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Abstract 

Empirical evidence from the humid tropics shows that informal housing can increase the occurrence of rainfall-triggered 

landslides. However, informal housing is rarely accounted for in landslide hazard assessments at community or larger scales. 10 

We include informal housing influences (vegetation removal, slope cutting, house loading and point water sources) in a slope 

stability analysis. We extend the mechanistic model CHASM (Combined Hydrology and Stability Model) to include leaking 

pipes, septic tanks, and roof gutters. We apply CHASM+ in a region of the humid tropics, using a stochastic framework to 

account for uncertainties related to model parameters and drivers (including climate change). We find slope cutting to be the 

most detrimental construction activity for slope stability and we quantify its influence and those of other destabilising factors. 15 

When informal housing is present, more failures (+85%) are observed in slopes that would otherwise have had low landslide 

susceptibility, and for high intensity, short duration precipitations. As a result, the rainfall threshold for triggering landslides 

is lower when compared to non-urbanised slopes, and comparable to those found empirically for similar urbanised regions. 

Finally, low cost-effective ‘low regrets’ mitigation actions are suggested to tackle the main landslide drivers identified in the 

study area. The proposed methodology and rainfall threshold calculation are suitable for data scarce contexts, i.e. when limited 20 

field measurements or landslide inventories are available. 

1 Introduction 

Global and regional landslide records reveal an increase in rainfall- and human-triggered landslides during the last century, 

mainly in economically developing countries with rapid population growth and urbanisation (Kirschbaum, et al., 2015; Froude 

and Petley, 2018). This increase might be partly due to continuing improvements in landslide recording, but it also indicates 25 

the growing impact of climate and urban pressure on landslide occurrence (Larsen, 2008). Understanding the mutual 

interactions between the natural and urban environment becomes particularly relevant in the humid tropics where high intensity 

and duration rainfall events are the main landslide triggers and urban expansion is poorly regulated (Lumb, 1975; UN-Habitat, 

2015). The natural landslide susceptibility of these regions coupled with the lack of urban planning and regulations can increase 

risk, not only in terms of vulnerability and exposure but also in terms of hazard. 30 

Potential anthropogenic landslide drivers include slope cutting and filling for house and road construction (Sidle and Ziegler, 

2012; Smyth and Royle, 2000), slope degradation with clearance of forested areas (Gerrard and Gardner, 2006; Vanacker et 

al., 2003), and inadequate drainage networks, unplanned redirection of storm runoff and poorly maintained septic systems 

(Diaz, 1992; Anderson et al. 2008). In this paper, we use the term ‘informal housing’ to refer to the combination of these urban 

modifications which influence slope stability by altering its geometry, hydrology and material strength (Figure 1).  35 

However, informal housing is usually neglected or not quantified in landslide hazard assessment at community and larger 

scales. There are two main reasons for this: lack of reporting and the highly localised scale and heterogeneous nature of human 

landslide drivers. A landslide is defined as triggered by human activities when there is a direct (and easily recognisable) 

connection with the failure process (e.g. during mining activities). Landslides of this type are small and often not recorded 
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(Petley, 2012).When considering rainfall triggered-landslides, human landslide drivers are often either not considered or not 40 

distinguished from the natural drivers (SafeLand, 2011). Urban construction activities are localised and even if they contribute 

to land instability, they remain difficult to observe either in situ (e.g. leaking pipes) or via satellite images. For these reasons, 

there are numerous site specific analysis that investigate the influence of urban construction activities for individual slopes 

with known soil and rainfall trigger characteristics (e.g. Preuth et al., 2010; Zhang et al., 2012), but there are few studies that 

explore the influence of informal housing more widely, for different combinations of human landslide drivers, soils, slope 45 

geometry and rainfall triggers. This limits the transferability of the findings from slope to larger scales where less detailed data 

is available.  

Empirical-statistical and heuristic methods have been used in regional studies to link informal housing to the spatial and 

temporal occurrence of landslides. For example, precipitation and landslide records have been analysed in relation to lithology 

and land use change (Alewell and Meusburger, 2008; Gerrard and Gardner, 2006), or in relation to soil type, and type of 50 

settlement (Smyth and Royle, 2000). Here, most of the recorded landslides were found to be associated with poorly regulated 

construction techniques, water management and land degradation. Rainfall thresholds for triggering landslides were observed 

to depend on the proportion of impervious surfaces (Diaz, 1992). However, these analyses did not enable the differentiation 

of the relative role of natural and human landslide drivers precluding the translation of the results into actions at 

slope/engineering scale (Anderson et al., 2013; Maes et al., 2017).  55 

Mechanistic slope hydrology and stability models can be used to represent the landslide drivers for historical, current and 

potential future climate conditions (e.g. Ciabatta et al., 2016; Almeida et al., 2017). If these models included the effect of 

informal housing, the analysis of different combinations of slope, urban and climate properties could lead to assess the relative 

role of natural and urban properties on triggering landslides and to identify the conditions at which urban construction activities 

become most detrimental. This could be a useful information for engineers to prioritise slopes that are currently at risk, to 60 

identify those at higher risk to be impacted in the future, and to deduce appropriate hazard mitigation or preparedness actions. 

The inclusion of informal housing in slope stability analysis could also lead to considerations about the reliability of rainfall 

thresholds for triggering landslides within highly urbanised communities, since they might be underestimating the level of the 

hazard (Mendes et al., 2018). 

However, the use of data intensive mechanistic models can be challenging in data scarce locations, such as in low income 65 

urban settlements. The more complex the model, the more data required to set its parameters and model forcing, and the more 

uncertainties might be introduced into the analysis. Sources of uncertainties can relate to slope and soil properties, urban 

features as well as to a limited understanding of physical processes or future scenarios (epistemic uncertainties) (see Beven et 

al., 2018a, for a review of this issue). Many researchers have assessed the impact of uncertainties related to slope properties 

(e.g. Cho, 2007) and future climate (e.g. Ciabatta et al., 2016) on slope stability at different scales. However, to the best of our 70 

knowledge, there are no analyses that consider both sources of uncertainties when modelling informal housing in landslide 

hazard assessment. Urban construction activities are either considered separately (e.g. slope cutting or pipes leaking) (e.g. El-

Ramly et al., 2006) or the slope properties are varied using discrete conservative values under fixed rainstorm conditions  

(Anderson et al., 2008; Holcombe et al., 2016). This separation might overlook significant changes of the slope’s behaviour 

for combinations of urban constructions activities and/or slope/soil/rainfall properties that have not been considered but are 75 

still likely to occur.  

Almeida et al. (2017) demonstrated how mechanistic landslide models can consider uncertainties due both to poorly defined 

slope properties and to potential future climate changes. The mechanistic model CHASM (Combined Hydrology and Stability 

Model) was used in a Monte Carlo framework and applied in Saint Lucia, in the Eastern Caribbean, where data support is 

limited but landslide hazard is particularly high. The uncertainties in slope and soil properties were characterised through 80 

probability distributions extrapolated from available data and literature, while the rainfall properties were varied uniformly 

across wide ranges, also considering rainfall intensity-duration combinations that were not observed in the past but that might 
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occur in the future. A sample of tens-of-thousands of rainfall events and slopes was stochastically generated from these 

distributions and simulated in CHASM. By this approach the possible effects of climate change were explored widely, instead 

of focusing on one (or a few) climate projection scenarios (such as those provided by downscaled generalised circulation 85 

models) propagated through the modelling chain (Groves and Lempert, 2007; Wilby and Dessai, 2010). This strategy can be 

extended to include the exploration of both feasible climate as well as feasible land use futures (Singh et al., 2014). Statistical 

and data mining algorithms were then used by Almeida et al. (2017) to quantify the relative role of the input factors (and thus 

their uncertainties) on the stability of the simulated slopes as well as to identify critical thresholds in slope properties and 

rainfall drivers likely to lead to slope failure. In this study we extend the work of Almeida et al. (2017) by including informal 90 

housing into such a slope stability analysis. We consider the same location of the humid tropics and the same core model, 

CHASM, but with new functions to represent the mechanistic influences of informal housing. CHASM is a two-dimensional 

model which has a relative low data requirement for a mechanistic model even with the inclusion of the new informal housing 

functions. In addition to the original ability to represent the mechanical and hydrological effects of vegetation and the effects 

of slope cutting and loading, we have added the effects of point water sources resulting from leaking septic tanks, water supply 95 

pipes, and houses without roof gutters. By varying both the natural and urban factors, we aim to identify under which slope 

and climate conditions landslide hazard is significantly increased by the presence of informal housing and how this information 

can be used for deducing landslide mitigation measures Thus, for our humid tropical case study scenario we aim to address 

the following questions: 

1. How can we identify which informal urban housing characteristics are most detrimental to slope stability?  100 

2. How is the rainfall threshold for triggering landslides modified when informal housing is considered?  

3. Which landslide mitigation strategies and practices can be deduced from the analysis for current and potential future 

scenarios of urbanisation and rainfall? 

The proposed methodology is suitable for data scarce contexts, i.e. when not much field measurements or landslide inventories 

are available. If applied in countries with similar natural/climate/urban characteristics (so with similar input space variability) 105 

we might expect similar slope stability responses and thresholds. Conversely, a change in (part of) the input data (or their 

probability distributions) to reflect a different urban landslide context could potentially produce quite different outputs 

(Wagener and Pianosi 2019). 

2. Method 

We want to analyse the relative role of informal housing on slope stability under different natural and climate conditions. The 110 

methodology we introduce here entails the following steps: 

• Choose a model that represents the main instability mechanisms of the case study area. We are interested in 

representing the rainfall-triggered landslides and the informal housing of Saint Lucia (Caribbean). We therefore use 

the mechanistic model CHASM which represents both the hydrology-stability routing, but also vegetation, slope 

cutting, and various forms of water management. 115 

• Define the inputs factors necessary to run the model and their variability space. In our case study, the input factors 

are the parameters defining the slope soil, geometry, urban characteristics, as well as rainfall forcing data. Each input 

factor is assumed to be a random variable and its range of variability is determined by a probability distribution. The 

probability distributions can be defined based on the physical meaning of the input factors, available data and/or 

existing literature. We use information gathered both from fieldwork in Saint Lucia and also from literature. 120 

• Create synthetic combinations of input factors by stochastically sampling from their probability distributions and run 

CHASM to generate an equivalent number of model outputs. We select the minimum Factor of Safety (FoS) and the 

slip surface where the minimum FoS is calculated as summary output variables to analyse. We repeat the stochastic 
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sampling with and without including the urban properties among the input factors, in order to facilitate considerations 

about the role of informal housing on land stability.  125 

• Identify the input factors that most influence slope stability using global sensitivity analysis (Wagener and Pianosi, 

2019). In particular, we use a regional sensitivity analysis approach (RSA, Hornberger and Spear, 1981) to identify 

which input factors are most influential in leading to slope failure. 

• Identify parameters’ thresholds beyond which the slopes become unstable. The threshold of an input factor over/below 

which failure is predicted might depend on the value of the other input factors (e.g. slopes with higher slope angles 130 

require higher soil strength to maintain stability). Machine learning is a set of methods that computers use to 

understand trends from data, also considering their mutual interactions. We use CART (Classification and Regression 

Trees) to develop a set of decision rules that predict for which combination of soil, geometry, urbanisation and rainfall 

input values a particular slope is more likely to fail.  

In the following paragraphs we are going to describe in detail the tools and the data used to implement our analysis on the 135 

island of Saint Lucia. 

2.1 The case study: Saint Lucia, Eastern Caribbean 

Saint Lucia is an Eastern Caribbean island with a humid tropical climate. The main landslide trigger is rainfall, and shallow 

rotational landslides dominate on both steep and shallow slopes (Van Westen, 2016; Anderson and Holcombe, 2013). The 

geology is almost entirely comprised of volcanic bedrock and deep volcanic deposits. Due to the tropical climate, these 140 

volcanic parent materials are subjected to deep weathering, which decreases their strength and increases landslide 

susceptibility. The strata of a typical slope cross section comprise weathered residual soils overlying decomposed rock and 

volcanic bedrock. These three types of strata typically correspond respectively to the weathering Grade V-VI, Grade II-IV and 

Grade I-II, of the Hong Kong Geotechnical Engineering Office weathering grade classification (GEO, 1988). There is a high 

variability in terms of engineering soils, but they can broadly classify as fine grained soils such as silty clays, clayey silts and 145 

sandy clays (DeGraff, 1985).  The combination of tropical climate, steep topography and volcanic geology render the region 

particularly susceptible to rainfall-triggered landslides. Furthermore, landslide risk is increased by informal housing which 

occupy steep slopes and employ unregulated engineering practices (WB/GFDRR 2012, p. 226-235). Various sources of 

information on the slope, soil, rainfall and urban properties of this region are available from previous studies by government 

engineers and planners, the local water company and consultants (e.g. CHARIM, 2015; Mott MacDonald, 2013; Klohn-150 

Crippen, 1995), and from community based projects for the improvement of slope stability with surface water drainage works 

(Anderson and Holcombe, 2013). In this project, estimates of soil strength properties are based on direct shear tests of local 

soils (Anderson and Kemp, 1985; DIWI, 2002; Holcombe, 2006), and secondary data sources on similar volcanic tropical 

residual soils such as those in Hong Kong (Anderson, 1982; Anderson and Howes, 1985). Information about soil type, soil 

depth, type of house construction, cut slope angles and the management of surface runoff and waste water on slopes was based 155 

on community-based mapping and elicitation of local expert knowledge undertaken by Anderson and Holcombe (2013)  who 

co-developed these datasets with residents, government, and local experts.  

2.2 CHASM: a mechanistic model for rainfall-triggered landslides  

CHASM (Combined Hydrology and Stability Model) is a 2-D mechanistic model which analyses dynamic slope hydrology 

and its effect on slope stability over time. A full description of the model can be found in Anderson and Lloyd (1991) and 160 

Wilkinson et al. (2002a,b). Here we briefly describe its hydrology and stability components, whereas the representation of the 

urban properties is detailed in Paragraph 2.3. In CHASM the slope cross section is represented with a regular mesh of columns 

and cells. Hydrological and geotechnical parameters are specified per cell, while the initial hydrological conditions define the 

position of the water table, and the matric suction of the top cell of each column. The dynamic forcing for CHASM is rainfall 
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specified in terms of intensity and duration. For each computational time step (usually 10–60s), a forward explicit finite 165 

difference method is used to solve the Richard’s (1-D, vertical flow) and Darcy’s (2-D flow) equations which regulate 

respectively the unsaturated and saturated groundwater flow. At the end of each simulation hour the resulting soil pore water 

pressures (positive and negative) are used as input for the slope stability analysis which implements a Bishop’s simplified 

circular limit equilibrium method (Bishop, 1955) and uses the coordinates of the slope surface. An automated search algorithm 

identifies the location of the slip surface with the minimum factor of safety, FoS, which is given as output at the end of each 170 

simulated hour. In a validation exercise in Hong Kong, CHASM shown an accuracy of 72.5% (Anderson, 1990) which is 

comparable to the performances of other models used for the stability analysis (e.g.  Formetta et al., 2014). CHASM has been 

employed in Malaysia, Indonesia, Eastern Caribbean, and New Zealand, to propose landslide mitigation measures, as well as 

to identify land instability drivers along roads and in urban and rural areas (Brooks et al., 2004; Lloyd et al., 2001). Almeida 

et al. (2017) used CHASM stochastically in a Monte Carlo framework to account for uncertainties in both slope properties and 175 

future climate scenarios. 

2.3 A new functionality in CHASM: urban point water sources  

The new CHASM+ can now not only represent slope cutting, additional (house and tank) load, and vegetation removal, but 

also the presence or absence of roof gutters on houses and localised water leakages from buried septic tanks and superficial 

water supply pipe networks. Slope cuttings are represented by a corresponding change in slope geometry; additional loads are 180 

simulated by appropriately increasing the unit weight of the soil underneath the loading object (i.e. house and tanks); 

vegetation, which is removed during the urbanisation process, is represented through rainfall interception, evapotranspiration, 

root water uptake, vegetation surcharge, and increased permeability and soil cohesion due to the root network (see Wilkinson 

et al., 2002b). Pipes above ground and buried tanks can be added to the slope, with specified dimensions and leakage rates. 

Pipe leakage is accounted for as additional surface water which infiltrates into the slope according to the infiltration capacity 185 

of the soil. If water exceeds the infiltration capacity of the soil, it is stored as ponding water. If the ponding water exceeds the 

maximum water detention capacity (set at 10 mm), the water excess is removed (no runoff considered). Leakage from tanks is 

added to the water moisture content in the soil cells underneath the tank. Where houses are present, rainfall is intercepted by 

the roof. If roof gutters are not included, the intercepted rainwater is discharged onto the slope cells adjacent to the house, in 

accordance to the roof type (double or single pitch). More details on the new functionality and its benchmarking against another 190 

model are given in the supplementary document that accompanies this paper (S1.1 and S1.2). 

2.4 Definition of the input factors and their probability distributions   

We use thirty input factors to characterise our case study area in CHASM+. These factors fall into the following categories: 

slope profile geometry, soil geotechnical and hydrological properties, urban characteristics, initial hydrological conditions and 

rainfall properties. Table 1 reports the full list of these input factors and the probability distributions that define their range of 195 

variability, while Fig. 4 shows an example of slope derived from a combination of input factors. 

The slope geometric properties consist of the natural slope angle and height, and the material thickness. Slope angles vary 

between 20 and 45 degrees to represent typical scenarios of informal housing on moderate and steep slopes. 45° is considered 

the highest slope angle on which a settlement can be located without some form of engineered slope stabilisation measures. 

The cross-sectional profile is discretised into three parallel layers of materials to represent the typical weathering profile of 200 

volcanic parent material, with a layer of residual soil at the surface (layer 1), underlain by a layer of weathered material (layer 

2), and then unweathered bedrock (layer 3). Ranges of material thickness and geotechnical properties are derived from previous 

field work and lab tests, as described in section 2.1. 
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The height of the water table is defined as an initial hydrological condition. This water table height is varied between 0% and 

90% of the slope height (H in Fig. 4), to account for its variability across the region and for the variability of the initial soil 205 

moisture conditions due to antecedent rainfall events.  

The model is forced with rainfall events which are specified in terms of their duration (in hours) and hourly intensity. The aim 

is to create both rainfall events that have been observed in the past, and rainfall events that might occur in the future (e.g. with 

higher intensity and duration than observed historically). To constrain the rainfall variability space, we use the intensity-

duration-frequency (IDF) relationships derived from a Gumbel analysis of 40-years of daily rainfall data from weather stations 210 

across the island by Klohn-Crippen (1995) (Fig.2). From these IDFs we derive a range of rainfall intensity between 0 and 200 

mm h-1, and a range of rainfall duration between 0 and 72 h. We then sample independently from the two uniform distributions, 

thus obtaining combinations of intensity and duration that might have been observed in the past (light grey area in Fig. 2) or 

not (dark grey area in Fig. 2). Prior to the initiation of the rainfall event we include 168 hours (7 days) of simulation with 

rainfall intensity equal to zero. This ensures a redistribution of water moisture in the unsaturated zone of the slope and allows 215 

hydrological equilibrium with steady state seepage to be established. A further 168 hours of zero rainfall simulation are added 

after the storm in order to consider the ground water response after the rainfall event.  

Informal housing is represented by four urban properties: slope cutting, absence of roof gutters, vegetation removal, and 

leaking pipes and tanks. While the angle of the cut slope is varied according to its probability distribution, the vegetation, roof 

gutters and water leakage are defined as present (option 1 = yes) or absent (option 0 = no) (Fig.3). The cut slope angle is varied 220 

between 39 and 89 degrees with a maximum cut slope height equal to 4m. We represent the maximum number of cut slopes 

that can accommodate a house that is 4m wide (+1m of surrounding space) on a slope that is 70m long. We therefore obtain 

either five or six cut slopes and a corresponding number of houses on each slope depending on the angle of the cut slope. The 

house width and house load (8 kN m-2) are not varied, and correspond to the size and load of informal houses constructed with 

shallow concrete strip or block foundations, wooden walls and sheet-metal roofing that are typically observed in Saint Lucia 225 

(Holcombe et al., 2016). When vegetation is present on the original non-urbanised slope, it is removed on the surface of the 

cuts for the urban scenario. The vegetation properties used represent a tropical forest cover, a sensitive choice for this study 

site (see Holcombe et al. 2016 and online supplementary material, Table S5). These properties are kept fixed throughout the 

sampling, therefore the effect of different types of vegetation on slope stability is not analysed. Both the tank and the pipe 

leakage rate are assumed to be half of 4.2e-6 m3 s-1, which corresponds to the estimated leakage of 15% of the total water supply 230 

for low income households in Saint Lucia (Anderson and Holcombe 2013). When present, the leak is maintained constant 

during the simulation time.  

The input factors that define the discretisation of the model, such as the cell size of 1m x 1m and the computational time step 

of 60 s (both used by CHASM’s dynamic hydrology functions), and the slip search grid location and dimensions, are not 

varied. These values are chosen because they typically ensure numerical stability relating to the mass balance of the moisture 235 

in the domain and thus a minimum number of failed model’s runs. A smaller cell-size would enable a more detailed 

representation of the slope hydrology, but it would require smaller time step to preserve the moisture content mass balance 

and numerical stability. Smaller time steps would result in significantly longer simulation time. The resolution chosen is 

therefore a trade-off between acceptable accuracy and calculation time. The influence of the variation of these two 

discretisation parameters on slope stability is not explored.  240 

2.5 Creation of synthetic combinations of input factors and model simulation 

We use Latin Hypercube sampling (McKay et al. 1979) to generate 10 000 different combinations of the 30 independently 

varying input factors shown in Table 1.  Figure 4 illustrates one example of a slope defined by a single combination of these 

input factors. Due to the randomness of the process, checks are undertaken to ensure that realistic combinations of factors are 

generated; if not, they are discarded (around 70% of the times) and replaced by another randomly generated, feasible 245 
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combination These “feasibility” checks are reported at the footnote of Table 1 (letters a, b, c, d and f). The stochastically 

generated simulations are then run in CHASM+ using the high performance computer BlueCrystal Phase 3 at the University 

of Bristol. The outputs considered for each simulation are the minimum Factor of Safety (FoS) and the slip surface where the 

minimum FoS is calculated. We divide the completed simulations according to whether the minimum FoS is less than 1 (slope 

predicted to have failed, i.e. a landslide) or greater than 1 (slope is predicted stable). We exclude the simulations whether the 250 

slope is predicted failed before the start of the rainfall event, which represent inherently unstable slopes (for example steep 

slopes with deep soil thickness). We repeat the same procedure with and without including the urban properties. We therefore 

obtain two sets of model’s outputs: 10 000 representing urbanised slopes, and 10 000 representing non-urbanised slopes. 

2.6 Regional sensitivity analysis (RSA) and Classification And Regression Trees (CART) 

Global sensitivity analysis is a set of statistical techniques that evaluate how the variations of a model’s outputs can be 255 

attributed to the variations of the model’s input factors. In this case we want to identify which input factors - among geometry, 

soil, hydrology, rainfall and urban properties - have the strongest impact on slope stability. Since in our case the model output 

is binary, as simulated slopes are categorised as failed (if FoS<1) or stable (FoS>1), we use the Regional Sensitivity Analysis 

(RSA) approach (Hornberger and Spear, 1981) which is particularly suitable when dealing with categorical outputs. In the 

RSA approach, the cumulative marginal distribution of each input factor is computed for each output category, i.e.  the stable 260 

slopes and the failed ones. If the distributions significantly separate out, it is taken as evidence that the model output (slope 

stability) is significantly affected by variations of the considered input factor. The level of separation between the cumulative 

distributions can be formally measured with the Kolmorov-Smirnov (KS) statistic and used as sensitivity index. The confidence 

intervals of the sensitivity indexes can be estimated via bootstrap technique. The bootstrap randomly draws N samples (with 

replacement) from the available data, to compute N KS statistics for each input factor. The magnitude of fluctuations of the 265 

KS statistic from one sample to another represents the level of confidence in the estimation of the sensitivity indexes. For this 

application, we use the SAFE toolbox (Pianosi et al. 2015) to perform RSA and to calculate the sensitivity indices and their 

confidence intervals by bootstrapping technique. 

Classification And Regression Tree (CART) analysis is a supervised machine learning method which we use to predict critical 

thresholds in input factors over/below which a particular slope is more likely to fail (Breiman et al., 1984). In this analysis, the 270 

predictor model takes the form of a binary tree. Starting from the whole set of simulations, CART finds the best possible input 

factor (e.g. slope angle rather than rainfall intensity) and the best possible value of that input factor (e.g. slope angle greater or 

less than 30°) that divide the simulations into stable and failed simulations. This process is recursively repeated, creating at 

every split two branches and two (“child”) nodes of the tree. In choosing the best splitter the model seeks to maximise the 

“purity”, i.e. to maximise the number of stable or failed simulations at the two generated nodes. Amongst the different measures 275 

of purity available, we use the Gini purity index defined as: 

1 −  ∑ 𝑝2(𝑖)

𝑚

𝑖=1

  (1) 

where 𝑚 is the number of categories for the output (in this case two: stable or failed) and 𝑝(𝑖) is the fraction of simulations in 

the node belonging to category 𝑖. The Gini purity index is 0 when all the simulations in the considered node belong to the same 

category (a “pure” node, i.e. all stable or failed). The splitting process typically continues until all final leaf nodes show Gini 

purity indices below a chosen threshold. The final nodes express the prediction for the corresponding branch. While a high 280 

number of nodes increases predicting accuracy, it also makes the model more difficult to interpret and generalise to other 

datasets (i.e. the problem of overfitting). A pruning technique can be applied to avoid this overfitting and to identify an 

acceptable trade-off between predictive power and number of nodes. In this analysis, we build a CART within the Matlab 

Statistics and Machine Learning Toolbox (Matlab R2018a), using the K-fold cross-validation to better estimate its predictive 

power. In particular, we use 10-fold cross-validation, which randomly divide the original dataset (10 000 simulations) into 10 285 
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sub-groups. 9 sub-groups are used to construct 10 CARTs, while the remaining sub-group is used to test the CARTs 

performance. The average value of the ten misclassification errors so obtained, represents the cross-validation error which can 

be used to select suitable pruning levels. To reduce the number of nodes without increasing the misclassification errors, 

auxiliary variables can be used to combine correlated input factors. Auxiliary variables can simplify the tree’s structure (by 

using fewer combined input factors) and potentially modify the input space in a way that the division of failed and stable 290 

simulations is more effective (see rotation of the coordinate systems in Dalal et al., 2013). Three auxiliary variables will be 

used in this analysis: the ratio of soil thickness and effective soil cohesion of layer 1; the ratio between rainfall intensity and 

duration introduced (both introduced by Almeida et al. 2017) and a weighted combination of natural and cut slopes angles. 

These variables will be described in the results (CART analysis) section and supplementary material (S2). 

3 Results 295 

In this section we analyse the 10 000x2 outputs generated by CHASM+ for the urbanised and non-urbanised slope scenarios. 

As previously mentioned, we split the simulations into stable and failed according to the value of the minimum FoS 

(respectively greater or less than one). As a first analysis we compare the percentage of failed slopes against stable slopes for 

each of the urban properties. Figure 5 shows that the presence of cut slopes significantly influences the percentage of predicted 

slope failures: the steeper the cut slope angle, the higher the percentage of failed slopes. Vegetation removal and roof gutters 300 

instead have a negligible role in dividing the two sets. Last, septic tanks and leaking pipes have some effect, generating about 

10% more failed slopes when present.  

 

3.1 Regional Sensitivity Analysis 

We then perform RSA on both sets of urbanised and non-urbanised slope simulations, calculating the cumulative marginal 305 

distributions of the failed and stable simulations for each input factor. The maximum distance between the two distributions 

(KS statistic) is computed and used as a sensitivity index. A high value of the sensitivity index suggests that the variation of 

that input factor significantly influences slope stability. The results are shown in Fig. 6, for both urbanised and non-urbanised 

slopes. Figure 6 shows that slope stability is insensitive to many input factors, and highly sensitive to few, namely effective 

cohesion and thickness of the layer 1 (residual soil), slope angle, and rain intensity and duration. These sensitive input factors 310 

represent the main landslide drivers. The sensitivity indices of the urban properties (in orange) are consistent with the findings 

of Fig. 5, where only the variation of cut slope angle influences slope stability. When looking at the comparison between 

urbanised and non-urbanised slopes, it appears that the urban presence decreases the sensitivity indices of all the input factors, 

except for the effective cohesion of layer 1 and the rainfall intensity.  

 315 

We further explore the change in sensitivity caused by urbanisation by plotting the percentage of failed slopes for the main 

landslide drivers (Fig. 7). The figure shows how this percentage varies for the urbanised (black bars and lines) and non-

urbanised cases (green bars and lines). In general, urbanised slopes produce more failures than non-urbanised slopes though 

they both display similar trends: an increased percentage of predicted landslides when we would expect the slope to become 

more susceptible (e.g. when slope angles are higher) or the trigger more severe (when rainfall intensity and duration are larger). 320 

For example, in Fig. 7b the percentage of failed slopes in the non-urbanised case, linearly increases from ~5% (for soil 

thickness 1–2m) to ~50% (thickness of 5–6m). In the same figure, urbanised slopes show higher failure rates for all values, 

though the greatest increase occurs for soil thicknesses less than 4 metres (up to +46% for category 2–3m). This means that 

the most significant increase in number of landslides occurs for thin soil thicknesses, i.e. on slopes less susceptible to failure 

when non-urbanised. The same can be said for slope angles less than 25 degrees and rainfall duration less than 10 hours, where 325 

percentages of slope failures passes from less than 15% to more than 40% when urbanisation is introduced (Fig 7 a,c). In the 
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lower plots instead, more urban landslides are observed on slopes that show high percentage of failures also when urbanisation 

is not present (+43% for low values of soil cohesion, Fig. 7d; +35%, for high rainfall intensities Fig. 7e).The difference in 

failure rates with variations of input factors also explains the change in sensitivity found in Fig. 6: when urbanised, slope’s 

response varies less (less sensitive) to variations of the input factors in the upper plots (whose sensitivity indices gets smaller), 330 

and more (more sensitive) to variations of the input factors of the lower plots (whose sensitivity indices gets larger).  

 

 3.2 CART analysis  

We use the CART analysis to formalise the critical thresholds of input factors above/below which slopes are most likely to be 

predicted as stable or failed. Figure 8 represents the two trees for the non-urbanised (a) and urbanised case (b). As expected, 335 

the best predictor selected in CART are the same input factors previously identified as most influential (Fig. 6). The boxes 

with double colour represent the auxiliary variables that combine correlated input factors: the ratio between effective cohesion 

and thickness of layer 1 to account their counterbalancing effect on slope stability (i.e. slope with more cohesive soil can be 

thicker without experiencing failure); the negative ratio between the logarithm of rainfall intensity and rainfall duration, which 

represent the slope of the rainfall threshold for triggering landslides; and the weighted average of the natural and the cut slope 340 

angles, to account that slope susceptibility can significantly increase for low natural slope angles but high cut slopes angles 

(see Section 2 of the supplementary document for details about the auxiliary variables and the change in model’s performance 

when they are not considered). Using these few predictors, both trees correctly classify more than 85% of the simulations as 

stable or failed (details about the pruning in Section 3 of the supplementary document). Each branch of the tree shows the 

paths and thresholds of input factors that lead to slopes most likely to fail (black branch), or most likely to not fail (grey 345 

branch). At the end of each branch the black/grey bar shows the fraction of failed and stable simulations, while the thickness 

of the branch is proportional to the number of simulations following that path. For example, in the tree resulting from non-

urbanised slopes (left hand side), the thickest grey line shows that more than 50% of simulated slopes resulted stable 91.2% 

of the times for ratios of cohesion/thickness of layer 1 greater than 2.5 kPa m-1. The thick black branch instead shows that the 

greatest proportion of simulations predicted as failed occurred for ratios of cohesion/thickness of layer 1 less than 2.5 kPa m-350 

1, rainfall intensity duration ratios (-log(I)/log(D)) greater than 0.9 m h-2 and slope angles greater than 25 degrees.  

In the trees resulting from non-urbanised slopes (right hand side), the black branch leading to the majority of failures is similar 

to the non-urbanised tree, but it presents higher splitting thresholds: from the top, the split happens for ratios of 

cohesion/thickness of layer 1 less than 4.9 (instead of 2.5) and for rainfall intensity/duration ratio 1.06 (instead of 0.9). The 

branch then leads to the majority of failures for values of effective cohesion of layer 1 less than 12.6 kPa, regardless of the 355 

natural slope angle. Higher threshold in cohesion/thickness ratios indicates that when urbanisation is present, more failures 

occur on slopes with higher soil cohesion and/or thinner soil layers than non-urbanised slopes (compatible with Fig. 7b and 

7d), while higher rainfall intensity duration ratios suggest that more failures occur for higher rainfall intensity and/or lower 

rainfall durations when compared to non-urbanised slopes (as shown in Fig. 7c and 7e). Finally, going back to the top and 

looking at the grey thick branch of the urbanised tree, it can be noted that a ratio between the effective cohesion and the 360 

thickness of layer 1 greater than 4.9 ensured 95% of slope stability only when the weighted slope angle is less than 48 degrees.  

4 Discussion 

4.1 Slope cutting is the urban construction activity most detrimental for slope stability  

 In this analysis, slope cutting is the urban construction activity with the strongest effect on slope stability’s response (Fig.5 

and Fig.6). Figure 7 indicates that when urbanisation is present, more slopes failures are observed, mainly on slopes with 365 

relatively low slope angles, and with low values of both soil (layer 1) thickness and  cohesion (Fig. 7b,d, also reflected by 
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higher effective cohesion/ thickness ratios in CART in Fig.8b). This is interpreted as caused by cut slopes: when cut slope 

angles are steep, a higher effective cohesion, and thus a higher soil strength, is required to maintain stability, regardless the 

natural slope angles; when soil layers intersect the cuts, low soil strength is not sufficient to ensure slope stability even on thin, 

therefore less landslide-prone, soil layers. The interaction between the depth of soil layer 1 and the cut slope geometry is 370 

deduced from Fig.7b: almost 50% more failures are observed for a thickness of layer 1 smaller than the slope’s height (4 m), 

i.e. when the interface of soil (layer 1) and weathered material (layer 2) outcrops in the cut slope face (as illustrated in Fig. 4). 

For these slopes, visual inspection reveals that the slip surface is generally located between layer 1 (residual soil, weathering 

grade V – VI) and layer 2 (weathered material, grade III – IV). This is explained by the different soil strength of the two layers, 

which constrains the slip surface within the weaker layer 1, and the different hydraulic conductivities. As rainfall infiltrates, 375 

the lower hydraulic conductivity of the underlying weathered material leads to a progressive accumulation of water, promoting 

a perched water table. The raised pore water pressure decreases the effective soil strength and consequently the stability of the 

soil layer. Part of the increase in pore water pressure might be caused by the presence of water leakages at the top of the cut 

slope. However, the low sensitivity of the slope response to leakage (Fig. 6) does not allow for more considerations. 

Slope cutting is therefore considered, in this analysis, the most detrimental practice for slope stability. This result is consistent 380 

with  studies carried out in the humid tropics at regional scales, for  which slope cutting was identified as one of the major 

cause of landslides (e.g. Brand et al., 1984; Froude and Petley, 2018; Holcombe et al., 2016). Cuts with slope angles greater 

than 60° are also considered at particular high risk (e.g. Cheng, 2009), while excess of pore water pressure was shown to be a 

dominant process in triggering shallow failures on cut slopes (Anderson, 1983). CHASM therefore successfully captures these 

physical mechanisms, confirming, despite the uncertainties, the governing role of soil properties and soil thickness in 385 

determining slope equilibrium. The other urban construction activities considered, seem to have a less significant role on 

landslide hazard. Previous studies found that vegetation can be both beneficial and detrimental for slope stability (Wu et al. 

1979; Collison and Anderson, 1996). Here we find that its effect is negligible, probably due to its limited presence in urbanised 

slopes (trees are left at the crest of each cut slope where they add loading and may actually be detrimental to the local cut slope 

stability). Also, adding roof gutters does not seem to decrease the number of slopes failed. However, in the scenarios generated 390 

here we have only reached a maximum of 30% slope coverage by houses, i.e. about 30% of impervious surface (5–6 households 

on 70 metres slope), due to our inclusion of cut slopes for every house. Evidence shows that roof guttering effectiveness 

become evident only when the house coverage is above 50%, and thus a considerable portion of rain does not infiltrate into 

the slope (Anderson and Holcombe, 2013). On the other hand, leak from septic tanks and pipes lead to 10% more failures 

despite the low house coverage. When higher house densities are considered, the lack of water management might become 395 

even more significant (Di Martire et al., 2012). 

4.2 The rainfall threshold for triggering landslides is lower when informal housing is included  

We found that when slopes are urbanised, the most significant increase in the percentage of slopes failed occurs for rainstorm 

events with high intensity (>20mm h-1) and low duration (<20 h) (Fig. 7c and 7e). Accordingly, our CART analysis identifies 

a higher threshold of rainfall intensity-duration ratio to divide the stable and failed slopes in the urbanised case (Fig. 8b). In 400 

landslide analysis, so-called minimum rainfall thresholds are defined as the combinations of rainfall intensity (I) and duration 

(D) above which we would expect landslides starting to occur. These thresholds are generally expressed by a power law 

relationship I = γDα (Guzzetti et al. 2007), and they are constructed based on inventories of observed landslides and the rainfall 

that triggered them (e.g. Caine, 1980; Larsen and Simon, 1993; Guzzetti et al., 2007). Many countries in the humid tropics 

have limited empirical data on landslides, and therefore it would be useful to be able to generate such thresholds from stochastic 405 

analyses of the type we performed here. To demonstrate how this could be done, we applied a multi-objective optimisation 

method to our sample of stochastically generated slopes (details about our approach in Section 4 of the supplementary 

document). We do not use the more commonly employed frequentist methods (Brunetti et al., 2010; Melillo et al., 2018), 
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because the high frequency of slopes failed for high intensity and high duration events would strongly bias the position of the 

threshold. Figure 9a and 9b show the calculated thresholds on a log-log scale, respectively for the urbanised and not urbanised 410 

case (red lines). In both cases, 99.9% of the failed simulations fall above them. The thresholds present the typical descending 

trend found in empirical analysis, for which lower rainfall intensities are needed to trigger a landslide when rainfall durations 

increase. The fact that this trend can be replicated by our synthetic simulations indicates that CHASM+ and our stochastic 

modelling framework are giving realistic hydrological and stability responses to the rainfall forcing.  

The higher the intensity and/or the duration of the rainfall event, the more slope failures occur in both cases. However, when 415 

informal housing is present, more failures are observed for rainfall duration less than 10 hours (short events - Larsen and 

Simon, 1993). This pushes down the intercept of the rainfall threshold, as reflected in the change in the coefficients of the 

power law equations (reported in each figure). The slope of the threshold line (i.e. the exponent of the power law) is also 

steeper in the urbanised case, implying the presence of more failures for lower rainfall intensities throughout the duration axis. 

These results are compatible with the increase of small scale landslides previously commented (failure depths less than cut 420 

slope’s height): to reach saturation at shallow depths, relatively low rainfall intensities and durations can be sufficient to initiate 

slope failure. Figure 9c confirms this assumption: when slopes are urbanised (black dots), failures tend to occur with smaller 

radius of slip surface and for higher values of intensity/duration ratio. The findings reflect the empirical evidence in low income 

communities which report a high frequency of small scale landslides, particularly associated with cut slopes, for high intensity 

and short duration events (‘the everyday disasters’- Bull-Kamanga et al., 2003). Finally, we compare our results with the 425 

empirical rainfall threshold proposed by Larsen and Simon (1993) for Puerto Rico, which is based on landslide inventories 

that also include failures observed on slopes modified by construction activities (mainly slope cuts for road network, see Larsen 

and Parks, 1997). When informal urbanisation is considered, the two thresholds are almost overlapping (Fig. 9b). This 

reinforces both the potential of using mechanistic models within a stochastic framework to generate synthetic thresholds in 

data scarce locations, and the possibility to use the resulting thresholds for regions of the humid tropics with similar 430 

geophysical, climatic and urban properties.  

4.3 Guidelines for landslide mitigation actions to tackle the main instability drivers   

The identification of the main instability drivers and their thresholds can contribute to create objective rules to classify slopes 

as hazardous in a region with scarce data availability. For example, in Saint Lucia our analysis suggests that slopes with 

effective cohesion of layer 1 less than 12kPa and thickness less than 2.5m are particularly at risk for rainfall events with 435 

intensity/duration ratio greater than 1.06 m h-2 (Fig. 8b). These rules can shape look up tables or priority ranking to classify 

man made slopes as dangerous (Anderson and Lloyd, 1991; Cheng, 2009). Figure 6 shows that only few input factors 

particularly influence slope stability with or without urbanisation. These are effective cohesion and thickness of the layer 1 

(residual soil), natural slope angles, and rain intensity and duration. The crucial role of these factors in regulating slope stability 

is broadly recognised (Guzzetti et al., 2007; van Westen et al., 2006). The results presented here demonstrate how the influence 440 

of these instability drivers can be ranked and quantified. The other input factors might have a smaller direct or indirect effect, 

but they are not dominant. This is an expected finding in global sensitivity analysis (Wagener and Pianosi 2019), despite 

different outputs (e.g. the timing of the failure) might be sensitive to different input factors (e.g. variations in the moisture 

suction curves, as demonstrated in the supplementary material S1.2). The identification of these main landslide drivers helps 

addressing data acquisition efforts, while the comparison between urbanised and not urbanised simulations quantifies the 445 

different relative role (e.g. weight) of preparatory factors in landslide susceptibility assessment when informal urbanisation is 

present. For example, a weighted average of natural and cut slope angle can be used to identify areas (not) at risk.  

All the results presented are subjected to the assumptions made in our study. The large variation of some of the input factors 

can lead to overestimating the hazard. Almeida et al. (2017), for example, varied the slope angles between 27 and 30 degrees 

(instead of between 20 and 45 degrees), and hence found a lower value of the cohesion/thickness ratio to separate stable and 450 
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failed slopes than we found (in the non-urbanised case). Data acquisition can help to reduce these uncertainties. However, 

when data are not available, our approach allows for the identification of so called ‘low regrets’ mitigation measures, i.e. 

actions that have a positive impact on slope stability regardless of the uncertain factors. According to our analysis, the most 

effective action would be avoiding slope cutting, since it resulted as the most detrimental urban construction activity for slope 

stability. However, this is of scarce utility since informal housing often outstrips urban regulations (Fekade, 2000). Better 455 

hazard awareness and construction practices should be therefore suggested. These include for example reducing surface water 

infiltration on slopes, especially when the topsoil layers intersect the cut slope and the resulting perched water tables reduce 

shear strength in a critical location. Slope surface and subsurface drainage can be designed to reduce the infiltration of rainwater 

to a level that, in effect, reduces the total rainfall intensity below the rainfall threshold calculated. Another cost-effective 

landslide mitigation strategy can be the planting of deep rooting grasses, shrubs or small trees which increases slope strength 460 

(e.g. soil cohesion) in the top couple of metres of soil and also reduces soil moisture content though root-water uptake and 

evapotranspiration (Holcombe et al., 2016; Ng et al., 2011; Wilkinson et al., 2002). 

Finally, Fig. 9b shows that when slopes are urbanised, high intensity, short duration rainfall events lead to an increased number 

of small-scale landslides (failure depths less than 4m, Fig. 7b and radius of slip failure less than 10m, Fig. 9c). Future climate 

change could potentially increase the frequency of intense precipitation events (e.g. O’Gorman and Schneider, 2009), and 465 

therefore the occurrence of these type of landslides in informal communities. However, if small scale failures produced by 

anthropogenic factors are neglected in the calculation of rainfall thresholds, also current rainstorms events could be excluded 

as triggering factors (Crozier, 2010; Mendes et al., 2018). Small scale, high frequency landslide events might not lead to major 

disasters, but they are increasingly seen as indicators of risk accumulation, detrimental for disaster resilience and economic 

development (Bull-Kamanga et al., 2003). For this reason, these types of landslides deserve a greater attention from the 470 

scientific community. 

5. Conclusions  

We include informal housing into slope stability analysis using a newly extended version of the mechanistic model CHASM 

in a Monte Carlo framework. In this way, we consider uncertainties due to both poorly known slope properties and potential 

future changes in urban and climate conditions. We demonstrate that informal housing increases landslide hazard and that 475 

slope cutting is the most detrimental construction activity, when compared to vegetation removal, lack of roof gutters and 

presence of water leaks. The presence of informal housing also modifies the relative role that natural slope angle, soil cohesion 

and soil thickness have in maintaining slopes stable, with increased hazard occurrence for low values of these three main 

landslide drivers. CART analysis identifies the thresholds of input factors separating stable and unstable slopes. These 

thresholds can be used as objective criteria for guiding local engineers in identifying slopes at risk, deducing landslide 480 

mitigation actions, as well as targeting data acquisition to reduce model prediction uncertainty. Moreover, this analysis allows 

for the estimation of critical rainfall thresholds at which slope failure is predicted to occur. This rainfall threshold is lower 

when informal housing is present, with an increased number of small scale landslides (+85%, with failure depth less than 4m 

and radius of slip surface less than 10m) for high intensity and short duration events. The rainfall threshold resulting from the 

urbanised slopes is comparable to the one proposed by Larsen and Simon (1993) for the region of Puerto Rico, suggesting its 485 

potential validity also for other similar (data scarce) regions of the humid tropics.  

Future work will seek to vary the properties that were kept constant in this study, such as the degree of urbanisation and house 

dimensions, to evaluate their significance for slope stability. This might confirm the importance of household water 

management such as roof-guttering, leaking water supply pipes and septic tanks when the number of households is increased. 

Analysis of slopes where slope cutting is replaced by other possible construction techniques (such as houses suspended on pile 490 

foundations) can identify whether the construction of future hillside settlements could be done in a manner less detrimental to 
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slope stability. Different bioengineering techniques to mitigate hazard likelihood could also be modelled and their effectiveness 

evaluated. Finally, we seek to transfer the thresholds found in our CART analysis into spatial scale susceptibility maps in order 

to identify slopes at higher risk within low income urban settlements. This would confirm whether the areas suggested to be 

most hazardous correspond to areas where more landslides have been observed.  495 
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Table 1: Input factors of CHASM and their probability distributions 

Parameter Symbol/Unit Range values  

Slope geometric properties:      Layer 1 * Layer 2 * Layer 3 * 

Slope angle δ [degrees] U (20,45)    
Thickness of layer H [m]  U (1,6) U (1,6)  

Soil properties:        

Effective cohesion a c [kPa]  Ln (2.3688, 0.5698) Ln (3.4121, 0.5774) 80 

Effective friction angle b φ [degrees]  Ln (3.2937, 0.2092) Ln (3.1559, 0.3251) 60 

Dry unit weight c γd [kN m-3]  U (16,18) U (18, 20) 23 

Saturated moisture content d VG θsat [m3 m-3]   N (0.413, 0.074) N (0.413, 0.074) N (0.413, 0.074) 

Residual moisture content d VG θres [m3 m-3]   Ln (-1.974, 0.376) Ln (-1.974, 0.376) Ln (-1.974, 0.376) 

VG alpha parameter d VG α [m-1]  Ln (1.264, 1.076) Ln (1.264, 1.076) Ln (1.264, 1.076) 

VG n parameters d VG n  Ln (0.364, 0.358) Ln (0.364, 0.358) Ln (0.364, 0.358) 

Saturated Hydraulic Conductivity Ksat [m s-1]  Ln (-11.055, 0.373) Ln (-13.357, 0.373) 1xe-8 

Initial hydrological condition       

Water table height e DWT [%] U (0,90)    

Rainfall properties       

Rain intensity  I [m h-1] U (0 0.2)    
Rain duration  D [h]  Ud (1 72)       

Urban properties:           

Cut slope angle f β [degrees] N (65.18, 12.61)     
Roof gutters g - Ud (0 1)    
Vegetation h - Ud (0 1)       

Septic tank and Pipe leak i Qt/p [m3 s-1] Ud (0 1)    
 

U = Uniform distribution; Ud = Discrete uniform; N = Normal distribution; Ln = Log-normal distribution. 

*Layer 1: Residual Soil, Weathering Grade V-VI; Layer2: Weathered material Grade III–IV; Layer3: bedrock Grade I–II; Weathering grades defined according to GEO (1988). 
a 

Effective cohesion > 0. Effective cohesion c (layer 3) > c (layer 2)> c (layer 3). 

b 
Effective friction angle > 0. Effective friction angle φ (layer 3) > φ (layer 2)> φ (layer 3). φ < 90 degrees 

c 
γs =γd +2, where γs is the saturated unit weight. γd (layer 3) > γd (layer 2) > γd (layer 1) 

d 
Values from Hodnett and Tomasella (2002) for Sandy Clay Loam material. We impose n > 1; θsat > θres; θres > 0. 

VG: Van Genuchten parameters for defining suction moisture characteristics curve. 
e
 Water table height is defined as a percentage of slope height measured to the toe of the slope. 

f 
Slope of the cut forced to be between 39 and 89 degrees, and it is always greater than natural slope angle  

g 
0 stands for house without rain gutters; 1 stands for house with rain gutters. Roof type = double pitch  

h
 Vegetation presence: 0 no vegetation; 1 insert vegetation in the spare spaces. 

i 
The leak of the septic tank is equal to the leak of the pipe. When 0 is selected there is no leak, whilst with 1 there are both. The leak rate is constant and equal to 4.2e-6 m3 s-1 
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Figure 1: Examples of informal housing affecting land stability. The image (a) and (b) show examples of unsupported cut slopes, 

respectively in Saint Lucia (Caribbean) and Dumsi Pakha (Kalimpong, India). The image (c) shows the effect of lack of water 720 
management in an informal community of Saint Lucia (Caribbean). From the blog AGU landslides: 

https://blogs.agu.org/landslideblog/2016/03/14/managing-urban-landslides-1/  and the community based project Mossaic (Anderson 

and Holcombe, 2013) 
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Figure 2: Rainfall intensity–duration–frequency (IDF) curves for Saint Lucia developed by Klohn-Crippen (1995) using Gumbel 730 
analysis of 40 years of daily rainfall data from 15 rainfall gauges. The light grey section includes rainfall events from observed data 

(below IDF curves); the dark grey section represents combinations of rainfall intensity-duration not recorded in the past but that 

might occur in the future (above IDF curves).  
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Figure 3: Urban properties of informal housing included in the slope stability analysis. Each house corresponds to a cut on the slope. 

Cut slope angle varies according to its probability distribution, defined in Table 1. Vegetation, roof gutters, leaking tanks/pipes are 745 
stochastically inserted or not. The house on the cut slope is always present and its load is not varied. The height of the cut slope 

varies relatively to the cut slope angle, but it is forced to be maximum 4 metres 
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Figure 4: Example of slope generated by stochastically sampling from the ranges of input factors specified in Table 1. H is the slope 

height resulting from the fixed slope length and varying slope angles. The dimensions of the slip circle search grid are fixed, with 

initial height of 20 m, and width equal to the slope length. The grid extends downslope parallel to the slope as shown.  755 
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 760 

Figure 5: Percentage of predicted stable and failed slopes per each urban property. An urban property will be influencing slope 

stability if the percentage of the predicted failures changes with the variation of that urban property.  
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Figure 6: Sensitivity index for each input factor in the urbanised (full colour) and not urbanised (pale colour) cases. The bars 

correspond to the mean value of sensitivity for each input factor calculated with bootstrapping, while the black vertical lines at the 770 
top of the bars represent the confidence interval (Number of bootstrap resampling  N = 100; significance level for the confidence 

intervals 0.05). 
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Figure 7: Percentage of slope failures for urbanised and non-urbanised slopes for different categories of input factors. Throughout, 

urbanised slopes show higher failure rates than non-urbanised slopes. In the upper plots (a), (b), (c), the distribution of failure rates 

for urbanised slopes are more uniform for variations of input factors than the non-urbanised case, while in the lower plots (d), (c) it 780 
is more pronounced. The upper plots represent the input factors whose sensitivity indexes are smaller when urbanisation is 

introduced in Fig. 6, while the lower plots show the input factors whose sensitivity gets smaller when urbanisation is introduced in 

Fig. 6 

 

 785 

 

 

 

Figure 8: Classification tree of slope response for non-urbanised slopes (a) and urbanised slopes (b). Black branches represent the 

paths that lead to simulations predicted as failed, while grey branches lead to simulations predicted as stable. The bar under each 790 
leaf shows the proportion of simulations that resulted as failed (black) or stable (grey) for that leaf. The thickness of the branch is 

proportional to the number of simulations following that path. Note as 14% and 22% of the simulated slopes have been excluded 

respectively for the non-urbanised and urbanised case, because failed before the start of the precipitation.  

Pale: non-urbanised slopes 
Full: urbanised slopes 
 



23 

 

 

 795 

 

 

 

 

Figure 9: In figure (a) and (b) the red line represent the minimum rainfall thresholds calculated from our stochastic sample 800 
(99.9% of the failed slopes in the sample are above the thresholds). Figure (c) represents the radius of the slip surfaces of the 

recorded landslides plotted against the corresponding triggering rainfall intensity/duration ratio. Note as in (a) and (b) the x and y 

axis are in logarithmic base 10 scale, but the notation is linear for an easier readibility. 

 

 805 

 

 

 

 


