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Abstract. Extreme waves play a crucial role in marine inundation hazards and coastal erosion. In this article, we experimentally 

study nonlinear wave-wave interactions of large amplitude focused wave groups propagating in a two-dimensional wave flume 

over a mild slope (β = 1:25). The influence of the frequency spectrum and the steepness on the nonlinear interactions of focused 

waves are examined. The generated wave trains correspond to Pierson-Moskowitz and JONSWAP (γ = 3.3 or γ = 7) spectra. 10 

Subsequently, we experimentally approach this problem by the use of a bispectral analysis applied on short time series, via the 

wavelet-based bicoherence parameter, which identifies and quantifies the phase coupling resulting from non-resonant or bound 

triad interactions with the peak frequency. The bispectral analysis shows that the number of frequency components involved 

in the focusing process and the resulting phase coupling increases gradually and approaches 1 just prior to breaking, 

accordingly with the spectrum broadening and the energy increase in high frequency components. Downstream breaking, the 15 

values of phase coupling between the peak frequency and its higher harmonics decrease drastically and the bicoherence 

spectrum becomes less structured. 

1 Introduction 

Extreme wave propagation is a highly nonlinear process observed in both open seas and coastal regions. The main physical 

mechanisms which may lead to an extreme wave event are illustrated in Kharif and Pelinovsky, 2003; Kharif et al., 2009; 20 

Didenkulova et al., 2010; Onorato et al., 2013. Extreme waves may occur in deep or shallow water, in energetic storm sea state 

or previously calm sea state. In our opinion, spatio-temporal wave focusing is one of the most important mechanisms in the 

extreme wave formation for shallow and deep water (Kharif and Pelinovsky, 2003). The spatio-temporal wave focusing is a 

classical mechanism giving rise to an important wave energy concentration in a small region. If the wave height of the focusing 

group exceeds 2.2 times its significant wave height, it can be defined as a rogue or freak wave (Dysthe et al., 2008). For this 25 

reason, spatio-temporal wave focusing is often employed in laboratory wave flumes with a wide variation of water depth 

(Merkoune et al., 2013), spectrum type (Tian et al., 2011; Xu et al., 2019; Abroug et al., 2019; 2020) and wavelength to depth 

ratio, in order to better understand the generation process, the dynamic behavior and the hydrodynamic loads on ocean 

structures in extreme sea conditions. 
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Over the past years, several studies have attempted to quantify the spatial evolution of spectral energy of unidirectional wave 30 

groups in experimental wave flumes using a classic Fourier analysis (Tian et al., 2011; Liang et al., 2017; Abroug et al., 2020). 

The frequency spectrum only gives the distribution of energy in the frequency domain; however, information about the phase 

coupling between different wave components is unknown. Consequently, higher order spectrum techniques should be adopted. 

A powerful tool to investigate the highly nonlinear process is the wavelet-based bispectral technique, which has been used in 

several works to study the non-linear interactions and quadratic phase coupling between wave components (Dong et al., 2008; 35 

Ma et al., 2010). The need to detect and quantify second order non-linear interactions can be found in many disciplines, such 

as, geophysics (Grinsted et al., 2004), plasma physics (Milligan et al., 1995), fault diagnosis (Li et al., 2014), health-related 

areas, neuroscience (Bai et al., 2017) and wave analysis (Eldeberky, 1996; Eldeberky and Madsen, 1999; Young et al., 1996; 

Young and Eldeberky, 1998; Becq-Girard et al., 1999; Huseni and Balaji, 2017; Zhang et al., 2019). In wave analysis, the 

propagation of wave trains in the nearshore zone has an exceptionally high spectral and temporal resolution.  40 

The majority of previous works regarding the evolution of unidirectional wave trains in numerical and experimental wave 

flumes have shown that spatio-temporal focusing leads to a shape and elevation of a wave crest at focus that cannot be predicted 

by either linear or 2nd order wave theory. This is due to high order nonlinearities, called the bound (harmonics) and resonant 

nonlinearities (Vyzikas et al., 2018). On the one hand, bound nonlinearities are the result of non-linear harmonics that are 

phase-locked to the wave train and contribute in the sharpening of free surface elevation. On the other hand, resonant 45 

interactions contribute in the redistribution of energy among different frequency components. It is important to mention here 

that in shallow water regions exact resonant interactions are hardly realised in unidirectional propagation because the resonant 

conditions cannot not be satisfied in a small area. Therefore, we investigate specifically the role of bound waves generated by 

non-resonant three-wave coupling. 

Over the past few decades, various experimental studies have investigated the spatial evolution of non-linear coupling between 50 

wave components. Dong et al., 2008 studied the spatial evolution of non-linear interactions between different wave 

components in the shoaling and de-shoaling region by carrying out two random waves experiments based on JONSWAP 

spectra with varying peak waves periods and root-mean-square waves heights. They showed that the degree of quadratic phase 

coupling increases in the shoaling region and achieves its highest level prior to wave breaking. Ma et al., 2010 studied 

experimentally JONSWAP wave trains propagating in intermediate water depth. Recently, nonlinear transformation of 55 

unidirectional irregular waves propagating over a complex bathymetry (1.06 < kph < 2.2; where kp is the peak wavenumber 

and h denotes the water depth) was performed in Zhang et al., 2019, who studied the triad wave-wave non-linear interactions 

in the case of long records of JONSWAP irregular waves (1200 Tp, where TP is the peak period) using a Fourier-based 

bispectral analysis. They found that the phase coupling is strong near the end of the slope, where second and third harmonics 

become more important. They also noticed the appearance of low-frequency waves generated by the difference interactions 60 

during wave propagation. We must note here that the main difference between Fourier-based bicoherence and wavelet-based 

bicoherence is the number of degrees of freedom (Dong et al., 2008). Wavelet-based bicoherence is a suitable tool to detect 
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nonlinear wave-wave interactions occurring in relatively short data sequences, and can be used to analyse data collected in 

laboratory flumes (Elsayed, 2006).  

Most of the aforementioned studies were conducted in random wave conditions based on JONSWAP spectra. To the author’s 65 

knowledge, few studies have attempted to quantify the degree of phase coupling resulting from the propagation of realistic 

spectrum wave trains in the nearshore zone using wavelet-based bicoherence. Experiments are performed on numerous 

Pierson-Moskowitz and JONSWAP wave trains propagating from a constant intermediate water depth to shoaling and breaking 

zones. 

The paper is outlined as follows. The experimental set-up and test conditions are illustrated in section 2. In section 3, a short 70 

formal description of wavelet analysis and wavelet-based bicoherence is provided. The spatial evolution of wavelet-based 

bicoherence is discussed in section 4. Section 5 is devoted to conclusions and perspectives. 

2 Experimental setup and wave train parameters 

The following is a brief consideration of present wave trains generation; more details of the experiments can be found in 

Abroug et al., 2020. The experiments were conducted in a two-dimensional wave flume of the M2C (Morphodynamique 75 

Continentale et côtière) Laboratory at Caen University, France. The flume is 22 m long, 0.8 wide and the water depth is 

h0 = 0.3 m (Fig. 1). In this study, the relative water depth kph0 < 1.363 is verified, which means that the modulation instability 

effect can be neglected (Janssen et al., 2007; Fedele et al., 2019). An Edinburgh Designs Ltd piston type wavemaker is located 

at one end of the flume to implement wave trains using linear wave generation signal. Wave trains are generated with almost 

no reflection at the end of the flume, since measurements are performed before reflected waves travel back to the measurement 80 

location. Thus, the occurrence of resonant interactions potentially driven by reflected waves is limited and we only focus on 

bound waves.  

The data used in this work are issued from Abroug et al., 2020. The present study relates to seven wave train simulations based 

on the averaged JONSWAP spectra (i.e. with peak factor γ = 3.3 or 7) or Pierson-Moskowitz spectra with varied peak wave 

periods fp and wave steepnesses S0 (i.e. non-linearity). The linear NewWave theory (Tromans et al. (1991)), which is able to 85 

generate targeted waves at a prescribed location and time by combining sinusoidal components of different frequencies, is 

used as input for the generated focused wave trains. This theory was validated at deep water locations, at intermediate water 

depth locations (Taylor and Williams (2004)) and at coastal regions (Whittaker et al. (2016); for kh < 0.5). In NewWave theory, 

the expected shape of a wave train is the autocorrelation function (Fourier Transform of the spectral density). 

For each wave train, a large number of wave signals were recorded along the flume to accurately follow the wave evolution in 90 

space. The surface elevation is measured by two aligned wave gauges located from the longitudinal coordinate xmin = 4 m to 

xmax = 14 m, where x = 0 is defined as the mean position of the wavemaker. The positions of these wave gauges are clearly 

delineated in Fig. 1. The sampling rate is 50Hz and each record duration is 35 s with a sample interval of 0.02 s. The fast 

Fourier transform (FFT) was applied to each signal, resulting in 1750 frequency components over the range [0, 3fp] and with 
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a spectral resolution Δf = 0.023 Hz. The distance from the wave maker for the focusing point was set to 12 m from the wave 95 

maker. 

 

 

Figure 1: Schematic experimental setup, WG1 and WG2 denote wave gauge n°1 and wave gauge n°2 respectively. 

Using linear NewWave theory, the free surface elevation of a wave train at a distance x from the wavemaker can be written as 100 

follows: 

 

𝜂(𝑥, 𝑡) = ∑ 𝑎𝑖 cos[𝑘𝑖(𝑥 − 𝑥0) − 𝜔𝑖(𝑡 − 𝑡0)]𝑁
𝑖=1             (1) 

𝑎𝑖 = 𝐴0
𝑆(𝑓𝑖)∆𝑓

∑ 𝑆(𝑓𝑖)∆𝑓𝑁
𝑖=1

           (2) 

 105 

where ai (Eq. (2)) is the amplitude of each component, i varies from 1 to N (number of waves), x0 and t0 denote respectively 

the predefined focal location and focal time, ki = ωi / gtanh(kih) is the wavenumber, ωi = 2πfi is the angular frequency, h is the 

water depth, A0 represents the theoretical linear crest amplitude of the wave train, S(fi) is the spectral density and 

∆𝑓 =  
𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛

𝑁−1
 is the frequency step. JONSWAP and Pierson-Moskowitz are the two used spectra to represent the sea state. 

All generated waves are crested focused waves, i.e. the phase angle of the wave group within its envelope at the focus position 110 

is equal to zero.  

Based on Eq. (1), the varied parameters during these experiments were the spectrum type (S(fi)) and the wave steepness S0. 

The peak frequency parameter was chosen in order to have a relative depth kph0 varying between 0.79 and 0.92 (Deep side in 

Table 1). Deep and shallow sides in Table 1 represent respectively the flat bottom depth (4 m < x < 9.5 m) and the shallowest 

studied depth (x = 14 m). Five of the studied wave trains have more than one breaking and breaking locations xb are indicated 115 

as bracketed intervals in Table 1. 

 

 

 

 120 
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Table 1. Wave trains key parameters 

 

Test 

 

fp (Hz) 

 

S0 

 

Spectrum type 

 

xb (m) 

         

   kph0 

 

 kph  

     Deep Side Shallow Side 

1 0.70 0.19 Gaussian [11.85;12.55] 0.84 0.34 

2 0.66 0.14 Pierson-Moskowitz 12.9 0.79 0.31 

3 0.66 0.28 Pierson-Moskowitz [11.09;11.82] 0.79 0.31 

4 0.75 0.25 JONSWAP (γ=3.3) [12.13;12.81] 0.92 0.37 

5 0.75 0.38 JONSWAP (γ=3.3) [10.5;11.61] 0.92 0.37 

6 0.75 0.11 JONSWAP (γ=7) 13.5 0.92 0.37 

7 0.75 0.23 JONSWAP (γ=7) [12.07;12.69] 0.92 0.37 

 

3 Wavelet-based analysis 

The free surface elevation of each wave train was studied through the bispectral analysis applied on short time series, via the 

wavelet-based bicoherence. The detailed characteristics of the wavelet-based bicoherence can be found in Van Milligen et al., 125 

1995 and a brief introduction of this technique is given below. The continuous wavelet transform WT (a,τ) of a time series f(t) 

is calculated as: 

 

𝑊𝑇(𝑎, 𝜏) = ∫ 𝑓(𝑡)𝜓𝑎,𝜏
∗+∞

−∞
𝑑𝑡               (3) 

𝜓𝑎,𝜏(𝑡) = |𝑎|−0.5𝜓(
𝑡−𝜏

𝑎
)           (4) 130 

 

where the asterisk denotes the complex conjugate and ψa,τ (Eq. (4)) represents the mother wavelet function dilated by a factor 

τ and scaled by a factor a, a > 0. The latter parameter can be interpreted as the frequency inverse, i.e. f = 1/a. The wavelet 

transform can be interpreted as a series of bandpass filter of the time series with a mother wavelet function. We have chosen 

the Morlet wavelet as a mother wavelet function because it provides information about phase and amplitude, and it is adapted 135 

for capturing coherence between harmonic components. The Morlet wavelet can be considered as a modulated Gaussian 

waveform and is defined as: 

 

𝜓(𝑡) = 𝜋−1/4𝑒−
𝑡²

2 𝑒(𝑖𝜔0𝑡)                                                  (5) 

 140 
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where ω0 denotes the dimensionless frequency and t is the dimensionless time. The Morlet wavelet with ω0 = 6 is a good 

choice, since it ensures a good balance between time and frequency localisation (Grinsted et al., 2004; Dong et al., 2008). For 

the Morlet wavelet the scale a is almost equal to the Fourier period T (T = 1.03 a). As mentioned in Dong et al., 2008, it is 

convenient to write the scales a as fractional powers of two (Torrence and Compo, 1998): 

 145 

𝑎𝑖 = 𝑎02𝑖𝛿 , 𝑖 = 0,1,2, … , 𝑀                                                                            (6) 

 

𝑀 =
1

𝛿
𝑙𝑜𝑔2(

𝑁𝛥𝑡

𝑎0
)                                                                                                (7) 

 

where a0 is the smallest resolvable scale, M represents the largest scale and δ denotes the scale factor. The a0 parameter should 150 

be chosen equal to 2×Δt (Torrence and compo, 1998; Dong et al., 2008). N and Δt represent respectively the number of points 

in the times series and the time sampling. The scale factor δ should be sufficiently small to provide high resolution and adequate 

sampling in scale. Moreover, for the Morlet wavelet, a scale factor δ = 0.5 is the largest value that gives adequate sampling 

(Dong et al., 2008). It is for that reason that we opted for a scale factor δ = 0.02, giving a total of 395 scales ranging from 0.04 

up to 11.83 for respectively high and low frequency. The wavelet-based bispectrum (Eq. (8)) measures the phase coupling in 155 

the interval ΔT = 35 s that occurs between f1, f2 and f3 where the latter parameters must satisfy the frequency sum rule (Eq. (9)). 

Quadratic non-linear coupling occurs between f1 and f2, generating a third component at the sum frequency f3. 

The bispectrum (Eq. (8)), which is the double Fourier transform of the third-order moment, measures the extent of phase 

coherence due to the non-linear triad interaction between three waves that satisfy the frequency and phases matching criteria 

(Eq. (9) and (10)). The estimation of wavelet-based bispectrum in the whole bifrequency plan can be based on its values in the 160 

interval ψ :{f1 > f2 > 0, f1+f2 = fs = 25 Hz (Nyquist sampling frequency)}. 

 

𝐵(𝑎1, 𝑎2) = ∫ 𝑊𝑇𝑥(𝑓1, 𝜏) 𝑊𝑇𝑥(𝑓2, 𝜏)𝑊𝑇𝑥
∗(𝑓3, 𝜏)𝑑𝜏        (8) 

 

𝑓3 = 𝑓1 + 𝑓2                                               (9) 165 

𝜑3 = 𝜑1 + 𝜑2                                                                       (10) 

 

The wavelet-based bicoherence (Eq. (11)), which can be defined as the normalised wavelet bispectrum, is used in practise to 

measure the degree of phase coupling (Larsen et al., 2001) and is bounded by 0 and 1 by the Schwarz inequality. A value close 

to unity reveals a maximum amount of coupling and a value close to zero corresponds to a random phase relation. 170 

 

𝑏²(𝑎1, 𝑎2) =
|𝐵(𝑎1,𝑎2)|2

[∫ |𝑊𝑇𝑥(𝑎1,𝜏)𝑊𝑇𝑥(𝑎2,𝜏)|2𝑑𝜏
𝑡=35

𝑡=0 ] ∫ |𝑊𝑇𝑥(𝑎3,𝜏)|2𝑑𝜏
𝑡=35

𝑡=0

           (11) 
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Figure 2 exhibits a simple illustration of the wavelet-based bicoherence of a narrow-banded Gaussian wave train (Test 1) 

recorded at x = 4 m from the wavemaker. The shading indicates the strength of non-linear coupling; dark red (b²(f1, f2) = 1) 175 

being totally coupled and dark blue (b²(f1, f2) = 0) completely uncoupled. The degree of phase coupling is represented by the 

colorbar indicating the sum interactions between two frequencies. In this manner, a visualisation of the non-linear activity 

across the wave train propagation is feasible, detecting the frequency sections of the signal that contribute the most to the non-

linear activity. The two frequencies f1 and f2 are normalised by the peak frequency fp. Red (b²(fp, fp)) and yellow peaks represent 

the phase coupling of the primary frequency component with its harmonic. In general, a non-null bicoherence b²(f1,f2) > 0 180 

means that the  f3 = f1+f2 component gains energy from the f1 and f2 components. 

 

Figure 2: The wavelet-based bicoherence of a narrow-banded Gaussian wave train (Test 1) at x = 4 m. 

4 Results and discussions 

Figure 3 shows three sets of time series of three wave trains with approximately the same steepness S0 and derived from 185 

Pierson-Moskowitz (Test 3; xb ∈ [11.09; 11.82]), JONSWAP (γ = 3.3) (Test 4; xb ∈ [12.13; 12.81]) and JONSWAP (γ = 7) 

(Test 7; xb ∈ [12.07; 12.69]) spectra at eight different locations along the flume. This preliminary figure shows surface elevation 

time histories including the first measurement (x = 4 m), the propagation along the flat bottom, the shoaling and the breaking 

of the focused wave group. It should be noted here that the seven studied wave trains are crest-focused wave groups (Φ = 0). 

Figure 4 shows, in a log scale, the spatial evolution of the Fourier spectra of the same three wave trains (Tests 3, 4 and 7). A 190 

spatial downshift of the spectral peak (Cases 4 and 7), a steepening of the low frequency side and a widening of the high 

frequency side are illustrated. These spectral variations, identified and quantified in Abroug et al., 2020, concern high and low 

frequency components. The shift of energy is essentially due to non-linear wave-wave interactions among wave frequency 

components during the focalisation process. Nevertheless, we do not distinguish which wave components participate in the 

wave-wave interactions, nor do we distinguish the wave modes that undergo the strongest non-linear interactions. 195 

Consequently, the wavelet-based bicoherence is used herein to provide information about the non-linear triad wave interactions 

that cannot be easily obtained from the Fourier analysis which was used in Abroug et al., 2020. 
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Figure 3: Three sets of time series of Pierson-Moskowitz (Test 3), JONSWAP (γ = 3.3) (Test 4) and JONSWAP (γ = 7) (Test 7) wave 

trains. 200 

Figure 5 presents the spatial evolution of the wavelet-based bicoherence of a Pierson-Moskowitz wave train 

(Test 3; xb ∈ [11.09; 11.82]) along the flat bottom. This figure shows that wave-wave interactions between different modes are 

weak on flat bottom (4 m < x < 9.5 m; kph0 = 0.79) and few frequency components participate in the focusing process. In the 

intermediate water depth region (4 m < x < 9.5 m), the sea state is almost Gaussian, and for that reason non-linear wave-wave 

interactions are relatively moderate. For example, b²(fp, fp) = 0.1 and b² (fp, 3fp) = 0.065 at x = 4 m, indicate respectively a weak 205 

self-self wave interaction at the energy-frequency peak coupled with the energy at 2fp and a very weak wave interaction at the 

peak frequency coupled with the energy at 4fp (Fig. 5a). A significant bicoherence magnitude band ranging from 0.5fp to fp is 

observed, i.e. b²(0.5fp - fp, 0.5fp - fp), which indicates an energy transfer from low frequency components to the spectral peak. 

This partially explains the spatial evolution of the spectrum, namely the increase of energy in the peak region, which is 
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potentially a way of compensating the energy dissipation in the transfer region, i.e. the region between the spectral peak and 210 

high frequency regions, (Abroug et al., 2020; Liang et al., 2017). Note that the magnitude of the bicoherence is consistent with 

the fact that spectrum shape does not vary substantially along the flat bottom (4 m < x < 9.5 m) (Fig. 4). 

 

Figure 4 : Spatial evolution of normalised amplitude spectra in a log scale for Tests 3, 4 and 7. 

As the wave train approaches the toe of the slope (x ~ 9.5 m), more and more wave components are involved in the nonlinear 215 

phase coupling and the bicoherence values increase progressively. For x = 9.6 m, just a little over the toe of the slope, the 

bicoherence magnitude among primary components increases slightly, i.e. b²(fp, fp) = 0.24 and b²(3fp, fp) = 0.15, which is 

consistent with the small energy increase in the high frequency region (Abroug et al., 2020). 
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As the wave train propagates in the shallower region (9.5 m < x < xb ∈ [11.09; 11.82]), the degree of phase coupling is seen to 

increase rapidly (Fig. 6a). The degree of phase coupling within the peak frequency increases considerably at shallower regions 220 

compared to deeper regions. Wave energy transfers increase in high frequency region and as a result, the spectrum broadens. 

In the vicinity of the breaking location (xb ∈ [11.09; 11.82]), the non-linear coupling spreads over most of the wave 

components. The increase of the second and third harmonic is clearly noticeable in Fig. 6b. The values of bicoherence for 

approximately all frequency pairs are greater than 0.13, indicating that the non-linear coupling reaches its maximum level, 

which means that almost all of the higher harmonics waves are involved in the propagation process. 225 

 

 

Figure 5 : The wavelet-based bicoherence spatial evolution on the flat bottom for a Pierson-Moskowitz wave train (Test 3). (a): 

x = 4 m; (b): x = 5 m; (c): x = 8 m; (d): x = 9.6 m. 

Downstream the breaking location (x > xb ∈ [11.09; 11.82]), the degree of phase coupling between frequency components 230 

decreases drastically and the bicoherence becomes less structured (Fig. 6d). This result is consistent with the decreasing trend 

of energy in higher frequency components downstream the breaking location (Tian et al., 2011; Abroug et al., 2020). 
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Figure 6 : The wavelet-based bicoherence spatial evolution on the sloping bottom for a Pierson-Moskowitz wave train (Test 3). (a): 235 
x = 11 m; (b): x = 12 m; (c): x = 13 m; (d): x = 13.8 m. 

In fig. 7 and 8, a JONSWAP (γ = 3.3) wave train (Test 5; ; xb ∈ [10.5; 11.61]) is chosen to illustrate the spatial evolution of the 

wavelet-based bicoherence of a narrower wave train propagating over the flat and the sloping bottom. Wave-wave interactions 

evolve qualitatively in the same way compared to the case of Pierson-Moskowitz. Fig. 7a (x = 4 m) shows that the two dominant 

phase coupling peaks appear at the bifrequencies (fp, fp) and (0.5fp, 0 - 0.5fp), which illustrates that the quadratic non-linear 240 

interactions only occur between the peak and low-frequency modes. Note that no other peak was found to be significant. As 

the wave train propagates over the shallower region (x > 9.5 m), new phase couplings appear at the bifrequencies (2fp, fp), (3fp, 

fp) and (2fp, 3fp) (Fig. 8). This finding illustrates that quadratic non-linear interactions between the peak frequency, the first 

harmonic, the second harmonic and third harmonics result from the gradual broadening of the spectrum. It is an accordance 

with previous studies demonstrating that energy is mainly transferred to high frequencies during the shoaling process (Tian et 245 

al., 2011; Liang et al., 2017; Abroug et al., 2020). For this wave train (Test 5), the wavelet-based bicoherence reaches its 

maximum shortly after the breaking (xb ∈ [10.5; 11.61]) at x = 12 m. For example, b²(fp, fp) = 0.7, b²(2fp, fp) = 0.53 and b²(2fp, 

2fp) = 0.16. Triad interactions lead to skewed wave profiles and can characterize the near-breaking conditions (Fig. 3 

for x > 10.6 m). 

 250 
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Figure 7: The wavelet-based bicoherence spatial evolution on the flat bottom for JONSWAP (γ = 3.3)  wave train (Test 5). (a): x = 4 

m; (b): x = 6 m; (c): x = 8 m; (d): x = 9.6.  

Beyond the breaking location (x > xb ∈ [10.5;11.61]), the bicoherence decreases sharply and becomes less structured. For 

example b²(fp, fp) = 0.52, b²(2fp, fp) = 0.31 and b²(2fp, 2fp) = 0.004 at x = 13.6 m, i.e. h = 0.13 m. This pattern is qualitatively 255 

similar to that obtained in the case of a Pierson-Moskowitz wave train. This indicates that the increasing trend of the phase 

coupling is one of the more important reasons for the wave train breaking in shallow water.  

Figures 9 and 10 depict the wavelet-based bicoherence spectra for the case of a JONSWAP (γ = 7) wave train 

(Test 7; xb ∈ [12.07; 12.69]) at eight locations along the wave flume. No bispectral peak appears at b²(2fp, fp) and this is may 

be not surprising as no clear third harmonic 3fp is present in the frequency spectrum (Fig. 4). Furthermore, wavelet-based 260 

bicoherence diagrams show that the phase coupling reaches its maximum level at frequencies slightly higher than the exact 

harmonics (2fp, 3fp  ...). This result is consistent with the results of Ma et al., 2010 who explained this process by the slight 

upshift of peak values in spectrum at higher harmonics, which is readily seen in Fig. 4. The fact that clear 1st, 2nd and 3rd 

harmonics are not present, is possibly due to other mechanisms such as quadruplet interactions (f1+f2 = f3+f4, Elgar et al., 1995) 

which have a shape stabilizing impact on the spectrum and are confined to free waves. This result is consistent with the peak 265 

frequency downshift demonstrated experimentally in Stansberg, 1994 and Abroug et al., 2020, where it was interpreted as a 

self-stabilizing feature. 
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Figure 8: The wavelet-based bicoherence spatial evolution on the sloping bottom for JONSWAP (γ = 3.3)  wave train (Test 5). (a): x 

= 10.20 m; (b): x = 11.20 m; (c): x = 12.40 m; (d): x = 13.60 m. 

Figure 11 summarizes the variability in the location and intensity of the wavelet-based bicoherence between the bifrequency 

pairs (fp, fp), (2fp, fp), (3fp, fp), (4fp, fp), (2fp, 2fp) for several tests. The two vertical solid lines and the dotted line respectively 275 

indicate the breaking region and the toe of the slope. This figure indicates that the steepness has a strong influence on the non-

linear phase coupling between harmonics in intermediate water depth (h0 = 0.3 m). Non-linear wave-wave interactions and 

their increasing trend is more important for wave trains having strong non-linearities. Beyond the wave breaking (x > xb), the 

decreasing trend of the phase coupling between harmonics is also more significant in the case of strong steepness S0. This 

result is in accordance with the dissipation related to breaking, which is particularly noticeable when the wave steepness is 280 

high (Abroug et al., 2020).  

An important similarity between different spectra, is that important wave-wave interactions are mostly limited to the first 

harmonics of primary waves (fp,fp), (2fp,fp). This finding is consistent with the energetic behavior of wave trains downstream 

the wave breaking (Abroug et al., 2020). Moreover, in the case of small and moderate wave steepness (Test 2; xb = 12.9 and 

Test 6; xb = 13.5), the phase coupling varies slightly downstream the wave breaking compared to that found prior the breaking, 285 

suggesting that a small energy transfer happens downstream the breaking location.  
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Figure 9: The wavelet-based bicoherence spatial evolution on the flat bottom for JONSWAP (γ = 7) wave train (Test 7). (a): x = 4 290 
m; (b): x = 6.4 m; (c): x = 8 m; (d): x = 9.6 m. 

It can be concluded that bound or non-resonant interactions play an important role in the evolution and breaking of wave trains 

in shallow water depth. Although the bound waves are not supposed to contribute to the energy redistribution, our experimental 

observations raise the question of the impact of bound interactions on dissipation and energy transfers among different 

frequency components. 295 

5 Conclusions and perspectives 

An experimental approach is proposed for determining the non-linear wave-wave interactions, which accompany the 

propagation of large amplitude wave trains, that might cause damage to coastal zones, marine structures and navigation vessels. 

We investigate seven focused wave trains derived from JONSWAP (γ = 3.3 or 7) and Pierson-Moskowitz spectra propagating 

from intermediate water depth to the inner surf zone. The results presented in this study extend the parameter range of 300 

observations of triad interactions. The experimental conditions were selected based on two parameters: the wave steepness and 

the spectrum type. The present data were collected in intermediate water with a kph0 varying between 0.92 and 0.79. A typical 

wave train consists of a large number of waves interacting with one another. Wavelet-based bicoherence is used to investigate 
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the phase coupling between frequency components of short time series. Some consequences of non-linear transfer are briefly 

discussed; in particular the role played by non-linear interactions in shaping the high frequency part of the spectrum, the 305 

relative contribution of each harmonic and the downshifting of the peak spectrum demonstrated in previous studies. Note that 

our experimental study is different from previous experiments (Dong et al., 2008; Ma et al., 2010) regarding the slope geometry 

and most importantly, the use of three different spectral types. 

Along the flat bottom (4 m < x < 9.5 m), one might assume that the influence of triad interactions is very weak for the three 

considered spectra. The bispectral analysis of the data shows that as the waves propagate along the flat bottom, the magnitude 310 

of the bicoherence increases slightly (between 0% and 20% of its initial value). Moreover, this is foreseeable because the 

spectrum and the wave train shape do not substantially change along the flat bottom and a small amount of energy is transferred 

from the peak region to high frequency components. 

 

 315 

Figure 10: The wavelet-based bicoherence spatial evolution on the sloping bottom for JONSWAP (γ = 7) wave train (Test 7). (a): x 

= 10.2 m; (b): x = 11 m; (c): x = 12.4 m; (d): x = 13.8 m.  
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 320 

Figure 11: Spatial variation of the wavelet-based bicoherence among harmonics. 

When the wave train reaches the slope (9.5 m < x < xb), wave-wave interactions among high order harmonics increase rapidly 

and reach the maximum degree in the breaking/focus location. In line with previous studies (Elsayed, 2006; Dong et al., 2008; 

Ma et al., 2010), strong nonlinear interactions were predominantly observed in the shallower region. The analysis showed a 

gradual broadening of the bicoherence spectrum, which is in accordance with previous studies who demonstrated that the 325 

energy is transferred mainly to high frequencies regions (Tian et al. 2011; Abroug et al., 2020). This is partly due to significant 

spectral transformations which are more important during the shoaling process. Particularly, this analysis showed a 

considerable contribution of 2nd and 3rd harmonics for unidirectional steep wave trains and the spectral components at the 
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second harmonic 2fp have increased substantially (6 times its initial value). The bispectral analysis results show that the wave 

non-linearity S0 plays an important role in the increasing trend of phase coupling, which is more important for wave trains 330 

having strong non-linearities. This last finding agrees well with the conclusions made by Ma et al. (2010).  

An innovative aspect of this paper is presenting wavelet-based bispectral analysis for highly non-linear intermediate water 

waves with different spectral types. If we compare the three spectra, we can see that all nonlinear interactions on the flat bottom 

(x < 9.5 m) are weak (b² < 0.15) in the case of wide spectrum wave trains (Tests 2 and 3 Fig. 11). However, in the case of 

narrower spectra, more frequencies (e.g. fp, 2fp and 3fp) are implicated in the focusing process (Tests 4, 5, 6 and 7 Fig. 11) and 335 

the corresponding phase coupling is higher (b² > 0.2). This finding is in agreement with the stable behavior of wide spectrum 

wave trains, which was demonstrated experimentally in Abroug et al. (2019) and Stansberg (1994). In intermediate water depth 

(0.79 < kph < 0.92), wide spectrum harmonics (fp, 2fp, 3fp …) are less implicated in the focusing process compared to narrow 

spectrum harmonics. In shallow water regions (9.5 m < x < xb) and after breaking (xb < x), the spatial evolution of the phase 

coupling is qualitatively similar for the three spectra. 340 

The results obtained in this study show important features in wave-wave interactions during the propagation of focused waves. 

This study strengthens the usefulness of wavelet-based analysis in detecting features that are hidden in a Fourier-based analysis, 

and in explaining a number of phenomena, such as the process leading to wave breaking and the energy transfer between wave 

components. Nevertheless, in order to confirm the use of wavelet-based bicoherence for more realistic 3D studies with 

structures, efforts should be made to expand this study for example by investigating greater water depths, higher steepness and 345 

wider spectra. Furthermore, the observed evolution of bicoherence for focused waves should be compared to that of waves 

with similar steepness and bandwidth but with initial random distribution of phase. In other words, efforts should be made to 

identify and quantify the phase coupling differences between focusing wave trains and non-focusing waves. Information 

concerning the phase coherence can be obtained by calculating the biphase parameter (β (a1, a2), Ma et al., 2010). It will be 

interesting to quantitatively measure the deviation of biphase values between primary waves/higher harmonics and to analyse 350 

their spatial evolution through different spectra to distinguish differences. Finally, a detailed study of how bound energy at 

harmonics would be influenced by quadruplet interactions should be performed. 
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