
Response to Referee 1 

We would like to thank the referee for the time and effort put into reviewing the manuscript. This 
response (R) carefully addresses all the comments (C). Where applicable, changes are proposed to the 
manuscript accordingly. 

C: In this paper the Authors analyzed the possible contribution of using Open Street Map (OSM) data 
for enhancing the predictive performance and transferability in space of multi-variable flood damage 
models for the residential sector. To this purpose, they built a data-set by combining empirical 
observations from historical flood events in Germany and data derived from OSM, with the latter 
essentially related to building footprint geometry. Random forest regression models (RFM) were then 
learned on this data-set using regional sub-sets and were tested for predicting flood losses in other 
regions. The manuscript is overall well written and presented and the topic perfectly fits the scope of 
NHESS, following the path of similar papers published in the Journal in recent years. 

R: We thank the reviewer for this basically positive evaluation.

C: However, in my opinion, the study suffers from a main methodological criticality, i.e. the 
representativity of the new additional parameters in correctly characterizing the building vulnerability 
to floods. Indeed, the nine selected parameters derived from OSM used for learning RFM were only 
related to the shape and extension of the building footprint area (with an obvious high correlation 
among them), neglecting instead other fundamental vulnerability variables, e.g. building material and 
type, presence of a basement, etc. As it is well known and understandable, footprint geometry has a 
high influence in determining flood losses; however, as shown in previous studies, the observed 
damage variability depends on many (hazard and) vulnerability factors, which should not be neglected 
for a comprehensive modelling of flood damages. 

R: We agree with the reviewer that building vulnerability is determined by diverse influencing factors 
and acknowledge that understanding how building vulnerability can be correctly characterized implies 
valid and relevant research questions.
However, the generic research question of our study is on assessing how new promising data sources 
like volunteered geographic information and open data can help to tackle challenges in natural hazard 
research. Specifically, we focus on OpenStreetMap as a potential data source for flood vulnerability 
modeling in its current state. We focus on OpenStreetMap, since it is the most comprehensive open 
data containing building footprints of good quality. With this in mind, we do not aim to characterize 
building vulnerability as comprehensively as possible, but rather to see what is possible in terms of 
building flood vulnerability modeling with the available OpenStreetMap data. This knowledge will 
support future studies on building flood vulnerability which may investigate additional building 
characteristics and also the usefulness of other data sources. 
To make this dedicated focus clearer we suggest to change the title into: ‘Are OpenStreetMap building 
data useful for flood vulnerability modelling?’. In addition we will make changes to the abstract, the 
introduction, discussion and conclusions as detailed in the following responses..

C: This becomes even more important when we consider the problem of the spatial transferability of 
empirical damage models. For instance, we may have two regions which have similar characteristics 
in terms of footprint geometry, but very different construction types: in this case, an OSM-based multi-
variable model would be totally unreliable. For this reason, the main question that the Authors asked 



in the title “Are new open building data useful for flood vulnerability modelling?” is a bit pretentious, 
given that the answer is quite obvious if they limit their analysis on including only the nine additional
variables listed in Table 2. 

R: As said in the answer to the previous comment we will adjust the title to make the focus on the 
research objective of this study clearer. The suggested title also fits better to our research hypothesis 
P3L26-27. In addition we will state research objective i) more precisely: ‘understand which building 
geometry variables are useful to describe building vulnerability’. (p3L29)

C: For the same reason, also the results shown in Section 4 are expected; moreover, these indicated 
that the consideration of all the new footprint parameters does not actually greatly improve model 
performances (Table 4). Also the variable importance shown in Figure 5 is only partly informative: it 
basically says that water depth is more important than building shape and extension, but this is already
known (and also shown in similar studies, e.g. Wagenaar et al. 2017, Amadio et al. 2019, both 
published in NHESS). 

R: Figure 5 represents the outcomes of an intermediate step of our data analyses workflow. The purpose
for the assessment of variable importance is to get a basic understanding of the suitability of individual 
predictors in a highly correlated data set. In this regard the assessment of variable importance adds to 
the correlation analyses, but (we agree with reviewer) it does not reveal fundamentally new findings. 
We suggest to remove this figure from the manuscript and refer to the results of the assessment of 
variable importance in the text P13.

C: The Authors are right in saying that information on building attributes in the OSM database are 
scarce and not useful for the kind of analysis they performed in their study. However, they could have 
exploited other public databases existing in Germany (e.g. cadastral, city planning maps, etc.) for 
building a more complete data-set. Therefore, I would suggest to the Authors to consider this 
possibility and repeat the same analysis in order to have more interesting results for improving our 
knowledge on flood damage modelling.

R: We fully agree that this would be an interesting research but it is beyond the scope of this study. We 
mention this perspective in our conclusions P21L9-10.

Specific comments: 

C: P1.L13-15 and L16-18: based on previous general comments, I find these sentences potentially 
dangerous.

R: We will add further details to the abstract to better frame these statements to the context of this study
and emphasize requirements for spatial model transfer. We suggest to rephrase as follows: 
This regional split-sample validation approach reveals that the predictive performance of models based 
on OpenStreetMap building geometry data is comparable to alternative multi-variable models, which 
use comprehensive and detailed information about preparedness, socio-economic status and other 
aspects of residential building vulnerability. Still, the transfer of these models to other regions should 
include a test of model performance using independent local flood loss data.



C: P1.L17: what do you mean with “consistent”?

R: We use the word consistent with the meaning that something is accordant or compatible, i.e. 
adhering to the same definitions. With respect to OSM data this implies that the model variables and 
underlying data are based on the same data model, have the same definition, format, unit, etc.

C: P3.L14-16 and L29-30: you said that one of the main aims of the paper is to understand which 
building variables are useful to characterize building vulnerability, but you actually investigated only 
footprint-related indicators, which only capture part of the overall building vulnerability.

R: As said in the above responses, the focus of this study is on the use of OpenStreetMap data in its 
current status for flood vulnerability modeling. To make this dedicated focus clearer we suggest to 
change the title into: ‘Are OpenStreetMap building data useful for flood vulnerability modelling?’, and 
will state research objective i) more precisely: ‘understand which building geometry variables are 
useful to describe building vulnerability’. (P3L29)

C: P3.L32: typo “modelsi”.

R: will be corrected

C: Figure 2. Acronyms shown in the figure are defined in the text of the paper, but it would be better to 
report them also in the figure caption.

R: We will adjust the figure caption to include the abbreviations: 
‘Fig. 2: Data pre-processing, model learning and model transfer workflow, with BMu (upper 
benchmark model), BMl (lower benchmark model), BMrm (Benchmark model with random match of 
interview locations with OSM building data), A (Random Forest model using 8 predictors), B 
( Random Forest model using 8 predictors), and model transfers d2E (learning with Dresden and 
predictions for Elbe), d2D (learning with Dresden and predictions for Danube), E2D (learning with 
Elbe and predictions for Danube), D2E (learning with Danube and predictions for Elbe)’

C: P10.L19: “this analyses” -> “these analyses”.

R:will be corrected

C: P10.L31: missing parenthesis after “Table 2”.

R: will be corrected

C: P12.L4: please rewrite this sentence.

R: we will rephrase the sentence “Further, an independent assessment of OSM based vulnerability 
model performance we consider two benchmark models.”.
into: 
“Further, for an independent assessment of OSM based vulnerability model performance we consider 
two benchmark models.”.



C: P12.L8: remove comma after “reasoning is”

R: will be corrected

C: P12.L5-14: this part should be moved to the previous section.

R: We agree with the reviewer and will move this paragraph to the previous section (3.2 Predictive 
model learning)

C: P12.L18-19: please rewrite this sentence.

R:We suggest to rewrite this sentence as follows:
The CATI data are mainly located in the Elbe and Danube catchments in Germany, which are the 
regions mostly affected by inundations and flood impacts.

C: P13.L21-26: as discussed in general comments, this result is expected and only partly informative,
because you neglected other important vulnerability variables. 

R: As stated above this is beyond the scope of our study. We will add insights from other recent studies 
(e.g. Wagnenaar 2017, Vogel et al. 2018, Carisi et al. 2018, Amadio et al. 2019) about the usefulness of 
other potential predictors for building vulnerability to the discussion.

C: P14.L1-2: this is also expected and due to the selected variables.

R: The assessment of variable importance using Random Forests has been included in the data analyses
workflow because, in addition to the correlation analysis, it accounts for variable interaction effects. 
We report this outcome for the sake of completeness and transparency. As stated in our above response 
we agree with the reviewer that it does not reveal fundamentally new findings and suggest to remove 
this figure from the manuscript.

C: P14.L11: missing parenthesis after “Table 4”.

R: will be corrected

C: P15.L15: you finally chose the models with 6 and 8 variables (as the bestperforming ones). This is 
fine, but, actually, the variability in the performance indicators is very small (this is also due to the 
used variables), and probably you could have opt for the simpler models.

R: We agree that the differences in performance between the models are not pronounced. The 
calculation of the variables from building footprints is done automatically and does not require 
additional effort for data retrieval and formatting. Therefore, we base our selection of candidate models
on objective measures of model performance.

C: Figure A2 should be moved to the main text (and not in the Appendix) and discussed in more detail 
for the interpretation of the results.

R: We will follow the suggestion of the reviewer and include Figure A2 as a new Figure 9 to the 
manuscript. We will expand the discussion about regional differences visible for the regional sub-
samples in the text.



C: P19.L6: I think this point deserves more discussion and analysis (see also my general comments). 
You just mention it.

R: As stated in the previous answer, we will expand the discussion about difference in regional sub-
samples.

C: P20.L17-22: as in the abstract, these are potentially dangerous statements.

R: As stated above we will adjust the title to make the focus on research objective of this study clearer 
and refine our research objective i): ‘understand which building geometry variables are useful to 
describe building vulnerability’. (P3L29).
At this point we will stress the idea of spatial measures as proxy variables more clearly.: 
As not many variables of building characteristics are available from OSM data, the spatial measures 
calculated from building footprint serve as proxy variables for these unavailable details. 

C: P21.L7-8: as in the abstract, these are potentially dangerous statements.

R: In line with the previous answer we will also rephrase this sentence to emphasize the idea of spatial 
measures as proxy variables for unavailable details about building vulnerability characteristics:
The geometric characteristics of building footprints serve as proxy variables for building resistance to 
flood impacts and are of use for flood loss estimation.

C: P12. L9-10: I agree and this is what I suggest you to do (you can use information from other public 
databases to be merged with data coming from OSM). Otherwise, at present, this study provides partial
(and potentially misleading) insights for flood damage modelling.

R: Indeed this is another interesting research study. We think, that with the redefined title and more 
precise formulation of our research objectives this type of analyses is out of scope of this study. 
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Response to Referee 2

We would like to thank the referee for the time and effort put into reviewing the manuscript. This 
response carefully addresses all the comments. Where applicable, changes are proposed to the 
manuscript accordingly. 

C: Dear Editor / Authors,
Thank you very much for the opportunity to act as a review on your very interesting paper which I 
believe is very much worthy of publication. The paper is really addressing two questions: 1. Can a 
Machine Learning Technique provide good predictions / estimates of flood damage using Open Data in
the same location? 2. Can the results of the open data model then be transferred to another location, 
and how good are the predictions /estimates? These are both very interesting questions and the paper 
addresses it well.

R: We thank the reviewer for his positive comments.

C: I am not an expert on Machine Learning Algorithms such as Random Forests, so I found myself 
having to do some background reading to understand the methodology. I suspect this may be a problem
for general readers such as myself. If I look at Figure 2, this presents the steps well, but I wonder if 
there is a possibility for a clearer explanation in a few lines of the purpose of the Random Forest 
approach. 

R: We will add an explanation of the Random Forest approach

C: Almost along the lines of "Random Forests are able to make predictions of flood loss by creating 
numerous decision trees, based on the random selection of decision nodes"?

R: We will add the following sentence to the paragraph on RF algorithm in section 3:
‘RF make predictions based on a large number of decision trees, i.e. a forest,
which is learned by randomly selecting the variables considered for the splitting of the feature space  
of the data.’

C: The methodology and analysis is well described and the figures are clear and well labelled.

R: Thanks again for the positive evaluation.

C: The only reservation is that the conclusion and abstract could be strengthened because I think it’s 
an interesting paper. You write in the abstract that "However, our results show that using numerical 
spatial measures derived from OpenStreetMap building geometries does not resolve all problems of 
model transfer." You say the models are useful, but I don’t get a sense from the abstract or conclusion 
that you are very confident in this. Similarly, if I were to jump to the conclusions, I don’t get a clear 
sense of how well the open data models work, first of all, in the same location, and when you transfer 
them to different location, without having to go back into the results and discussion. I feel the 
conclusion should be clearer here to state what was the real value in using OpenStreetMap data.

R: We will rework the abstract and the conclusion section to be more self contained about the key 
outcomes of the research. We will include comparative statements about model performance of the 
OpenStreetMap based models and the benchmark models, e.g: 



“Including numerical spatial measures based on OpenStreetMap building footprint geometries reduces 
model prediction errors (MAE by 20% and MSE by 25%) as well as increases the reliability of model 
predictions by a factor of 1.4 in terms of the Hit Rate when compared to a model that uses only 
inundation depth. This also applies to model transfer applications.”

I have some grammar / typo suggestions.
C: Page 2 Line 11 - “Modeling”. In the rest of the paper, you use modelling – please be consistent with
the spelling, except in the references where titles are quoted directly.

R: will be corrected

C: Line 16 – advance, not advancement 

R: will be corrected

C: Line 32 – “Tree-based”. I would use a hyphen here 

R: will be corrected

C: Page 3 Line 11 “It was shown that particularly geometric information about buildings as for 
instance building area and height are useful variables to describe building characteristics relevant for 
estimating flood losses (Schröter et al., 2018).” I think this sentence could be simplified – “It was 
shown that geometric information such as building area and height are useful . . .” 

R: Thank you for the suggestion. We will rephrase the sentence accordingly.

C: Line 14 – “building footprint geometry” – the word footprint or geometry can be removed 

R: we will remove the word ‘geometry’, also in other occurrences of the manuscript.

C: Line 23 – “most of civil and common uses” – of can be deleted. 

R: we will delete this part.

C: Line 33 – modelsi – please correct the typo 

R: will be corrected

C: Page 7 Figure 1 – could you present the locations all on one map of Germany? I appreciate this 
would mean overlaying Dresden and the Elbe, but three maps seems unnecessary. 

R: We will rework the figure accordingly.

C: Line 10 – The spatial measures are described in a table – I think the paragraph can be eliminated 
as the table repeats the information. 

R: We will shorten the paragraph and remove redundant information with Table 2.

C: Page 9 – Please correct transver in the figure. Page 20 



R: will be corrected

C: Line 30 - Please correct OpenStreeMap.

R: will be corrected
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Abstract.

Flood risk modelling aims to quantify the probability of flooding and the resulting consequences for exposed elements.

The assessment of flood damage is a core task that requires the description of complex flood damage processes including the

influences of flooding intensity and vulnerability characteristics. Multi-variable modelling approaches are better suited for this

purpose than simple stage-damage functions. However, multi-variable flood vulnerability models also
::::::
require

:::::::
detailed

:::::
input5

:::
data

::::
and often have problems to predict damage for regions other than those for which they have been developed. A transfer

of vulnerability
:::
vul

::::::::
nerability

:
models usually results in a drop of model predictive performance. Here we investigate the

question whether data from the open data source OpenStreetMap is suitable to model flood vulnerability of residential buildings

and whether the underlying
:::::::
underly-

:::
ing standardized data model is helpful to transfer models across regions. We develop a

new data set by calculating numerical spatial measures for residential building footprint geometries
::::::::
footprints and combine10

these variables with an empirical data set of observed flood damage. From this data set random forest regression models are

learned using regional sub-sets and are tested for predicting flood damage in other regions. This regional split-sample validation

approach reveals that the predictive performance of models based on OpenStreetMap
:::::::
building

::::::::
geometry data is comparable

to alternative multi-variable models, which use comprehensive and detailed information about preparedness, socio-economic

status and other aspects of residential building vulnerability. However,
:::
The

:::::::
transfer

::
of

:::::
these

::::::
models

:::
for

::::::::::
application

::
in

:::::
other15

::::::
regions

::::::
should

::::::
include

::
a

:::
test

::
of

::::::
model

::::::::::
performance

:::::
using

:::::::::::
independent

::::
local

:::::
flood

::::
data.

::::::::
Including

:::::::::
numerical

::::::
spatial

::::::::
measures

:::::
based

::
on

:::::::::::::
OpenStreetMap

:::::::
building

:::::::::
footprints

::::::
reduces

::::::
model

::::::::
prediction

:::::
errors

::::::
(MAE

:::
by

::::
20%,

::::
and

::::
MSE

:::
by

:::::
25%)

:::
and

::::::::
increases

::
the

:::::::::
reliability

::
of

:::::
model

::::::::::
predictions

::
by

::
a
:::::
factor

::
of

:::
1.4

::
in
:::::
terms

:::
of

:::
the

:::
Hit

::::
Rate

:::::
when

::::::::
compared

::
to

::
a

:::::
model

::::
that

::::
uses

::::
only

:::::
water

::::
depth

:::
as

:
a
::::::::
predictor.

:::::
This

::::::
applies

::::
also

:::::
when

:::
the

::::::
models

:::
are

:::::::::
transferred

::
to
:::::

other
:::::::
regions

:::::
which

::::
have

::::
not

::::
been

::::
used

:::
for

::::::
model

:::::::
learning.

:::::::
Further,

:
our results show that using numerical spatial measures derived from OpenStreetMap building geometries20

::::::::
footprints does not resolve all problems of model transfer. Still, we conclude that these variables are useful proxies for flood

vulnerability modelling , because these data are consistent ,
:::
(i.e.

:::::
input

::::::::
variables

:::
and

::::::::::
underlying

::::
data

:::::
model

:::::
have

:::
the

:::::
same

::::::::
definition,

:::::::
format,

:::::
units,

:::::
etc.), openly accessible, and thus make it easier and more cost-effective to transfer vulnerability

models to other regions.
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1 Introduction

Floods have huge socio-economic impacts globally. Driven by increasing exposure, as well as increasing frequency and in-

tensity of extreme weather events, consequences of flooding have sharply risen during recent decades (Hoeppe, 2016; Lugeri

et al., 2010). Therefore, effective adaptation to growing flood risk is an urgent societal challenge (UNISDR, 2015; Jongman,

2018). With the transition to risk oriented approaches in flood management, flood risk models are important tools to conduct30

quantitative risk assessments as a support for decision making from continental to local scales (Alfieri et al., 2016; Moel

et al., 2015; Winsemius et al., 2013). While macro- or meso-scale risk assessment approaches target regional, national or

continental studies, risk assessment on the micro-scale is needed to guide urban planning, optimize investment for protec-

tion and other mitigation measures considered in flood risk management plans (Meyer et al., 2013; Moel et al., 2015; Rehan,

2018). Flood risk models include components to represent the key elements of flood risk: hazard, exposure and vulnerabil-35

ity (Kron, 2005). Flood hazard is usually modeled with high spatial resolutions in order to realistically capture variability

in flood hazard intensity in consideration of local topographic characteristics (Apel et al., 2009; Teng, 2017). For consistent

risk assessments, exposure and vulnerability need to be analysed on similar scales and with appropriate spatial resolution.

With an increasing availability of new exposure data sets including for instance information about the number, occupancy, and

characteristics of exposed objects (Figueiredo and Martina, 2016; Paprotny et al., 2020; Pittore et al., 2017) micro-scale ex-40

posure and vulnerability modeling
::::::::
modelling

:
gains much traction (Schröter et al., 2018; Lüdtke et al., 2019; Sieg et al., 2019)

::::::::::::::::::::::::::::::::::::::::::::::::
(Lüdtke et al., 2019; Schröter et al., 2018; Sieg et al., 2019).

Both synthetic (e.g. Blanco-Vogt and Schanze (2014); Dottori et al. (2016); Penning-Rowsell and Chatterton (1977)) and

empirically based models (e.g. Thieken et al. (2005); Zhai et al. (2005)) have been proposed for micro-scale vulnerability

modelling. As flood damaging processes are complex, a large diversity of influencing factors needs to be taken into account to45

capture and appropriately represent flooding intensity and resistance characteristics of exposed elements in flood vulnerability

models (Thieken et al., 2005). In this context, multi-variable modelling approaches are an important advancement
:::::::
advance

from simple stage-damage curves, which relate only inundation
::::
water

:
depth to flood loss. While multi-variable vulnerabil-

ity models usually outperform traditional stage-damage functions (Merz et al., 2004; Schröter et al., 2014), the downside of

these approaches is an increased need of detailed data on the level of individual objects (Merz et al., 2010, 2013) which are50

often not available in the target area of the analysis (Apel et al., 2009; Cammerer et al., 2013; Dottori et al., 2016). Miss-

ing standards for collecting comparable and consistent data are one reason for this problem (Changnon, 2003; Meyer et al.,

2013). Hence, providing the input variables for multi-variable flood vulnerability models on the micro-scale is a key challenge

for their practical applicability. Another challenge is the generalization of locally derived vulnerability models. A number of

studies confirm a model performance mismatch between regions where models have been developed and the target areas for55

application (Cammerer et al., 2013; Jongman et al., 2012; Schröter et al., 2016; Wagenaar et al., 2018). It is argued that the

generalized application of vulnerability models to different geographic and socio-economic conditions needs to consider an
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adequate representation of local characteristics and damage processes (Felder et al., 2018; Figueiredo et al., 2018; Sairam et al.,

2019). Hence, consistency in input data is an important requirement for the spatial transfer of vulnerability models (Lüdtke

et al., 2019; Molinari et al., 2020). The availability, accessibility and consistency of data sources are important requirements for60

generalized vulnerability model applications but also poses requirements on modelling approaches. With an increased number

of input variables and an enlarged diversity of data sources used for vulnerability modelling, we usually deal with heteroge-

neous data in terms of different scaling, degrees of detail, resolution and complex inter-dependencies (Schröter et al., 2016,

2018). Tree based algorithms are a suitable approach to handle heterogeneous data, represent non-linear and non-monotonic

dependencies, and, as a non-parametric approach, do not require assumptions about independence of data (Carisi et al., 2018;65

Merz et al., 2013; Schröter et al., 2014; Wagenaar et al., 2017). The Random Forest (RF) algorithm (Breiman, 2001) is broadly

used in many disciplines, due to its high predictive accuracy, simplicity in use and flexibility concerning input data. In the

domain of flood risk modelling, Wang et al. (2015) have successfully applied RF for flood risk assessment and Bui et al. (2020)

used RF for flood susceptibility mapping. Merz et al. (2013) demonstrated the suitability of tree based
:::::::::
tree-based algorithms

for flood vulnerability modelling. Following this, Carisi et al. (2018); Chinh et al. (2015); Hasanzadeh Nafari et al. (2016);70

Sieg et al. (2017); Wagenaar et al. (2017) have used RF and other tree based
::::::::
tree-based

:
algorithms for flood loss estimation

in flood prone regions in Vietnam, Australia, the Netherlands and Italy. In these studies, vulnerability modelling using RF

was based on site specific empirical data sets which had been collected ex-post major flood events. In contrast, the framework

proposed by (Amirebrahimi et al., 2016) successfully used 3D building information for flood damage assessment of individual

buildings. Gerl et al. (2016) and Schröter et al. (2018) investigated the suitability of alternative more general data sources75

for flood vulnerability modelling using urban structure type information derived from remote sensing images, virtual 3D city

models and numerical spatial measures which describe the extent and shape complexity of residential buildings. It was shown

that particularly geometric information about buildings as for instance
::::::::
geometric

::::::::::
information

::::
such

::
as building area and height

are useful variables to describe building characteristics relevant for estimating flood losses (Schröter et al., 2018). From these

studies it has been concluded that data about building footprint geometry work as a proxy to describe resistance characteristics80

of buildings. However, further analyses are needed to understand whether building geometry data enable consistent flood vul-

nerability modelling with high resolution and are suitable to characterise differences in flood vulnerability across regions. With

new data sources emerging from crowdsourcing projects and open data initiatives, detailed building data are increasingly avail-

able and accessible (Irwin, 2018). Open and/or standard
::::::::::
standardized building data are a promising data source to coherently

describe exposure and characterise vulnerability of residential buildings, and to improve the spatial transfer of vulnerability85

models given a consistent underlying data model and clear specification of input variables across regions. Data science methods

are predestined to make use of these data in flood vulnerability modelling. Against this backdrop, we investigate the suitability

of the open data source OpenStreetMap (OSM) (contributors, 2020) for flood vulnerability modelling of residential buildings.

OSM is a geographic database with a worldwide coverage which is nowadays considered as reliable for most of civil and

common usages (Barrington-Leigh and Millard-Ball, 2017). The information about building footprints is freely available and90

straightforward to obtain from public online servers. The OSM contributors’ community is constantly growing and assures

regular updates in terms of accuracy and completeness of the data (Hecht et al., 2013).
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We test the hypothesis that numerical spatial measures derived from OSM building footprint geometries
::::::::
footprints

:
provide

useful information for the estimation of flood losses to residential buildings. From the underlying consistent OSM data model

and standardized calculation of spatial measures we expect an improvement of the spatial transfer of flood vulnerability models95

across regions. Accordingly, the research objectives are i) to understand which building
::::::::
geometry related variables are useful

to describe building vulnerability, ii) to learn predictive flood vulnerability models, and iii) to test and evaluate model transfer

across regions. In Section 2 the data sources, the derived variables and the preparation of data sets are described. Section 3

introduces the methods to identify predictor variables and to derive predictive modelsi
::::::
models. Further, it describes the set-up

for testing and evaluating model performance in spatial transfers. The results from this analysis
::::
these

:::::::
analyses

:
are reported and100

discussed in Section 4. Conclusions are drawn in Section 5.

2 Data

We use an empirical data set of relative loss to residential buildings and influencing factors which has been collected via

computer aided telephone interviews (CATI) during survey campaigns after major floods in Germany since 2002. Another data

source is OSM (contributors, 2020) providing information about building locations, geometries, occupancy and other character-105

istics. OSM data is complemented with numerical spatial measures calculated from OSM building footprint geometries
::::::::
geometries

::
of

:::::
OSM

::::::::
building

::::::::
footprints.

2.1 Computer aided telephone interview data

Computer aided telephone interview (CATI )
:::::
CATI surveys were conducted with affected private households ex-post major

floods in Germany. The regional focal points of flood impacts were the Elbe catchment in east Germany, and the Danube110

catchment in southern Germany. Particularly noteworthy are the floods of 2002 and 2013, which caused economic losses of

EUR 11.6 bn (reference year 2005) and EUR 8 bn respectively in Germany (Thieken et al., 2006, 2016). With EUR 1 bn

economic damage, the city of Dresden at the Elbe River in Saxony has been a hotspot of flood impacts during the August 2002

flood (Kreibich and Thieken, 2009). In August 2002, flash floods triggered by record breaking precipitation and numerous

levee failures caused widespread flooding along the Elbe River and its tributaries in Saxony and Saxony-Anhalt as well as115

along the Regen River and other southern tributaries to the Danube River in Bavaria (Schröter et al., 2015). The magnitude of

flood peak discharges along these rivers well exceeded a statistical return period of 100 years (Ulbrich et al., 2003). In May

2013 a pronounced precipitation anomaly with subsequent extreme precipitation end of May/beginning of June caused severe

flooding in June 2013 especially along the Elbe and Danube rivers
:::::
Rivers with new water level records and major dike breaches

both at the Elbe and Danube Rivers (Conradt et al., 2013; Merz et al., 2014; Schröter et al., 2015). The magnitude of flood peak120

discharges exceeded statistical return periods of 100 years along the Elbe, Mulde and Saale tributaries, and along the Danube

and Inn River in Bavaria (Blöschl et al., 2013; Schröter et al., 2015). With 180 questions, the CATI surveys cover a broad

range of flood impact related factors including building characteristics, effects of warnings, precaution and the socio-economic

background of households. The survey campaigns for different floods are consistent in terms of acquisition methodology, type
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and scope of questions. The interviewees were randomly selected from lists of potentially affected households along inundated125

streets which have been identified from satellite data, flood reports and press releases. With an average response rate of 15%,

in total 3056 interviews have been completed. For further details about the surveys and data processing refer to (Kienzler et al.,

2015; Thieken et al., 2005, 2017). Building on the findings of previous work (Merz et al., 2013; Schröter et al., 2014), for

this study 23 variables have been preselected with a focus on building characteristics, flood intensity at the building, socio-

economic status as well as warning, precaution and previous flood experience (Table 1). In addition, relative loss to the building130

has been determined as the ratio of reported actual losses and the building value (replacement cost) at the time of the flood

event (Elmer et al., 2010). Hence, it describes the degree of building damage on a scale from 0 (no damage) to 1 (total damage).

Building values are based on the standard actuarial valuation method of the insurance industry in Germany (Dietz, 1999) which

estimates replacement costs using information about the floor space, basement area, number of storeys, roof type, etc. that are

available from CATI data. Relative loss to the building (rloss), and water depth (wst) at the building are the key variables from135

the CATI dataset used in this study. rloss is used to learn predictive models and to evaluate their performance. Consequently,

the records in the CATI data set without values for rloss are removed. This reduces the number of available records from 3056

to 2203. wst is the most commonly used predictor in flood vulnerability modelling (Gerl et al., 2016), because it is a highly

relevant characteristic of flood intensity and it is usually available from hydrodynamic-numeric simulations. wst from CATI

is a continuous variable with a length unit in centimeters. Negative values represent a water level below the ground surface,140

which affects only the basement of a building.

2.2 OpenStreetMap data

OSM is a free web-based map service built on the activity of registered users who contribute to the database by adding, editing

or deleting features based on their local knowledge. The contributors use GPS devices and satellite as well as aerial imagery

to verify the accuracy of the map. OSM is an open data project and the cartographic information can be downloaded, altered145

and redistributed under the Open Data Commons Open Database License (ODbL) (contributors, 2020). Among the so-called

volunteered geographic information (VGI) projects (Goodchild, 2007), OSM is the most widely known. OSM data provide

information about building locations, footprint geometries, occupancy and other characteristics. The positional accuracy of

OSM data, and the completeness of the database in respect to the number of mapped objects present in the real world, are

nowadays considered as satisfactory for most of the developed countries and urban areas (Barrington-Leigh and Millard-150

Ball, 2017; Hecht et al., 2013). On the contrary, information on object attributes such as road names or building types are

often scarce and inconsistent. The tag “building” is used to identify the outline of a building object in OSM. The majority of

buildings (82%) has no further description and only 12% are specified as primarily “residential” or a single family “house”

(https://taginfo.openstreetmap.org/keys/building#values (28.02.2020)). Therefore, the filtering for residential buildings from

the OSM database uses the underlying ‘residential’ landuse information of OSM. By joining the landuse information to the155

building polygons, those of residential occupation can be identified and selected.

5

 https://taginfo.openstreetmap.org/keys/building#values


Table 1. Preselected variables from CATI surveys; C: continuous, O: ordinal, N: nominal scaled variables

Variable Type and range

Warning, precaution and previous experience

1 wt Early warning lead time C: 0 to 336 h

2 wq Quality of warning O: 1 = knew exactly what to do to 6=had no idea what to do

3 ws Indicator of flood warning source O: 0 = no warning to 4 = official warning through authorities

4 wi Indicator of flood warning information O: 0 = no helpful information to 11 = many helpful information

5 wte Lead time period not used for emergency C: 0 to 335 h

6 em Emergency measures indicator O: 1 = no measures undertaken to 17 = many measures undertaken

7 epre Perception of efficiency of private precaution O: 1 = very efficient to 6=not efficient at all

8 pre Precautionary measures indicator O: 0 = no measures undertaken to 38 = many, efficient measures

undertaken

9 fe Flood experience indicator O: 0 = no experience to 9 = recent flood experience

10 kh Knowledge of flood hazard N (yes / no)

Hydraulic characteristics of the inundation

11 wst Water depth C: 248 cm below ground to 670 cm above ground

Building characteristics

12 bt Building type N (1 = multifamily house, 2 = semi-detached house, 3=one-family

house)

13 nfb Number of flats in building C: 1 to 45 flats

14 fsb Floor space of building C: 45 to 18000 m2

15 bq Building quality O: 1=very good to 6 = very bad

16 bv Building value C: 92244 to 3718677 EUR

Socio-economic status of the residents

17 age Age of the interviewed person C: 16 to 95 yrs

18 hs Household size, i.e. number of persons C: 1 to 20 people

19 chi Number of children (<14 years) in household C: 0 to 6

20 eld Number of elderly persons (>65 years) in household C: 0 to 4

21 own Ownership structure N (1 = tenant; 2 = owner of flat; 3 = owner of building)

22 inc Monthly net income in classes O: 11 = below 500 EUR to 16 = 3000 EUR and more

23 socP Socio-economic status according to Plapp2003 O: 3 = very low status to 13 = very high status

Experienced damage

- rloss Relative loss of the residential building C: 0 = no damage to 1 = total damage
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2.3 Data preparation

The OSM and CATI data sets have been conflated in order to link the empirically observed variables rloss and wst with OSM

data for individual residential buildings. This operation uses the geolocation information of both data sources. The CATI data

are provided with address details including community, zip code, street name, and the house number ranges in blocks of 5160

numbers. Geocoding algorithms including open web API (Application Programming Interface) services like Google (develop-

ers.google.com/maps/documentation/geolocation), Photon (photon.komoot.de) and Nominatim (nominatim.openstreetmap.org)

were applied to obtain geocoordinates for the address information from the interview data.

OSM is a spatial data set including georeferenced building outlines. The geolocated interviews are spatially matched with

OSM building polygons using an overlay operation which merges interview points with OSM building polygons. In view165

of limited address details regarding the building house number ranges and inherent inaccuracies of geocoding databases and

algorithms (Teske, 2014) a buffer radius of 5 meters has been used to correct for offsets between geocoding points and building

polygons. CATI records which still could not be matched with OSM geometries and with obviously erroneous geolocations,

e.g. position is far away from flood affected areas or urban settlements, have been removed from the data set. After these steps

1649 records remain from the original set of CATI surveys. The spatial distribution of these data points highly concentrates on170

the Elbe catchment (1234 records) including Dresden (310 records) and on the Danube catchment (105 records) (Fig. 1)

2.4 Numerical measures

Information about building geometry is useful to support the estimation of flood losses to residential buildings (Schröter et al.,

2018). Building on this knowledge, numerical spatial measures are calculated for OSM building footprint geometries
::::::::
footprints

with the aim to add potential explanatory variables to the estimation of relative loss to residential buildings. For this purpose, im-175

age analysis algorithms typically used in landscape ecology are adopted. These algorithms calculate numerical spatial measures

like area, perimeter, elongation and complexity based on the analysis of geometries identified in aerial or remote sensing im-

ages (Jung, 2016; Lang and Tiede, 2003; Rusnack, 2017). From the OSM building footprint geometries the following variables

are determined: (1) area (Area) of the building polygon in square meters, (2) perimeter (Perimeter) in meter, (3) degree of

compactness (DegrComp), level of compactness of the building polygon based on the relative distance of the internal vertex180

points, normalized to a circle and scaled from 0 to 1, (4) perimeter-area ratio (PARatio), basic measure of the complexity of the

shape, but biased by the dimension of the polygon, (5) shape index (ShapeIndex), more accurate metric for the shape complexity

because it does consider the polygon size, it is normalized to a square so its value is suitable for comparing buildings, (6) fractal

dimension index (FracDimInd), alternative measure to evaluate the shape complexity of a polygon, considering the polygon

size and normalized to a square, scaled from 1 to 2, (7) radius of gyration (RadGyras), measure to express the elongation of185

the polygon together with its dimension, in meter, (8) linear segment indicator (LinSegInd), ratio between the major and minor

axis of the polygon, to give a measure of the shape elongation, normalized to a square, (9) ratio of bounding rectangle area

(BoundRatio), ratio between the area of the bounding rectangle and the area of the polygon, measure for the shape complexity,

normalized to the corresponding bounding rectangle. The numerical spatial measures
::
are

:
calculated for each OSM building
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Figure 1. Regional sub division of dataset for spatial split sample testing (Dresden (left)
:::::::::
municipality, the Elbe catchment (middle) and the

Danube catchment(right))

polygon
:::
and

:
are compiled in Table 2

:
2
:
along with the other variables available from CATI

:::::
CATI

:::::::
variables

:
that are used to190

derive flood vulnerability models. The meaning of these spatial measures, the equations as well as the range of values and

examples are listed in the Appendix A1.

3 Methods

We analyse the created data set with two main objectives. First, we strive to identify those variables from Table 2, which

are most useful to explain relative loss to residential buildings. Second, we aim to derive flood vulnerability models for res-195

idential buildings and to test these models for spatial transfers across regions. The data analyses workflow including data

pre-processing, model learning, model selection and model transfer are illustrated in Fig. 2.

Data pre-processing, model learning and model transfer workflow

The data
:::
The

::::
data

::::::::::::
pre-processing

:::::
steps

::::
with

::::
data

:
preparation and numerical spatial measures have been described in the

previous section. For model learning and model transfer we use the Random Forest (RF) machine learning algorithm introduced200

by (Breiman, 2001). For variable selection and predictive model learning RF provide a concept to quantify the importance of
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Table 2. Variables of the amended OSM data set for each building object

Empirical variables from the CATI interviews

- Relative loss of the residential building (rloss) Relative loss, 0 = no damage to 1 = total damage

- Water depth (wst) Water level respect to the ground level, - 248 cm to 670 cm

Numerical spatial measures calculated for OSM building geometries

1 Area (Area) Area of the building, 0 m2 to ∞

2 Perimeter (Perimeter) Perimeter of the building, 0 m to ∞

3 Degree of compactness (DegrComp) Compactness of the building shape, relative vicinity of the internal points, normal-

ized to a circle, 0 to 1

4 Perimeter-area ratio (PARatio) Shape complexity, biased by building size, 0 to ∞

5 Shape index (ShapeIndex) Shape complexity, adjusted to building size, normalized to a square, 1 to ∞

6 Fractal dimension index (FracDimInd) Shape complexity, adjusted to building size, scaled between 1 and 2

7 Radius of gyration (RadGyras) Building extent and compactness, 0 m to ∞

8 Linear segment indicator (LinSegInd) Elongation of the polygon, normalized to a square, 1 to ∞

9 Ratio of bounding rectangle area (BoundRatio) Shape complexity, normalized to the hypothetical simplest polygon, 1 to ∞

candidate explanatory variables which allows to select the subset of most relevant variables. RF are also an efficient algorithm

to learn predictive models from heterogeneous datasets with complex interactions and with different scales like continuous or

categorical information (Huang and Boutros, 2016). RF are an

::
RF

:::
are

:::
an extension of the classification and regression tree (CART) algorithm (Breiman et al., 1984) which aims to identify205

a regression structure among the variables in the dataset. Regression trees recursively sub-divide the space of predictor variables

to approximate a nonlinear regression structure. This sub-division is driven by optimizing the accuracy of local regression in

these regions which, by repeated partitioning, leads to a tree structure. Predictions are made by following the division criteria

along the nodes and branches from the root node to the leaves which finally contain the predicted value for a given set of

input variables. RF
::::
make

::::::::::
predictions

:::::
based

:::
on

:
a
:::::

large
:::::::
number

::
of

:::::::
decision

:::::
trees,

:::
i.e.

::
a
::::::
forest,

:::::
which

::
is
:::::::
learned

::
by

:::::::::
randomly210

:::::::
selecting

:::
the

::::::::
variables

:::::::::
considered

:::
for

:::::::
splitting

:::
the

:::::::
features

:::::
space

::
of

:::
the

::::
data.

:::
RF

:
incorporates bootstrap aggregation (bagging)

as a simple and powerful ensemble method to reduce the variance of the CART algorithm. In comparison to single trees, RF are

more suitable to identify complex patterns and structures in the data (Basu et al., 2018). As an ensemble approach, RF learns a

regression tree for a number of bootstrap replica of the learning data. This results in a number of trees (ntree) forming a forest

of regression trees. To reduce correlation between trees, the RF algorithm randomly selects a subset of variables (mtry) which215

are evaluated for dividing the space of predictor variables. This efficiently reduces overfitting and makes RF less sensitive to

changes in the underlying data. Each bootstrap replica is created by randomly sampling with replacement about two thirds of

observations from the original data set. The remaining data are indicated as out-of-bag (OOB) observations and are used for

evaluating the predictive accuracy of the tree, in terms of the OOB error. For regression trees the OOB error is the mean squared

sum of residuals. For loss estimation, the predictions of all trees are combined by aggregating the individual predictions as the220

9



Figure 2.
:::
Fig.

::
2:

::::
Data

::::::::::::
pre-processing,

:::::
model

::::::
learning

::::
and

:::::
model

::::::
transfer

::::::::
workflow,

::::
with

::::
BMu

:::::
(upper

:::::::::
benchmark

::::::
model),

::::
BMl

::::::
(lower

::::::::
benchmark

::::::
model),

::::::
BMrm

:::::::::
(Benchmark

:::::
model

::::
with

:::::::
random

:::::
match

::
of

:::::::
interview

:::::::
locations

::::
with

:::::
OSM

::::::
building

:::::
data),

::
A
::::::::
(Random

:::::
Forest

:::::
model

:::::
using

:
8
:::::::::
predictors),

:
B
:
(
:::::::
Random

:::::
Forest

:::::
model

::::
using

:
8
:::::::::
predictors),

:::
and

:::::
model

:::::::
transfers

:::
d2E

:::::::
(learning

:::
with

:::::::
Dresden

:::
and

::::::::
predictions

:::
for

::::
Elbe),

::::
d2D

:::::::
(learning

::::
with

::::::
Dresden

:::
and

:::::::::
predictions

::
for

::::::::
Danube),

:::
E2D

:::::::
(learning

::::
with

::::
Elbe

:::
and

::::::::
predictions

:::
for

:::::::
Danube),

::::
D2E

:::::::
(learning

::::
with

::::::
Danube

:::
and

::::::::
predictions

:::
for

::::
Elbe)
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mean prediction from the forest. The predictions of the individual trees, i.e. from the ensemble of models, provide an estimate

of predictive uncertainty.

RF predictive
:::
For

:::::::
variable

:::::::
selection

::::
and

:::::::::
predictive

:::::
model

::::::::
learning

:::
RF

:::::::
provides

::
a
:::::::
concept

::
to

:::::::
quantify

::::
the

:::::::::
importance

:::
of

::::::::
candidate

::::::::::
explanatory

:::::::
variables

::::::
which

:::::
allows

::
to
:::::
select

:::
the

::::::
subset

::
of

::::
most

:::::::
relevant

::::::::
variables.

:::
RF

:::
are

::::
also

::
an

:::::::
efficient

:::::::::
algorithm

::
to

::::
learn

:::::::::
predictive

::::::
models

::::
from

::::::::::::
heterogeneous

:::::::
datasets

::::
with

::::::::
complex

::::::::::
interactions

:::
and

::::
with

:::::::
different

::::::
scales

:::
like

::::::::::
continuous

::
or225

:::::::::
categorical

::::::::::
information

::::::::::::::::::::::
(Huang and Boutros, 2016)

:
.

::
RF

:::::::::
predictive

:
model performance is sensitive to specifications of the algorithm parameters mtry and ntree (Huang and

Boutros, 2016). Therefore, the optimum values for both parameters are identified as those which yield minimum OOB errors

on an independent data set. For parameter tuning, we pursue the variation approach implemented by (Schröter et al., 2018) by

selecting parameters from a broad and comprehensive range of values ntree ∈ [100, 500, 1000, 2000, 3000, . . . 15000] and230

mtry ∈ [p/6, p/3, 2p/3] with p as number of candidate predictors and derive RF models for each combination. For each pair

of chosen values, the algorithm is repeated 100 times to account for inherent data variability. The optimum parameters will

minimize the prediction error on the OOB sample data. Using the optimum RF parameter settings, we derive predictive models

for rloss.

3.1 Variable selection235

The first step in model learning is the selection of variables to be used as predictors in the model. The analysis of the Spearman’s

rank correlation between the variables gives a first insight into the linear dependency structure of the data-set. Furthermore,

RF support
:::::::
supports the evaluation and ranking of potential predictors by quantification of variable importance which also

accounts for variable interaction effects. The importance of a selected variable is evaluated by calculating the changes of the

squared error of the predictions when the values of that variable are randomly permuted in the OOB sample. The increase of240

the average error will be larger for more important variables and smaller for less important variables. On this basis it is possible

to decide which variables to include in a predictive model. The outcomes of variable importance evaluations are sensitive to

the RF algorithm parameters mtry and ntree (Genuer et al., 2010). Therefore, to achieve stable results for this
::::
these

:
analyses

we implement a robust approach which averages the outcomes of multiple runs with variations in RF parameters (Schröter

et al., 2018): ntree ∈ [500, 1000, 1500, 2000, . . . 5000] whereby each tree is repeatedly built for mtry ∈ [p/6, p/3, 2p/3], with245

p as number of candidate predictors, which correspond to the lower limit, the default value and the upper limit, suggested

by (Breiman, 2001). Following this procedure, the potential explanatory variables of our data set (Table 2) are evaluated and

ranked according to their relative importance to predict rloss.

3.2 Predictive model learning

Variable selection needs to be considered as an essential part of the model selection
::::::::
evaluation

:
process. Therefore, candidate250

RF models using different numbers of variables are assessed in terms of predictive performance for independent data.

The OSM based numerical spatial measures differentiate building form and shape complexity. To gain further insights into

the suitability of these variables for flood vulnerability modelling we incrementally add explanatory variables to the learning
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data set. Based on the outcomes of variable importance ranking the learning set is expanded variable by variable and models

of increasing complexity are learned (c.f. Table 2
:
). From the comparison of model predictive performance between these255

candidate models the best balance between model performance and number of input variables is assessed. This is implemented

by bootstrapping splitting
::
the

:::::::
splitting

::
of

:
the data into sub-set

::::::
sub-sets

:
for learning (60%) and testing (40%) with 100 iterations.

::::::
Further,

:::
for

::
an

:::::::::::
independent

:::::::::
assessment

::
of

:::::
OSM

:::::
based

::::::::::
vulnerability

::::::
model

::::::::::
performance

:::
we

:::::::
consider

::::
two

:::::::::
benchmark

:::::::
models.

:::
We

:::::
argue

:::
that

:::
the

:::
set

::
of

::::::
CATI

:::::::
variables

::::::
(Table

::
1)

:::::::::
represents

:::
the

:::::
most

:::::::
detailed

:::
data

:::
set

::::::::
available

:::
for

:::::
flood

:::
loss

:::::::::
estimation

:::
of

::::::::
residential

::::::::
buildings

::::::::::::::::::::::::::::::::::::::::::::::::::
(Merz et al., 2013; Schröter et al., 2014; Thieken et al., 2016).

:::::::::
Therefore,

::
a

:::
RF

:::::
model

::
is

::::::
learned

:::::
using

:::
all260

::
23

:::::
CATI

::::::::
predictors

:::
as

::
an

:::::
upper

::::::::::
benchmark

::::::
(BMu).

::
In

::::::::
contrast,

:
a
:::
RF

:::::
model

:::::
using

::::
only

::::
wst

::
as

:
a
::::::::
predictor

::
is

::::::
learned

::
as

::
a
:::::
lower

:::::::::
benchmark.

::::
The

::::::::
reasoning

::
is

:::
that

:::::
using

:::::
extra

:::::::
variables

::
in

:::::::
addition

::
to

:::
wst

:::
will

:::::::
improve

:::
the

::::::::
predictive

:::::::::::
performance

::
of

:::
the

::::::
models

::::::::::::::::::::::
(Schröter et al., 2018, 2016)

:
.
:::
As

::::::::
described

::
in

:::::::
section

:::
2.3,

:::
the

:::::
detail

:::
of

::::::::::
geolocation

::::::::::
information

::::
from

:::::
CATI

::::
data

::
is
:::::::
limited

::
to

:::::
ranges

::
of

:::::
house

::::::::
numbers.

:::::::::
Therefore,

:::
we

:::
face

::::::::::
uncertainty

::
in

:::::::
whether

::::
CATI

::::
data

:::
and

:::::
OSM

:::::::
building

::::::::
footprints

::::
have

:::::
been

:::::::
matched

:::::::
correctly.

:::
To

:::::
assess

:::
the

::::::::
potential

::::::::::
implications

::
of

::::
this

:::::
source

::
of

::::::::::
uncertainty

:::
we

:::::
derive

:
a
::::::
model

:::::::
(BMrm)

:::::
which

::
is

:::::
based

:::
on

:
a
::::
data265

::
set

::::
with

:::::
rloss

::
and

::::
wst

::::::::::
observations

:::::::::
randomly

:::::::
assigned

::
to

:::::
OSM

:::::::
building

:::::::::
footprints.

::::
We

::::
keep

:::
the

:::
RF

:::::::::
modelling

::::::::
approach

:::
for

::
the

::::::::::
benchmark

::::::
models

:::::::::
consistent

::
to

::::::
ensure

:::
that

::::
any

::::::::
observed

::::::::
difference

::
in

::::::
model

:::::::::::
performance

:::::
stems

::::
from

::::::::::
differences

::
in

:::
the

:::::::::
underlying

::::
input

::::::::
variables.

:

3.3 Predictive model evaluation

Model predictive performance is evaluated by comparing predicted (P ) and observed (O) rloss values from the validation270

sample using the following metrics. In these metrics RF predictions are evaluated for the median prediction (P50) derived from

the ensemble of individual tree predictions.

Mean Absolute Error (MAE) quantifies the precision of model predictions, with smaller values indicating higher precision:

MAE =
1

n

n∑
i=1

|P 50i
− Oi| (1)

Mean Bias Error (MBE) is a measure of accuracy, i.e. systematic deviation from the observed value. Unbiased predictions275

yield a value of 0,
::::::::::::::
underestimation

:::::
results

:::
in

:::::::
negative

:::
and

::::::::::::
overestimation

::
in
:::::::
positive

::::::
values:

MBE =
1

n

n∑
i=1

(P 50i
− Oi) (2)

Mean Squared Error (MSE) combines the variance of the model predictions and their bias. Again, smaller values indicate

better model performance:

MSE =
1

n

n∑
i=1

(P 50i
− Oi)

2 (3)280
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The ensemble of model predictions from the RF models offers insight into prediction uncertainty. This property is analyzed

by evaluating the 90-percent quantile range, i.e. the difference between the 5-quantile and 95-quantile in relation to the median,

as a measure of ensemble spread:

QR90 =
1

n

n∑
i=1

(P 95i
−P5i)/P50i (4)

with 95-quantile, 5-quantile and the 50-quantile, i.e. the median of the predictions. QR90 is a measure of sharpness with285

smaller values indicating a smaller prediction uncertainty.

Reliability of model predictions is quantified in terms of the hit rate (Gneiting and Raftery, 2007):

HR=
1

n

n∑
i=1

hi ; hi =

1, if Oi ∈ [P95i ,P5i ]

0, otherwise
(5)

HR calculates the ratio of observations within the 95-5-quantile range of model predictions. For a reliable prediction HR

should correspond to the expected nominal coverage of 0.9.290

HR and QR90 are combined to the interval score (IS) which accounts for the trade-off between HR values and QR90

ranges (Gneiting and Raftery, 2007):

IS =QR90 +
1

n

n∑
i=1

2

β
(P05i −Oi) |{Oi < P05i}+

2

β
(Oi−P95i) |{Oi > P95i} (6)

Further, an independent assessment of OSM based vulnerability model performance we consider two benchmark models.

We argue that the set of CATI variables (Table 1) represents the most detailed data set available for flood loss estimation of295

residential buildings (Merz et al., 2013; Schröter et al., 2014; Thieken et al., 2016). Therefore, a RF model is learned using all

23 CATI predictors as an upper benchmark (BMu). In contrast, a RF model using only water depth as a predictor is learned

as a lower benchmark. The reasoning is, that using extra variables in addition to water depth will improve the predictive

performance of the models (Schröter et al., 2018, 2016). As described in section 2.3, the detail of geolocation information

from CATI data is limited to ranges of house numbers. Therefore, we face uncertainty in whether CATI data and OSM building300

geometries have been matched correctly. To assess the potential implications of this source of uncertainty we derive a model

(BMrm) which is based on a data set with rloss and wst observations randomly assigned to OSM building footprints. We keep

the RF modelling approach for the benchmark models consistent to ensure that any observed difference in model performance

stems from differences in the underlying input variables.

3.4 Spatial transfer evaluation305

We investigate the question whether the consistent data basis of OSM based
::::::
derived

:
numerical spatial measures supports

the transfer of flood vulnerability models across regions by splitting the available data set into subsets for different regions
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affected by major floods. In accordance with the focus areas of inundations and flood impacts the
:::
The CATI data are mainly

located in the Elbe and Danube catchments in Germany,
::::::
which

:::
are

:::
the

:::::::
regions

::::::
mostly

:::::::
affected

:::
by

::::::::::
inundations

::::
and

:::::
flood

::::::
impacts. This suggests a regional subdivision of the empirical data set according to these river basins for the investigation310

of spatial model transfer. In detail we partition the data set between the metropolitan area of Dresden (Saxony), the Elbe

catchment (Saxony, Saxony-Anhalt, Thuringia), and the Danube catchment (Bavaria, Baden-Wuerttemberg), see Fig 1. This

split is applied irrespective of the CATI survey campaign
::::
year, and thus the regional sub-sets contain records from different

flood events. The idea is to investigate examples with a small set of learning data for a small specific region (Dresden), a large

learning data set from an extended region (Elbe catchment), and a small set of learning data from an extended region (Danube315

catchment). The details for the learning and transfer applications are listed in Table 3. For these three regions we learn RF

models using the selected variables and assess their predictive performance when transferred to the other regions. As we use

a completely independent dataset for model transfer testing, no additional bootstrap on top of RF internal bootstrapping is

required.

Table 3. Computational experiments for transfer applications

Transfer experiment Implementation Learned on/applied to # buildings

d2E Learned from Dresden and applied to Elbe 310/1234

d2D Learned from Dresden and applied to Danube 310/105

E2D Learned from Elbe and applied to Danube 1234/105

D2E Learned from Danube and applied to Elbe 105/1234

4 Results and Discussion320

Random Forest OOB errors are sensitive to the choice of RF parameters mtry and ntree. From the variation of RF parameters

we observe that OOB errors decrease with smaller values for mtry and larger numbers of trees in a forest (ntree), Fig. 3.

The colored bands represent the 90-quantile range of OOB values from the 100 bootstrap repetitions for each RF algorithm

configuration and illustrate the inherent variability of input variables in the learning data set. The color code distinguishes

the number of variables used to determine splits at each node (mtry). For mtry = 2 the smallest OOB errors are achieved325

throughout the variations in the number of trees (ntree). This value represents the lower bound of recommended values for

mtry in RF regression models (Breiman, 2001). For smaller values of mtry less variables are considered for splitting the space

of predictor variables, which reduces the correlation between individual trees of the forest. Further, increasing values of ntree

asymptotically approximate smaller OOB values. It appears that for the given data set OOB values are virtually stable above

ntree = 7000. As the computational effort increases with larger forests it has to be balanced with improvements regarding330

predictive performance. Building on these results we use RF parameters mtry = 2 and ntree = 7000, which are comparable to

those used by (Schröter et al., 2018).
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Figure 3. Out-of-Bag error for variations of mtry and ntree RF parameters. Color bands represent the variation range of OOB errors obtained

from 100 bootstrap repetitions

4.1 Variable selection and predictive model learning

The numerical spatial measures (Table 2, and Appendix A1) evaluate properties of the building footprint geometries
::::::::
footprints

including area, perimeter, and elongation of main building axes. Accordingly some of these variables are strongly correlated335

(Fig. 4). The Spearman’s rank correlation matrix of the variables confirms a high degree of correlation in the dataset, as for

instance between Area, Perimeter and RadGyras. In contrast, the spatial measures are only slightly correlated with wst and

rloss. The presence of multi-colinearity may influence the analysis of variable importance (Gregorutti et al., 2017). The robust

importance analysis uses different RF parameter settings and reports an average importance rank, which alleviates this problem.

The variable wst ranks first in the importance analysis (Fig. ??) . This
:::::
results

:::
not

::::::
shown)

::::::
which confirms common knowledge340

in flood loss modelling (Gerl et al., 2016; Smith, 1994). In comparison to wst, the numerical spatial measures of OSM building

footprint geometries
::::::::
footprints

:
have clearly smaller importance values with relatively small differences between them. In

terms of building characteristics, the rank order suggests that both spatial measures which express the size and extension of the

building (e.g. Area, Perimeter) and spatial measures which describe building compactness and shape complexity (e.g. PARatio,

RadGyras, LinSegInd, BoundRatio)
::::
seem

::
to
:
add information to better estimate relative building loss.345

Average variable importance

The
:::::::
However,

:::
the

:
outcome of the variable importance analysis does not suggest a clear selection of features to be included

in a predictive flood vulnerability model. The model predictive performance based assessment of variables uses an increasing

number of variables following their ranking order of variable importance in the RF modelling. The predictive performance is
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Figure 4. Spearman’s correlation of model variables (significance level 1%), non significant correlations are crossed out.

quantified in terms of MAE, MBE, and MSE (Equations 1, 2, 3) for 100 bootstrap repetitions. While the MAE is decreasing350

when additional variables are used with an overall minimum for a model using 6 variables, including more than 6 variables

tends to increase MAE again (Fig. 5). However, regarding MBE these changes go in an opposite direction. We observe smallest

MBE when only 2 variable are included. MBE then grows continuously for using up to 7 variables and then slightly reduces

when more variables are used. The increase in precision expressed by the smaller MAE is accompanied with a reduction of

accuracy reflected by an increasing MBE. This yields an almost balanced performance in terms of MSE for all models tested.355

Looking into the sharpness of model predictions, the quantile range (QR90) is getting larger with an increasing number of

model variables, which reflects larger uncertainty (Table 4
:
). In terms of model reliability (HR), an increasing number of model

variables achieves better performance statistics up to using 8 variables. The combination of both, QR and HR, in the interval

score (IS) shows a similar pattern.

On the basis of these assessments two model alternatives are selected for further analysis: Model A using 8 variables as360

it provides the most reliable model predictions, and Model B using 6 variables which provide the highest precision and bal-

ance between accuracy and precision. In detail Model B uses the variables wst, PARatio, RadGyras, Area, LinSegInd, and

BoundRatio. Model A, in addition, uses Perimeter and DegrComp as predictors.
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Figure 5. Predictive performance of models using an increasing number of variables. Smaller MAE and MSE values and MBE values close

to 0 indicate better performance, c.f. equations 1 - 3.

Table 4. Model performance metrics for models using increasing number of variables including wst. Best performance values
::
and

:::::::
selected

:::::
models

:
in bold.

Model MAE MBE MSE QR HR IS

2 variables 0.0878 -0.0234 0.0230 0.2765 0.5864 7.9402

3 variables 0.0853 -0.0293 0.0226 0.2992 0.6301 7.1154

4 variables 0.0843 -0.0316 0.0224 0.3070 0.6433 6.8440

5 variables 0.0840 -0.0348 0.0227 0.3182 0.6533 6.7166

6 variables
:
6
::::::::
variables 0.0826 -0.0364 0.0222 0.3270 0.6622 6.5728

7 variables 0.0830 -0.0373 0.0225 0.3302 0.6614 6.5715

8 variables
:
8
::::::::
variables 0.0839 -0.0337 0.0224 0.3314 0.6640 6.3757

9 variables 0.0841 -0.0349 0.0226 0.3346 0.6639 6.3766

10 variables 0.0844 -0.0357 0.0228 0.3365 0.6631 6.4000
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Figure 6. Performance metrics of OSM based models and benchmark models

4.2 Model predictive performance: model benchmarking

The OSM models A and B are benchmarked with a model that uses all information available from the CATI surveys as an365

upper benchmark (BMu) and a model that uses only water depth as predictor as a lower benchmark (BMl). The performance

statistics achieved by models A and B for the complete data set (all events and regions) are slightly inferior to BMu but clearly

better than the outcomes of BMl (Fig. 6). Both models, A and B, give very similar performance statistics with slightly higher

precision (smaller MAE) but larger bias (MBE) for model B. In contrast, model A provides more reliable predictions indicated

by larger HR and smaller IS (Table 6). The randomized benchmark model (BMrm) achieves a better performance than BMl but370

is inferior to the models A and B (Fig. 6, Table 5). Hence, we are confident that the remaining uncertainty associated with the

mapping of geolocations to building geometries is not affecting the outcomes of our analyses. Overall, we note that including

numerical spatial measures based on OSM building footprint geometries adds
::::::::
footprints

:::
add

:
useful information to predict

loss to residential buildings. The numerical spatial measures included in the models are all directly calculated using building

footprint geometries
::::::::
footprints. Therefore, a larger number of variables used for loss estimation does not imply increased efforts375

to collect data. From this perspective the cost of using model A or B is equal. The RF algorithm strives to reduce overfitting

when large numbers of predictors are included, and thus the parsimonious modelling principle can be relaxed. A possible

negative effect of overfitting when using more predictors should manifest in spatial transfer applications.
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Table 5. Model
:::::::
precision,

:::::::
accuracy

:::
and

:::::::
reliability performance metrics

::
for

::::
OSM

:::::
based

:::
and

::::::::
benchmark

::::::
models

Model MAE MBE MSE QR HR IS

BMu (Upper benchmark, all 23 predictors from CATI interviews) 0.075 -0.034 0.018 0.336 0.733 3.573

A (7 numerical spatial measures derived from OSM plus water depth) 0.083 -0.032 0.019 0.322 0.699 6.022

B (5 most important numerical spatial measures plus water depth) 0.081 -0.035 0.019 0.319 0.698 6.238

BMrm (random match of CATI geolocation with OSM building polygons) 0.087 -0.034 0.021 0.319 0.688 6.535

BMl (Lower benchmark, only water depth as predictor) 0.100 -0.019 0.026 0.177 0.490 10.107

4.3 Spatial transfer testing

The predictive performance of RF models is tested in regional transfer applications. For this purpose, the RF models A and380

B as well as the benchmark models BMu and BMl, as specified in the previous section, are learned using regional sub-sets

of the data and applied to predict flood losses in a different region; see section 3.4 and Table 3 for details about the regional

sub-division of data and spatial transfer experiments. Learning models with a regional sub-set of data and applying the models

to other regions results in a drop of predictive performance in comparison to the case when the entire data-set is used for model

learning, except for the case d2E (Fig. 7). In most of the learning/transfer cases, BMu scores best in terms of precision and385

reliability, represented by the performance metrics MAE, MSE, HR and IS. Using only wst as a predictor (BMl) produces less

precise and less reliable predictions as indicated by larger MAE and MSE, as well as smaller HR and larger IS. While the

performance of models A and B is very similar, model A, using 8 predictors, more reliably predicts residential loss (larger

HR and smaller IS), and model B, using 6 predictors, provides more accurate (MBE closer to 0) and more precise predictions

(smaller MAE and MSE). Hence, overfitting does not seem to be an issue when more input variables are used. In contrast390

to the model benchmark comparison (section 4.4) BMu and BMl do not entirely frame the RF model performance values.

Instead, models A and B in some cases achieve better and in other cases worse performance statistics. Generally speaking, the

predictive performance differs more strongly between the regional transfer settings than between the models (Fig. 7). This is

more pronounced for precision and accuracy metrics (MAE, MBE and MSE) than for sharpness and reliability indicators (QR,

HR and IS). Learning from the Dresden subset and transferring the model to the Elbe region (d2E) works best as is shown by395

the smallest MAE and MSE as well as a MBE closest to zero. Learning the models with the Danube sub-set and transferring

them to the Elbe region (D2E) yields comparably small MAE and MSE values, but this is also the only case with a tendency to

overestimate rloss resulting in a positive MBE. The models are struggling most to predict loss when they are learned with the

Dresden sub-set and transferred to the Danube region (d2D) showing the lowest precision and accuracy. In turn, extending the

learning subset to the Elbe region improves the transfer to the Danube (E2D). Concerning predictive uncertainty and reliability,400

learning with the Danube sub set yields large QRs, which however only partly cover the observed loss values reflected in

comparably low HRs and high IS (D2E). Learning from Dresden/Elbe and transferring to Elbe or Danube (d2E, d2D, E2D)

produces sharper predictions, but still the models differ in reliability, i.e. covering the observed values within their predictive

uncertainty ranges (HR). In this respect, the upper benchmark model (BMu) performs best. The differences between models A
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Figure 7. Model performance metrics in regional transfer. Models A and B based on spatial numerical measures calculated for OSM building

footprint geometries
:::::::
footprints, benchmark models BMl and BMu based on CATI survey data. Transfer experiments d2E, d2D, E2D, and D2E

as described in Table 3.’all’ refers to using all records from all regions, c.f. Table 5.

and B are small and both are better than the lower benchmark model (BMl) and almost similar to BMu for the transfer cases405

between the regions Elbe and Danube (E2D and D2E).

With 105 records the Danube data-set is the smallest sub-sample. It has a smaller variability and range of values for most

numerical spatial measures in comparison to the Dresden and Elbe regional sets (Appendix A2).
::::::
Figure

::
8).

:

The geometric properties of the flood-affected residential buildings in the Danube region seem to differ from the affected

residential buildings in the Elbe region. This
::
In

:::
the

:::::::
Danube

::::::
sub-set

::::
area

::::
and

::::::::
perimeter

::
of

::::::::
buildings

::::
tend

:::
to

::
be

:::::::
smaller

::::
than410
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Figure 8.
:::::::::
Scatterplots

::
of

:::::::
numerical

::::::
spatial

:::::::
measures

:::
and

::::::
relative

:::
loss

::
in

::::::
regional

:::::::::
sub-samples

:::::::
(Danube,

:::::::
Dresden,

:::::
Elbe)

::
in

:::
the

::::
Elbe

::::::
region.

:::::
Also,

:::
the

::::::
values

:::
for

::::::
spatial

::::::::
measures

:::::::::::
representing

:::::::
building

:::::
shape

::::::::::
complexity

::
as

:::
for

::::::::
instance

:::::::::
RadGyras,

:::::::::
DegrComp,

::::
and

::::::::::
BoundRatio

:::::::
indicate

:::::
more

:::::::
compact

:::::::
building

:::::::::
footprints

::
in

:::
the

:::::::
Danube

::::::
region

::::
than

::
in

:::
the

::::
Elbe

::::::
region.

::::::
These

:::::::::
differences can be attributed to different

::::::::::::
socio-economic

::::::::::::
characteristics

:::
as

::::
well

::
as building practices in former East and West

Germany as well as
:::
and

:
regional differences in building types

:::::::::::::::::
(Thieken et al., 2007). With only 310 records, the Dresden sub-

sample covers comparable ranges of observed variables as the Elbe sub-set (1234 records). Both sub-sets show largely similar415

relations between individual variables and rloss.

Still, the Danube sub-set includes relatively many records with high rloss values, which are distributed along the whole

spectrum of above ground-level inundation depths (Appendix A2
:::::
water

::::::
depths

::::::
(Figure

::
8). In comparison, the Dresden sub-

set comprises very few cases with high relative loss which is partly related to differing inundation processes. In the Elbe and

Danube catchments large areas have been flooded as a consequence of levee failures. Hence, the relationship of model variables420

to high rloss values cannot be learned from this sub-set, and thus is not represented well by the model. Therefore, this difference

in the learning data may explain the positive bias introduced by learning the model in the Danube and transferring it to the Elbe,

and, vice versa, the pronounced negative bias introduced by learning the model in Dresden and transferring it to the Danube

region. Viewed from a model performance perspective, the transfer applications show that a good agreement between learning
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and transfer data-sets (e.g. d2E) produces more precise and reliable predictions than the transfer to regions with pronounced425

differences (e.g. d2D, D2E). Still from the Danube region with limited ranges of variable values, it is possible to obtain rela-

tively precise and accurate predictions of relative building loss. This suggests that a broad variability of observed rloss values

in the learning data set is an important control for the predictive capability of the model in other regions. In contrast, small

samples with limited variability and only few records with high rloss values struggle with predicting rloss in other regions. This

confirms insights that a model based on more heterogeneous data performs better when transferred in space (Wagenaar et al.,430

2018). Our findings also reveal that using numerical spatial measures derived from OSM building geometries does not resolve

all problems of model transfer. But
::
As

::::
not

:::::
many

:::::::
variables

:::
of

:::::::
building

::::::::::::
characteristics

:::
are

::::::::
available

::::
from

:::::
OSM

:::::
data, the spa-

tial measures are useful proxy-variables for flood vulnerability characteristics of residential buildings
::::::::
calculated

:::::
from

:::::::
building

::::::::
footprints

:::::
serve

::
as

:::::
proxy

::::::::
variables

:::
for

::::
these

::::::::::
unavailable

::::::
details. These proxies achieve comparable predictive performance as

specific property level data sets as for instance collected via computer aided telephone interview surveys .
:::::::::
represented

:::
by

:::
the435

::::
BMu

::::::
model.

::::
This

:::::
model

::::
uses

::
a

::::
broad

:::::
range

::
of

::::::::
variables

::
to

::::::::::
characterise

::::::::::
vulnerability

:::
of

::::::::
residential

::::::::
buildings

::::::::
including

::::::
details

::
of

:::::::
building

::::::::::::
characteristics,

:::::::::::::
socio-economic

:::::
status

::
of
:::

the
::::::::::
household,

:::
and

:::::
flood

:::::::
warning,

:::::::::
precaution

::::
and

:::::::
previous

:::::
flood

:::::::::
experience

:::
(c.f.

:::::
Table

:::
1).

:::::
Still,

:::
this

:::::
more

:::::::::::::
comprehensive

::::::::::
information

:::::
does

:::
not

:::::
result

::
in
::

a
::::::
clearly

:::::
better

::::::
model

:::::::::
predictive

:::::::::::
performance

::
in

::::::
transfer

:::::::::::
applications.

:::::::::
Additional

::::::::::::
improvements

::::
can

::
be

::::::::
expected

:::::
from

::::::::
including

::::
local

::::::
expert

:::::::::
knowledge

::::::
about

:::::::::
inundation

:::::::
duration,

:::::
flood

:::::::::
experience

:::
and

::::::
return

:::::
period

:::
of

:::
the

::::
event

::::
into

:::
the

:::::::::
modelling

::::::
process

:::::::::::::::::
(Sairam et al., 2019)

:
.
:::::
Flood

:::::
event

::::::
related440

:::::::
variables

::::::::
including

:::::
flood

::::
type

::::::
appear

::
to

::
be

::::::::
important

::::::::::
information

::
to

:::::::
estimate

:::
the

::::::
degree

::
of

:::::::
building

::::
loss

:::::::
because

::::
they

:::::::
describe

:::::::::
differences

::
in

:::
the

::::::::
damaging

:::::::::
processes

:::::::::::::::
(Vogel et al., 2018)

:
.
:::::
Other

::::
data

::::::
sources

:::::
have

::::
been

::::
used

::
to

::::::
enrich

::::::::
empirical

:::::::
datasets

:::
for

:::::::
learning

::::
flood

::::
loss

:::::::
models.

::::
This

:::::::
includes

:::
for

:::::::
instance

::::::::::
information

:::::
about

:::::::
building

::::
age

:::
and

:::::
floor

::::
area

::
for

::::::
living

::::
from

::::::::
Cadastre

:::
data

::::::::::::::::::::
(Wagenaar et al., 2017),

:::::::
number

::
of

::::::
storeys,

::::::::
building

::::
type,

:::::::
building

::::::::
structure,

::::::::
finishing

::::
level

::::
and

::::::::::
conservation

:::::
status

:::::
from

:::::
census

::::
data

::::::::::::::::::
(Amadio et al., 2019)

:
.
::::::::
However,

:::::
using

::::
these

::::
data

:::
did

::::
not

:::::
result

::
in

:
a
:::::
clear

:::::::::::
improvement

::
in

::::::
spatial

::::::
model

:::::::
transfer.445

Using variables derived from OSM data increases the flexibility of the models to be applied in other regions because the ac-

cessibility and availability of OSM data reduces the effort of data collection, simplifies the preparation of input variables, and

ensures consistency of input data. Achieving
:::
The

::::
latter

:::::
point

:::::
being

::
an

:::::::::
important

::::::::
advantage

:::::::
because

:::::::::
achieving consistency of

input data has been stressed to cause large efforts in model transfers (Jongman et al., 2012; Molinari et al., 2020). The suggested

RF models are based on an ensemble approach, and thus provide a view to the predictive uncertainty of the model outputs.450

We have shown this to be a valuable detail in assessing the reliability of model predictions in spatial transfers. In cases where

model performance cannot be tested with local empirical evidence, using model ensembles has been shown to provide more

skillful loss estimates (Figueiredo et al., 2018).

5 Conclusions

The transfer of flood vulnerability models to regions other than those for which they have been developed often comes with455

reduced predictive performance. In this study we investigated the suitability of numerical spatial measures calculated for

residential building footprint geometries
::::::::
footprints, which are accessible from OpenStreeMap

::::::::::::
OpenStreetMap, to predict flood
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damage. Further we tested potential benefits from using
:::
this

:
widely available and consistent input data

:::::
source

:
for the transfer of

vulnerability models across regions. In this contribution we
::
We

:
develop a new data-set based on open building

:::::::::::::
OpenStreetMap

data, which comprises of variables representing building footprint geometric dimensions and shape complexity, and we devise460

novel flood vulnerability models for residential buildings.These models use only open data and can be applied to areas where

information about the footprint geometry of residential buildings are available. The input variables of the models

:::
The

:::::::::
geometric

::::::::::::
characteristics

::
of

:::::::
building

::::::::
footprints

:::::
serve

::
as

:::::
proxy

::::::::
variables

:::
for

:::::::
building

::::::::
resistance

::
to

:::::
flood

::::::
impacts

::::
and

:::::
prove

:::::
useful

:::
for

::::
flood

::::
loss

::::::::::
estimation.

:::::
These

::::::
model

::::
input

::::::::
variables

:
are easily extracted with an automatic

::
by

::
an

:::::::::
automated

:
process

applicable to every type of building polygon. Hence, also
:::
the

::::::
models

:::
can

:::
be

:::::::
applied

::
to

:::::
areas

:::::
where

::::::::::
information

::::::
about

:::
the465

:::::::
footprint

::::::::
geometry

:::
of

:::::::::
residential

::::::::
buildings

:::
are

::::::::
available.

:::::
Also

:
other data sources, e.g.data

::::::::
Cadastral

:::::
data,

::
or

::::
data

:
derived

from remote sensing, can be used besides the OpenStreetMap data sourcewhich we have used in this study. The vulnerability

models have been validated using empirical data of relative loss to residential buildings. Further, a benchmark comparison of

the models has been conducted in spatial transfer applications. The geometric characteristics of building footprints provide

useful proxies to describe building resistance to flood impacts and support flood loss estimation.
::
In

::::::::::
comparison

::
to
::

a
::::::
model470

:::::
which

::::
uses

::::
only

:::::
water

:::::
depth

::
as

:
a
::::::::
predictor,

::::
they

::::::
reduce

:::::
model

:::::::::
prediction

:::::
errors

::::::
(MAE

::
by

::::
20%

::::
and

::::
MSE

:::
by

::::
25%)

::::
and

:::::::
increase

::
the

:::::::::
reliability

::
of

:::::
model

::::::::::
predictions

::
by

::
a

:::::
factor

::
of

:::
1.4.

OpenStreetMap is a highly popular and evolving data source with constantly increasing completeness and up to date data.

In the future, the attributes of residential buildings are expected to provide additional details which are of interest for the

characterisation of building resistance to flooding. This includes for instance information about building type, roof type, number475

of floors, building material and opens further possibilities to refine the variables used for vulnerability modelling. These data

could be further amended with other open data sources including socio-economic statistical data. In view of a large variability

of flood loss on individual building level, vulnerability modelling for individual buildings remains challenging and is subject to

large uncertainty. Advances to the understanding of damage processes and the improvement of flood vulnerability modelling,

hence requires an improved and extended monitoring of flood losses.480

Code and data availability. Flood damage data of the 2005, 2006, 2010, 2011, and 2013 events along with instructions on how to access

the data are available via the German flood damage database, HOWAS21 (http://howas21.gfz-potsdam.de/howas21/). Flood damage data of

the 2002 event was partly funded by the reinsurance company Deutsche Rückversicherung (www.deutscherueck.de) and may be obtained

upon request. The surveys were supported by the German Research Network Natural Disasters (German Ministry of Education and Research

(BMBF), 01SFR9969/5), the MEDIS project (BMBF; 0330688) the project “Hochwasser 2013” (BMBF; 13N13017), and by a joint venture485

between the German Research Centre for Geosciences GFZ, the University of Potsdam, and the Deutsche Ruckversicherung AG, Dusseldorf.

OSM is an open data project and the cartographic information can be downloaded, altered and redistributed under the Open Data Commons

Open Database License (ODbL) (contributors, 2020).

In the presented study, the geographic data were processed in PostgreSQL 12.2 with PostGIS 3.0.1 extension and R version 3.6.3 (2020-

02-29) (R Core Team, 2020). The spatial measures were calculated in PostgreSQL and imported in to R for further processing. The Ran-490

domForest model was built and applied in R with the use of the following packages: randomForest 4.6-14 (Liaw and Wiener, 2002),sf

23



0.6-3 (Pebesma, 2018), reshape2_1.4.3 (Wickham, 2007), gdalUtilities_1.1.0 (O’Brien, 2020), rpostgis_1.4.3 (Bucklin and Basille, 2018),

rgdal_1.4-8 (Bivand et al., 2019), raster_3.0-7 (Hijmans, 2019), RPostgreSQL_0.6-2 (Conway et al., 2017), tidyverse_1.3.0 (Wickham et al.,

2019).

Appendix A495

A1 Definition and examples for numerical spatial measures

A1 Scatterplots of numerical spatial measures and relative loss in regional sub-samples (Danube, Dresden, Elbe)
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