exaggerated expectations, a data category was rated existent if the database contains at least

one piece of information from that category. A data category was rated incomplete when less than 90% of the entries contained140

the respective information. A source was rated existent, if it contributes to the acquisition process, either with a reference to

the source in the database or by analyzing the database owner’s description of the acquisition process. We did not mark any

sources as incomplete, but we noted the distribution of the participating sources whenever possible. Spatial resolution was

rated punctual if only selected areas are surveyed (e.g., airports or forests), and dense otherwise. Temporal resolution was rated

periodical if surveillance is scheduled in intervals instead of on-demand and if it does not require a trigger event. The resolution145

was marked incomplete if the surveillance strategy does not fully cover the target, e.g., when some areas are not surveyed due

to technical, jurisdictional, or financial constraints, and if incidents might be missed altogether.
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Table 3. Assessment of the information collected in incident databases following our information taxonomy in Table 2. The x denotes

existing, the * incomplete information. The abbreviations correspond to the categories in the taxonomy. Data: Metadata, Sensory and Impact

data, Relations, Narrative, Assessments. Sources: Surveillance, Experts, Citizens. Resolution: spatially dense (S/D) or punctual (S/P) and

temporally periodical (T/P).

Group Type Data Source Resolution Reference

M S I R N A S E C S/D S/P T/P

Biological Disease outbreak x – x – x x – x – x* – – CDC (2020)
Climatological Drought x – x* x x* – .73 .26 .01 x* – x SWDI (2020)

Wildfire x – x* x x – – .83 .17 – x* – SWDI
Geophysical Earthquake x x x* x x* – x – – – x x NCEI-EQ (2020)

Landslide (dry) x – x x* – – – .69 .31 – x – NASA (2020)
Tsunami x x x* x x* – .22 .56 .22 – x x NCEI-T (2020)
Volcano x – x* x x* x* x x – – x x NCEI-V (2020)

Hydrological Landslide (wet) x – x x x – .01 .83 .16 – x – SWDI
Flood x – x* x – – .31 .51 .18 x* – x* Brakenridge (2020)

Meteorological Blizzard x – x* x x – .46 .38 .16 x – – SWDI
Cold wave x – x x x – .31 .51 .18 x* – x SWDI
Dust storm x – x – x – .06 .73 .21 x* – – SWDI
Hail x x x x x – .02 .51 .47 x* – x SWDI
Heat wave x – x* x x – .83 .06 .11 x* – x SWDI
Tornado x x x – x – – .86 .14 – x* – SWDI
Tropical storm x x x* – x – .22 .61 .17 x – x SWDI
Fog/Haze x – x x x – .93 .05 .02 x* – x SWDI
Thunderstorm x x x* – x – .09 .57 .34 x – x* SWDI
Rain x – x* – x – .37 .28 .34 x* – x SWDI
Wind x x x* – x – .61 .29 .10 x* – x SWDI

Industrial Chemical/Substance – – – – – x – x – – x* x* Kovarich et al. (2020)
Radiation x x – – x – – x – – x* x* CNS (2020)
Structure hazards x – x x x x – x – – x* – eMARS (2020)

Transportational Aviation x – x – x x – x – – x x ICAO (2020)
Railway x – x x x x – x – – x x ERAIL (2020)
Maritime x – x x x x – x – – x x IMO (2020)
Traffic – – x – – – – x – – x* – ITF (2020)

Social Media x* – x* x* x* x* – x* x x x x

4 Results

By analyzing the results of the survey shown in Table 3, we can infer six primary opportunities of social media data for

incident databases: (1) To more precisely assess the impact of an incident and verify model predictions across all types of150

incidents, (2) generate narratives or short descriptions, especially for droughts, geophysical incidents, and floods, (3) strengthen

acquisition processes that already involve citizens, which is the case for more than half of the natural disasters surveyed,

(4) support weakly institutionalized areas and get a broader coverage of surveyed areas, (5) narrow the areas for punctual

surveillance, and (6) notice trigger events and start periodical surveillance.
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Furthermore, the survey hints at areas of either limited interest or limited practicality that require further attention: Infer-155

ring causal relations between incidents, especially for sub-events and consequences, and generating detailed assessments of

response, recovery, and mitigation efforts. An automated assignment or grouping of database entries describing the same event,

like NOAA’s episodes, might also be of interest. Conversely, we observe areas of little immediate relevance: The extraction

of metadata and sensory or measured information for known incidents, the surveillance of regionally limited incidents, like

earthquakes, and volcano eruptions, and the scrutiny of incidents that have reliable surveillance systems in place like trans-160

portational incidents. To assess the opportunities, below, we comment on uncertainty as a main obstacle for the incorporation

of social media data in high-reliability applications, and on the limitations of our investigation.

4.1 Opportunities of Social Media Data

The primary opportunities for social media data in incident databases that can be inferred from surveying the currently collected

data are impact assessment and narrative generation. Impact information is collected about almost all (93%) incidents, but165

incompletely almost half of the time (44%). This is especially true for natural disasters, which have more records than the more

qualitatively assessed man-made incidents. Quantifying the impact of an incident is mostly done by local observations, which

are also frequently shared on social media in images and discussions, as first- or third-party observations. Impact assessment

is also closely related to model validation schemes like DYFI. Narratives are short summaries of the episode and are included

for 85% of the surveyed incident types and completely collected for most of them. Given their frequent occurrence, generating170

narratives from social media data would be highly valuable, not least to reduce the effort required from experts in creating them

and to complete the narratives for geophysical events, droughts, and floods as has been showcased by Shapira et al. (2017).

The survey also highlights information gaps in the data collected about incident causality and assessment of the response,

recovery, and mitigation efforts, although we are cautious to point to social media data as a potential solution without significant

prior academic effort. The causal references included in the databases are mostly mentions of the main cause, which is naturally175

missing if the cause is the normal operation of earth systems. However, causal inference through social media data is sought

after for sub-events (Chen and Terejanu, 2018), like road-blocks caused by a storm, which is in this granularity not captured by

our survey. Assessment of the response, recovery, and mitigation efforts are frequent and complete for man-made disasters, but

rare for natural ones. Reasons for this might be that there is a greater focus on individual incidents for man-made disasters, since

there is also more agency in prevention efforts, while assessments for natural disasters are only created for very significant or180

groups of incidents, for example in annual reports. There is an apparent value in generating assessments for individual natural

incidents, but it is not clear yet if this is possible, especially regarding social media as a source. The survey shows no apparent

need to consider metadata and sensory information any further. Metadata are largely (93%) existent and complete if the incident

is known, however, there is pioneering work studying crowdsourcing opportunities to gain sensory information from citizen

observations; for example, inferring hail diameters or flood levels from posted images (Assumpção et al., 2018).185

The surveyed sources, surveillance systems, experts, and citizen observations describe how the incidents were originally

reported and in turn how the acquisition process works for individual incident types. Interpreting the findings is straight-

forward: If citizen observations are already used, social media data can contribute significantly to the acquisition process,
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which is the case in 75% of the surveyed natural disasters, especially where surveillance systems contribute the least. Precise

examples for this are the severe weather reports collected by NOAA and ESWD, as well as the crowdsourcing efforts by NASA190

to collect landslide data (Juang et al., 2019). Citizen observations barely contribute to databases of man-made incidents and

all reports are done by involved parties like train operators or plane engineers. It is conceivable to involve citizens via social

media in the acquisition process of traffic, industrial, and extreme transportation incidents. However, research in this area is as

of yet too sparse to reach a conclusion.

The spatial and temporal resolution may be the best opportunity for social media data: They are not limited by technical,195

jurisdictional, or financial issues and thus better cover the spatial and temporal domains, while traditional data acquisition relies

on existing networks of sensors and/or experts. Regarding the spatial resolution, social media data can aid the data acquisition

process by more densely covering weakly institutionalized areas and determining areas for punctual surveillance. Incident

types that favor dense spatial surveillance are often marked incomplete (77% of the total) due to a limited regional focus. For

example, meteorological stations are frequent in densely settled areas in wealthy regions, but sparse beyond. Similar problems200

exist for floods, droughts, and, to a certain degree, for disease outbreaks.2 There is no apparent need to use social media data

to increase the spatial resolution if the incidents are surveyed globally through earth observation techniques and have reliable

forecasting models, for example, in the case of hurricanes. Incident types that favor punctual spatial surveillance are marked

incomplete (43% of the total) if it is difficult to determine the area in need of surveillance. Examples are fire watches and

tornado spotting, but also monitoring substance pollution, and structural hazards. There is no apparent need for incidents with205

static or strictly tracked punctual extent, like geophysical and most transportation incidents. Social media observations can also

improve the temporal resolution for the 33% of incident types without periodical surveillance. Specifically, the trigger events

required to initiate and guide detailed surveillance can be detected through social media, for example, for wildfires, floods, and

diseases. Similarly, social media can complement space-based earth observation or motivate tests for substance contamination

and thus assist the 22% of periodically surveyed incidents with potentially long intervals in their periodical surveillance.210

4.2 Uncertainty of Social Media Data

In contrast to surveillance systems or expert assessments, social media data is unintentionally contributed by people with

limited expertise. These factors introduce an inherent uncertainty to the acquisition of incident information from social media

in the form of Type I and Type II errors, depending on the platform and the type of data collected. Type I errors include the

uncertainty about the existence of the data: The required information may not exist in general, as for sparsely settled regions215

or low impact incidents; the information may be uninformative if only shallow discussions or sentiment is shared; and the

information may lack precise geographical information (Montello et al., 2003). Type II errors include the uncertainty about

the reliability of the data: The collected information may be ambiguous since disaster vocabulary has been liberally adopted

into the general vocabulary; the data may contain misinformation like rumors (Mondal et al., 2018), misuse like fake news

(Zhang and Ghorbani, 2020), phishing (Verma et al., 2018), clickbait, and hoaxes (Zannettou et al., 2019); or it may be prone220

to misinterpretation due to the expertise gap of social media data. A survey by the United States Homeland Security (2018)

2Anecdotally, the Covid-19 outbreak was heavily discussed on social media before it was officially acknowledged by official institutions.
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illustrates several false and inaccurate depictions on social media during crisis events and highlights the harmful effects on

victims and relief efforts. When the inherent uncertainties in social media data are not appropriately and sufficiently addressed,

their respective analysis leads to inconclusive, incoherent, and misleading outcomes.

In several related works, various methods have been utilized to assess these inherent uncertainties in social media data.225

Senaratne et al. (2017) created a taxonomy of these methods based on the following four categories of approaches: (1) crowd-

sourcing approaches which involve a group of participants to validate and correct the errors made by data contributors (Haklay

et al., 2010), (2) social approaches where experts act as gatekeepers to maintain and validate the data contributed on social

media platforms by, for example, using linguistic decision making approaches (Bordogna et al., 2014), (3) machine-learning

approaches which automate decision making from past examples, for example, using supervised classifications to assess the230

credibility of data (Castillo et al., 2011), and (4) geographic approaches that use laws and knowledge from geography.

Going forward, the research efforts invested into uncertainty assessment should not only focus on improving the coping

mechanism and exploring new event types, but also on mitigating the uncertainties by building trust between users and relief

institutions, incorporating feedback, and motivation mechanisms to increase the number and velocity of shared observations,

and acknowledge ways of self-policing within the social media communities.235

4.3 Limitations

In favor of following a reproducible and data-driven approach to surveying, we do not consider information that may be needed

but is never contained in any of the databases. This also means that we do not suggest to limit innovation or research when

rejecting use cases like earthquake detection or metadata extraction. There may be novel uses for social media data which are

not revealed by our survey. Additionally, our analysis does not consider the uses of social media analysis to reduce detection240

times and applications that use social media to retrieve other sources, like shared news articles. Note that we limited our

conclusions about traffic incidents due to the limited data in IRTAD and that we mostly ignored uncommon and unforeseen

events because of the naturally limited data to survey.

5 Conclusions

This work attempts to answer which role social media data can play in disaster management by systematically surveying the245

currently available data in 37 disaster and incident-databases, assessing the missing and sought-after information, pointing out

the opportunities of information spread via social media to fill these gaps, and ponder the risks introduced by uncertainty. The

identified gaps hint at six primary opportunities: impact assessment and verification of model predictions, narrative generation,

enabling enhanced citizen involvement, supporting weakly institutionalized areas, narrowing surveillance areas, and reporting

triggers for periodical surveillance. Additionally, we point to potential opportunities warranting further research: determining250

causality between incidents and sub-events, and generating assessments about the response, recovery, and mitigation efforts.

Given proper awareness of the risks, seizing the determined opportunities and including social media-based citizen observations

in incident data collection can greatly improve our ability to analyze, cope with, and mitigate future disasters.
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