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Abstract. Weather index insurance is an innovative tool in risk transfer for disasters induced by natural hazards. This paper

proposes a methodology that uses machine learning algorithms for the identification of extreme flood and drought events aimed

at reducing the basis risk connected to this kind of insurance mechanism. The model types selected for this study were the neural

network and the support vector machine, vastly adopted for classification problems, which were built exploring thousands of

possible configurations based on the combination of different model parameters. The models were developed and tested in5

the Dominican Republic context, based on data from multiple sources covering a time period between 2000 and 2019. Using

rainfall and soil moisture data, the machine learning algorithms provided a strong improvement when compared to logistic

regression models, used as a baseline for both hazards. Furthermore, increasing the number of information provided during the

training of the models proved to be beneficial to the performances, increasing their classification accuracy and confirming the

ability of these algorithms to exploit big data and their potential for application within index insurance products.10

Copyright statement.

1 Introduction

Changes in frequency and severity of extreme weather and climate events have been observed since 1950, including an increase

in the number of heavy precipitation events in some land areas and a significant decrease of rainfall in other regions (Field et al.,

2014). Impacts from recent weather-related extremes, such as floods and droughts, have revealed a substantial vulnerability of15

many human systems to climate-related hazards (Visser et al., 2014). In recent decades, extreme weather events have caused

widespread economic and social damages all over the world (Kron et al., 2019). According to Hoeppe (2016), over the period

from 1980 to 2014, extreme weather events have caused losses of around US$ 3300 billion, with floods accounting for 32% of

the losses and drought for 17%. Extreme weather events have devastating effects on people’s lives. The International Disasters

Database EMDAT (CRED, 2019) reports that, over the period from 1980 to 2019, extreme weather caused the death of 1.1520

million people, with droughts being the disaster responsible for the highest number of deaths (around 50% of fatalities due to

climate extremes), followed by storms (34%) and floods (16%).

The implementation of effective disaster risk management strategies is key to limiting economic and social losses associated

with extreme weather events and to reduce disaster risk. In recent years, there has been increasing worldwide interest in
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the integration of risk transfer instruments within such strategies (Kunreuther, 2001; Surminski et al., 2016). Among those25

instruments, index-based insurance, or parametric insurance, has gained remarkable popularity. Unlike traditional insurance,

which indemnifies policyholders based on experienced losses, parametric insurance pays indemnities based on realizations of

an index (or a combination of parameters) that is correlated with losses (Barnett and Mahul, 2007). It can be used to transfer

risk associated with different types of extreme events, such as earthquakes (Franco, 2010), floods (Surminski and Oramas-

Dorta, 2014), and droughts (Makaudze and Miranda, 2010). Parametric insurance offers various advantages over traditional30

indemnity-based insurance, such as lower operating expenses, reduced moral hazard and adverse selection, and prompt access

to funds by insureds following the occurrence of disasters (Ibarra and Skees, 2007; Figueiredo et al., 2018). This promptness

is critical in developing countries, which tend to be exposed to short-term liquidity gaps that may overwhelm their capacity

to cope with large disasters (Van Nostrand and Nevius, 2011). A critical disadvantage of parametric insurance, however, is its

susceptibility to basis risk, which may be defined as the risk that triggered payouts do not coincide with the occurrence of loss35

events.

The minimisation of basis risk in parametric insurance requires a reliable, rapid and objective identification of extreme

climate events. Nowadays, different sources of weather data that may be used to support this endeavour are available. Among

them, the use of satellite images and reanalyses products in parametric insurance mechanisms is growing (Black et al., 2016;

Chantarat et al., 2013). Satellite images and reanalyses are frequently free of charge, and therefore parametric models based40

on them are cheaper and can be affordable even for developing countries (Castillo et al., 2016). In addition, satellite images

and reanalyses consist of continuous spatial fields and often have global coverage. These last features make them attractive,

since they overcome one of the most common issues related to gauges and weather stations, which is their limited or irregular

spatial coverage. It should also be noted that hypothetically, if an entity that is responsible for such stations (e.g., a governmental

agency) is related in some form with a potential beneficiary from index insurance coverage, a conflict of interest may arise. This45

issue is avoided with satellite-based or reanalysis products, which are produced by third parties, for example internationally

renowned research institutes such as the Climate Hazards Center of the University of California and the European Centre for

Medium-Range Weather Forecasts. Satellite images are often available with high spatial resolution, but records are still short,

with a maximum duration of around 30 years. Reanalysis, on the other hand, provides longer time series but tends to have a

coarser spatial resolution. Moreover, satellite data should be checked for consistency with ground measurement which is not50

always feasible when the network of ground instruments is inadequate or non-existent (Loew et al., 2017). Although using

satellite data has its own limitations, various index-based insurance products, exploiting remote-sensing data and reanalysis,

have been developed in data sparse regions such as Africa and Latin America (Awondo, 2018; African Union, 2021; The World

Bank, 2008). The combined use of various sources of information to detect the occurrence of extreme events is valuable, since

it can significantly improve the ability to correctly detect extreme events (Chiang et al., 2007) and a proper index design helps55

addressing the limitations brought by satellite data, as underlined in Black et al. (2016).

Over the last two decades there has been an increasing attention to the application of machine learning methods to process

and extract information from big data with limited human intervention (Ornella et al., 2019). Correspondingly, machine learn-

ing approaches have also been applied to forecast extreme events. Mosavi et al. (2018) offer an accurate description of the state
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of the art of machine learning models used to forecast floods, while Hao et al. (2018) and Fung et al. (2019), in their reviews60

on drought forecasting, give an overview of machine learning tools applied to predict drought indices. Machine learning has

also been employed to forecast wind gusts (Sallis et al., 2011), severe hail (Gagne et al., 2017) and excessive rainfall (Nayak

and Ghosh, 2013). In contrast, only a minor part of the body of literature focuses their attention on the identification or clas-

sification of events (Nayak and Ghosh (2013), Khalaf et al. (2018) and Alipour et al. (2020) for floods, Richman et al. (2016)

for droughts, Kim et al. (2019) for tropical cyclones). However, classification of events to distinguish between extreme and65

non-extreme events is essential to support the development of effective parametric risk transfer instruments. In addition, the

major part of the analysed studies deals with a single type of event.

This paper aims to assess the potential of machine learning for weather index insurance. To achieve this, we propose and

apply a machine learning methodology that is capable of objectively identifying extreme weather events, namely flood and

drought, in near-real time, using quasi-global gridded climate datasets derived from satellite imagery or a combination of70

observation and satellite imagery. The focus of the study is then to address the following research questions:

1. Can machine learning algorithms provide improvement in terms of performance for weather index insurance with respect

to traditional approaches?

2. To which extent do the performances of machine learning models improve with the addition of input data?

3. Do the best performing models share similar properties? (e.g., use more input data or consistently have similar algo-75

rithm’s features).

In this study we focus on the detection of two types of weather events with very different features: floods, which are mainly

local events that can develop over a time scale going from few minutes to days, and droughts, which are creeping phenomena

that involve widespread areas and have a slow onset and offset. In addition, floods cause immediate losses (Plate, 2002), while

droughts produce non-structural damages and their effects are delayed with respect to the beginning of the event (Wilhite,80

2000). Both satellite images and reanalyses are used as input data to show the potential of these instruments when properly

designed and managed. Two of the most used machine learning methodologies, neural network (NN) and support vector

machine (SVM), are applied. With ML models it is not always straightforward to know a priori which model(s) perform(s)

better, or which model configuration(s) should be used. Therefore, various model configurations are explored for both NN

and SVM and a rigorous evaluation of their performances is accomplished. The best performing configurations are tested to85

reproduce past extreme events in a case study region.

Section 2 describes the NN and SVM algorithms used in this study and their configurations, the procedure adopted to take

into consideration the problem of data imbalance due to the rarity of extreme events, the assessment of the quality of the

classifications and the procedure used to select the best performing models and configurations. In addition, an overview of the

used datasets is provided. Section 3 provides some insights on the area where the described methodology is applied. Section 490

presents and discuss the most important outcomes for both floods and droughts. Section 5 summarises the main findings of the

study, highlighting their meanings for the study case and analysing the limitations of the proposed approach, while providing

insight on possible future developments.
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2 Methodology

Machine learning is a subset of artificial intelligence whose main purpose is to give computers the possibility to learn, through-95

out a training process, without being explicitly programmed (Samuel, 1959). It is possible to distinguish machine learning

models based on the kind of algorithm that they implement and the type of task that they are required to solve. Algorithms may

be divided into two broad groups: the ones using labelled data (Maini and Sabri, 2017), also known as supervised learning algo-

rithms, and the ones that during the training receive only input data for which the output variables are unknown (Ghahramani,

2004), also called unsupervised learning algorithms.100

As previously mentioned, in index insurance, payouts are triggered whenever measurable indices exceed predefined thresh-

olds. From a machine learning perspective, this corresponds to an objective classification rule for predicting the occurrence of

loss or no loss based on the trigger variable. The rule can be developed using past training sets of hazard and loss data (su-

pervised learning). Conceptually, the development of a parametric trigger should correspond to an informed decision-making

process i.e. a process which, based on data, a-priori knowledge and an appropriate modelling framework, can lead to optimal105

decisions and effective actions. This work aims to leverage the aptitude of machine learning, particularly supervised learning

algorithms, to support the decision-making process in the context of parametric risk transfer, applying NN and SVM for the

identification of extreme weather events, namely flooding and drought for this particular study.

Consider the occurrence of losses caused by a natural hazard on each time unit t= 1, ...,T over a certain study area G, and

let Lt be a binary variable defined as110

Lt =

1 if loss occurs on t in G

0 if loss doesn’t occur on t in G
(1)

The aim is then to predict the occurrence of losses based on a set of explanatory variables obtained from non-linear transfor-

mations of a set of environmental variables. This hybrid approach aims to capture some of the physical processes of how the

hazard creates damage by incorporating a priori expert knowledge on environmental processes and damage-inducing mecha-

nisms for different hazards. Raw environmental variables are not always able to fully describe complex dynamics like flood115

induced damage, therefore, the usage of expert knowledge is important to provide the machine learning model with input data

that are able to better characterise the natural hazard events.

Supervised learning with machine learning methods based on physically-motivated transformations of environmental vari-

ables are then used to capture loss occurrence. The models are set up such that they produce probabilistic predictions of loss

rather than directly classifying events in a binary manner. This allows the parametric trigger to be optimised in a subsequent120

step, in a metrics-based, objective and transparent manner, by disentangling the construction of the model from the decision-

making regarding the definition of the payout-triggering threshold. Probabilistic outputs are also able to provide informative

predictions of loss occurrence that convey uncertainty information, which can be useful for end users when a parametric model

is operational (Figueiredo et al., 2018).

Figure 1 summarises the general framework implemented in this work.125
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2.1 Variable and datasets selection

The data-driven nature of ML models implies that the results yielded are as good as the data provided. Thus, the effectiveness

of the methods depends heavily on the choice of the input variables, which should be able to represent the underlying physical

process (Bowden et al., 2005). The data selection (and subsequent transformation) therefore requires a certain amount of a

priori knowledge of the physical system under study. For the purpose of this work, precipitation and soil moisture were used130

as input variables for both flood and drought. An excessive amount of rainfall is the initial trigger to any flood event (Barredo,

2007), while scarcity of precipitation is one of the main reasons that leads to drought periods (Tate and Gustard, 2000). Soil

moisture is instead used as a descriptor of the condition of the soil. With the idea to implement a tool that can be exploited in

the framework of parametric risk financing, we selected the datasets to retrieve the two variables according to five criteria:

1. Spatial resolution: a fine spatial resolution that takes into account the climatic features of the various areas of the con-135

sidered country is needed to develop accurate parametric insurance products.

2. Frequency: the selected datasets should be able to match the duration of the extreme event that we need to identify. For

example, in the case of floods, which are quick phenomena, daily or hourly frequencies are required.

3. Spatial coverage: global spatial coverage enables the extension of the developed approach to areas different from the

case study region.140

4. Temporal coverage: since extreme events are rare, a temporal coverage of at least 20 years is considered necessary to

allow a correct model calibration.

5. Latency time: a short latency time (i.e., time delay to obtain the most recent data) is necessary to develop tools capable

of identifying extreme-events in near-real time.

Based on a comprehensive review of available datasets, we found six rainfall datasets and one soil moisture dataset, compris-145

ing 4 layers, matching the above criteria. With respect to the studies analysed in Mosavi et al. (2018), Hao et al. (2018) and Fung

et al. (2019), that associated a single dataset to each input variable, here six datasets are associated to a single variable (rainfall).

The use of multiple datasets is able to improve the ability of models in identifying extreme events, as demonstrated for exam-

ple by Chiang et al. (2007) in the case of flash floods. In addition, single datasets may not perform well; the combination of

various datasets produces higher quality estimates (Chen et al., 2019). Two merged satellite-gauge products (the Climate Haz-150

ard Group Infrared precipitation, CHIRPS and the CPC Morphing technique, CMORPH,) and four satellite-only (the Global

Satellite Mapping of Precipitation GSMaP, the Integrated Multi-Satellite Retrievals for GPM, IMERG; the Precipitation Esti-

mation from Remotely-Sensed Information using Artificial Neural Networks, PERSIANN; and the Global PERSIANN Cloud

Classification System, PERSIANN-CCS) datasets were used. The main features of the selected datasets are reported in Table1.

Soil moisture was retrieved from the ERA5 reanalysis dataset, produced by the European Centre for Medium Range Weather155

Forecast (ECMWF). The dataset provides information on 4 soil moisture layers (Layer 1: 0-7 cm, Layer 2: 7-28cm; Layer 3:

28-100cm; Layer 4: 100-289cm). Table 2 shows the main features of the ERA5 dataset.
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2.2 Data transformation

The raw environmental variables are subjected to a transformation which is dependent on the hazard at study and is deemed

more appropriate to enhance the performances of the model, as described below.160

2.2.1 Flood

Flood damage is not directly caused by rainfall, but from physical actions originated by water flowing and submerging assets

usually located on land. As a result, even if floods are triggered by rainfall, a better predictor for the intensity of a flood and

consequent occurrence of damage is warranted. To achieve this, we adopt a variable transformation to emulate, in a simplified

manner, the physical processes behind the occurrence of flood damage due to rainfall, based on the approach proposed by165

Figueiredo et al. (2018), which is now briefly described.

Let Xt(gj) represent the rainfall amount accumulated over grid cell gj belonging to G on day t. Potential runoff is first

estimated from daily rainfall. This corresponds to the amount of rainwater that is assumed to not infiltrate the soil and thus

remain over the surface, and is given by

Rt(gj) =max{Xt(gj)−u,0} (2)170

where u is a constant parameter that represents the daily rate of infiltration.

Overland flow accumulates the excess of rainfall over the surface of a hydrological catchment. This process is modelled using

a weighted moving time average, which preserves the accumulation effect and allows the contribution of rainfall on previous

days to be considered. The moving average is restricted to a three-day period. The potential runoff volume accumulated over

cell gj over days t, t− 1, t− 2 is thus given by175

R∗
t (gj) = θ0Rt(gj) + θ1Rt−1(gj) + θ2Rt−2(gj) (3)

where θ0,θ1,θ2 > 0 and θ0 + θ1 + θ2 = 1

Finally, let Yt be an explanatory variable representing potential flood intensity for day t, which is defined as

Yt =

J∑
j=1

R∗
t (gj)

λ− 1

λ
(4)

The Box-Cox transformation provides a flexible, non-linear approach to convert runoff to potential damage for each grid180

cell, which is summed over all grid cells in a study area to obtain a daily index of flood intensity. In order to obtain the Yt

variable that best describes potential flood losses due to rainfall, the transformation parameters u, θ1, θ2 and λ are optimised

by fitting a logistic regression model to concurrent potential flood intensity and reported occurrences of losses caused by flood

events, and maximising the likelihood using a quasi-Newton method:
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Lt ∼Bernoulli(pt) (5)185

with

log

(
pt

1− pt

)
= β0 +β1Yt (6)

2.2.2 Drought

Before being processed by the ML model, rainfall data are used to compute the standardised precipitation index (SPI). The

SPI is a commonly used drought index, proposed by Mckee et al. (1993). Based on a comparison between the long-term190

precipitation record (at a given location for a selected accumulation period) and the observed total precipitation amount (for

the same accumulation period), the SPI measures the precipitation anomaly. The long-term precipitation record is fitted to the

gamma distribution function, which is defined according to the following equation:

g(x) =
1

βαΓ(α)
xα−1e−

x
β for x > 0 (7)

where α and β are respectively the shape factor and the scale factor. The two parameters are estimated using the maximum195

likelihood solutions according to the following equations:

α=
1 +

√
1 + 4D

3

4D
(8)

β =
x

α
(9)

where x is the mean of the distribution and N is the number of observations.

The cumulative probability G(x) is defined as200

G(x) =

x∫
0

g(x)dx=
1

βαΓ(α)

x∫
0

xα−1e−
x
β dx (10)

Since the gamma function is undefined if x= 0 and precipitation can be null, the definition of cumulative probability is

adjusted to take into consideration the probability of a zero:

H(x) = q+ (1− q)G(x) (11)
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where q is the probability of a zero. H is then transformed into the standard normal distribution to obtain the SPI value:205

SPI = φ−1H(x) (12)

where φ is the standard normal distribution.

The mean SPI value is therefore zero. Negative values indicate dry anomalies, while positive values indicate wet anomalies.

Table 3 reports drought classification according to the SPI. Conventionally, drought starts when SPI is lower than -1. The

drought event is ongoing until SPI is up to 0 (Mckee et al., 1993). The main strengths of the SPI are the fact that the index210

is standardized, therefore it can be used to compare different climate regimes, and that it can be computed for various accu-

mulation periods (World Meteorological Organization and Global Water Partnership, 2016). In this study, SPI1, SPI3, SPI6

and SPI12 were computed, where the numeric values in the acronym refer to the period of accumulation in months (e.g., SPI3

indicates the standard precipitation index computed over a three months accumulation period). Shorter accumulation periods

(1-3 months) are used to detect impacts on soil moisture and on agriculture. Medium accumulation periods (3-6 months) are215

preferred to identify reduced streamflow and longer accumulation periods (12-48 months) indicates reduced reservoir levels

(European Drought Observatory, 2020).

2.3 Machine learning algorithms

We now focus on the machine learning algorithms adopted in this work, starting with a short introduction and description of

their basic functioning, and next delving into the procedure used to build a large number of models based on the domain of220

possible configurations for each ML method. Finally, the metrics used to evaluate the models are introduced and the reasoning

behind their selection is highlighted.

2.3.1 Neural Network (NN)

Neural networks are a machine learning algorithm composed by nodes (or neurons) that are typically organised into three types

of layers: input, hidden and output. Once built, a neural network is used to understand and translate the underlying relationship225

between a set of input data (represented by the input layer) and the corresponding target (represented by the output layer). In

recent years and with the advent of big data, neural networks have been increasingly used to efficiently solve many real-world

problems, related for example with pattern recognition and classification of satellite images (Dreyfus, 2005), where the capacity

of this algorithm to handle nonlinearity can be put to fruition (Stevens and Antiga, 2019). A key problem when applying neural

networks is defining the number of hidden layers and hidden nodes. This must usually be done specifically for each application230

case, as there is no globally agreed-on procedure to derive the ideal configuration of the network architecture (Mas and Flores,

2008). Although different terminology may be used to refer to neural networks depending on their architectures (e.g, Artificial

Neural Networks, Deep Neural Networks), in this paper they are addressed simply as neural networks, specifying where needed

the number of hidden layers and hidden nodes. Figure 2 displays the different parts composing a neural network and their

interaction during the learning process. A neural network with multiple layers can be represented as a sequence of equations,235
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where the output of a layer is the input of the following layer. Each equation is a linear transformation of the input data,

multiplied by a weight (w) and the addition of a bias (b) to which a fixed nonlinear function is applied (also called activation

function)

x1 = f(w0x0 + b0) (13)
240

x2 = f(w1x1 + b1)

...

y = f(wnxn + bn)245

The goal of these equations is to diminish the difference between the predicted output and the real output. This is attained

by minimising a so called loss function (LF) through the fine tuning of the parameters of the model, the weights. The latter

procedure is carried out by an optimiser, whose job is to update the weights of the network based on the error returned by the

LF.

The iterative learning process can be summarised by the following steps:250

1. Start the network with random weights and bias

2. Pass the input data and obtain a prediction

3. Compare the prediction with the real output and compute the LF, which is the function that the learning process is trying

to minimise.

4. Backpropagate the error, updating each parameter through an optimiser according to the LF.255

5. Iterate the previous step until the model is trained properly. This is achieved by stopping the training process when either

the LF is not decreasing anymore or when a monitored metric has stopped improving over a set amount of definition.

Specific to the training process, monitoring the training history can provide useful information, as this graphic representation

of the process depicts the evolution over time of the LF for both training and validation set. Looking at the history of the

training has a twofold purpose: firstly, being the training a minimisation problem, as long as the LF is decreasing the model is260

still learning, while any eventual plateau or uprising would mean that the model is overfitting (or not learning anymore from

the data). The latter is avoided when the LF of training and validation dataset display the same decreasing trend (Stevens and

Antiga, 2019). The monitoring assignment is carried out during the training of the model, where its capability to store the

value of training and validation loss at each iteration of the process, enable the possibility to stop the training as soon as either

losses are decreasing or plateauing over a certain amount of iterations. In this work, the neural network model is created and265

trained using TensorFlow (Abadi et al., 2016). TensorFlow is an open-source machine learning library that was chosen for this

work due to its flexibility, the capacity to exploit GPU cards to ease computational costs, its ability to represent a variety of

algorithms and most importantly the possibility to carefully evaluate the training of the model.
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2.3.2 Support Vector Machine (SVM)

Support vector machine is a supervised learning algorithm used mainly for classification analysis. It construct a hyperplane (or270

set of hyperplanes) defining a decision boundary between various data points representing observations in a multidimensional

space. The aim is to create a hyperplane that separates the data on either side as homogeneously as possible. Among all possible

hyperplanes, the one that creates the greatest separation between classes is selected. The support vectors are the points from

each class that are the closest to the hyperplane (Wang, 2005). In parametric trigger modelling, as in many other real-world

applications, the relationships between variables are non-linear. A key feature of this technique is its ability to efficiently map275

the observations into a higher dimension space by using the so-called kernel trick. As a result, a non-linear relationship may be

transformed into a linear one. A support vector machine can also be used to produce probabilistic predictions. This is achieved

by using an appropriate method such as Platt scaling (Platt, 1999), which transforms its output into a probability distribution

over classes by fitting a logistic regression model to a classifier’s scores. In this work, the support vector machine algorithm

was implemented using the C-support vector classification (Boser et al., 1992) formulation implemented with the scikit-learn280

package in python (Pedregosa et al., 2011). Given training vectors xi ∈Rpi= i, ..., l and a label vector y ∈ {0,1}n, this specific

formulation is aimed at solving the following optimisation problem:

min(w,b,ξ) =
1

2
ωtω+C

l∑
i=1

ξi (14)

subject to y1(ωtΨ(xi) + b)≥ 1− ξi285

ξi ≥ 0, i= 1, ..., l

where ω and b are adjustable parameters of the function generating the decision boundary, Ψi is a function that projects xi

into a higher dimensional space, ξi is the slack variable and C > 0 is a regularisation parameter, which regulates the margin

of the decision boundary allowing an increasing number of misclassification for lower value of C and decreasing number of290

misclassification for higher C (Fig. 3).

2.3.3 Model construction

Below is proposed a procedure to assemble the machine learning models, that involves techniques borrowed from the data

mining field and a deep understanding of all the components of the algorithms. The main purpose is to identify the actions

required to establish a robust chain of model construction. Hypothetically speaking, one may create a neural network with an295

infinite number of layers or a support vector machine model with infinite values of the C regularisation parameters. Figure 4, a

zoom-in of the ML algorithm box of the workflow shown previously in Fig. 1, describes the steps followed in order to create the

best-performing NN and SVM models, from the focus put on the importance of data enhancing to the selection of appropriate

evaluation metrics, exploring as many model configuration as possible, being aware of the several parameters comprising these

models and the wide ranges that these parameters can have.300
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Pre-processing of data

Data preprocessing (DPP) is a vital step to any ML undertaking, as the application of techniques aimed at improving the

quality of the data before training leads to improvement of the accuracy of the models (Crone et al., 2006). Moreover, data

preprocessing usually results in smaller and more reliable datasets, boosting the efficiency of the ML algorithm (Zhang et al.,

2003). The literature presents several operations that can be adopted to transform the data depending on the type of task the305

model is required to carry out (Huang et al., 2015; Felix and Lee, 2019). In this paper, preprocessing operations were split into

four categories: data quality assessment, data partitioning, feature scaling and resampling techniques aimed at dealing with

class imbalance. The first three are crucial for the development of a valid model, while the latter is required when dealing with

the classification of rare events. Data quality assessment was carried out to ensure the validity of the input data, filtering out

any anomalous value (e.g., negative values of rainfall).310

The partitioning of the dataset into training, validation and testing portions is fundamental to give the model the ability to

learn from the data and avoid a problem often encountered in ML application: overfitting. This phenomenon takes place when a

model starts overlearning from the training dataset, picking up patterns that belong solely to the specific set of data it is training

on and that are not depictive of the real-world application at hand, making the model unable to generalise to sample outside

this specific set of data. To avoid overfitting one should split the data into at least 2 parts (McClure, 2017). The training set,315

upon which the model will learn, and a validation dataset functioning as a counterpart during the training process of the model,

where the losses obtained from the training set and those obtained from the validation set are compared to avoid overfitting.

A further step would be to set aside a testing set of data that the model has never seen. Evaluating the performances of the

model using data that it has never encountered before, is an excellent indicator of its ability to generalise. Thus, the splitting

of the data is key to the validation of the model. In this work, the training of the NN was carried out splitting the dataset in 3320

parts: training (60%), validation (15%) and testing (25%) set. During training, the neural networks used only the training set,

evaluating the loss on the validation set at each iteration of the training process. After the training, the performance of the model

was evaluated on the testing set that the model has never seen. Concerning the SVMs, a k-fold cross validation (Mosteller and

Tukey, 1968) was used to validate the model, using 5 folds created by preserving the percentage of sample of each class, the

algorithm was therefore trained on 80% of the data and its performances were evaluated on 20% of the remaining data that the325

model had never seen.

Feature scaling is a procedure aimed at improving the quality of the data by scaling and normalising numeric values so as

to help the ML model in handling varying data in magnitude or unit (Aksoy and Haralick, 2001). The variables are usually

rescaled to the [0,1] range or to the [−1,1] range or normalised subtracting the mean and dividing by the standard deviation.

The scaling is carried on after the splitting of the data and is usually calibrated over the training data, and then, the testing set330

is scaled with the mean and variance of the training variables (Massaron and Muller, 2016).

Lastly, when undertaking a classification task, particular attention should be put on addressing class imbalance, which

reflects an unequal distribution of classes within a dataset. Imbalance means that the number of data points available for

different classes is significantly different; if there are two classes, a balanced dataset would have approximately 50% points

for each of the classes. For most machine learning techniques, little imbalance is not a problem, but when the class imbalance335

11



is high, e.g., 85% points for one class and 15% for the other, standard optimization criteria or performance measures may

not be as effective as expected (Garcia et al., 2012). Extreme events are by definition rare, hence, the imbalance existing in

the dataset should be addressed. One approach to address imbalances is using resampling techniques such as over-sampling

(Ling and Li, 1998) and SMOTE (Chawla et al., 2002). Over-sampling is the process of up-sampling the minority class by

randomly duplicating its elements. SMOTE (Synthetic Minority Over-sampling Technique) involves the synthetic generation340

of data looking at the feature space for the minority class data points and considering its k nearest neighbour where k is

the desired number of synthetic generated data. Another possible approach to address imbalances is weight balancing, which

restores balance in the data by altering the way the model "looks" at the under-represented class. Oversampling, SMOTE and

class weight balancing were the resampling techniques deemed more appropriate to the scope of this work, namely, identifying

events in the minority class.345

Analysis of model configurations

Up to this point, several models characteristics and a considerable amount of possible operations aimed at data augmentation

were presented creating an almost boundless domain of model configurations. In order to explore such domain, for each ML

method multiple key aspects were tested. Both methods shared an initial investigation of the sampling technique and the

combination of input datasets to be fed into the models; all the data resampling techniques previously introduced were tested350

along with the data in their pristine condition where the model tries to overcome the class imbalance by itself. All the possible

combinations of input dataset were tested starting from one dataset for SVM and with two datasets for NN up to the maximum

number of environmental variables used. The latter procedure can be used to determine whether the addition of new information

is beneficial to the predictive skill of the model and also to identify which datasets provide the most relevant information.

As previously discussed, these models present a multitude of customisable facets and parameters. For support vector ma-355

chine, the regularisation parameter C and the kernel type were the elements chosen as the changing parts of the algorithm. Five

different values of C were adopted, starting from a soft margin of the decision boundary moving towards narrower margins,

while three kinds of kernel functions were used to find the separating hyperplane: linear, polynomial and radial. The setup

for a neural network is more complex and requires the involvement of more parameters, namely, the LF and the optimisers

concerning the training process, plus, the number of layers and nodes and the activation functions as key building blocks of360

the model architecture. Each of the aforementioned parameters can be chosen among a wide range of options; moreover, there

is not a clear indication for the number of hidden layers or hidden nodes that should be used for a given problem. Thus, for

the purpose of this study, the intention was to start from what was deemed the "standard" for the classification task for each

of these parameters, deviating from these standard criteria towards more niche instances of the parameters trying to cover as

much as possible of the entire domain.365

2.4 Evaluation of predictive performance

The evaluation of the predictive performance of the models is fundamental to select the best configuration within the entire

realm of possible configurations. A reliable tool to objectively measure the differences between model outputs and observations

is the confusion matrix. Table 4 shows a schematic confusion matrix for a binary classification case. When dealing with
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thousands of configurations and, for each configuration, with an associated range of possible threshold probabilities, it is370

impracticable to manually check a table or a graph for each setup of the model. Therefore, a numeric value, also called

evaluation metric, is often employed to synthesise the information provided by the confusion matrix and describe the capability

of a model (Hossin and Sulaiman, 2015).

There are basic measures that are obtained from the predictions of the model for a single threshold value (i.e., value above

which an event is considered to occur). These include the precision, sensitivity, specificity and false alarm rate, which take375

into consideration only one row or column of the confusion matrix, thus overlooking other elements of the matrix (e.g., high

precision may be achieved by a model that is predicting a high value of false negatives). Nonetheless, they are staples in

the evaluation of binary classification, providing insightful information depending on the problem addressed. Accuracy and

F1 score, on the other hand, are obtained by considering both directions of the confusion matrix, thus giving a score that

incorporates both correct predictions and misclassifications. The accuracy is the ratio between the correct prediction over all380

the instances of the dataset, and is able to tell how often, overall, a model is correct. The F1 score is the harmonic mean of

precision and recall. In its general formulation derived from Jones and Van Rijsbergen (1976)’s effectiveness measure, one may

define a Fβ score for any positive real β (Eq. 15):

Fβ = 1 +β2 precision ∗ sensitivity
(β2 ∗ precision) + sensitivity

(15)

385

where β denotes the importance assigned to precision and sensitivity. In the F1 score both are considered to have the same

weight. For values of β higher than one more significance is given to false negatives, while β lower than one puts attention on

the false positive.

The goodness of a model may also be assessed in broader terms with the aid of Receiver Operating Characteristic (ROC) and

Precision-Sensitivity curves (PS). The ROC curve is widely employed and is obtained plotting the sensitivity against the false390

alarm rate over the range of possible trigger thresholds (Krzanowski and Hand, 2009). The PS curve, as the name suggests,

is obtained plotting the precision against the sensitivity over the range of possible thresholds. For this work, the threshold

corresponds to the range of probabilities between 0 and 1. These methods allow evaluating a model in terms of its overall

performance over the range of probabilities, by calculating the so-called area under curve (AUC). It should be noted that both

ROC curve and the accuracy metric should be used with caution when class imbalance is involved (Saito and Rehmsmeier,395

2015), as having a large amount of true negative tends to result in low value of FPR (or 1- specificity). Table 5 summarises the

metrics described above used in this paper to evaluate model performances.

In the context of performance evaluation, it is also relevant to discuss how class imbalance might affect measures that use

the true negative in their computation. Saito and Rehmsmeier (2015) tested several metrics on datasets with varying class

imbalance, and showed how accuracy, sensitivity and specificity are insensitive to the class imbalance. This kind of behaviour400

from a metric can be dangerous and definitely misleading when assessing the performances of a ML algorithm and might lead

to the selection of a poorly designed model (Sun et al., 2009), emphasising the importance of using multiple metrics when
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analysing model performances. Lastly, once the domain of all configurations was established and the best settings of the ML

algorithms were selected based on the highest values of F1 score and area under the PS curve, the predictive performances of

the models were compared to those of logistic regression (LR) models. The logistic regression adopted as a baseline takes as405

input multiple environmental variables, in line with the procedure followed for the ML methods and used a logit function (Eq.

6) as link function, neglecting interaction and nonlinear effects amid predictors. The logistic regression is a more traditional

statistical model whose application to index insurance has recently been proposed, and can be said to already represent in itself

an improvement over common practice in the field (Calvet et al., 2017; Figueiredo et al., 2018). Thus, this comparison is able

to provide an idea about the overall advantages of using a ML method.410

3 Case study

This study adopts the Dominican Republic as its case study. The Dominican Republic is located on the eastern part of the

island of Hispaniola, one of the Greater Antilles, in the Caribbean region. Its area is approximatively 48,671km2. The central

and western parts of the county are mountainous, while extensive lowlands dominate the southeast (Izzo et al., 2010).

The climate of the Dominican Republic is classified as "tropical rainforest". However, due to its topography, the country’s415

climate shows considerable variations over short distances. The average annual temperature is about 25 °C, with January being

the coldest month (average monthly temperature over the period 1901-2009 of about 22 °C) and August the hottest (average

monthly temperature over the period 1901-2009 of about 26 °C) (World Bank, 2019). Rainfall varies from 700 to 2400 mm

per year, depending on the region (Payano-Almanzar and Rodriguez, 2018). The six considered rainfall datasets (described in

Table 1) exhibit considerable differences in average annual precipitation values over the Dominican Republic (Fig. 5), with420

CMORPH showing the lowest values and CHIRPS and IMERG the highest ones. Nevertheless, the difference among absolute

precipitation values does not affect the results of this study since precipitation is transformed into potential damage or SPI, as

described in Section 2.2.2 and therefore only relative values are considered. It is interesting to note that all the datasets show

similar precipitation patterns; on average, over the period from 2000 to 2019, rainfall was mainly concentrated in north-western

regions, along the Haitian borders, with the south-western regions being the driest. The situation is different when considering425

the average soil moisture (Fig. 6). The central regions are the wettest, while the driest areas are located on the coast. There are

no significant differences among the four soil moisture layers.

Weather-related disasters have a significant impact on the economy of the Dominican Republic. The country is ranked as

the 10th most vulnerable in the world and the second in the Caribbean, as per the Climate Risk Index for 1997-2016 report

(Eckstein et al., 2017). It has been affected by spatial and temporal changes in precipitation, sea level rise, and increased430

intensity and frequency of extreme weather events. Climate events such as droughts and floods have had significant impacts

on all the sectors of the country’s economy, resulting in socio-economic consequences and food insecurity for the country.

According to the International Disaster Database EMDAT (CRED, 2019), over the period from 1960 to present, the most

frequent natural disasters were tropical cyclones (45% of the total natural disasters that hit the country), followed by floods
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(37%) . Floods, storms and droughts were the disasters that affected the largest number of people and caused huge economic435

losses.

The performances of a ML model are strictly related to the data the algorithm is trained on, hence, the reconstruction of

historical events (i.e., the targets), although time-consuming, is paramount to achieve solid results. Therefore, a wide range of

text-based documents from multiple sources have been consulted to retrieve information on past floods and droughts that hit the

Dominican Republic over the period from 2000 to 2019. International disasters databases, such as the world renowned EMDAT,440

Desinventar and ReliefWeb have been considered as primary sources. The events reported by the datasets have been compared

with the ones present in hazard-specific datasets (such as FloodList and the Dartmouth Flood Observatory) and in specific

literature (Payano-Almanzar and Rodriguez, 2018; Herrera and Ault, 2017) to produce a reliable catalogue of historical events.

Only events reported by more than one source were included in the catalogue. Figure 7 shows the past floods and droughts

hitting the Dominican Republic over the period from 2000 to 2019. More details on the events can be found in Table A1445

(floods) and A2 (droughts).

4 Results and Discussion

The results are presented in this section separating the two types of extreme events investigated, flood and drought. As de-

scribed in section 2, both NN and SVM models require the assembling of several components. Table 6 collects the number of

model configurations explored, broken down by type of hazard and ML algorithm with their respective parameters. The main450

differences between the ML models parameters for the two hazards reside in which data are provided to the algorithm and

which sampling techniques are adopted. The input dataset combination were chosen as follows:

1. All the possible combinations from 1 up to 6 rainfall datasets (for neural networks 2 rainfall datasets were considered

the starting point).

2. The remaining combinations are obtained adding progressively layers of soil moisture to the ensemble of six rainfall455

datasets.

3. The drought case required the investigation of the SPI over different accumulation periods. One, three, six and twelve

months SPI were used.

Neural networks and support vector machines alike are able to return predictions (i.e., outputs) as a probability when the

activation function allows it (e.g., sigmoid function), enabling the possibility to find an optimal value of probability to assess460

the quality of the predictions . Therefore, for each hazard, the results are presented by introducing at first the models achieving

the highest value of the F1 score for a given configuration and threshold probability (i.e., a point in the ROC or precision-

sensitivity space). Secondly, the best performing model configurations for the whole range of probabilities according to the

AUC of the precision-sensitivity curve are presented and discussed. The reasoning behind the selection of these metrics is

discussed previously, in Section 2.4. As described in the same section, the performances of the ML algorithms are evaluated465

through a comparison with a LR model.
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4.1 Flooding

The flood case presented a strong challenge from the data point of view. Inspecting the historical catalogue of events the case

study reported 5516 days with no flood events occurring and 156 days of flood, meaning approximately a 35 : 1 ratio of no

event/event. This strong imbalance required the use of the data augmentation techniques presented in Section 2.3.1. The neural470

network settings returning the highest F1 score were given by the model using all ten datasets applying an over-sampling to

the input data. The network architecture was made up of 9 hidden layers with the amount of nodes for each layer as already

described, activated by a ReLu function. The LF adopted was the binary cross entropy and the weights update was regulated

by an Adam optimiser. The highest F1 score for the support vector machine was attained by the model configuration using

an unweighted model taking advantage of all ten environmental variables with radial basis function as kernel type and a C475

parameter equal to 500 (i.e., harder margin). Figure 8 shows the predictions of the two machine learning models and the

baseline logistic regression, as well as the observed events. The corresponding evaluation metrics are summarised in Table 7,

which refer to results measured on the testing set, therefore, never seen by the model. Overall, the two ML methods outperform

decisively the logistic regression with a slightly higher F1 score for the neural network.

In Fig. 9, panel (a) the highest F1 scores by method are reported in the precision-sensitivity space along with all the points480

belonging to the top 1% configurations according to F1 score. The separation between the ML methods and the logistic

regression can be appreciated, particularly when looking at the emboldened dots in Fig. 9 representing the highest F1 score for

each method. Also, the plot highlights denser cloud of orange points in the upper left corner and denser cloud of red points in

the lower right corner attesting, on average, an higher sensitivity achieved by the NNs and an higher precision by the SVMs.

Figure 9, panel (b), depicts the goodness of NN and SVM versus the LR model, showing how the F1 scores of the best-485

performing settings for each of the three methods vary by increasing the number of input datasets. This plot shows that the

SVM and LR models have similar performances up to the second layer of soil moisture, while NN performs considerably

better overall. The NN and the SVM as opposed to the LR, show an increase in the performances of the models with increasing

information provided. The LR seems to plateau after 4 rainfall dataset and the improvements are minimal after the first layer

of soil moisture is fed to the model. This would suggest, as expected, that the ML algorithms are better equipped to treat larger490

amounts of data.

Figure 10 presents the best-performing configurations according to the area under the PS curve. For neural network, this

configuration is the one that also contains the highest F1 score, whereas for support vector machine the optimal configuration

shares the same feature of the one with the best F1 score with the exception of a softer decision boundary in the form of C

equal to 100. The results reported in Fig. 10 (a) and (b) about the best-performing configurations are further confirmation of495

the importance of picking the right compound measurement to evaluate the predictive skill of a model. In fact, according to the

metrics using the true negative in their computation (i.e., specificity, accuracy and ROC) , one may think that these models are

rather good, and this deceitful behaviour is not scaled appropriately for very bad models. The aim of this work is to correctly

identify a flood event rather than being correct when none occur, hence, overlooking the correct rejections seems reasonable.
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Panel (a) and (b) of Fig. 10 shed a light on the inaccuracy of the ROC curve and the relative area under the curve (AUC). On500

the right are displayed the ROC curves, whilst on the left the PS curves of the ideal configurations for each method according to

the highest AUC. The points in both curves represent a 0.01 increment in the trigger probability. The receiving operator curve

indicates the NN as the worst model being the closest to the 45°line and having, along with SVM, a lower AUC with respect to

the logistic model. This signal is strongly contradicted by other metrics and the precision-sensitivity curve, where the red dots

are the closest to the upper-right corner where the perfect model resides. The behaviour of these curves is linked, once again, to505

the disparity in the classes. Additionally, looking at panel (a), all models are pretty distant from the always-positive classifier

(i.e., a baseline independent from class distribution represented by the black hyperbole in bold) more appropriate as a baseline

to beat than a random classifier (Flach and Kull, 2015).

Panel (c) and (d) shows the behaviour of the prediction return by the ML models over the whole range of probabilities. It is

noticeable that although the peak value of F1 score is very close for both ML methods, the neural network displays steadier510

prediction over an extended range of probabilities. In fact, a robust identification of the true positive and low variability in

false positive and false negative detection allows the model to have strong performances independently of which probability

threshold one may choose.

Figure 11 portrays the properties of the top one-percent model configuration for both methods according to the area under the

PS curve. Neural networks prefer the adoption of oversampling to enhance the input data and almost 60% of the configurations515

use a rectified linear unit function to activate its layer. Relative to the architecture of the network, a double peak can be observed

at 8 and 9 layers, where the best-performing configurations can be found but it is noticeable an even larger presence of model

configuration with 3 and 4 layers. On the other hand, support vector machines use the highest value of the C-parameter, which is

the one used by the configuration attaining the highest F1 score. A bigger divide can be observed amid the sampling technique

and the kernel function, where data input with no manipulation provided (i.e., Unw) is the most recurrent option occurring520

more than 40% of the time; similar percentage is attained by the radial basis function.

4.2 Drought

The data transformation for drought required the computation of the SPI from the precipitation data. The SPI was computed

for different accumulation periods: Shorter accumulation periods (1-3 months) detect immediate impacts of drought (on soil

moisture and on agriculture), while longer accumulation periods (12 months) indicate reduced streamflow and reservoir levels.525

As shown in tables B1 and B2 models using SPI6 and SPI12 showed the best results and the values of the metrics are close to

each other, thus, for brevity and in favour of clarity only one of the two is reported, namely, SPI over a six month accumulation

period. Contrary to the flood case, the drought historical catalogue of events reported 1283 weeks with no droughts and 696

weeks of drought, with a ratio around 1.85 : 1 of no event/event. Albeit balanced, models with weights assigned were also

investigated. The performances of the neural networks and the support vector machines were evaluated, like before, by a set530

of evaluation metrics and curves and a comparison against a logistic regression. It is important to point out that SPI is updated

at weekly scale, same temporal resolution of the predictions, implying that each week counts as an event. Considering the

duration of the drought in our historical catalogue of events (i.e., 17 weeks for the shortest one and 148 weeks for the longest),
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the temporal resolution adopted is an aspect to keep in mind when analysing the results obtained for these models. The highest

F1 scores for the drought case were obtained for the NN model using all the datasets with weights for the classes. The network535

architecture was made up of 8 hidden layers with the relative amount of nodes, activated by a ReLu function. The LF adopted

was the binary cross entropy and the parameters update were regulated by an Adam optimiser. Regarding the SVM, the highest

F1 score was achieved from the unweighted model using all ten environmental variables with radial basis function as kernel

type and a C parameter equal to 100.

Figure 12 displays the predictions of the three methods against the observed events. In particular, it is possible to appre-540

ciate the reduction of false positive provided by NN and SVM. The strong improvements brought by the ML algorithms are

confirmed by the metrics summarised in Table 8, where NN and SVM show high values across all the prediction skill measure-

ments. The NN results as the most accurate model, while the SVM is the more precise overall. The implementation of either

model should take into account the job that these models are required to take on. If the purpose of the model is to balance

the occurrences of false alarms and missed events, the NN is preferable. For a task that would require a stronger focus on545

the minimisation of false positives (i.e. reduce the number of false alarms), the SVM should be used. Figure 13 remarks the

distance between the ML methods and the logistics regression as well as echoes what is observed for flood that the points for

NN gravitate towards the area of the plot with higher sensitivity value while the SVM points tend to stay on the precision side

of the plot.

The addition of further datasets is still beneficial to the performances of the ML methods as displayed by Fig. 13, panel (b).550

The increasing trend for both ML models starts to slow down from the fourth rainfall datasets onward, which might be due to

the redundancy of the rainfall datasets. On the other hand, the addition of the layers of soil moisture improves the performances

especially for the support vector machine, which keeps improving steadily reaching the highest value of F1 score when the

whole set of information is fed to the model.

Figure 14 refers to the best-performing configurations identified as the one with the highest area under the precision-555

sensitivity curve. The best configurations for either neural network and support vector machine are the ones containing the

point with the highest F1 score, thus having the same features previously listed. The disparities between classes for drought are

closer than those for flood, giving the accuracy, and the ROC curve, more reliability from a quality assessment point of view.

Looking at panels (a) and (b) of Fig. 14, both precision-sensitivity and. ROC curves show the ML methods decisively outper-

forming the no-skill and always-positive classifier. Furthermore, both plots exhibit a tendency of the neural network to group560

the points closer to each other towards the area containing the ideal model, which may indicate a more dependable prediction

of the events as indicated by panel (c). In fact, while the two configurations have a high value of F1 score for a wide range of

probabilities, the neural network has steadier prediction of true positive, false positive and false negative. This behaviour of the

neural network could also be linked to the miscalibration of the confidence (i.e., distance between the probability returned by

the model and the ground truth) associated with the predicted probability (Guo et al., 2017). The phenomenon arose with the565

advent of modern neural networks that employing several layers (i.e., tens and hundreds) and a multitude of nodes were able

to improve the accuracy of their prediction while worsening the confidence of said prediction. Indeed, a miscalibrated neural
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network would return a probability that would not reflect the likelihood that the event will occur turning into a numeric output

produced by the model.

The features breakdown of the model configurations top one-percent shown in Fig. 15, shows that the best NN configurations570

are predominantly the ones using weight for the two classes, and the ReLu activation function. Also, a large number of models

use a high number of layers in accordance with the configuration with the highest area under the PS curve. The fact that most

of the configurations obtaining the best performances have deeper layers may be a confirmation of the miscalibration affecting

the estimated probabilities. For the SVM models, Fig. 15 denotes a marked component of the models using harder margins

(i.e., high values of C-par) and radial basis function as a kernel.575

5 Conclusions

In this study we developed and implemented a machine learning framework with the aim of improving the identification of

extreme events, particularly for parametric insurance. The framework merges a priori knowledge of the underlying physical

processes of weather events with the ability of ML methods to efficiently exploit big data, and can be used to support informed

decision making regarding the selection of a model and the definition of a trigger threshold. Neural network and support580

vector machine models were used to classify flood and drought events for the Dominican Republic, using satellite data of

environmental variables describing these two types of natural hazard. Model performance was assessed using state of the art

evaluation metrics. In this context, we also discussed the importance of using appropriate metrics to evaluate the performances

of the models, especially when dealing with extreme events that may have a strong influence on some performance evaluators.

It should be noted that while here we have focused on performance-based evaluation measures, an alternative approach would585

be to quantify the utility of the predictive systems. By taking into account actual user expenses and thus specific weights for

different model outcomes, a utility-based approach could potentially lead to different decisions regarding model selection and

definition of the trigger threshold (Murphy and Ehrendorfer, 1987; Figueiredo et al., 2018). This aspect is outside the scope of

the present article and warrants further research.

The proposed approach involves a preceding data manipulation phase where the data are preprocessed to enhance the per-590

formances of the ML methods. A procedure aimed at designing and selecting the best parameters for the models was also

introduced. Once trained, the ML algorithms decisively outperformed the logistic regression, here used as a baseline for both

hazards. The predictive skill of both NN and SVM improved with increasing information fed to the models; indeed, the best

performances were always obtained by models using the maximum amount of data available, hinting at the possibility of in-

troducing additional and more diverse environmental variables to further improve the results. While the ML models performed595

well for both hazards, the drought case showed exceptionally high values for all the adopted model evaluation metrics. This dis-

crepancy in the results between flood and drought might have several explanations. Indeed, the two hazards behave differently

both in time and space. On the one hand, the aggregation at national scale is surely an obstacle for a rather local phenomenon

like flood. On the other hand, defining a drought event weekly could be misleading since droughts are events spanning several

months, even years. Going at a higher resolution (e.g., regional scale) and introducing data describing the terrain of the area600
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should enhance the detection of flood events. For the drought case, introducing a threshold for the number of consecutive weeks

predicted before considering an event, or contemplating weekly predictions as a fraction of the overall duration of the event

are extensions to this work that deserve investigation to address the issue of potential overestimation of predictive skill.

Neural networks showed more robustness when compared to support vector machines, showing a higher value of F1 score

for a wide range of parameters. As already mentioned, this insensitiveness of NN to the probability threshold adopted may605

be led back to the inability of the model to reproduce probability estimates that are a fair representation of the likelihood of

occurrence of the event. Further developments of neural networks models should take into consideration procedures that allow

the assessment and the quantification of the confidence calibration of probability estimates.

A preliminary investigation of the characteristics shared by the best-performing model showed that some features are more

relevant than others when building the ML model, depending on the type of algorithm and also the type of hazard. An in-depth610

study of how the performances of the models change when changing model properties could highlight which are the most

important properties of the model to tune, speeding up the model construction phase and reducing the computational cost of

running the algorithms. It is also worth noting that albeit this work focuses on the application of neural network and support

vector machine models, we expect that comparable results could be obtained using other machine learning algorithms, which

calls for further research.615

Although several issues raised in this article warrant further research, there is clear potential in the application of machine

learning algorithms in the context of weather index insurance. The first reason for this is strictly linked to the performances of

the models. Indeed, the capability of these algorithms to reduce basis risk with respect to traditional methods could play a key

role in the adoption of parametric insurance in the Dominican context and more generally for those countries that posses a low

level of information about risk. The second aspect, perhaps the most intriguing from the weather index insurance point of view,620

regards the ability of these algorithms to utilise and improve their performances using a growing amount of information (i.e.,

increasing the number of input variables). Indeed, the significant advances in data collection and availability observed in the last

decades (i.e., improved instruments, more satellite missions, open access to data store services) made it so that vast amount of

data are readily and freely available on a daily basis. Being able to rely on global data that are disentangled from the resources

of a given territory, both from the point of view of climate data (e.g., lack of rain-gauge networks) and from the point of view of625

information about past natural disasters, is an important feature of the work presented that would make the proposed approach

feasible and appealing for other countries. Furthermore, similar technological improvements might be expected in the further

development of machine learning algorithms. The scientific evolution of these models, and the possibility of establishing a

pipeline that automatically and objectively trains the algorithm over time with updated and improved data (always allowing

the monitoring of the process), are other appealing features of these kind of models. In conclusion, the framework presented630

and topics discussed in this study provide a scientific basis for the development of robust and operationalisable ML-based

parametric risk transfer products.
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Data availability. The six rainfall datasets (CCS, CHIRPS, CMORPH, GSMaP, IMERG and PERSIANN) and the soil mosture dataset

(ERA5) are freely available at the links cited in the references.

Appendix A: Catalogue of historical events635

The following tables report the catalogue of historical events for floods (Table A1) and droughts (Table A2).

Appendix B: Performance of NN and SVM in drought events identification when using different SPI accumulation

periods

The following tables report the performances of NN (Table B1) and SVM (Table B2) in drought events identification when

using different SPI accumulation periods.640
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Figure 1. Flowchart of the proposed approach.
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Figure 2. Learning process of a neural network (Stevens and Antiga, 2019).
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Figure 3. Decision boundary of support vector machine’s algorithm, with changing regularization parameter C.
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Figure 4. Framework used to analyse the domain of possible model configurations.
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(a) CCS (b) CHIRPS

(c) CMORPH (d) GSMAP

(e) IMERG (f) PERSIANN

Precipitation (mm)

Figure 5. Average annual rainfall over the Dominican Republic according to the six considered datasets. (a) CCS, (b) CHIRPS, (c) CMORPH,

(d) IMERG, (e) GSMaP, (f) PERSIANN.
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(a) 1st Layer (b) 2nd Layer

(c) 3rd Layer (d) 4th Layer

Soil moisture (%)

Figure 6. Average soil moisture over the Dominican Republic in the four soil moisture layers. (a) First layer, 0-7 cm, (b) Second layer, 7-28

cm, (c) Third layer, 28-100 cm, (d) Fourth layer, 100-289 cm.
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Figure 7. Overview of floods and droughts hitting the Dominican Republic over the period 2000-2019.
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Figure 8. Comparison of the predictions of the three methods over the testing set versus the observed events. Flood Case.
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Figure 9. (a): Performance evaluation for the flood case: (a) Performances of the top 1% configurations in the precision-sensitivity space

highlighting the highest F1 score, (b): Comparison of ML methods with LR with combination using increasing number of input datasets.
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Figure 10. Best-performing configurations for the flood case: (a) PS curve, (b) ROC curve, (c) Variation of true positive, false positive,true

negative and F1 score for the range of probability in NN and (d) in SVM.
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Figure 11. Properties of top 1% model configurations for the flood case. The stars denote the characteristics of the best-performing configu-

rations according to the highest area under the precision-sensitivity curve.
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Figure 12. Comparison of the predictions of the three methods over the testing set versus the observed events. Drought Case.
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Figure 13. Performance evaluation for the drought case: (a) Performances of the top 1% configurations in the precision-sensitivity space

highlighting the highest F1 score, (b): Comparison of ML methods with LR with combination using increasing number of input datasets.
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Figure 14. Best-performing configurations for the drought case: (a) PS curve, (b) ROC curve, (c) Variation of true positive, false positive,true

negative and F1 score for the range of probability in NN and (d) in SVM.
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Figure 15. Properties of top 1% model configurations for the drought case. The stars denote the characteristics of the best-performing

configurations according to the highest area under the precision-sensitivity curve.
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Table 1. Main features of the selected (quasi-)global precipitation datasets.

Dataset Type Resolution Frequency Coverage Time span Latency Reference

CCS Satellite 0.04° 1h 60°S - 60°N January 2003 - present 6h Hong et al. (2004)

CHIRPS Satellite-Gauge 3 weeks

CHIRP Satellite
0.05° 1d 50°S - 50°N January 1981 - present

3d
Funk et al. (2015)

CMORPH Satellite-Gauge 0.07° 3h 60°S - 60°N January 1998 - present 14 d Joyce et al. (2004)

GSMaP Satellite 0.10° 1h 60°S - 60°N March 2000 - present 12h Ushio and Kachi (2010)

IMERG Satellite 0.10° 30min 60°S - 60°N June 2000 - present 12h Bolvin et al. (2018)

PERSIANN Satellite 0.25° 1h 60°S - 60°N March 2000 - present 48h Sorooshian et al. (2000)
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Table 2. Main features of the selected soil moisture dataset.

Dataset Type Resolution Frequency Coverage Time span Latency Reference

ERA5 Reanalysis 0.25° 1h Global January 1979 - present 5 days ECMWF et al. (2018)
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Table 3. Drought classification based on SPI according to McKee et al. (1993)

Category SPI Probability (%)

Extremely wet 2.00 and above 2.3

Severely wet 1.50 to 1.99 4.4

Moderately wet 1.00 to 1.49 9.2

Near normal -0.99 to 0.99 68.2

Moderately dry -1.49 to -1.00 9.2

Severely dry -1.50 to -1.99 4.4

Extremely dry -2 and below 2.3
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Table 4. Contingency table for the deterministic estimates of a series of binary events.

Event Observed

Event predicted Yes No Total

Yes a (True Positive or Hits) b (False Positive) a+ b

No c (False Negative) d (True Negative) c+ d

Total a+ c b+ d a+ b+ c+ d= n
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Table 5. Key metrics for the evaluation of model performance; a, b, c and d are defined in Table 4.

Metric Equation

Accuracy (a+ d)/n

Precision a/(a+ b)

Sensitivity (Recall) a/(a+ c)

False alarm rate b/(b+ d)

F1 score 2 ∗ Precision∗Sensitivity
Precision+Sensitivity

AUC under the ROC curve
∫ 1

0
ROC(t)dt

AUC under the PS curve
∫ 1

0
PS(t)dt
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Table 6. Breakdown of all the configuration explored by algorithm and type of hazard.

Model Parameter Flood Drought

NN

Input dataset combinations
61 combinations of environmental variables

61 combinations of environmental variables

4 SPI (1,3,6,12)

Sampling

Unweighted Unweighted

Class Weight Class Weight

Over-sampling

SMOTE

Loss Binary Cross Entropy Binary Cross Entropy

Optimizer ADAM ADAM

Number of layers & nodes
Layers: [1;9] Layers: [1;9]

Nodes: 2nl+1 : 2nl+9(∗) Nodes 2nl+1 : 2nl+9(∗)

Activations
ReLu ReLu

Tanh Tanh

Number of Configurations 4392 8784

SVM

Input dataset combinations
67 combinations of environmental variables

67 combinations of environmental variables

4 SPI (1,3,6,12)

Sampling technique

Unweighted Unweighted

Class Weight Class Weight

Over-sampling

SMOTE

C-Regularization parameter C = (0.1,1,10,100,500) C = (0.1,1,10,100,500)

Kernel Function

Linear Linear

Polynomial Polynomial

Radial Basis Radial Basis

Number of Configurations 4020 8040

(∗): nl: number of layers
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Table 7. Comparison metrics best configuration for flood by method.

Method Precision Sensitivity Specificity F1 score Accuracy

NN 0.57 0.57 0.99 0.57 0.98

SVM 0.63 0.49 0.99 0.55 0.98

LR 0.46 0.42 0.99 0.43 0.97
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Table 8. Comparison metrics best configuration for drought by method.

Method Precision Sensitivity Specificity F1 score Accuracy

NN 0.95 1.00 0.99 0.97 0.99

SVM 0.96 0.96 0.99 0.96 0.98

LR 0.63 0.74 0.89 0.68 0.85
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Table A1. Past flood events in the Dominican Republic over the period from 2000 to 2019.

Start date End date Duration d Reference

16/4/2003 18/4/2003 3 ADRC and UNDRR (2020),CRED (2019)

14/11/2003 14/11/2003 1 ADRC and UNDRR (2020),CRED (2019)

20/11/2003 24/11/2003 5 Brakenridge (2002)

6/12/2003 8/12/2003 3 Brakenridge (2002)

23/5/2004 25/5/2004 3 ADRC and UNDRR (2020),CRED (2019)

16/9/2004 18/9/2004 3 ADRC and UNDRR (2020)

23/10/2005 26/10/2005 4 Brakenridge (2002)

26/3/2007 30/3/2007 5 Brakenridge (2002),CRED (2019)

18/8/2007 21/8/2007 4 OCHA (2020)

28/10/2007 1/11/2007 5 Brakenridge (2002),CRED (2019)

11/12/2007 12/12/2007 2 ADRC and UNDRR (2020),CRED (2019)

15/8/2008 18/8/2008 4 ADRC and UNDRR (2020),CRED (2019)

23/1/2009 30/1/2009 8 ADRC and UNDRR (2020),Brakenridge (2002)

21/5/2009 25/5/2009 5 ADRC and UNDRR (2020)

15/2/2010 16/2/2010 2 ADRC and UNDRR (2020),CRED (2019),Brakenridge (2002)

22/6/2010 27/6/2010 6 ADRC and UNDRR (2020),Brakenridge (2002)

15/7/2010 24/7/2010 10 CRED (2019)

2/6/2011 7/6/2011 6 ADRC and UNDRR (2020)

4/8/2011 8/8/2011 5 Brakenridge (2002),CRED (2019)

23/4/2012 25/4/2012 3 ADRC and UNDRR (2020),CRED (2019)

25/8/2012 30/8/2012 6 OCHA (2020)

22/10/2012 30/10/2012 9 OCHA (2020)

23/8/2014 25/8/2014 3 Brakenridge (2002)

1/11/2014 6/11/2014 6 Davies et al. (2008),CRED (2019)

20/2/2015 21/2/2015 2 ADRC and UNDRR (2020),CRED (2019),Davies et al. (2008)

28/8/2015 29/8/2015 2 OCHA (2020)

7/5/2016 8/5/2016 2 Brakenridge (2002),Davies et al. (2008)

31/7/2016 2/8/2016 3 Davies et al. (2008)

2/10/2016 6/10/2016 5 The International Charter Space and Major Disasters (2016)

7/11/2016 15/11/2016 9 Brakenridge (2002),CRED (2019)

22/4/2017 25/4/2017 4 Brakenridge (2002),CRED (2019),Davies et al. (2008)

6/9/2017 7/9/2017 2 OCHA (2020)

20/9/2017 25/9/2017 6 Davies et al. (2008)

15/3/2018 20/3/2018 6 Brakenridge (2002),Davies et al. (2008)

4/5/2018 7/5/2018 4 Davies et al. (2008)
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Table A2. Past drought events in the Dominican Republic over the period from 2000 to 2019.

Start date End date Duration d Reference

May 2000 March 2003 1034 Cornell University (2018)

October 2009 April 2010 182 Payano-Almanzar and Rodriguez (2018)

November 2013 September 2014 304 Payano-Almanzar and Rodriguez (2018)

April 2015 January 2017 641 Payano-Almanzar and Rodriguez (2018)

November 2018 March 2019 120 Global Disaster Alert and Coordination System (2018)
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Table B1. NN metrics median value of the top 5% configuration according to F1 score.

Precision Sensitivity Specificity F1 score Accuracy

SPI1 0.7931 0.9000 0.9448 0.8387 0.9202

SPI3 0.8163 0.8864 0.9581 0.8454 0.9336

SPI6 0.9024 0.8919 0.9819 0.9167 0.9704

SPI12 0.9423 0.9800 0.9868 0.9524 0.9751
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Table B2. SVM metrics median value of the top 5% configuration according to F1 score.

Precision Sensitivity Specificity F1 score Accuracy

SPI1 0.8764 0.7915 0.9684 0.7709 0.9048

SPI3 0.8977 0.8660 0.9744 0.8341 0.9300

SPI6 0.9459 0.9629 0.9861 0.9317 0.9716

SPI12 0.9532 0.9606 0.9856 0.9465 0.9751
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