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S1 Slope water management in CHASM  

Section 1 is divided in two parts: the first describes the new functionality developed in CHASM representing slope water 

management (S1.1); the second part illustrates its benchmark against another slope stability software (S1.2).  

S1.1 Description of slope water management in CHASM 

We developed a new functionality in CHASM which is now able to simulate three additional processes: water leaks from 5 

buried septic tanks, leaks from superficial pipes and the effect of houses without roof gutters discharging rainwater onto slopes. 

Leaking Septic tanks: the user can determine the position of the tanks, their dimensions (width and depth), the leakage rate 

(m3 s-1) and the type of leakage (local or evenly distributed). Considering that the slope cross section is represented with a mesh 

of columns and cells, a tank will occupy some of these cells according to its dimensions and position. These cells are modelled 

as being impermeable and heavier than the surrounding soil. The water leakage is added to the moisture content of the cells 10 

underneath the tank, through the following Water Balance equation (S1):  

∂θ

∂t
=  

∂(Q + Qleak) 

∂z
  (S1) 

       
where, θ is the moisture content, changing over time according to the water flow Q, and Qleak represents the water leaked by 

the tank, which is constant throughout the simulation time. Note, buried leaking pipes can also be simulated by using this 

option by not considering the load of the tank. 15 

Leaking Pipe on the slope surface: we want to simulate pipes discharging water onto the slope surface. This can be due by 

low pipe maintenance or when water collectors are poorly designed and not properly connected to the city wide drainage 

systems (Ortuste, 2012). Considering that the slope cross section is represented with a mesh of columns and cells, the water 

leaked by the pipe is added to the surface water of the column of the slope where the pipe is positioned. This water infiltrates 

into the slope according to the infiltration capacity of the top cell of that column which is a function of its hydraulic 20 

conductivity. The water that does not infiltrate because exceeds the infiltration capacity, is stored on the surface as ponding 

water. The maximum storage of ponding water is determined by the user as detention capacity of that cell. If the ponding water 

exceeds this value, any surface runoff is deleted because this surface water process is not included in the CHASM hydrology 

scheme. The leakage when present is constant throughout the simulation time. 

Houses without gutters: Where houses are present, rainfall does not reach the slope cells underneath the house and the amount 25 

of rain intercepted by the roof is discharged onto the slope cells to the sides of the house. If the roof is dual pitch, half of the 

intercepted rain is discharged upslope and half downslope, and it is equal to the rainfall rate multiplied by half of the roof area. 

This means that the surface water infiltrating into the cells immediately adjacent to the house is the sum of the rainfall that 

would fall in that cell plus the intercepted rainfall discharged from the roof. The same calculation is used for the mono pitch 
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roof, but in this case the rainwater that falls on the roof is entirely discharged downslope or upslope of the house and it is equal 30 

to the rainfall rate multiplied by the whole roof area. The surface water will then infiltrate into the slope as described for the 

case of the leaking pipe. 

S1.2 Benchmarking the new slope water point source functions in CHASM 

To benchmark the new functionality introduced, we compare the results obtained with CHASM with an example found in the 

literature. Mendes et al. (2018) analysed the natural and anthropogenic drivers of a rainfall-triggered landslide event happened 35 

in the city of Sao Jose’ dos Campos (Brazil) on March 5th, 2016. Their analysis demonstrated that rainfall could only have 

initiated the observed landslide if combined with water tank leakage at the top of the slope. Mendes et al. (2018) used the 

Seep/w and Slope/w modules of the Geo-Slope software to analyse the hydrology and the stability component of the landslide. 

Rainfall records for the time of the landslide were available from nearby weather stations and were used to reproduce a daily 

accumulated rainfall graph for the 31 days prior to the landslide occurrence. These 31 days were used in the simulation to 40 

predict the landslide. The soil properties of the three soil layers used for the analysis are reported Table S1. Their 

characterisation was based on in situ inspection and on previous studies carried out in the same location (Mendes, 2014 and 

Mendes and Filho, 2015). The soil water retention curves (SWRC) and the conductivity functions are estimated from this data. 

The slope was 55 m high with an average slope angle of 40 degrees. The boundary conditions were set according to field 

observations and to considerations made by Rahardjo et al., (2007) in regarding the position of the water table and retaining 45 

walls at the bottom of the slope.  

 

Table S1: geotechnical and hydrological characterisation of the soil layers of the failed slope from Mendes et al. (2018), re-adapted 

according to the unit of measure used in this analysis  

Layer in 

soil profile 

Depth 

sample 

(m) 

USCS* 

Bulk specific 

weight 

 (kN m-3) 

Effective 

cohesion  

(kPa) 

Effective 

internal 

friction angle 

(°) 

Hydraulic 

conductivity 

 (m s-1) 

Initial pore 

water pressure 

(m) 

Soil 1 0.5 SM 17 10 33 2.8 e-6 -1 

Soil 2 3.0 CL-ML 18 15 35 1.15 e-6 -1.5 

Soil 3 6.5 SM 19 21 37 1.3 e-5 -2 

*USCS: Unified Soil Classification System  

 50 

The landslide occurred in a 6 m high cut slope, at the bottom of the slope. A water tank of 1000 litres capacity (10 kN m-2) 

was found to be leaking just above the cut slope. Since the leakage rate at the moment of the failure was unknown, a linearly 

increasing leak of 0.5, 1.0 and 1.5 m3 per day was assumed from day 16 until day 31. The Factor of Safety (FS) was then 

calculated for three cases: i) including just the rainfall, ii) including just the leaking tank, and iii) including both. The analysis 

demonstrates how the model predicts failure (FS<1) for the condition where the rainfall is combined with the leaking tank, but 55 

not for rainfall alone.  



3 

 

We want to emulate the above analysis with the new extended version of CHASM for the cases: i) including just rainfall and 

case iii) including both rainfall and the water leakage. With this aim, the analysis entails the following steps: 

1) CHASM is compared to GeoSlope to evaluate how the two models differ in the process representation and input 

factor specification. Some of the input factors not specified in Mendes et al. (2018) but necessary to run CHAMS will 60 

be assumed. 

2) CHASM is run using both the input factors specified in Mendes et al. (2018) and the input factors assumed in step 1. 

The results obtained in this (deterministic) simulation are compared to the results presented in Mendes et al. (2018)  

3) CHASM is run stochastically, where the input factors specified in Mendes et al. (2018) are fixed and the input factors 

assumed are stochastically varied within reasonable ranges. This allows to take into account the uncertainties 65 

introduced by the different input factors specifications. 

1) Comparing CHASM with GeoSlope   

The two models CHASM and GeoSlope present similarities and differences with respect to their process representation and in 

their specification and implementation of the input factors. Both models are based on limit equilibrium method of slices; they 

can represent unsaturated and saturated soil conditions using the Darcy equations; and they allow to define a grid of slip surface 70 

centres to analyse trial slips with different minimum factor of safety. GeoSlope operates on finite elements meshes for 

computing soil stresses with two-dimensional seepage. CHASM employs a forward explicit finite difference method to analyse 

the effective stresses at each computational node, with two dimensional seepage on saturated soil conditions and one 

dimensional seepage on unsaturated soil conditions. Table S2 reports the differences in the governing equations and input 

factors specifications. The input factors not specified in Mendes et al. (2018) but necessary to run CHASM are assumed. These 75 

assumed values are fixed for the deterministic analysis (step 2) and varied within ranges for the stochastic analysis (step 3).  

 

 

 

 80 

 

 

 

 

 85 
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Table S2: differences between GeoSlope and CHASM. The table specifies both the input factors used for the first deterministic 

comparison (step 2) and the space of variability for the input factors in the stochastic analysis (step 3) 

 

2) Deterministic analysis: CHASM predicts lower slope stability than GeoSlope  90 

The slope presented in Mendes et al. (2018) is reproduced in CHASM, maintaining the same geometry, initial hydrological 

conditions, leak rate from the water tank and daily accumulated rainfall specified in the paper (the 31 days prior to the landslide 

occurrence). We use the soil properties reported in Table S1, and Table S2 (column: ‘assumed values for the deterministic 

analysis’). The Factor of Safety (FS) predicted by GeoSlope and CHASM under these conditions, are presented respectively 

in Fig. S1.a and S1.b (for CHASM only case (iii) is shown). Both the models predict an early failure: in GeoSlope, the FS falls 95 

below 1 the 26th day (5 days before the landslide occurrence) while CHASM predicts failure the 21st day (10 days before). 

Furthermore, the FS in CHASM appears to be lower than the FS in GeoSlope throughout the whole simulation time. This 

might indicate that the assumed input factors used in CHASM or/and the different numerical implementation could have led 

to a distinct hydrological and stability response. We therefore use a stochastic framework to perform a back analysis that 

 GeoSlope CHASM Assumed values for the 

deterministic analysis    

Assumed ranges for the 

stochastic analysis  

Initial 

suction 

Assigned per each cell with 

different values per soil 

type 

Assigned only at the top cell 

and interpolated linearly until 

reaching the water table 

(where suction = 0 m) 

-2 m at the top cell U (-5; -0.5) m 

Soil water 

retention 

curves 

Specified by the 

parameters derived from 

lab tests  

Use Van Genuchten model to 

calculate the soil water 

retention curve.  

Hodnett and Tomasella (2002) 

Soil 1 = sandy clay loam  

Soil 2 = silty clay  

Soil 3 = loam  

Varied according to the standard 

deviation suggested by Hodnett 

and Tomasella (2002) * 

Unsaturated 

Hydraulic 

conductivity  

Calculated with Van 

Genuchten interpolation  

Calculated with the Millington-

Quirk equation (Millington and 

Quirk, 1959) 

  

Unit weight  
Only bulk specific weight 

specified  

Need to specify both dry and 

saturated unit weight  

Dry unit weight specified.  

Saturated unit weight = 

(dry unit weight + 2) kN m-3 

Dry unit weight: 

Soil 1 = Soil 2 = Soil 3  

U (12; 24) kN m-3 

Impermeable 

surfaces  

Applied impermeable 

barriers (software available 

option) 

Obtained by decreasing the soil 

permeability of the cells 

occupied by the tank and walls  

10e-13 m s-1 
Ln (-11.654 0.898) m s-1 

Tank leaking   Linearly increasing  
Constant throughout the 

simulation time  

Function modified to reproduce 

the same linear increment in the 

water leakage  

As in the deterministic analysis  

U = Uniform distribution; Ud = Discrete uniform; N = Normal distribution; Ln = Log-normal distribution. 

VG: Van Genuchten parameters for defining suction moisture characteristics curve. 

*Probability distributions assumed: N (Saturated water content – θsat) m3 m-3; Ln (Residual water content – θres) m3m-3; Ln (VG α parameter) m-1; Ln (VG n parameter)  
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explores which combination of input factors allow CHASM to give similar results to GeoSlope, and if this combination is 100 

physically consistent with the observed landslide event. 

 

 

Figure S1: (a) results obtained by Mendes et al. using GeoSlope. (b) Results obtained with CHASM (blue line) in comparison with 

Mendes et al. for the case where rainfall, leakage and load are considered.  105 

3) Stochastic analysis: CHASM presents consistent results with GeoSlope  

To explore what it could have led CHASM to have a different stability response in step 1, the input factors specified in Mendes 

et al. are kept fixed while the input factors assumed are varied within reasonable ranges. The fixed factors are: the slope 

geometry; the tank leakage and load; rain frequency and intensity; and the soil properties of Table S1 and not part of Table S2. 

SWR curves, initial soil suction, soil unit weight and the hydraulic conductivity representing impermeable surfaces are varied 110 

according to the ranges specified in Table S2 (last column). 10 000 different combinations of these input factors are created 

by stochastically sampling from those ranges (for a description of the stochastic method used, refer to the Methodology Section 

of the main manuscript).  

Figure S2 shows the comparison between the simulations obtained with CHASM and with GeoSlope when only rainfall is 

considered. The values of input factors that create an hydrological response not compatible with the initial conditions used in 115 

Mendes et al (2018) are identified through sensitivity analysis (for example, suction values corresponding to levels of water 

table higher than Mendes et al., leading to an early failure – light grey lines in the figure). Only the simulations that do not use 

these values are considered, and they are called “ok simulations”. The best performing 10% CHASM simulations are identified 

by comparing the Root Mean Square Error (RMSE) between the FSs obtained with CHASM (dark grey lines) and the FS 

obtained with GeoSlope (black line). 120 
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Figure S2: Factor of Safety calculated considering only rainfall and load of the tank for both CHASM and GeoSlope ( this latter is 

referred as Mendes et al. 2018, and it corresponds to the orange line in figure S1a). The different FS trends of CHASM (“All” 

“Ok” and “Best 10%” simulations) are obtained using the ranges of S3 in the corresponding colour.  

 125 

Figure S3 shows how the ranges of the varied input factors are differently constrained when obtaining the “ok” and the best 

performing simulations. The bars represent the ranges of the input factors. If the bars reduce in size, part of the values of the 

given range has not been used to create the corresponding response. For example, the best performing simulations never use 

values of initial soil suction equal to -1 m (Fig. S3b). The black horizontal lines represent the values used by Mendes et al. 

2018 (present only for the upper plots). These values are amongst those used to produce the best performing simulations in 130 

CHASM (i.e. they are within the dark grey bars), except for the initial soil suction. CHASM performs best with low saturated 

hydraulic conductivity values when representing impermeable surfaces which is physically consistent (the value used in 

Mendes et al. 2018 is assumed to be equal to 0 m s-1 for impermeable surfaces, Fig. S3d), and with low values of the Van 

Genuchten (VG) parameters defining the SWR curves (saturated moisture content θsat, residual moisture content θres, and 

parameters n, α, Fig. S3c,e,f,g). Low values of the VG parameters correspond to steeper SWR curves, a preferred condition 135 

for the hydrological numerical stability in CHASM. The initial soil suction values used to obtain the best performing 

simulations, ranges between -5 m to -2 m (Fig. S3b). These values are lower than those used in GeoSlope. The difference is 

due by the assumptions governing the initial water content distribution in CHASM, which is determined by the cell resolution 

1x1 m of the slope, and by the suction gradient. In the first time step, the initial suction, defined at the top cells of the slope, 

linearly decreases until reaching the water table. The matric suction for each cell is therefore calculated by dividing the surface 140 

suction into the number of cells above the water table. When the initial suction is low (i.e. closer to 0) and the SWR are smooth 

(i.e. with little changes of saturated water content for different suction values), more cells at the proximity of the water table 

result close to saturation, and the water level can increase up to 5 - 6 meters. High water table heights can intersect the cut 

slope and lead to an early failure (Fig. S1b and the light grey lines in Fig. S2). The uniform suction gradient assumed in 

CHASM is physically unrealistic, but it is used for the initial distribution of water moisture content across cells. The 145 
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hydrological equilibrium is then regulated by the Richard’s equation for unsaturated soil. However, this assumption leads to a 

different initial hydrological condition when compared to GeoSlope. High values of initial suctions are therefore necessary to 

maintain the water table levels in CHASM in the same position simulated in GeoSlope.  

 

 150 

Figure S3: The input factors used in CHASM are varied within the ranges defined in Table 1. The whole ranges are represented in 

this figure as “range all simulations” (light grey bars). These are compared to the ranges of values that produce ok and best 

performing simulations (darker greys). The black horizontal lines reported on the upper plots (a,b,c,d) identify the discrete values 

used by Mendes et al. 2018 in the GeoSlope analysis (see Table 1). Note as in plot (d) the black line is at zero level. 

For the second case the leaking tank is also considered. Other 10 000 simulations are created by sampling from the ranges 155 

previously identified as those producing the best performing simulations. Figure S4a shows the calculated FSs. This time, the 

number of ok simulations differ from the total number of simulations of just 4%. This is because the values of the input factors 

that were not compatible with the assumptions of the model (i.e. initial soil suction set too low) were excluded in the initial 

ranges. Amongst the ok simulations, CHASM predicts slope failures (FS<1) for a variety of different times (from Day 17 to 

Day 31). We want to explore which are the combinations of input factors that produce a most similar response to GeoSlope 160 

(dark grey lines in Fig. S4a, i.e. best 10% performing simulations). The parallel plots in Fig. S4b show the distribution of the 

input factors within their variability range. Ranges are standardised to allow for comparison across the factors. Each line 

corresponds to a simulation. The darker lines identify the combinations of input factors corresponding to the 10% best 

performing simulations and thus to the “correct” timing of the failure. If the dark lines concentrate in a subrange, that factor is 
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influencing the distinction between ok and best performing simulations. This is evident for the VG alpha parameter for the 165 

three soil types, and the hydraulic conductivity of the cells representing the impermeable surfaces (IS). Values of hydraulic 

conductivity close to 0 are consistent with the representation of impermeable surfaces. Low values of alpha correspond to steep 

SWR curves. The other VG parameters counterbalance their effect to obtain the same result (van Genuchten, 1980). For 

example, when the saturated water content of soil 2 is high, the corresponding residual water content is low. Steep SWR curves 

means that the water content of the soil increases slower with the decrease of soil suction. This explains their influence on the 170 

timing of the failure. The values used by Mendes et al. (black dots) are all part of the lines that corresponds to the best 

performing simulations of CHASM and therefore they are values used to create similar responses to GeoSlope. Furthermore, 

with these combinations of input factors, CHASM predicts the same failure position as GeoSlope (not shown). We have 

therefore demonstrated that using the sets of input factors identified as best performing, we can create similar responses to 

GeoSlope, a widely used dynamic slope hydrology and stability software. We use this analysis as an evidence that CHASM 175 

can correctly represent leakages from buried tanks.  

 

Figure S4: a) shows Factor of Safety calculated considering both rainfall and the leaking tank with CHASM and GeoSlope 

(referred as Mendes et al. 2018); b) shows the parallel plots of the ok (lighter grey) and best performing (darker grey) simulations. 

The lines identify how the input factors are distributed within their variability ranges. The black dots are the values used by 180 
Mendes et al. (2018) 

S2 CART performance without auxiliary variables  

Figure S5 shows the percentage of misclassified simulations (i.e. the cross-validation error) for different pruning levels for the 

non-urbanised (a) and the urbanised case (b) when auxiliary variables are not considered. In these cases, the minimum 

validation error is obtained for pruning level 123 and 143 respectively (“absolute minimum”), which correspond to trees with 185 

219 and 269 nodes. The arrows in the figures point to the pruning levels used to construct the CARTs with auxiliary variables 
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(A.V.), shown in Fig. 7a and 7b of the main manuscript. If the auxiliary variables were not considered, the misclassification 

errors at these pruning levels would be respectively 16.7% and 17.6%, instead of 13.4% and 14.4% (as shown in Fig. S8).  

 

 190 

Figure S5: Cross-validation error of the CART for increasing pruning level for non-urbanised (a) and urbanised (b) slopes. The 

cross-validation error is computed by randomly dividing the dataset in 10 subgroups. Ten trees are then constructed by using 9 

subgroups as training set. The excluded subgroup is used to calculate the misclassification error (in percentage). The average value 

of the ten misclassification errors so obtained gives the cross-validation error (at given pruning level). The chosen minimum 

represents the pruning level and corresponding misclassification error to build the CART in Fig. S6; the pruning level used to build 195 
the trees reported in the paper (Fig7 a,b) and the corresponding misclassification error resulted without considering auxiliary 

variables (A.V.) are reported in black. 

Figure S6 shows the CART obtained without considering the auxiliary variables (pruning level 17 and 16% misclassification 

error - “Chosen minimum” in Fig. S5b). The thickest branches of the tree show for which critical thresholds of the input factors, 

the majority of simulated slopes failed (black branch) or did not fail (grey branch). The majority of failed simulations in this 200 

case, occur for values of effective cohesion of layer 1 less than 12.4 kPa, rainfall intensities greater than 32.7 mm h -1, 

thicknesses of layer 1 (residual soil) more than 1.9 m, and rainfall durations greater than 5 h.  

Almeida et al. (2017) showed how cohesion and thickness of layer 1 as well as rainfall intensity and duration interact to 

produce slope failures. Two auxiliary variables were introduced: the ratio between effective cohesion and thickness of layer 1 

and the negative ratio between the logarithm of rainfall intensity and rainfall duration. The misclassification error was similar 205 

(11%) with and without auxiliary variables, but the resulting trees had a much simpler structure. In this analysis, the 

misclassification error decreases of 1.91% (from 17.64% to 15.73% at pruning level 11) when these two auxiliary variables 

are considered.  
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Figure S6: CART tree obtained for urbanised slopes without considering auxiliary variables. Black branches represent the paths 210 
that lead to simulations predicted as failed, while grey branches lead to simulations predicted as stable. The bar under each leaf 

shows the proportion of simulations that resulted as failed (black) or stable (grey) for that leaf. The thickness of the branch is 

proportional to the number of simulations following that path. The pruning level used is 17, with 17.6% simulations misclassified 

(Fig. S5b).  

We introduce a third auxiliary variable: a weighted average of the natural and the cut slope angles (Eq. S7). The weights are 215 

represented by the sensitivity indices reported in Fig. 5 of the paper (w1 = 0.15 for slope angle; w2 = 0.13 for cut slope angle) 

Weighted Slope Angle =
w1∗(Slope angle)+w2∗(Cut slope angle)

w1+w2
  (S7) 

Weighted slope angles consider that slope susceptibility can significantly increase for low natural slope angles but high cut 

slopes angles. We use the sensitivity indexes as weights to reflect that the natural slope angles resulted more influential than 

cut slope angles. An averaged sum of the two input factors would result from equal weights. In this last case, the reduction in 

misclassification error would be 0.3%. When the sensitivity indices are considered as weights, the reduction increases to 1.3% 220 

(from 15.73% found introducing the first two auxiliary variables to 14.4%). The weighted slope angle presented in Eq. (S7) is 

therefore better performing and it is used for the CART analysis. 
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S3 CART pruning  

We use cross-validation to avoid overfitting. Figure S8 shows the percentage of misclassified simulations (i.e. the cross-

validation error) for different pruning levels for the not urbanised and the urbanised case. The minimum validation error is 225 

obtained for pruning level 83 and 69 respectively (“absolute minimum”), which correspond to trees with 145 and 116 nodes. 

We choose much simpler trees with pruning level 9 and 11 (chosen minimum). These correspond to cross-validation error of 

13.4% and 14.4% respectively for the two cases.  

 

 230 

Figure S8: Cross-validation error of the CART for increasing pruning level. The cross-validation error is computed by randomly 

dividing the dataset in 10 subgroups. Ten trees are then constructed by using 9 subgroups as training set. The excluded subgroup 

is used to calculate the misclassification error (in percentage). The average value of the ten misclassification errors so obtained 

gives the cross-validation error (at given pruning level).   

S4 Calculation of the rainfall threshold by multi-objective optimisation  235 

Figure S9 shows the slopes simulated as failed (black) and stable (grey), plotted on log-log axes of associated rainfall intensities 

(I) and durations (D). The plot shows a descending trend according to which landslides are more likely to occur for high-

intensity short-durations rainfall events, and for long-duration low-intensity rainfall events. This relationship is observed in 

landslide inventories and it is widely used to generate rainfall empirical thresholds for landslides prediction and landslide 

warning systems (see Segoni et al., 2018, for a review on the topic). Intensity duration thresholds are the most common type 240 

of thresholds that can be found in literature (Guzzetti et al., 2007), and they identify the intensity-duration combinations below 

which landslides are not expected to occur. Intensity duration thresholds are generally expressed by a power low I = γ Dα 

(Guzzetti et al., 2007) which in logarithmic axis becomes: 

log10(I) = γ − α log10(D)  (S10) 

i.e. a linear equation where γ (the intercept) and α (the slope) are parameters specific to the site considered.  

 245 
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Figure S9: Combinations of rainfall intensities and durations resulted into stable (grey dots) or failed (black dots) slopes, for the 

non-urbanised (a) and urbanised (b) case. The plots show how the recorded landslides follow the typical descending trend found in 

empirical rainfall thresholds. The x and y axis are in logarithmic base 10, but the notation is linear for an easier readability.  

To formalise the threshold that best divide failed from stable slopes, the parameters γ and α of Eq. (S10) need to be evaluated. 250 

Different methods have been suggested to calculate these two parameters (see Table 3 in Segoni et al. 2018). Amongst these, 

statistical methods are widely employed because they provide objective and reproducible results (Brunetti et al., 2010; 

Perruccacci et al. 2012; Staley, 2013; Melillo et al. 2015; Piciullo et al. 2017; Perruccacci et al. 2017; Melillo et al. 2018). 

Frequentist methods showed to give satisfactory results for large datasets and allowed the definition of multiple minimum 

thresholds based on different exceedance levels (Brunetti et al. 2010; Perruccacci et al. 2012; Melillo et al. 2018). This can be 255 

useful in setting different landslide warning levels, each based on different probability of landslides occurrence. However, 

frequentist methods result unsuitable for analysing our synthetic dataset because of the high frequency of slopes failed for high 

intensity and high duration events (which are usually not recorded in reality) would strongly bias the position of the threshold. 

We therefore suggest a new approach that employs: 

- the combinations of rainfall intensity and durations resulted in landslides (black dots in Fig. S9) 260 

- a multi-objective optimisation algorithm for the evaluation of the two parameters γ and α of Eq. (S10). 

The multi-objective optimisation involves minimising or maximising multiple objective functions subjected to a set of 

constrains. In this case, we want to draw a threshold line in the form of Eq. S10 which identifies the space where landslides 

are recorded. This translates into choosing parameters γ and α  of Eq. S10 that satisfy the following two contrasting objectives:  

1) maximise the number of (simulated) failed slopes falling above the threshold line (Fig. S11a) 265 

2) minimise the area above the threshold line (Fig. S11b) 

To constrain the search to realistic values of rainfall intensity and duration, the optimisation only explores values of γ and α 

within upper and lower boundaries specified as: 

γ [−0.5; −2]   (S12a) 

α [0.05; 2]  (S12b) 
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The range of α so defined includes typical slope values of empirical rainfall thresholds (Guzzetti et al., 2007), while the range 

of γ is designed to include all the rainfall intensities simulated. As any multi-objective optimiser, it produces a set of Pareto-270 

optimal solutions that realise different optimal trade-offs of the two objectives. In this case, 13 possible optimal combinations 

of (γ, α) are obtained. We choose the (γ, α) set defining a threshold with 99.9% of failed simulations above it (reported in Fig. 

8a,b of the main manuscript) i.e. a probability of recording landslides below this threshold equal to 0.1%. The method can be 

used to determine thresholds for any exceedance probability level. In this analysis, the multi-objective optimisation was 

performed the “gamultiobj” function of the Matlab Optimisation Toolbox (R2018a). 275 

 

Figure S11: Illustration of the two objectives functions used in the optimisation, for a given threshold line: (a) maximise the 

number of failed slopes above the threshold and (b) minimise the area above the threshold.  
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