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Abstract. Extreme waves play a crucial role in marine inundation hazards and coastal erosion. In this article, we experimentally 

study nonlinear wave-wave interactions of large amplitude focused wave groups propagating in a two-dimensional wave flume 

over a mild slope (β = 1:25). The influence of the frequency spectrum and the steepness on the nonlinear interactions of focused 

waves are examined. The generated wave trains correspond to Pierson-Moskowitz and JONSWAP (γ = 3.3 or γ = 7) spectra. 10 

Subsequently, we experimentally approach this problem by the use of a bispectral analysis applied on short time series, via the 

wavelet-based bicoherence parameter, which identifies and quantifies the phase coupling resulting from non-resonant or bound 

triad interactions with the peak frequency. The bispectral analysis shows that the number of frequency components 

participating in the focusing process and the resulting quadratic phase coupling increase gradually and approaches 1 just prior 

to breaking, accordingly with the spectrum broadening and the energy increase in high frequency components. Downstream 15 

breaking, the values of phase coupling between the peak frequency and its harmonics decrease drastically and the bicoherence 

spectrum becomes less structured. 

1 Introduction 

Extreme wave propagation is a highly nonlinear process observed in both open seas and coastal regions. The main physical 

mechanisms which may lead to an extreme wave event are illustrated in Kharif and Pelinovsky, 2003; Kharif et al., 2009; 20 

Didenkulova et al., 2010; Onorato et al., 2013. Extreme waves may occur in deep or shallow water, in energetic storm sea state 

or previously calm sea state. In our opinion, spatio-temporal wave focusing is one of the most important mechanisms in the 

extreme wave formation for shallow and deep water (Kharif and Pelinovsky, 2003). The spatio-temporal wave focusing is a 

classical mechanism giving rise to an important wave energy concentration in a small region. If the wave height of the focusing 

group exceeds 2.2 times its significant wave height, it can be defined as a rogue or freak wave (Dysthe et al., 2008). For this 25 

reason, spatio-temporal wave focusing is often employed in laboratory wave flumes with a wide variation of water depth 

(Merkoune et al., 2013), spectrum type (Tian et al., 2011; Xu et al., 2019; Abroug et al., 2019; 2020) and wavelength to depth 

ratio, in order to better understand the generation process, the dynamic behavior and the hydrodynamic loads on ocean 

structures in extreme sea conditions. 
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Over the past years, several studies have attempted to quantify the spatial evolution of spectral energy of unidirectional wave 30 

groups in experimental wave flumes using a classic Fourier analysis (Tian et al., 2011; Liang et al., 2017; Abroug et al., 2020). 

The frequency spectrum only gives the energy distribution in the spectral domain; however, the quadratic phase coupling 

among different wave frequencies is unknown. Consequently, higher-order spectrum techniques should be used in 

understanding nonlinearity. A powerful tool to investigate the highly nonlinear process is the wavelet-based bispectral 

technique, which has been used in several works to study the non-linear interactions and quadratic phase coupling between 35 

wave components (Guohai et al., 2008; Ma et al., 2010). The need to detect and quantify second order non-linear interactions 

can be found in many disciplines, such as, geophysics (Grinsted et al., 2004), plasma physics (Milligan et al., 1995), fault 

diagnosis (Li et al., 2014), health-related areas, neuroscience (Bai et al., 2017) and wave analysis (Eldeberky, 1996; Eldeberky 

and Madsen, 1999; Young et al., 1996; Young and Eldeberky, 1998; Becq-Girard et al., 1999; Huseni and Balaji, 2017; Zhang 

et al., 2019). In wave analysis, the propagation of wave trains in the nearshore zone has an exceptionally high spectral and 40 

temporal resolution.  

The majority of previous works concerning the spatial evolution of group focused waves in numerical and experimental wave 

flumes have shown that spatio-temporal focusing leads to a shape and elevation of a wave crest at focus that cannot be estimated 

accurately by linear or 2nd order wave theory. This is due to high order nonlinearities, called the bound (harmonics) and resonant 

nonlinearities (Vyzikas et al., 2018). On the one hand, bound nonlinearities are the result of non-linear harmonics that are 45 

phase-locked to the wave train and contribute in the sharpening of free surface elevation. On the other hand, resonant 

interactions contribute in the energy redistribution among different frequency components (Vyzikas et al., 2018). It is important 

to mention here that resonant interactions are not easily achieved in unidirectional wave train propagation since the resonant 

conditions cannot not be satisfied in a small area. Therefore, we investigate specifically the role of bound waves generated by 

non-resonant three-wave coupling. 50 

Over the past few decades, various experimental studies have investigated the spatial evolution of non-linear coupling between 

wave components. Guohai et al., 2008 studied the spatial evolution of non-linear interactions among different wave 

components in the shoaling and de-shoaling zones by carrying out two random waves derived from JONSWAP spectra with 

varying waves heights and peak waves periods. They showed that the quadratic phase coupling increases rapidly in the shoaling 

region and achieves its highest level prior to wave breaking. Ma et al., 2010 studied experimentally JONSWAP wave trains 55 

propagating in intermediate water depth. Recently, nonlinear transformation of unidirectional irregular waves propagating over 

a complex bathymetry (1.06 < kph < 2.2; where kp is the peak wavenumber and h denotes the water depth) was performed in 

Zhang et al., 2019, who studied the triad wave-wave non-linear interactions in the case of long records of JONSWAP irregular 

waves (1200 Tp, where TP is the peak period) using a Fourier-based bispectral analysis. They found that the phase coupling is 

strong near the end of the slope, where second and third harmonics become more important. They also noticed the appearance 60 

of low-frequency waves generated by the difference interactions during wave propagation. We must note here that the main 

difference between wavelet-based bicoherence and Fourier-based bicoherence is the number of degrees of freedom (Guohai et 

https://doi.org/10.5194/nhess-2020-209
Preprint. Discussion started: 20 July 2020
c© Author(s) 2020. CC BY 4.0 License.



3 

 

al., 2008). Wavelet-based bicoherence is a suitable tool to capture quadratic phase couplings occurring in relatively short data 

sequences, and can be used to analyse data collected in laboratory flumes (Elsayed, 2006).  

Most of the above-mentioned studies were performed in random wave conditions based on JONSWAP spectra. To the author’s 65 

knowledge, few studies have attempted to quantify the degree of phase coupling resulting from the propagation of realistic 

spectrum focused waves in the inner surf zone using wavelet-based bicoherence. Experiments are performed on numerous 

Pierson-Moskowitz and JONSWAP wave trains propagating from a constant intermediate water depth to shoaling and breaking 

regions. 

The paper is outlined as follows. Section 2 describes the experimental procedure and the studied wave train parameters. In 70 

section 3, a short formal description of wavelet analysis and wavelet-based bicoherence is provided. The spatial evolution of 

wavelet-based bicoherence is discussed in section 4. The conclusions and perspectives of this study are given in section 5. 

2 Experimental setup and wave train parameters 

The following is a brief consideration of present wave trains generation; more details of the experiments can be found in 

Abroug et al., 2020. The experiments were conducted in a two-dimensional wave flume of the Morphodynamique Continentale 75 

et Côtière laboratory at Caen University, France. The flume is 22 m long, 0.8 wide and the water depth is h0 = 0.3 m (Fig. 1). 

In this study, the relative water depth kph0 < 1.363 is verified, which means that the modulation instability effect can be 

neglected (Janssen et al., 2007; Fedele et al., 2019). An Edinburgh Designs Ltd piston type wavemaker is located at one end 

of the flume to implement wave trains using linear wave generation signal. Wave trains are generated with almost no reflection 

at the end of the flume, since free surface elevations are measured before reflected waves travel back. Thus, the occurrence of 80 

resonant interactions potentially driven by reflected waves is limited and we only focus on bound waves.  

The data used in this work are issued from Abroug et al., 2020. The present study relates to seven wave trains derived from 

the averaged JONSWAP spectra (i.e. with peak factor γ = 3.3 or 7) or Pierson-Moskowitz spectra with varied peak wave 

periods fp and wave steepnesses S0 (i.e. non-linearity). For each wave train, a large number of wave signals were recorded 

along the flume to accurately follow the wave evolution in space. The surface elevation is measured by two aligned wave 85 

gauges located from the longitudinal coordinate xmin = 4 m to xmax = 14 m, where x = 0 represents the mean position of the 

wavemaker. The positions of these wave gauges are indicated in Fig. 1. The sampling rate is 50Hz and each record duration is 

ΔT = 35 s with a sample interval of 0.02 s. The fast Fourier transform (FFT) was applied to each signal, resulting in 1750 

frequency components over the range [0, 3fp] and with a spectral resolution Δf = 0.023 Hz. The distance from the wave maker 

for the focusing point was set to 12 m from the wave maker. 90 
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Figure 1: Schematic experimental setup, WG1 and WG2 denote wave gauge n°1 and wave gauge n°2 respectively. 

The free surface elevation of a wave train at a distance x from the wavemaker can be written using linear wave theory: 

 

𝜂(𝑥, 𝑡) = ∑ 𝑎𝑖 cos(𝑘𝑖𝑥 − 𝜔𝑖𝑡 − Ф𝑖)
𝑁
𝑖=1              (1) 100 

 

where ωi is the frequency of each wave component, where i varies from 1 to N (number of waves), ki the wave number, ai the 

amplitude and Φ the phase of the wave group within its envelope at the focus position. Based on Eq. (1), the varied parameters 

during these experiments were the spectrum type and the wave steepness S0. The peak frequency parameter was chosen in 

order to have a relative depth kph0 varying between 0.79 and 0.92 (Deep side in Table 1). Deep and shallow sides in Table 1 105 

represent respectively the flat bottom depth (4 m < x < 9.5 m) and the shallowest studied depth (x = 14 m). Five of the studied 

wave trains have more than one breaking and breaking locations xb are indicated as bracketed intervals in Table 1. 

Table 1. Wave trains key parameters 

 

Test 

 

fp (Hz) 

 

S0 

 

Spectrum type 

 

xb (m) 

         

   kph0 

 

 kph  

     Deep Side Shallow Side 

1 0.70 0.19 Gaussian [11.85;12.55] 0.84 0.34 

2 0.66 0.14 Pierson-Moskowitz 12.9 0.79 0.31 

3 0.66 0.28 Pierson-Moskowitz [11.09;11.82] 0.79 0.31 

4 0.75 0.25 JONSWAP (γ=3.3) [12.13;12.81] 0.92 0.37 

5 0.75 0.38 JONSWAP (γ=3.3) [10.5;11.61] 0.92 0.37 

6 0.75 0.11 JONSWAP (γ=7) 13.5 0.92 0.37 

7 0.75 0.23 JONSWAP (γ=7) [12.07;12.69] 0.92 0.37 
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3 Wavelet-based analysis 110 

The free surface elevation of each wave train was studied through the bispectral analysis applied on short time series, via the 

wavelet-based bicoherence tool. Detailed specifications of the wavelet-based bicoherence are outlined in Van Milligen et al., 

1995 and a brief introduction of this technique is given below. The continuous wavelet transform WT (a,τ) of a time series f(t) 

is calculated as: 

 115 

𝑊𝑇(𝑎, 𝜏) = ∫ 𝑓(𝑡)𝜓𝑎,𝜏
∗+∞

−∞
𝑑𝑡               (2) 

 

where the asterisk denotes the complex conjugate and ψa,τ represents the mother wavelet function dilated by a factor τ and 

scaled by a factor a, a > 0. The latter parameter can be interpreted as the frequency inverse, i.e. f = 1/a. The wavelet transform 

can be interpreted as a series of bandpass filter of the time series with a mother wavelet function. We have chosen the Morlet 120 

wavelet as a mother wavelet function since it furnishes information about phase and amplitude, and it is appropriate for 

capturing coherence between different harmonic components. The Morlet wavelet can be considered as a modulated Gaussian 

waveform and is defined as follows: 

 

𝜓(𝑡) = 𝜋−1/4𝑒−
𝑡²

2𝑒(𝑖𝜔0𝑡)                                                  (3) 125 

 

where ω0 denotes the dimensionless frequency and t is the dimensionless time. The Morlet wavelet with ω0 = 6 is a good 

choice, since it ensures a good balance between time and frequency localisation (Grinsted et al., 2004; Guohai et al., 2008). 

For the Morlet wavelet the scale a is almost equal to the Fourier period T (T = 1.03 a). From a practical point of view, the 

scales a can be expressed as fractional powers of two (Guohai et al., 2008; Torrence and Compo, 1998): 130 

 

𝑎𝑖 = 𝑎02
𝑖𝛿 , 𝑖 = 0,1,2, … ,𝑀                                                                            (4) 

 

𝑀 =
1

𝛿
𝑙𝑜𝑔2(

𝑁𝛥𝑡

𝑎0
)                                                                                                (5) 

 135 

where a0 is the smallest resolvable scale, M represents the largest scale and δ denotes the scale factor. The a0 parameter should 

be chosen equal to 2×Δt (Torrence and compo, 1998; Guohai et al., 2008). N = 1750 and Δt = 0.02 s represent respectively the 

number of points in f(t) and the sampling time. The scale factor δ should be sufficiently small to provide high resolution and 

satisfactory sampling in scale. Moreover, a scale factor δ = 0.5 is the largest value that gives adequate sampling in the case of 

the Morlet wavelet (Guohai et al., 2008). It is for that reason that we opted for a scale factor δ = 0.02, giving a total of 395 140 

scales ranging from 0.04 up to 11.83 for respectively high and low frequency. The wavelet-based bispectrum (Eq. (6)) 
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determines quantitatively during ΔT = 35 s the phase coupling that occurs between f1, f2 and f3 where the latter parameters must 

satisfy Eq. (7). Quadratic non-linear coupling occurs between f1 and f2, generating a third component at the sum frequency f3. 

The bispectrum (Eq. (6)), which is the double Fourier transform of the third-order moment, measures the extent of phase 

coherence due to the non-linear triad interaction between three waves that satisfy the frequency and phases matching criteria 145 

(Eq. (7) and (8)). The estimation of wavelet-based bispectrum in the bifrequency plan can be based on its values in the interval 

ψ :{f1 > f2 > 0, f1+f2 = fs = 25 Hz (Nyquist sampling frequency)}. 

 

𝐵(𝑎1, 𝑎2) = ∫𝑊𝑇𝑥(𝑓1, 𝜏)𝑊𝑇𝑥(𝑓2, 𝜏)𝑊𝑇𝑥
∗(𝑓3, 𝜏)𝑑𝜏        (6) 

 150 

𝑓3 = 𝑓1 + 𝑓2                                               (7) 

𝜑3 = 𝜑1 + 𝜑2                                                                       (8) 

 

The wavelet-based bicoherence (Eq. (9)), which can be defined as the normalised wavelet bispectrum, is used in practise to 

measure the degree of phase coupling (Larsen et al., 2001) and is bounded by 0 and 1 by the Schwarz inequality. A value close 155 

to unity reveals a maximum amount of coupling and a value close to zero corresponds to a random phase relation. 

 

𝑏²(𝑎1, 𝑎2) =
|𝐵(𝑎1,𝑎2)|

2

[∫ |𝑊𝑇𝑥(𝑎1,𝜏)𝑊𝑇𝑥(𝑎2,𝜏)|
2𝑑𝜏

𝑡=35
𝑡=0 ] ∫ |𝑊𝑇𝑥(𝑎3,𝜏)|

2𝑑𝜏
𝑡=35
𝑡=0

           (9) 

 

Figure 2 exhibits a simple illustration of the wavelet-based bicoherence of a narrow-banded Gaussian wave train (Test 1) 160 

recorded at x = 4 m from the wavemaker. The shading indicates the strength of non-linear coupling; dark red (b²(f1, f2) = 1) 

being totally coupled and dark blue (b²(f1, f2) = 0) completely uncoupled. The degree of phase coupling is represented by the 

colorbar indicating the sum interactions between two frequencies. In this manner, a visualisation of the non-linear activity 

across the wave train propagation is realisable, detecting the frequency components that contribute the most to the non-linear 

activity. The two frequencies f1 and f2 are normalised by the peak frequency fp. Red (b²(fp, fp)) and yellow peaks represent the 165 

phase coupling of the primary frequency component with its harmonic. In general, a non-null bicoherence b²(f1,f2) > 0 means 

that the  f3 = f1+f2 component gains energy from the f1 and f2 components. 
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Figure 2: The wavelet-based bicoherence of a narrow-banded Gaussian wave train (Test 1) at x = 4 m. 

4 Results and discussions 170 

Figure 3 shows three sets of time series of three wave trains with approximately the same steepness S0 and derived from 

Pierson-Moskowitz (Test 3), JONSWAP (γ = 3.3) (Test 4) and JONSWAP (γ = 7) (Test 7) spectra at eight different locations 

along the flume. This preliminary figure shows surface elevation time histories including the first measurement (x = 4 m), the 

propagation along the flat bottom, the shoaling and the breaking of the focused wave group. It should be noted here that the 

seven studied wave trains are crest-focused wave groups (Φ = 0). 175 

Figure 4 shows, in a log scale, the spatial evolution of the Fourier spectra of the same three wave trains (Tests 3, 4 and 7). A 

spatial downshift of the spectral peak (Cases 4 and 7), a steepening of the low frequency side and a widening of the high 

frequency side are illustrated. These spectral variations, identified and quantified in Abroug et al., 2020, concern high and low 

frequency components. The shift of energy is essentially due to non-linear wave-wave interactions between wave components 

during the focalisation process. However, we do not distinguish which wave components are involved in the wave-wave 180 

interactions and the wave modes that undergo the strongest non-linear interactions. Consequently, the wavelet bicoherence 

tool is used herein to provide information about the non-linear wave interactions that are not easily obtained from the Fourier 

analysis which was used in Abroug et al., 2020. 
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Figure 3: Three sets of time series of Pierson-Moskowitz (Test 3), JONSWAP (γ = 3.3) (Test 4) and JONSWAP (γ = 3.3) (Test 7) wave 185 
trains. 

Figure 5 presents the spatial evolution of the wavelet-based bicoherence of a Pierson-Moskowitz wave train (Test 3) along the 

flat bottom. This figure shows that wave-wave interactions between different modes are weak on flat bottom (4 m < x < 9.5 

m; kph0 = 0.79) and few frequency components participate in the focusing process. In the intermediate water depth region 

(4 m < x < 9.5 m), the sea state is almost Gaussian, and for that reason non-linear wave-wave interactions are relatively 190 

moderate. For example, b²(fp, fp) = 0.1 and b² (fp, 3fp) = 0.065 at x = 4 m, indicate respectively a weak self-self wave interaction 

at the peak frequency fp coupled with the energy at 2fp and a very weak wave interaction at fp coupled with the energy at 4fp 

(Fig. 5a). A significant bicoherence magnitude band ranging from 0.5fp to fp is observed, i.e. b²(0.5fp - fp, 0.5fp - fp), which 

indicates an energy transfer from low frequency components to the spectral peak. This partially explains the spatial evolution 

of the spectrum, namely the increase of energy in the peak region, which is potentially due to a compensating mechanism of 195 
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the energy dissipation in the transfer region, i.e. the region between the spectral peak and high frequency regions, (Abroug et 

al., 2020; Liang et al., 2017). Note that the magnitude of the bicoherence is consistent with the fact that spectrum shape does 

not vary substantially along the flat bottom (4 m < x < 9.5 m) (Fig. 4). 

 

Figure 4 : Spatial evolution of normalised amplitude spectra in a log scale for Tests 3, 4 and 7. 200 

As the wave packet approaches the toe of the beach (x ~ 9.5 m), more and more wave components are involved in the quadratic 

phase coupling and the bicoherence values increase progressively. For x = 9.6 m, just a little over the toe of the slope, the 

bicoherence magnitude among primary components increases slightly, i.e. b²(fp, fp) = 0.24 and b²(3fp, fp) = 0.15, which is 

consistent with the small energy increase in the high frequency region (Abroug et al., 2020). 
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As the wave train propagates in the shallower region (9.5 m < x < xb ∈ [11.09; 11.82]), the non-linear phase coupling is seen 205 

to increase rapidly (Fig. 6a). The quadratic phase coupling within fp increases considerably at shallower regions compared to 

deeper regions. Wave energy transfers increase in high frequency region and as a result, the spectrum broadens. In the vicinity 

of the breaking location (xb ∈ [11.09; 11.82]), the non-linear coupling spreads over most of the wave components. The increase 

of the second and third harmonic is clearly noticeable in Fig. 6b. The wavelet-based bicoherence for approximately all 

frequency pairs is higher than 0.13, revealing that the non-linear phase coupling reaches its maximum level, which means that 210 

nearly all of the higher harmonics wave components are involved in the propagation process. 

 

 

Figure 5 : The wavelet-based bicoherence spatial evolution on the flat bottom for a Pierson-Moskowitz wave train (Test 3). (a): 

x = 4 m; (b): x = 5 m; (c): x = 8 m; (d): x = 9.6 m. 215 

Downstream the breaking location (x > xb ∈ [11.09; 11.82]), the quadratic phase coupling among frequency components 

decreases drastically and the bicoherence becomes less structured (Fig. 6d). This result is consistent with the decreasing trend 

of energy in higher frequency components downstream the breaking location (Tian et al., 2011; Abroug et al., 2020). 
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 220 

Figure 6 : The wavelet-based bicoherence spatial evolution on the sloping bottom for a Pierson-Moskowitz wave train (Test 3). (a): 

x = 11 m; (b): x = 12 m; (c): x = 13 m; (d): x = 13.8 m. 

In fig. 7 and 8, a JONSWAP (γ = 3.3) wave train (Test 5) is chosen to illustrate the spatial evolution of the wavelet-based 

bicoherence of a narrower wave train propagating over the flat and the sloping bottom. Wave-wave interactions evolve 

qualitatively in the same way compared to the case of Pierson-Moskowitz. Fig. 7a (x = 4 m) shows that the two dominant 225 

phase coupling peaks appear at the bifrequencies (fp, fp) and (0.5fp, 0 - 0.5fp), which illustrates that the quadratic non-linear 

interactions only occur between the peak and low-frequency modes. Note that no other peak was found to be significant. As 

the wave train propagates over the shallower region (x > 9.5 m), new phase couplings appear at the bifrequencies (2fp, fp), (3fp, 

fp) and (2fp, 3fp) (Fig. 8). This finding illustrates that quadratic non-linear interactions between the peak frequency, the first 

harmonic, the second harmonic and third harmonics result from the gradual broadening of the spectrum. It is an accordance 230 

with previous studies demonstrating that energy is mainly transferred to high frequencies during the shoaling process (Tian et 

al., 2011; Liang et al., 2017; Abroug et al., 2020). For this wave train (Test 5), the wavelet-based bicoherence reaches its 

maximum shortly after the breaking at x = 12 m. For example, b²(fp, fp) = 0.7, b²(2fp, fp) = 0.53 and b²(2fp, 2fp) = 0.16. Triad 

interactions lead to skewed wave profiles and can characterize the near-breaking conditions (Fig. 3 for x > 10.6 m). 

 235 
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Figure 7: The wavelet-based bicoherence spatial evolution on the flat bottom for JONSWAP (γ = 3.3)  wave train (Test 5). (a): x = 4 

m; (b): x = 6 m; (c): x = 8 m; (d): x = 9.6.  

Beyond the breaking location (x > xb ∈ [10.5;11.61]), the bicoherence decreases sharply and becomes less structured. For 

example b²(fp, fp) = 0.52, b²(2fp, fp) = 0.31 and b²(2fp, 2fp) = 0.004 at x = 13.6 m, i.e. h = 0.13 m. This pattern is qualitatively 240 

similar to that obtained in the case of a Pierson-Moskowitz wave train. This indicates that the increasing trend of the phase 

coupling is an important reason for the wave train breaking in shallow water.  

Figures 9 and 10 depict the wavelet-based bicoherence spectra for the case of a JONSWAP (γ = 7) wave train (Test 7) at eight 

locations along the wave flume. No bispectral peak appears at b²(2fp, fp) and this is may be not surprising as no clear third 

harmonic 3fp is present in the frequency spectrum (Fig. 4). Furthermore, wavelet-based bicoherence diagrams show that the 245 

phase coupling reaches its maximum level at frequencies slightly higher than the exact harmonics (2fp, 3fp  ...). This result is 

consistent with the results of Ma et al., 2010 who explained this process by the slight upshift of peak values in spectrum at 

higher harmonics, which is readily seen in Fig. 4. The fact that clear 1st, 2nd and 3rd harmonics are not present, is possibly due 

to other mechanisms such as quadruplet interactions (f1+f2 = f3+f4, Elgar et al., 1995) which have a shape stabilizing impact on 

the spectrum and are confined to free waves. This result is consistent with the peak frequency downshift demonstrated 250 

experimentally in Stansberg, 1994 and Abroug et al., 2020, where it was interpreted as a self-stabilizing feature. 
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 255 

Figure 8: The wavelet-based bicoherence spatial evolution on the sloping bottom for JONSWAP (γ = 3.3)  wave train (Test 5). (a): x 

= 10.20 m; (b): x = 11.20 m; (c): x = 12.40 m; (d): x = 13.60 m. 

Figure 11 summarizes the variability in the location and intensity of the wavelet-based bicoherence between the bifrequency 

pairs (fp, fp), (2fp, fp), (3fp, fp), (4fp, fp), (2fp, 2fp) for several tests. The two vertical solid lines and the dotted line respectively 

indicate the breaking region and the toe of the slope. This figure indicates that the steepness has a strong influence on the non-260 

linear phase coupling between harmonics in intermediate water depth (h0 = 0.3 m). Non-linear wave-wave interactions and 

their increasing trend is more important for wave trains having strong non-linearities. Beyond the wave breaking (x > xb), the 

decreasing trend of the non-linear phase coupling among harmonics is also more significant in the case of strong steepness S0. 

This result is in accordance with the dissipation related to breaking, which is particularly noticeable when the wave steepness 

is high (Abroug et al., 2020).  265 

An important similarity between different spectra, is that important wave-wave interactions are mostly limited to the first 

harmonics of primary waves (fp,fp), (2fp,fp). This finding is consistent with the energetic behavior of wave trains downstream 

the wave breaking (Abroug et al., 2020). Moreover, in the case of small and moderate wave steepness (Test 2 and Test 6), the 

phase coupling varies slightly downstream the wave breaking compared to that found prior the breaking, suggesting that a 

small energy transfer happens downstream the breaking location.  270 
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Figure 9: The wavelet-based bicoherence spatial evolution on the flat bottom for JONSWAP (γ = 7) wave train (Test 7). (a): x = 4 

m; (b): x = 6.4 m; (c): x = 8 m; (d): x = 9.6 m. 275 

It can be concluded that bound or non-resonant interactions play a crucial role in the propagation process and breaking of wave 

trains in shallow water depth. Although the bound waves are not supposed to contribute to the energy redistribution, our 

experimental observations raise the question of the impact of bound interactions on dissipation and energy transfers among 

different frequency components. 

5 Conclusions and perspectives 280 

An experimental approach is proposed for determining the non-linear wave-wave interactions, which accompany the 

propagation of large amplitude wave trains, that might cause damage to coastal zones, marine structures and navigation vessels. 

We investigate seven focused wave trains derived from JONSWAP (γ = 3.3 or 7) and Pierson-Moskowitz spectra propagating 

from intermediate water depth to the inner surf zone. The results presented in this study extend the parameter range of 

observations of triad interactions. Focusing waves were generated in a physical wave flume by modifying the wave spectrum 285 

and steepness. The present data were collected in intermediate water with a kph0 varying between 0.92 and 0.79.  
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Figure 10: The wavelet-based bicoherence spatial evolution on the sloping bottom for JONSWAP (γ = 7) wave train (Test 7). (a): x 290 
= 10.2 m; (b): x = 11 m; (c): x = 12.4 m; (d): x = 13.8 m.  

A typical wave train consists of a large number of waves interacting with one another. Wavelet-based bicoherence is utilized 

to investigate the non-linear phase coupling between frequency components of short time series. Some consequences of non-

linear transfer are briefly discussed; in particular the role played by non-linear interactions in shaping the high frequency part 

of the spectrum, the relative contribution of each harmonic and the downshifting of the peak spectrum demonstrated in previous 295 

studies.  

Along the flat bottom (4 m < x < 9.5 m), one might assume that the influence of triad interactions is very weak for the two 

considered spectra. The bispectral analysis of the data shows that as the waves propagate along the flat bottom, the magnitude 

of the bicoherence increases slightly (between 0% and 20% of its initial value). Moreover, this is foreseeable because the 

spectrum and the wave train shape do not substantially change along the flat bottom and a small amount of energy is relocated 300 

from the peak region to high frequency wave components. The spectra remain approximately unimodal and do not present a 

clear second or third harmonic and non-linear interactions concern only the peak and low frequency regions. On the flat bottom, 

the wave train is still dispersive and consequently, bound interactions are responsible for the slight growth of b²(fp,fp) and 

b²(0.5fp, 0-0.5fp). 

 305 
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Figure 11: Spatial variation of the wavelet-based bicoherence among harmonics. 

When the wave train reaches the slope (9.5 m < x < xb), wave-wave interactions among high order harmonics increase rapidly 

and reach the maximum degree in the breaking/focus location. The analysis showed a gradual broadening of the bicoherence 310 

spectrum, which is in accordance with previous studies who demonstrated that the energy is transferred mainly to high 

frequencies regions. This is partly due to significant spectral transformations which are more important during the shoaling 

process. Particularly, this analysis showed a considerable contribution of 2nd and 3rd harmonics for unidirectional steep wave 

trains and the spectral components at the second harmonic 2fp have increased substantially (6 times its initial value). The 
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bispectral analysis results show that the wave non-linearity S0 plays an important role in the increasing trend of phase coupling, 315 

which is more important for wave trains having strong non-linearities. 

The results obtained in this study show important features in wave-wave interactions during the propagation of focused waves. 

This study strengthens the usefulness of wavelet-based analysis in detecting features that are hidden in a Fourier-based analysis, 

and in explaining several phenomena, i.e. the process leading to wave breaking and the energy transfer between wave 

components. Nonetheless, to confirm the use of wavelet-based bicoherence for realistic 3D studies with coastal structures, 320 

efforts are needed to expand this study for example by investigating greater water depths, higher steepness and wider spectra. 

Moreover, the observed spatial evolution of wavelet-based bicoherence for focused wave trains should be compared to that of 

waves with similar steepness and bandwidth but with random distribution of phase. In other words, efforts should be made to 

identify and quantify the phase coupling differences between focusing wave trains and non-focusing waves. Finally, a detailed 

study of how bound energy at harmonics would be influenced by quadruplet interactions should be performed. 325 
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