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We thank all referees for taking the time to read our paper and for giving us insightful,                 
constructive, and extremely valuable comments and improvement suggestions. We have          
addressed all the comments as accurately and precisely as possible and made the             
improvements in the manuscript.  

In the following, we respond to each referee’s comments item-by-item. The referee’s            
comments are indented and with italic typesetting. The authors’ comments are with normal             
typesetting. Direct quotes from the manuscripts are marked with double-quotes.  

The revised manuscript is also attached along with a “track-changes version” with all             
changes highlighted. The page and line numbers in the responses refer to the revised              
manuscript (not the track-changes version).  
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Referee 1 
Anonymous referee 

Responds to the general remarks 

General remarks 

The article investigates windstorm impacts on the power grid in Finland. The authors present              
a methodology to identify storm objects as polygons and combine them with meteorological             
and non-meteorological data to predict power outages. They use ERA5 reanalysis data, a             
national forest inventory and a dataset with information about time and location of power              
outages in Finland. Storm objects are identied using a xed wind speed threshold of 15 m/s                
are tracked in time and space. A large set of meteorological and non-meteorological             
parameters is gathered for each storm object. From these parameters the most relevant are              
selected and ve different methods are used to classify the storm objects with respect to the                
damage they caused to the power grid using three damage classes. It is tested how well the                 
different methods are able to predict the class of a storm object using cross-validation.              
Finally, the best performing classication method is applied to three test cases of severe              
storms. 

In general, the article addresses the very interesting and relevant topic of predicting the              
impacts of extreme weather events. The authors use state-of-the-art data and methodology.            
However, there are some issues in the manuscript and there are some parts that need more                
detailed explanation and discussion. These issues should be addressed before the           
manuscript is accepted.  

The authors use sophisticated methods for classication of storm objects with a large set of               
parameters. What is missing in the study is ​an analysis of the relevance of the individual                
parameters for the classication task. It remains unclear ​which of the parameters play             
an important role​. It might be, for example, that it is mainly the size of the storm object or                   
the number of transformers under the object that is relevant for the damage, while the               
standard deviation of wind direction plays a minor role. It would be benecial ​to include an                
analysis of the importance of the parameters, at least for the best performing method,              
to add more scientic insight to the rather technical aspects of classication task.  

We conducted a permutation feature importance analysis using the Gaussian          
processes (GP) model and a randomly selected test set of the national dataset. The              
same model and data are used to produce the case examples.  

The manuscript is appended with the following chapters (page 17 in the updated             
manuscript): 



“The relevance of the individual predictive features can be explored by using the             
permutation test, as done by Breiman (2001). First, the baseline score of the fitted              
model is calculated using the test set. Then each feature is randomly permuted, and              
the difference in the scoring function is calculated. The random permutation is            
repeated 30 times for each parameter, and the average of the results is used. The               
procedure offers information on how important the feature is to obtain good results. It              
should be mentioned that highly correlated features may get low importance as other             
features work as a proxy to the permuted feature. However, using completely            
independent features is not possible in weather data since weather parameters are            
often dependent on each other, and eliminating even the most apparent pairs from             
the used features impaired the results in our experiments. 
 
We used the macro average of F1 defined in Equation 8 as a scoring function and                
the randomly selected test set from the national data. The relevance is shown in              
Figure 7. Most features show at least little relevance for the results. The first twelve               
features are significantly more relevant than the rest. The most important features            
contain at least one representative of all meteorological parameters used in training.            
In other words, all employed meteorological parameters are important for the           
prediction, while different aggregations are contributing to the "fine-tuning" of the           
model. 
 
As Figure 7 shows, the most significant parameter regarding our model performance            
is the average wind speed. Numerous studies support our result of wind being the              
most important damaging factor (Virot et al., 2016; Valta et al., 2019; Jokinen et al.,               
2015). They are, however, highlighting the importance of maximum wind gusts           
instead of the average wind. Surprisingly, in our analysis, the wind gust speed does              
not belong to the most critical parameters. Instead, maximum mixed layer height,            
related to the wind gustiness, contributes crucially to the model performance. The            
dependencies between predictive features might be one reason for some parameters           
to have a lower rank in the results. 
 
The stand mean diameter and height are the most important features regarding the             
forest parameters, which corresponds to our expectations. Previous studies also          
state these features to influence the wind damage in forests (Pellikka and Järvenpää,             
2003) and hence indirectly electricity grids. As Pellikka and Järvenpää (2003) and            
Suvanto et al. (2016) discuss, also the age of the forest has an impact on storm                
damages. However, in the feature importance test, forest age does not seem to             
contribute significantly to the prediction outcome. 
 
The most important object feature is the size of the object. Object movement speed              
and direction did not contribute strongly to the results. However, previous studies            
indicate that besides the size of the impacted area, the duration of strong winds –               
i.e., the movement speed of the system – influences also the amount of damage              
(Lamb and Knud, 1991).” 

 
 



 
Figure 7. Permutation feature importance using the GP classification method trained           
with the randomly selected national dataset. The higher effect on the F1 score is              
(y-axis), the bigger is the significance. 

 
The authors should discuss what is ​the benet of using storm objects, rather than              
directly relating wind speeds and other parameters to power outages in a certain             
area, for example in a grid-based approach. Following the approach in the manuscript,             
one is able to assign a damage class to the whole area of the storm object. ​However, this                  
does not provide any information about the specic location of the outage. I would              
suggest to discuss in more detail what could be the use of such large-scale damage               
information for an energy provider (see also my specic comment further below).  
 

Using storm-objects instead of fitting the models with gridded data is a fundamental             
design choice of the work. Its benefits and downsides will definitely be an interesting              
subject to cover. We added the following discussion into the manuscript (page 22,             
408-423 in the updated manuscript): 
 
“The presented object-based approach has both advantages and disadvantages.         
Extracting storm objects in advance prepro- cesses the data for machine-learning           
techniques, such as RFC, which do not perform feature learning. It enables machine-             
learning methods to focus only on the relevant parts of the data. Methods not              
containing feature learning, such as RFC and logistic regression, have been found to             
outperform neural networks for forest (Hart et al., 2019) and weather data (Tervo et              
al., 2019). It also leads to significantly faster training times. Processing objects            
instead of the grid makes it also easier to track and use object attributes such as                
age, speed, and movement. Moreover, objects are easy to visualize, and user            
interfaces may be enriched with related actions such as tracking and alarms. 
 
On the other hand, storm objects use only aggregated attributes, which may            
decrease the classification accuracy when predictive features vary significantly under          
the storm object area. Several machine-learning methods, i.e., deep neural          



networks, could be trained to employ those local features to gain better accuracy.             
Such methods could also utilize three-dimensional data. Extracting storm objects          
requires a fixed threshold of wind gust and pressure, which may vary depending on              
the characteristics of geospatial locations. Nevertheless, the previous studies         
indicate the critical threshold to wind gust speed to be the same for almost entire               
geospatial domain of this work (Gardiner et al., 2013). Moreover, the correct            
threshold may vary depending on the data source. When extending the geospatial            
domain or changing the data source, this might become a more serious issue, and              
different thresholds might be needed. One possibility to determine the optimal           
threshold might be to use specific quantiles of the parameter values, but this would              
need further investigation.” 

 
In many gures the labels are hardly readable.  

 
We went carefully through all figures and enlarged the labels. 

 
The manuscript needs to be checked for English language.  
 

We carefully checked the language and made corrections to the manuscript. 

Respond to the specic remarks 
 
Page 3, line 81: What is the spatial resolution of the forest inventory?  
 

This information has now been added to the manuscript on page 4, lines 97-100. 
 
“The original geospatial resolution of the data is 16 meters, which has been reduced              
to approximately 1.6 km resolution to speed up the processing. Taking into account             
the size of extratropical cyclones (diameter 1000 km) and the wide areas where wind              
damages typically occur e.g. near to the cold front, we consider a resolution of 1.6               
km being sufficiently high for modeling wind storm damages..”  

 
Page 3, line 84-88: It could be useful to introduce Figure 1 already here in the data section.                  
This would be helpful for the reader to understand the extraction of storm object feature in                
section 3.2. You should also go into more detail about the spatial accuracy of the local and                 
national data set.  
 

We have improved Figure 1 and moved it in the data section and made it more easily                 
understandable and to have it in a more logical place. Firstly, we separated Figures              
1a and 1b from 1c and 1d and improved the figures (pages 5 and page 9 in the                  
updated manuscript). We have also added more information about the structure of            
the local and national dataset and on the spatial accuracy to the data section (page               
4, lines 102-115):  
 



“Power outage data are obtained from two complementary sources. The national           
dataset is acquired from the Finnish Energy (2010-2018) who aggregates the data            
from power distribution companies in Finland. The national data are provided only for             
research purposes and for areas containing a minimum of six grid companies; this is,              
for example, to ensure energy users’ anonymity. Therefore, the national dataset           
does not include exact locations of the faults. We have also obtained some parts of               
the data with better spatial accuracy from two individual power distribution           
companies. In this paper, we refer to this data as the local dataset. In the local                
dataset, the fault locations are reported in relation to transformers, i.e. the spatial             
resolution of the outages ranges from a few meters to kilometers. 
 
Figure 1 illustrates the geographical coverage of the power outage data. The local             
dataset contains all outages from 2010 to 2018 in the northern area (Loiste) and              
outages related to major storms in the southern area (JSE), shown in Figure 1a. The               
national dataset contains all outages in Finland from 2010 to 2018 divided into five              
regions, shown in Figure 1b. The national dataset contains in total 6 140 434              
outages with relatively low geographical accuracy. On the other hand, the local            
dataset repesents a substantially smaller geographical area with a good          
geographical accuracy but contains only 22 028 outages in total. We train our             
classification models, described in more detail in Chapter 3.4, with both datasets to             
evaluate their performance for different types of data.”  
 

 
 
Page 4, line 97: Can the storm polygons have "holes", if within the area of a polygon areas                  
with winds below 15 m/s exist?  
 

The contouring algorithm is capable of finding interior rings of the polygons. The             
used wind gust fields did not, however, contain any such cases. Thus one storm              
object represents a solid area (polygon). 



 
This information has been added to the updated manuscript on page 5, lines             
125-126. 

 
page 4, line 103: Here you mention pressure objects for the rst time. Are they dened by                 
the 1000 hPa threshold? Please describe in more detail. Also, when you use the word               
"object" on its own, it is not clear if you refer to a "storm object" or "pressure object".                  
Therefore you should only use "storm object" and "pressure object". Later you also use the               
term "wind object".  
 

We clarified these paragraphs on page 5, lines 123-137, and revised the use of the               
word “object”. In particular, we describe the object identification and tracking method            
following: 

 
“Storm objects are identified by finding contour lines of 10-meter wind gust fields             
using 15 m s−1 thresholds from the ERA5 surface level grid with a time step of 1                 
hour. The contouring algorithm is capable of finding interior rings of the polygons.             
The used wind gust fields did not, however, contain any such cases. Thus one storm               
object represents a solid area (polygon) where the hourly maximum wind gust            
exceeds 15 m s−1 during one particular hour. The threshold of 15 m s−1 is selected                
as different sources indicate Finland being vulnerable for windstorms and rather           
moderate winds (from 15 m s−1) causing damages to forests (Valta et al., 2019;              
Gardiner et al., 2013). Valta et al. (2019) developed a method to estimate the              
windstorm impacts on forests by combining the recorded forest damages from the            
nine most intense storms and their observed maximum inland wind gusts. According            
to the formula developed in the study, the inland wind gusts of 15 m s−1 alone result                 
in forest damages of 1800 m​3​. We also identify pressure objects by finding contour              
lines using a 1000 hPa threshold to connect potentially distant storm objects around             
the low-pressure center to the same storm event. 
 
After identification, storm objects are tracked by connecting them with each other.            
Each storm object is first connected to nearby pressure objects from the current and              
preceding time steps. If pressure objects do not exist within the distance threshold,             
the object is connected to nearby storm objects from the current and preceding time              
steps. The Algorithm enables assigning each storm object to an overall event (low             
pressure system) and tracking the objects’ movement. Algorithm 1 shows the details            
of the process.” 

 
page5, algorithm1: What is the"previous pressure object"? Is it previous in time? Or is there               
another for-loop that cycles through the pressure objects, which is not mentioned in the              
algorithm? What is"other object"? You mention "object", without specifying if it is a storm or               
pressure object. Please revise the algorithm, so that it is easy to understand for the reader.  
 

The algorithm description has been updated to be more explicit. The readability may             
have been affected a little bit, but we believe this is a better and more precise way to                  



describe the tracking algorithm. Meritoriously notified questions about previous         
objects and object types are addressed as well. 
 
The updated algorithm is listed below and updated to the manuscript. 

 
 

page5, line123-128: From your description it is not clear how you selected the relevant              
parameters. You write about a tted Gaussian distribution. How do you t it, to which data                
and with which purpose? What is class one and two? What is the criterion for selecting the                 
35 relevant parameters?  
 

We clarified the description as follows in the updated manuscript on pages 6-8, lines              
156-173: 

 
“We selected the 35 parameters based on two main criteria: First, we prepared a list               
of potential parameters detected in related 155 studies, e.g. Suvanto et al. (2016);             
Peltola et al. (1999); Valta et al. (2019), or identified through the empirical experience              



of duty forecasters (Weather and Safety Center of Finnish Meteorological Institute -            
Duty forecasters, 05/2020). Second, we selected the relevant parameters, which          
were available to us or accessible with a reasonable effort. However, some possibly             
essential parameters, like soil temperature from ERA5 reanalysis, were left out           
because of the slow downloading process. 

After the preliminary selection of the parameters, we conducted dozens of light            
experiments using different combinations of parameters and models to find the best            
possible setup. To this end, we fitted the Gaussian distribution to each parameter             
using at first all samples, then samples with few outages, and finally with many              
outages (classes 1 and 2 specified in Section 3.3). While many other distributions             
are known to suit better in modeling particular parameters, such as Gamma in             
precipitation, Weibull in wind speed, and Lognormal in cloud properties (Wilks,           
2011), the Gaussian distribution is a sufficient simplification to help in selecting            
relevant parameters. We visually inspected the differences between fitted Gaussian          
distributions to deduce 165 the potential relevance of the parameter. Supposedly the            
distribution of one parameter is different for all samples and samples with many             
outages, and the classification method may exploit the parameter to predict the            
damage potential of the storm object. The distributions of some selected parameters            
are shown in Appendix A. In total, 35 parameters, shown as bold faced in Table 1,                
were chosen for the final classification.” 

page 7, line 130-131: At this point it is not clear how you dene the three classes. To make it                    
easier for the reader, I would suggest to spend some words on how the classes are dened                 
here, or to move this part to page 8, line 155, where the classes are actually introduced.  

We restructured the text to introduce classes on page 10, line 197 (originally on page               
8, line 155), as you suggested. 

page 7, line 136-138: You write "the local dataset contains 24,542 storm objects". Would it               
be more precise to say that "24,542 storm objects are related to outages in the local outage                 
dataset"? It would be very informative to know how many outages are in the dataset in total                 
and how many of them are NOT related to a storm object. Maybe you can add that                 
information here.  

Using only storm objects related to outages would result in overestimating           
predictions as the classification model would not see any “harmless” class 0 samples             
in the training process and assume every sample to cause damage. Thus, we also              
consider storm objects which are not related to any outage. 

The local dataset contains 24 542 storm objects and 5 837 outages connected to  
2 363 storm objects. Thus 22 179 storm objects in the local dataset have not caused                
any outages. The local power outage data contains 16 191 outages, which can not              
be connected to any storm object. The national dataset contains 142 873 storm             
objects and 5 965 324 outages connected to 33 796 storm objects. 109 077 storm               



objects are not connected to any outages, and 175 110 outages can not be              
connected to any storm object. 

We added this information to the manuscript on page 9, lines 170-175. 

page 7, gure 1a: Can you explain why the network topologies look so different in the                
northern and southern area? In the north it looks like branches that end some where, in the                 
south it rather looks like district boundaries. Figures 1 c and d: What is shown here in red                  
color? Number of outages per area? Please add a legend. I would recommend to plot the                
grid topology with a darker color on top of the shading to increase its visibility.  

The differences between the network topologies are simply explained by the data we             
have received from the two individual companies. From the northern company           
(Loiste), we received a shapefile of their grid. The southern company (JSE) provided             
their operational areas instead of the grid topology. Therefore, these two topologies            
look so different, even though in reality also JSE’s grid looks similar compared to              
Loiste. 

We have now separated Figures 1a and 1b from 1c and 1d and improved the figures                
based on the suggestions (Pages 5 and 9 in the updated manuscript). See also the               
reply to the second comment about the spatial accuracy of datasets. 



 
 
page8, line153-154: Please explain in more detail what is shown in gure 4. Does one dot                
represent the outages and affected customers related to a specic storm object? Is the line               
a linear regression? 
 

One dot indeed represents the outages, but it may not be related to any specific               
storm. The line is trendline (linear regression). We also added a legend to the figure               
and extended the description in the manuscript on page 10, lines 192-196 following: 
 
“Figure 5 renders how many customers are typically affected by one outage. The             
figure contains all outages in both datasets, whether they are related to a storm or               
not. In the local dataset, usually 20-30 customers lose electricity in one outage. In              
the national dataset, only six customers usually lose electricity in one outage. We             
assume that this roots to different network topologies between the areas. Notably, in             
some rare cases, a much higher number of customers are affected. Based on our              
random inspections, these cases occur typically in urban areas and are rare because             
the power network is mainly underground in these areas.” 
 
The original manuscript also contained an error. The original manuscript stated that            
200-300 would be typically affected, which is wrong. One outage usually affects from             
6 to 30 outages depending on the dataset. We corrected this. 

 
page 10, table 2: The caption say "Classes for local dataset", but shown are also classes for                 
the national dataset.  

 
We compliment, and corrected this on page 12, table 2. 

 
page 10, line 153-154: Is "model" the correct term here? Isn’t it rather "classication              
algorithm"? 
 

We assume that this refers to page 10, lines 163-164. The “model” is normally used 
in this context in machine-learning literature. We see the word “algorithm” to refer 



more to heuristic algorithms instead of models that are fitted to the data. Another 
option would also be “method”, but it may be confused with the overall method, 
including storm identification and tracking. 
 
We see that the word “model” is the best term in this context. 

 
page 11, equations 1, 2, 3: If you use equations, you need to dene the individual variables.                 
Also, the equations are not easily understood without further explanation. 
 

The definitions of the variables are fundamental for equations, and we added them to              
the manuscript. They should help to understand the equations. We also added            
references for all kernels used in this work. As the used kernels are widely used               
standard kernels, we prefer to omit a more detailed explanation to keep the text              
concise and readable. 

 
page 14, section 4.1: As far as I can see it is not mentioned in the text which classication                   
algorithm was used for the case examples. 
 

Gaussian processes (GP) was used in case examples. Thus, we also analyzed            
feature importances using GP.  
 
This information is added to the manuscript on page 19, line 349. We also changed a                
conclusion slightly on page 22, lines 403 to form: 
 
“Both Gaussian Processes and Support Vector Classifiers provided good results.          
[...]” 
 
The original statement in the conclusion honoured only SVC, which is inconsistent            
with results. SVC and GP provided almost similar performance.  

 
page 15, gure 5: The gures should be as self-explanatory as possible. Please explain in               
the caption what the numbers represent. 
 

We added the following information to the manuscript on page 18: 
 
“Each cell of the confusion matrices represents a share of predictions having a             
corresponding combination of predicted and true class. For example, the middle right            
cell tells the share of samples belonging to class 1 but predicted to have class 2.” 

 
page 16, line 305: The term "cell" is usually used for convective thunderstorms, but not for                
large-scale winter storms. I would suggest to simply use the word "storm".  
 

Good point, this has been changed to “storm object”. 
 
page 17, line 307: The authors state that "the model is able to provide a more specic and                  
geospatially accurate prediction of caused damage to the power grid than for example             



weather warning." I do not think that this statement is true. If I understand the model                
correctly, it assigns a damage class to the whole area of a storm object. This area can be                  
quite large, as gure 6a and 6b show. Furthermore, the model provides no geospatial              
information about where inside this area the damages are expected. I suppose that weather              
warnings are available for Finland at a much higher spatial resolution. Additionally, weather             
warnings are released in advance of an event. In this manuscript the authors do not take                
into account forecast uncertainty. Therefore, a comparison to weather warnings difcult.  
 

We acknowledge that the comparison with weather warnings can be challenging. As            
the referee mentions, the model’s ability to provide more specific and geospatially            
accurate information than weather warnings is not a straightforward issue. We           
mention the geospatial accuracy because, in some cases, the storm object areas are             
not as big as in 6a and 6b (8a and b in updated manuscript), which are two examples                  
of extremely strong storms. This was the case, for instance, with the extratropical             
storm, Pauliina where the yellow level of wind warnings was issued to wide areas in               
central and southern Finland and orange level of wind warnings to the south (see              
attached figure). This broad wind warning likely leads to all power companies in             
southern and central Finland being alert and possibly overpreparing for the event.            
Another important aspect of this work compared to weather warnings is an analysis             
of inflicted power outages, which can give an insight to power grid operators and              
duty forecasters about the impacts of forecasted warnings. 
 
Nevertheless, because of the problematic task to indeed take into account the            
uncertainty of the forecast, we decided to modify the paragraph and update the             
manuscript (page 20-21, line 391-395): 
 
“Figure 8c presents the predicted and true damage classes at 01:00, UTC, 22 June              
2018. We chose extratropical storm Pauliina as an example storm for two reasons:             
1) Pauliina represents a low damage class 2) Pauliina represents a rare,            
summer-season extratropical storm. Figure 8c shows the predicted and true classes           
correlating. While weather warnings were issued to large areas in southern and            
middle parts of Finland, (myrskyvaroitus.com, 2018) predicted and true damage to           
the power grid occurred in a relatively small geographical area.” 
 
We also added the following clarification to the introduction (page 3, lines 70-74):  
 
“[...] The ERA5 atmospheric reanalysis (European Centre for Medium-Range         
Weather Forecasts, 2017) provides the primary meteorological input data for this           
study, while the national forest inventory provided by The Natural Resources Institute            
Finland (Luke) is used to represent the forest conditions in the prediction. Finally,             
historically occurred power outages from two sources are used to train the model.             
However, the operational use of the model would require the use of weather             
prediction data instead of reanalysis.” 

 
And following clarification to the conclusion (page 22, line 406-407): 
 



“The evaluation was, however, based on the ERA5 reanalysis data. Using the            
method in operations would require the use of weather prediction data, which            
introduces additional uncertainty to the outage prediction.” 
 
 
 

 
 
Figures A1 and A2: The gure labels are hardly readable and the gure caption is not                
self-explanatory. There are abbreviations used in the gure titles which are not dened.             
Please spend some more words on what is shown on the gures. Can you explain the peak                 
at -1000 in the gure titled "speed_self" and "angle_self"? It appears to be completely              
detached from the rest of the distribution. Why is there no blue line in the gures titled "AVG                  
Wind gust"?  
 



We reduced the number of shown parameters to enlarge label size. We also             
replaced “speed_self”, “angle_self”, “area_m2”, and “area diff” with corresponding         
feature names listed in Table 1. We added the following caption to the figures so that                
the figures should be self-explanatory: 
 
“Histogram of and fitted Gaussian distribution of selected predictive parameters in           
the local dataset. The Gaussian distribution is fitted separately to all samples and             
samples with little outages and many outages (classes 1 and 2 specified in Section              
3.3).” 
 
Peaks at -1000 represent missing values. We dropped samples with missing values,            
which changed the fitted distributions a little. In particular, the differences between            
the mean values of the distributions reduce, which makes the deduction a little more              
challenging. Nevertheless, the same parameters still stand out in the analysis.  
 
Fitted Gaussian distributions marked with the blue line have been missing in the             
original Figures A1 and A2 because of missing values. After dropping all samples             
with missing values (technically all rows having values -1000 and np.nan), the fit is              
successful also to AVG Wind gust, MAX Wind gust, and STD Wind gust, and mean               
Forest stand mean height. 
 
Figures are updated in the manuscript and shown below. 
 
 
 
  



Figure A1. Histogram of and fitted Gaussian distribution of selected predictive 
parameters in the local dataset. The Gaussian distribution is fitted separately to all 
samples and samples with little outages and many outages (classes 1 and 2 
specified in Section 3.3). 



 
Figure A2. Histogram of and fitted Gaussian distribution of selected predictive           
parameters in the national dataset. The Gaussian distribution is fitted separately to            
all samples and samples with little outages and many outages (classes 1 and 2              
specified in Section 3.3). 

Technical comments: 
page 2, line 50 "showed that" instead of "showed at"  
 

We did this correction with compliments.  
 
page 3, lines 63-66: Please check the description of the paper organization. There are              
missing words and incomplete sentences.  
 

We changed and modified the paragraph as follows (Page 3, lines 75-79): 



 
“This paper is organized as follows: Chapter 2 presents the used data, which is              
followed by a step-by-step method description in Chapter 3. Chapter 3.1 discusses            
identifying storm objects and explains the storm tracking algorithm. Chapter 3.2           
considers storm and forest characteristics, hereafter called features. Chapter 3.3          
discusses how to define labels of storm objects based on the outage data. Chapter              
3.4 describes the used machine learning methods. In Chapter 4, we discuss the             
performance of the method. Finally, Chapter 5 includes a discussion and           
conclusions." 

 
page 7, line 136: Do not use blank spaces to separate numbers in order to prevent line                 
breaks.  
 

We prevented line breaks in the middle of numbers using the latex \mbox command              
but preferred to keep spaces for clarity. 

  



Referee 2 
Tim Kruschke 

Responds to the general remarks 

The manuscript "Predicting power outages caused by extratropical storms" by Tervo et al.             
presents a novel method to predict the danger of extratropical storms to cause power              
outages over Finland, which is mainly due to windthrow in forest landscapes.Based on             
meteorological data taken from the ERA5-reanalysis as well as forest inventory data and             
power outage information from two local power network companies and the national            
responsible authority, they developed and tested classification schemes potentially suitable          
for warning purposes by distinguishing between severe damage events, small damage           
events, and no damage events. This is certainly a very interesting and relevant topic and               
deserves publication in NHESS. However, I consider a number of modifications necessary            
before publishing. 

General comments: 

a) A general shortcoming I notice in the prediction and its evaluation is the lack of any               
geographical assignment. In principle the predicted event is just "severe damage", "small           
damage", or "no damage" for Finland as a whole, just complemented by the polygon(s) of the               
storm objects. From a user-perspective (electric power network providers etc.) the question is            
if such a prediction is really useful facing the potential consequences, that is the alert of               
manpower to fix potential damages to power lines which will be rather concentrated in             
specific regions for most events. Of course it is better than nothing but I am sure that the                 
method could be easily advanced to provide more regionalized information. The least thing            
that could have been done is to provide information on the detail level of the (power network)                
input data. This would mean something like "severe damage in local network 1, small             
damage in local network 2 and region 3 of the national network".

The prediction is done for each polygon separately. Typically, such polygons cover            
only parts of Finland at the time. Thus, we do not predict the amount of damage to the                  
whole of Finland, but only to the areas affected by an extratropical storm. Therefore,              
power grid operators could receive information about whether the storm hits the            
eastern or western part of the country and whether the damage in this region is               
expected to be light or severe. Moreover, in cases where a storm consists of several               
separate polygons, we are able to distinguish the damage potential of each polygon.             
Some examples of the coverages are illustrated in the manuscript case examples,            
Figure 8 (also attached below). The two first examples are extreme cases where             
coverage is exceptionally broad, while the third example represents a more typical            
geographical scale. We also attached two other examples to this response to            
illustrate a typical geographical scale of the prediction. 



We clarified the geographical area in the introduction of the updated manuscript on             
page 3, lines 62-66: 

“We present a novel method to identify, track, and classify extratropical storm objects             
based on how much power outages they are expected to induce. We adapt             
convective storm object detection (Rossi (2015), Tervo et al. (2019), Cintineo et al.             
(2014)) to find potentially harmful areas from extratropical storms by contouring           
objects from pressure and wind gust fields. Instead of highly-localized convective           
storms, we aim at larger but still regional geospatial accuracy so that, for example,              
damages in western and eastern Finland can be distinguished. [...]” 

and in the chapter 3 Method on page 4, lines 116-121: 

“We predict power outages by classifying storm objects identified from gridded           
weather data into three classes based on the number of power outages the storm              
typically causes. The overall process consists of the following steps: (1) identifying            
storm objects from weather fields by finding contour lines of particular thresholds, (2)             
tracking the storm object movement, (3) gathering features of the storm objects, and             
(4) classifying each storm object individually. The classification is conducted for each          
storm object separately to distinguish the different damage potential. Tracking is,          
however, necessary to gather necessary features such as object movement speed          
and direction. In the following, we discuss these phases in more detail.”



 
Left: unnamed storm, 11th September 2010 16:00 UTC, 
Right: Eino, 17th November 2013 14:00 UTC 
 
Processing polygons instead of grid data simplifies and creates a clear presentation            
for the end-users. This manuscript presents the potential damage areas (storm           
objects) on the map, where the end-user can visually inspect whether the object             
intersects with the power grid. It is easy to calculate in the operative user interface, for                
example, how many transformers are affected or even anticipated monetary losses. 
 
A geographical aspect has indeed been omitted from the evaluation of the method.             
The method may work better in one region than another. However, performing a             
reasonable and descriptive regional evaluation is a complicated task, and we argue            
that it would cause more confusion than bring value. Consider, for example, an             
unnamed storm example on 11th September 2010, in the figure above. The polygon             
is correctly classified into class 2 as it caused many outages in south-western             
Finland. The polygon also slightly intersects south-eastern Finland. Should it be           
included in the eastern Finland metrics? If included, it would cause poor performance             
in that region since it is a class 2 polygon but still did not cause many outages in                  
eastern Finland. If excluded, the proper ground for excluding should be selected, and             
the reader should be strictly aware of the ground and its consequences. 
 
Thus, we argue that to be concise and clear, showing aggregated metrics describes             
the performance better than regional ones. 

 
b) I consider the explanations of the tested classification algorithms as too short. Maybe              
these different methods are self-explaining for members familiar with a variety of            
sophisticated classification schemes and machine-learning but I think for the majority of the             
NHESS-readership which I assume to be with geoscientific backgrounds these methods are            



hard to assess. I would like the authors to provide a little more information about the general                 
functionality, pros & cons, and existing studies in the context of weather and climate having               
made use of these approaches. For some approaches like the SVC or the GP, some of this                 
information are already given, for others this is hardly the case.  
 

The methods used in this work are indeed standard methods. In the initially submitted              
manuscript, we omitted more verbose explanations to keep the text concise. The            
reviewer noted an excellent point about the audience. We thus extended the            
explanation with advantages and disadvantages along with some references to the           
previous studies. Nevertheless, we tried to be as brief as possible. The updated             
manuscript is attached below (with equations omitted).  
 
“​Random forest classification (RFC) is based on a random ensemble of decision            
trees and aggregating results from individual trees to final estimation. Trees in the             
ensemble are constructed with four steps: 1) use bootstrapping to generate a random             
sample of the data, 2) randomly select subset of features at each node, 3) determine               
the best split at the node using loss function, 4) grow the full tree (Breiman, 2001).                
RFC is good to cope with high-dimensional data. It has also been found to provide               
adequate performance with imbalanced data (Tervo et al., 2019; Brown and Mues,            
2012) and is widely used with weather data (for example, Karthick et al. (2020);              
Cerrai et al. (2019); Lagerquist et al. (2017)). The method is prone to overfit, why               
hyperparameter-tuning is very important. Hyperparameters used in this work are          
listed in Table 3. We use RFC with the Gini impurity loss function. 
 
Support Vector Classifiers (SVC) construct a hyper-plane or classification function          
in a high-dimensional feature space and maximize a distance between training           
samples and the hyperplane. The hyper-planes may be constructed with non-linear           
kernels such as gaussian radial basis function (RBF) (Shawe-Taylor et al., 2004) that             
often reform a non-linear classification problem to linear. Operating in the           
high-dimensional feature space without additional computational complexity makes        
SVC an attractive choice to extract meaningful features from a high-dimensional data            
set. A domain-specific expert knowledge can also be capitalized on the kernel design.             
On the other hand, finding the correct kernel is often a difficult task. Training SVC is a                 
convex optimization problem meaning that it has no local minima. Depending on the             
kernel, a training process may, however, be a very memory-intensive process. 
 
Suppose SVM output is assumed to be the log odds of a positive sample. In that                
case, one can fit a parametric model to obtain the posterior probability function and              
thus get probabilities for samples to belong to the particular class (Platt et al., 1999).               
For more details, we request the reader to consult for example Chang and Lin (2011)               
and Platt et al. (1999). 
 
We implement the SVC in two phases. First, we separate class 0 (no outages) and               
other samples employing SVC with radial basis function (RBF), defined in Equation 1.             
Second, we distinguish classes 1 and 2 using SVC with a dot-product kernel defined              
in Equation 2 (Williams and Rasmussen, 2006). The second phase is performed only             



for the samples predicted to cause outages in the first phase. The approach is similar               
to the often-used one-vs-one classification, where a binary classifier is fitted for each             
pair of classes. In our case different kernels were used for different pairs. 
 
Gaussian Naive Bayes (GNB) (Chan et al., 1979) is a well-known and widely used              
method based on the Bayesian probability theory. The method assumes that all            
samples are independent and identically distributed (i.i.d), which does not naturally           
hold for the weather data. Despite the internal structure of the data, GNB is still used                
for weather data (for example, Kossin and Sitkowski (2009); Cintineo et al. (2014);             
Karthick et al. (2020)) and worth investigating in this context. The classification rule in              

GNB is , where P(y) is a frequency of class y and P(x​i​|y) is  y argmax P (y) (x |y) ̂ =  y ∏
n

i=1
P i             

a likelihood of the ​i​th feature assumed to be gaussian. Because of the naive i.i.d               
assumption, each likelihood can be estimated separately, which helps to cope with a             
curse of dimensionality and enable GNB to work relatively well with small datasets.             
On the other hand, estimating likelihoods can be done effectively and iteratively,            
which enables the GNB to scale to large datasets as well. As a downside, the simple                
method may lack expression power to perform well in a complex context. 
 
Gaussian Processes (GP) (Rasmussen, 2003) is a non-parametric probabilistic         
method that interprets the observed data points as realizations of a Gaussian random             
process. GP is widely used for example in weather observation interpolation kriging            
(Holdaway, 1996). GP is a very flexible and powerful but computationally expensive            
method, which tends to lose its power with high-dimensional data. GP hinges on a              
kernel function that encodes the covariance between different data points. As a            
kernel, we use a product of a dot-product kernel (Equation 2) and pairwise kernel with               
laplacian distance (Rupp, 2015), defined in Equation 3. The kernel parameters were            
optimized on the training data by maximizing the log-marginal-likelihood. 
 
Multilayer perceptrons (MLP) (Goodfellow et al., 2016) are the most basic form of             
artificial neural networks. Good results achieved by MLP in predicting storms           
(Ukkonen and Mäkelä, 2019), they are a natural choice to experiment in this work.              
Neural networks are very adaptive methods as they can learn a representation of the              
input at their hidden layers. Unlike GNB, they do not make any assumptions about the               
distribution of the data. As a downside, MLP requires large amounts of data, and the               
training process is computing-intensive. They also have a large number of           
hyperparameters to be optimized, including the correct network topology. 
 
We searched the correct model parameters and network topology for local and            
national datasets by running multiple iterations of random search 5-fold          
cross-validation to obtain the best possible micro average of F1-score (defined in            
Chapter 4) employing Talos library (Autonomio, 2020). The final setup composes of            
Nadam optimizer (Dozat, 2016), random normal initializer, and relu activation function           
for hidden layers. Binary cross-entropy was used as a loss function. Optimal network             
topology varied in different datasets: For the local dataset, the best results were             
obtained with a network containing three hidden layers with 75, 145, and 35 neurons.              



For the national dataset, the best results were obtained with a network containing             
three hidden layers with 75, 195, and 300 neurons. During the optimization process,             
the results varied between different setups from 0.6 to 0.95 in terms of F1-score.“ 

c) Especially for readers with a geoscientific background (as said, probably the majority of            
NHESS-readership) it would be interesting to read something about the relative importance           
of the various factors listed in Tab. 1. I understand that this may be quite different for the                 
different classification schemes. But at least for those schemes eventually assessed to yield            
the best performance a qualitative summary could be listed,may mentioning the five most            
important factors in order of relevance.

Based on this comment and the comment given by another Referee, we conducted a              
permutation feature importance analysis using the Gaussian processes (GP) model          
and the randomly selected test set of the national dataset. The same model and data               
are used to produce the case examples.  

The manuscript is appended with the following chapters (page 17): 

“The relevance of the individual predictive features can be explored by using the             
permutation test, as done by Breiman (2001). First, the baseline score of the fitted              
model is calculated using the test set. Then each feature is randomly permuted, and              
the difference in the scoring function is calculated. The random permutation is            
repeated 30 times for each parameter, and the average of the results is used. The               
procedure offers information on how important the feature is to obtain good results. It              
should be mentioned that highly correlated features may get low importance as other             
features work as a proxy to the permuted feature. However, using completely            
independent features is not possible in weather data since weather parameters are            
often dependent on each other, and eliminating even the most apparent pairs from             
the used features impaired the results in our experiments. 

We used the macro average of F1 defined in Equation 8 as a scoring function and                
the randomly selected test set from the national data. The relevance is shown in              
Figure 7. Most features show at least little relevance for the results. The first twelve               
features are significantly more relevant than the rest. The most important features            
contain at least one representative of all meteorological parameters used in training.            
In other words, all employed meteorological parameters are important for the           
prediction, while different aggregations are contributing to the "fine-tuning" of the           
model. 

As Figure 7 shows, the most significant parameter regarding our model performance            
is the average wind speed. Numerous studies support our result of wind being the              
most important damaging factor (Virot et al., 2016; Valta et al., 2019; Jokinen et al.,               
2015). They are, however, highlighting the importance of maximum wind gusts           
instead of the average wind. Surprisingly, in our analysis, the wind gust speed does              
not belong to the most critical parameters. Instead, maximum mixed layer height,            
related to the wind gustiness, contributes crucially to the model performance. The            



dependencies between predictive features might be one reason for some parameters           
to have a lower rank in the results. 
 
The stand mean diameter and height are the most important features regarding the             
forest parameters, which corresponds to our expectations. Previous studies also          
state these features to influence the wind damage in forests (Pellikka and Järvenpää,             
2003) and hence indirectly electricity grids. As Pellikka and Järvenpää (2003) and            
Suvanto et al. (2016) discuss, also the age of the forest has an impact on storm                
damages. However, in the feature importance test, forest age does not seem to             
contribute significantly to the prediction outcome. 
 
The most important object feature is the size of the object. Object movement speed              
and direction did not contribute strongly to the results. However, previous studies            
indicate that besides the size of the impacted area, the duration of strong winds –               
i.e., the movement speed of the system – influences also the amount of damage              
(Lamb and Knud, 1991).” 

 
 

 
Figure7. Permutation feature importances using GP classification method        
trained with the randomly selected national dataset. The higher effect on           
the F1 score is (y-axis), the bigger is the significance. 

 
 
d) As far as I understand, the evaluation metrics in equations (4)-(7) are standard metrics               
used in the field of machine-learning based classification. However, what I am missing in              
these scores is any consideration of the distance between predicted and observed class.             
Clearly a prediction of "severe damage" in cases of no observed damage and vice versa is                
worse than predicting "small damage" in these cases. But this is not reflected in any penalty                
for the given scores. Maybe this is a wise solution given that the classes are very different in                  
population. Otherwise an "algorithm" always predicting no damage might be superior with            
respect to a score taking this distance into account. I would ask the authors at least to                 



comment on this matter and explain why they do not penalize larger distance between              
prediction and observation.  
 

This is an important notation. The used metrics are indeed selected to take the              
imbalance between classes into account. We also want to provide the results in             
well-known standard metrics to give the reader an intuitive image of the performance.             
The only metrics, which take the class distance into account, we are aware of, are               
Gandin and Murphy Equitable Score (GMSS) and its derivatives. However, these are            
relatively complicated metrics and not generally known. Thus, they would hence           
provide only a little value to the readers. 
 
We commented on this matter in the updated manuscript following (on page 15, line              
286-289): 
 
“[...] The selected metrics do not take a distance between predicted and true class              
into account. It is naturally worse to predict, for example, class 0 (no damage) in the                
case of true class 2 (high damage) than in the case of true class 1 (low damage). We                  
decided, however, to use metrics that measure the method performance properly with            
imbalanced classes.” 

 
e) I wonder why the authors decided to provide deterministic category predictions. This Is to               
some degree a philosophical discussion but given the nature of the task to make a prediction                
and further supported by i) the rather arbitrary distinction between event classes and ii) the               
large number of influential factors (some of them considered in the categorization schemes             
but many more existing in the real world), I wonder why the authors didn’t design a scheme                 
that provides probabilities for the distinct event categories. It is often argued that end-users              
prefer deterministic predictions but it is clearly a fact that predictions such as produced in this                
study are subject to significant uncertainty. So, why not making this uncertainty transparent             
by providing related estimates in the form of probabilities? I do not ask the authors to                
redesign their whole approach but please comment on this issue. Maybe it is worth              
considering this as a future extension for advancement of the presented approach.  
 

As well-argued, supplying the prediction with uncertainty information might be          
beneficial to some end-users if appropriately presented. Presenting the uncertainty in           
the correct way is also under broader discussion in meteorology due to wider use of               
the ensemble predictions. Providing uncertainty has, however, several challenges in          
this context: 
 

1. As the referee already noted, at least the power grid operators prefer simple             
deterministic prediction. The simple view for the prediction is especially          
important in daily use where operators have only a little time to investigate the              
predictions.  

2. The uncertainty would originate as a probabilistic prediction of the          
classification model, which describes the confidence of the model prediction          
instead of the reliability of the actual predictions. In other words, the            
uncertainty would not consider any sources of errors not introduced to the            



model. For example, the amount of leaves in the trees significantly affects the             
number of caused outages, but are not considered in the prediction due to             
shortcomings in available data. The model could predict an incorrect class           
with a very high confidence as it is not aware of tree leaves at all. Providing                
this kind of uncertainty would be easily misinterpreted by non-expert users.           
Similar effects can be seen in current ensemble prediction systems when the            
whole ensembles cluster is biased and true values are outside the confidence            
interval. Therefore, we argue that the performance metrics described in this           
work are better guidance for the prediction uncertainty. 

 
Having said that, especially expert users like duty forecasters would benefit from the             
uncertainty information. We added the following future possibility to the updated           
manuscript (page 22, lines 434-436): 
 
“End users, especially expert users like duty forecasters, would benefit from the            
uncertainty information originating as the probabilistic prediction of the classification          
model. However, the presentation of such information should be very carefully chosen            
not to mislead non-expert users for overconfidence.” 

 
f) A very general issue is that the authors use the term prediction (and so do I in this review)                    
but in fact the presented approach is based on atmospheric REanalysisdata, i.e. it relies on               
data retroactively produced from observations. I would ask the authors to rephrase            
respective introductory and conclusive remarks in a way that it becomes clear that this study               
serves as a general introduction of this approach and a proof of concept while a               
quasi-operational implementation at weather services or power network providers would          
have to be based on actual weather predictions which will introduce additional uncertainty to              
the final product.  
 

The term ​prediction ​is widely used in the field of machine learning in the meaning of                
model output. In this context, it may be confused with actual weather or outage              
prediction, which is not our meaning. We clarified this issue in the updated manuscript              
introduction following (page 3, lines 70-74): 
 
“[...] The ERA5 atmospheric reanalysis (European Centre for Medium-Range         
Weather Forecasts, 2017) provides the primary meteorological input data for this           
study, while the national forest inventory provided by The Natural Resources Institute            
Finland (Luke) is used to represent the forest conditions in the prediction. Finally,             
historically occurred power outages from two sources are used to train the model.             
However, the operational use of the model would require the use of weather             
prediction data instead of reanalysis.” 

 
And following clarification to the conclusion (page 22, line 406-407): 
 
“The evaluation was, however, based on the ERA5 reanalysis data. Using the            
method in an operational setting would require weather prediction data, which           
introduces additional uncertainty to the outage prediction.” 



g) Some of the figures need optimization. Please see my respective specific comments.

We went carefully through all figures and enlarged the labels. 

h) I am not a native English speaker myself, so I usually refrain from judging the language               
used in manuscripts written by others. However, in this example I have the strong impression              
that the language should be revised. A particular example are frequently missing definite and             
indefinite articles ("a" and "the"). Other examples can be found in my specific comments

We carefully checked the language and made corrections to the          
manuscript. 

Respond to the specic comments 

1) line 14: Please revise your citation. This is certainly no person with the family name "Re"               
who is cited here but an institutional citation referring to a publication by the Munich Re.

We appreciate this note. We changed the citation and also added the URL address.              
(Page 1, line 14) 

2) lines 20-21: "...up to 69% compared to previous years". What is meant here? Is It an               
increase of 69% compared to previous years or a total of 69% of outages in 2011/2013v               
which are associated with windstorms. If the latter is the case, then please delete "compared              
to previous years".

When rereading this sentence, we acknowledge that it can be easily misunderstood.            
During the years of 2011 and 2013, the share of windstorm-induced outages was             
69% of all outages. We deleted the last part of the sentence, as the referee               
suggested. 

3) line 27: "Ulbrich et al. (2009)", not "Ulbrich et al. (Ulbrich et al., 2009)"

We corrected this with compliments. (Page 2, line 25). 

4) lines 31-33: Please rephrase to make clear that this sentence contains references to            
studies contradicting the fore-mentioned studies and their results.

Pointing this out made us reread and clarify the entire paragraph. We reorganized it              
entirely in the following way. The update can be found in the updated manuscript on               
page 2, line 25-37: 

“As Ulbrich et al. (2009) describe, there is no scientific consensus on how the              
occurrence and magnitude of extratropical storms will evolve in the future. Based on             
existing literature, the windstorm-related damages are increasing, while it remains          



unclear whether this is due to the higher exposure of society or the number and               
intensity of extratropical storms. Gregow et al. (2017) discovered that windstorm           
damages had increased significantly during the previous three decades, especially in           
northern, central, and western Europe. Also, several other studies suggest an           
increase in wind-related damages in Europe (Csilléry et al. (2017); Haarsma et al.             
(2013); Gardiner et al. (2010)). Interestingly, some studies detected a decrease in the             
total number of extratropical storms (i.e. Donat et al. (2011)), while others found an              
increase in the number of extreme storms in specific regions, like western Europe and              
northeast Atlantic (Pinto et al., 2013). Another supporting view of a potential increase             
in extratropical storms in northern Europe can be found in the IPCC (2018) report.              
The report states that extratropical storm tracks are shifting towards the poles, which             
might affect the storminess in northern Europe. Thus, it may be concluded that also              
the losses related to extratropical storms are likely to increase especially in northern             
Europe. However, as Barredo (2010) emphasizes, the cause for increased losses can            
at least partly be explained by the increasing exposure of society rather than the              
increased number of windstorms.” 

 
5) line 46: Delete "large-scale storms" and "small-scale storms" and just name the             
meteorological phenomena themselves as they are now listed in brackets. It is misleading to              
call hurricanes large-scale if then coming to the extra-tropical storms which are even larger in               
spatial scale. 
 

We changed this in the manuscript, as suggested. 
 
6) lines 52-55: The purpose of this sentence is a little unclear to me, especially the reference                 
to the IPCC-SREX-report. It’s fine citing this report but not as one of several/many examples               
supporting this statement. It is basically the probably most comprehensive summary/review           
of studies indicating this. 
 

This sentence and the reference is indeed detached from the previous sentences. We             
rephrased the end of the paragraph as follows (updated manuscript page 3, lines             
58-61): 
 
“The framework of IPCC (2018) emphasizes that the impacts of extreme weather            
risks can be analyzed by estimating the hazard, vulnerability, and exposure. In an             
increasing manner, connecting these fields (i.e. the natural hazard with the societal            
factors) is done with machine learning (Chen et al. (2008)).” 

 
7) line 64: Maybe replace "features" by "storm object features" or "storm object             
characteristics"  
 

The features contain both storm and forest characteristics. We changed that into form             
(page 3, line 77): 
 
“[...] Chapter 3.2 considers storm and forest characteristics hereafter called features.           
[...]” 



 
8) lines 68-73: Please indicate the purpose of each dataset in this study, e.g. "the ERA5                
atmospheric reanalysis (Hersbach et al., 2019) provides the primary meteorological input           
data for this study..."  
 

Thank you. We clarified ERA5 and added additional sentences about other datasets            
and their roles. (Updated manuscript page 3, lines 70-74): 
 
“The ERA5 atmospheric reanalysis (European Centre for Medium-Range Weather         
Forecasts, 2017) provides the primary meteorological input data for this study, while            
the national forest inventory provided by The Natural Resources Institute Finland           
(Luke) is used to represent the forest conditions in the prediction. Finally, historically             
occurred power outages from two sources are used to train the model. However, the              
operational use of the model would require the use of weather prediction data instead              
of reanalysis.” 

 
9) lines 74-80: Please indicate explicitly which level you use regarding the ERA wind data. I                
guess it is the 10m-winds but this is not said here. Additionally, you may comment on the                 
issue regarding ERA5 surface winds which is described at         
https://confluence.ecmwf.int/display/CKB/ERA5%3A+large+10m+winds . As far as Ican see       
this does not affect this study as all problematic occasions of unrealistic high wind speed               
happened at geographical locations far off the study domain. Still I consider this worth              
mentioning as some readers may not be aware of this issue in general (so the authors could                 
contribute to a more widespread awareness of this problem) and others may be aware of the                
problem but not its location and related irrelevance for this study.  
 

The 10-meter wind gust from the surface data were used. We added this             
elaboration to the manuscript. 
 
We added the following comment about the high wind speeds to the updated             
manuscript on page 4, line 93-95: 
 
ERA5 data are also known to contain unrealistically large surface wind speeds in             
some locations (European Centre for Medium-Range Weather Forecasts, 2019).         
None of these locations are, nevertheless, inside the geographical domain of this            
work.” 

 
10) lines 84-88: What is the specific benefit of using the two local datasets on top of the                  
national dataset for this study? Please comment.  
 

While containing basically the same information, they also differ significantly. The           
national dataset contains many more outages than the local datasets, but the outages             
are reported with lower geographical accuracy. We train our classification models with            
both datasets to evaluate their performance for different types of data. 
 



We added this information to the updated manuscript on page 4, lines 108-114. We              
also improved Figure 1 and moved it in the data section based on another referee's               
comment. 
 
Figure 1 illustrates the geographical coverage of the power outage data. The local             
dataset contains all outages from 2010 to 2018 in the northern area (Loiste) and              
outages related to major storms in the southern area (JSE), shown in Figure 1a. The               
national dataset contains all outages in Finland from 2010 to 2018 divided into five              
regions, shown in Figure 1b. The national dataset contains in total 6 140 434              
outages with relatively low geographical accuracy. On the other hand, the local            
dataset represents a substantially smaller geographical area with a good          
geographical accuracy but contains only 22 028 outages in total. We train our             
classification models, described in more detail in Chapter 3.4, with both datasets to             
evaluate their performance for different types of data.”  
 

 
 
11) lines 97-99: The reason given for using a threshold of 15m/s is valid as long as observed                  
winds are considered. However, ERA5-winds are not observed winds, especially regarding           
gusts. It’s basically model results. It should be noted here already, that at least a little bit of                  
sensitivity tests have been performed yielding 15m/s to be the "best" choice. However, the              
motivation behind this study to develop a scheme which is applicable for quasi-operational             
forecasts would imply a transfer to a different source of meteorological data, basically             
weather predictions. Weather prediction models feature quite different distributions of surface           
wind speeds. Hence, for such an application a thorough test of the use of this threshold                
would be necessary. I would like to point out that there are approaches existing in the                
published literature on wind damage that make use of thresholds which are tied to the               
specific wind climatology of respective datasets, e.g. by making use of specific quantiles             
rather than absolute values.  
 



As the referee noted, the chosen threshold is supported by the previous studies             
(Gardiner 2013, Peltola 1999, Valta 2017) and empirical knowledge of the           
experienced duty forecasters and power grid operators.  
 
We are aware that the optimal threshold depends on the chosen data source, and it               
is also highly dependent on the time of the year and other environmental conditions.              
As Peltola et al. (1999) discuss, even the specific tree species are sensitive and              
uprooted with different wind speed thresholds. During frozen ground and leafless           
periods, 15 m/s wind hardly harms any trees, but during summer months, when the              
trees have leaves, and the soil frost does not anchor the forest to the ground, 15 m/s                 
can be already damaging. Thus, the used threshold depends on both data source             
and environmental factors, and is always a compromise.  

 
As the referee suggests, using specific quantiles would be a proficient way to             
determine the correct thresholds. However, with an object-based approach, the use           
of quantiles is not a straightforward task since the object needs to have the same               
absolute value inside the application domain to be a valid polygon. Therefore, the             
thresholds of the objects can not be always selected optimally. 
 
We evaluated the method with a 20 m/s threshold with worse results. The evaluation              
is shortly mentioned in the initially submitted manuscript on page 13, line 246.             
However, trying out different thresholds between 15-20 m/s might yield better results.            
Unfortunately, this would be an intensive computing task requiring both time and            
budget. 

 
We added a discussion about this matter to the updated manuscript on page 22,              
408-423: 
 
“The presented object-based approach has both advantages and disadvantages.         
Extracting storm objects in advance prepro- cesses the data for machine-learning           
techniques, such as RFC, which do not perform feature learning. It enables machine-             
learning methods to focus only on the relevant parts of the data. Methods not              
containing feature learning, such as RFC and logistic regression, have been found to             
outperform neural networks for forest (Hart et al., 2019) and weather data (Tervo et              
al., 2019). It also leads to significantly faster training times. Processing objects            
instead of the grid makes it also easier to track and use object attributes such as                
age, speed, and movement. Moreover, objects are easy to visualize, and user            
interfaces may be enriched with related actions such as tracking and alarms. 
 
On the other hand, storm objects use only aggregated attributes, which may            
decrease the classification accuracy when predictive features vary significantly under          
the storm object area. Several machine-learning methods, i.e., deep neural          
networks, could be trained to employ those local features to gain better accuracy.             
Such methods could also utilize three-dimensional data. Extracting storm objects          
requires a fixed threshold of wind gust and pressure, which may vary depending on              
the characteristics of geospatial locations. Nevertheless, the previous studies         



indicate the critical threshold to wind gust speed to be the same for almost entire               
geospatial domain of this work (Gardiner et al., 2013). Moreover, the correct            
threshold may vary depending on the data source. When extending the geospatial            
domain or changing the data source, this might become a more serious issue, and              
different thresholds might be needed. One possibility to determine the optimal           
threshold might be to use specific quantiles of the parameter values, but this would              
need further investigation.” 

 
12) line 103: Do you mean "...connected to objects in preceding timesteps"?  
 

Yes, this is what we mean. We updated the manuscript on page 5, line 133-137. 
 

13) line 103: Why do you call this "Algorithm 1" if there is no "Algorithm 2"? Why not simply                   
calling it "Storm tracking algorithm"?  
 

We prefer this, possibly a little clumsy, naming to be consistent with figure and table               
naming and to give a clear hint for the reader about the reference to the separately                
described algorithm (shown on another page). 
 

14) line 103-104: Maybe I missed something but it seems to me you are not providing any                 
information about the criterion to define/identify a "pressure object"  
 

Please see the answer to the next comment. 
 
15) line 103-104: You mention "the threshold" but such a threshold has not been introduced               
yet. This is done a few lines below. Please rephrase.  
 

We clarified the paragraphs describing the object identification and tracking method           
in the updated manuscript, page 5, lines 123-137: 
 
Storm objects are identified by finding contour lines of 10-meter wind gust fields             
using 15 m s−1 thresholds from the ERA5 surface level grid with a time step of 1                 
hour. The contouring algorithm is capable of finding interior rings of the polygons.             
The used wind gust fields did not, however, contain any such cases. Thus one storm               
object represents a solid area (polygon) where the hourly maximum wind gust            
exceeds 15 m s−1 during one particular hour. The threshold of 15 m s−1 is selected                
as different sources indicate Finland being vulnerable for windstorms and rather           
moderate winds (from 15 m s−1) causing damages to forests (Valta et al., 2019;              
Gardiner et al., 2013). Valta et al. (2019) developed a method to estimate the              
windstorm impacts on forests by combining the recorded forest damages from the            
nine most intense storms and their observed maximum inland wind gusts. According            
to the formula developed in the study, the inland wind gusts of 15 m s−1 alone result                 
in forest damages of 1800 m​3​. We also identify pressure objects by finding contour              
lines using a 1000 hPa threshold to connect potentially distant storm objects around             
the low-pressure center to the same storm event. 
 



After identification, storm objects are tracked by connecting them with each other.            
Each storm object is first connected to nearby pressure objects from the current and              
preceding time steps. If pressure objects do not exist within the distance threshold,             
the object is connected to nearby storm objects from the current and preceding time              
steps. The Algorithm enables assigning each storm object to an overall event (low             
pressure system) and tracking the objects’ movement. Algorithm 1 shows the details            
of the process.” 

 
16) line 111: "That means that wind objects are not assumed to move..."  
 

Please see the answer on the next comment. 
 

17) line 111: "45km" instead of "45km/h"; and please add "from one hourly timestep to               
another  
 

We appreciate these valuable and detailed suggestions and updated the sentence to            
form (page 6, line 141-143): 
 
“[...] In other words, storm objects are not assumed to move over 200 km and               
pressure objects over 45 km from the preceding hourly time step (Govorushko,            
2011).” 
 
The term “wind object” was also changed to “storm object” based on the comment by               
another Referee to be consistent. 
 

18) line 115: "The first group is a number of object characteristics ... which are calculated ..."                 
to the end of this sentence.  
 

Updated with compliments on page 6, lines 147-148. 
 
19) line 117-118: Please provide more details how you aggregate. Are the            
minimum/maximum/average values calculated over all grid boxes identified to belong to the            
storm object (i.e. exceeding 15m/s) 
 

Yes. We clarified this to the updated manuscript on page 6, line 148-150. 
 
“We aggregate values as a minimum, maximum, average, and standard deviation           
calculated over all grid cells under the object coverage to represent each parameter             
with one number” 

 
20) line 118: Replace "over" by "on"  
 

Replaced with thanks. 
 
21) line 119: Replace "features" by "characteristics"  
 



Replaced with thanks. 
 
22) line 120: Replace "in the damages" by "to the damages", "support" by "complement", and               
"with weather parameters" by "for weather parameters"  
 

Replaced with thanks. 
 
23) line 121: Replace "aggregated from" by "aggregated over".  
 

Replaced with thanks. 
 
24) line 124: Here you mention the samples for class 1 and 2 but the class definition has not                   
yet been introduced. This happens in the next section. Please refer to this section and               
include a very brief definition of the two classes in this sentence, e.g."severe damage" and               
"small damage"  
 

We restructured the text to introduce classes at the end of the Chapter on page 10,                
line 197 (originally on page 8, line 155). 

 
25) line 131: Now you introduce the general class definition (no damage, low damage,high              
damage) but again the exact definition is found at the very end of section 3.3. Additionally,                
the thresholds used to distinguish between the classes, especially between the two classes             
containing damage, seems to be completely arbitrary. AT least there is no reason given why               
the respective number of outages is considered to be low-damage or high damage.  
 

We restructured the text to introduce classes on Chapter on page 10, line 197              
(originally on page 8, line 155). 
 
The thresholds used in the class definitions are discussed more in response to             
comment 28.  

 
26) Fig. 1: Looking at the red lines in Fig. 1a & b I get the impression that only the lines for                      
the northern local dataset illustrate actual power lines. The lines for the southern local              
dataset rather seem to be boundaries of sub-regions or so just as Fig. 1b contains region                
boundaries. I suggest to use different colors for different types of information. The spatial              
distribution of outages in Fig. 1c & d seems to having been smoothed. If so, please indicate                 
this and the reason for doing so.  
 

This is a valid point, and the other Referee pointed this out as well. The differences                
between the network topologies are simply explained by the data we have received             
from the two individual companies. From the northern company (Loiste), we received            
a shapefile of their grid. The southern company (JSE) provided their operational            
areas instead of the grid topology. Therefore, these two topologies look so different,             
even though JSE’s grid also is similar compared to Loiste. 

 



We have now separated Figures 1a and 1b from 1c and 1d and improved the figures                
based on the suggestions of both referees. (Pages 5 and 9 in the updated              
manuscript).  

 

 
 
 
The spatial distribution of the power outages has been produced as a spatial             
heatmap. In other words, it is represented as a density of outages. This visualization              
technique is selected to illustrate the spatial distribution of a large dataset as well as               
possible. We updated the figure based on the other referee’s comment and clarified             
the visualization technique in the caption. 
 

 
 
27) lines 143-149 (and especially when reading lines 145-146): The reader immediately            
wonders why the authors stay with the 15m/s-threshold and why this is not analyzed in terms                



of quantitative measures. A simple example might be hit rates and false alarm rates or so. It                 
is only in Sec. 4 (lines 248-250) that the authors write that storm identification with 15m/s                
yields a better basis for the following classification. Please Refer to this later explanation              
here.  
 

We referred to the explanation in the updated manuscript on page 10, line 186-187. 
 
28) lines 155-158: Eventually the class definitions seem to be set arbitrarily. If there is a                
reason behind the particular thresholds, please name these.  
 

We find that when designing new tools, especially impact forecasting/estimation tools,           
some arbitrary “first guesses” have to be taken. As mentioned in the manuscript, the              
limits are designed together with the power distribution companies and duty           
forecasters, and they aim to be as simple and intuitive as possible. However, power              
grid operators do not have any specific thresholds where the actions are taken. We              
are also not aware of any previous studies justifying any specific thresholds,            
especially in Finnish conditions.  
 
The distinction between class 1 (low damage) and class 2 (high damage) is designed              
so that class 2 is truly exceptional. Class 2 represents roughly 20 percent of all               
samples, causing at least some damage and roughly 3 percent of all samples in both               
datasets. 
 
Notably, the limits can be relatively easily changed in the future based on the              
end-users requirements or further research.  

 
29) lines 160-161: Why is centering and normalization necessary? Probably for some            
classification algorithms but not for all of them, right?  
 

The centering and normalization are necessary for all methods except the Random            
Forest Classification (RFC). RFC is a decision tree method which creates the splits             
based on the order of the values to each feature separately. Thus, the normalization              
and centering do not bother RFC either.  

 
30) lines 162-163: Please describe briefly what the application of SMOTE means and why              
this is beneficial/necessary.  
 

We added the following description about the SMOTE to the manuscript on page             
11-12, lines 204-211: 
 
“[...] To cope with the imbalanced class distribution, we generate artificial training            
samples using the synthetic minority oversampling technique SMOTE (Chawla et al.,           
2002). The SMOTE creates new training samples based on their k=5 nearest            
neighbors following: 
 



λ x  x )xnew = xi +  × ( zi −  i  
 
where is the original sample, is one of ’s k-nearest neighbour and λ is a xi     xzi    xi        
random variable drawn uniformly from the interval [0,1]. After augmentation, all           
classes have an equal number of samples, which reduces classification methods’           
tendency to always predict the majority class.” 

 
31) lines 204-206: Why did you choose this specific topology? Did you test others? How is                
the sensitivity of the results to the networks topology?  
 

The topology was searched by iterating different combinations of topologies and           
hyperparameters and searching for the best possible results. We clarified this into the             
manuscript following (page 14, lines 270-276):  
 
“We searched the correct model parameters and network topology for local and            
national datasets by running multiple iterations of random search 5-fold          
cross-validation to obtain the best possible micro average of F1-score (defined in            
Chapter 4) employing Talos library (Autonomio, 2020). The final setup composes of            
Nadam optimizer (Dozat, 2016), random normal initializer, and relu activation function           
for hidden layers. Binary cross-entropy was used as a loss function. Optimal network             
topology varied in different datasets: For the local dataset, the best results were             
obtained with a network containing three hidden layers with 75, 145, and 35 neurons.              
For the national dataset, the best results were obtained with a network containing             
three hidden layers with 75, 195, and 300 neurons. During the optimization process,             
the results varied between different setups from 0.6 to 0.95 in terms of F1-score.”  
 
As also stated in the updated manuscript, the results varied from 0.6 to 0.95 in terms                
of F1-score. KDE plot of the results from the final iteration of searching the best               
possible network topology for the local dataset is attached below as an example. 

 



Figure: KDE plot of the results from the final iteration of hyperparameter and topology              
search. 
 

 
32) line 236: Please explain the content of the confusion matrices briefly. Again this is               
probably clear to people profound in machine-learning based classification but not           
necessarily to the general readership in geosciences. If I understand correctly, it is simply the               
ratio of cases for each observed class that is show in the cells for the respective predicted                 
classes, right?  
 

We added the following information to the manuscript on page 18: 
 
“Each cell of the confusion matrices represents a share of predictions having a             
corresponding combination of predicted and true class. For example, the middle right            
cell tells the share of samples belonging to class 1 but predicted to have class 2.” 

 
33) Section 4.1: This whole section is where my major comment a) becomes visible. If I                
understand correctly, it is just the event as a whole which is assigned with the respective                
category, complemented by the polygon of the storm object(s). Is it possible that different              
objects of one specific event are assigned with different classes? Fig.6a seems as if this is                
possible. On the other hand the northeastern object is outside of Finland, so it is clear that                 
there is no damage (to Finnish power lines) observed. In this context it becomes also visible                
that intra-object refinement of the classification would be desirable. It makes hardly any             
sense for a prediction of potential damage to power lines (due to windthrow in forests) that                
the storm objects extend over the Baltic Sea. I understand that this is due to the primary                 
identification being solely based on the exceedance of the wind speed threshold. However, I              
ask the authors to thin and comment on my general comment a). Additionally, this case study                
validation refers to observed wind gusts when qualitatively assessing the credibility of these             
specific predictions. But the authors made it very clear that the potential damage due to               
windstorm depends on many more factors, partly non-meteorological but related to the            
forests themselves. This raises again the question of relative importance of the various             
factors.  
 

The classification is done to each storm object separately, and only power lines             
covered by the object are affected. Thus, the geographical areas can be distinguished             
in many cases. Furthermore, objects outside the area of coverage can be ignored. 
 
Showing objects outside of Finland, for example, the Baltic Sea provides valuable            
information nevertheless to the operators in the form of preliminary information about            
approaching storms. The particular message in those cases is: The storm as it is              
now, would be (or would not be) hazardous to our power network if it was in our                 
region. This gives the operator more tools and time to prepare. 
 
We clarified the geographical coverage and the individual classification of storm           
objects in the introduction and method Chapter (please see the response to a general              
comment a). 



 
We conducted a feature importance study and added it to the updated manuscript             
(response to general comment c). 

 
34) lines 306-307: This sentence ignores the fact that the actual study was based on               
reanalysis data. Using actual weather predictions - which would be necessary for this             
prospect mentioned here - would introduce additional uncertainty and very likely lead to             
worse results than derived in the current study. This does not lower the value of the current                 
study but it is worth mentioning when writing about such potential quasi-operational            
applicability.  
 

We added the following clarification to the updated manuscript on page 22, line             
406-407: 
 
“The evaluation was, however, based on the ERA5 reanalysis data. Using the method             
in operations would require the use of weather prediction data, which introduces            
additional uncertainty to the outage prediction.” 

 
35) line 309: Start the sentence with "Including data on..."  
 

Modified with compliments. 
 
36) line 309: I agree that including data about forest soil and leaf index would probably be                 
beneficial but it is questionable if such data is available in sufficient spatial and temporal               
resolution and coverage  
 

The availability of such data is indeed questionable. We added a notation about this              
to the manuscript on page 22, lines 425-427: 
 
“Including data on soil moisture, soil temperature, and leaf index would most probably             
enhance the results, if available with sufficient spatial and temporal resolution, since            
they would provide critical information about the environmental conditions.” 

 
37) Appendix A: All text elements and axis labels in figures A1 and A2 are hardly readable.  
 

We reduced the number of shown parameters to enlarge label size. We also             
replaced “speed_self”, “angle_self”, “area_m2”, and “area diff” with corresponding         
feature names listed in Table 1. The updated figures are attached below: 
 



 
Figure A1. Histogram of and fitted Gaussian distribution of selected predictive 
parameters in the local dataset. The Gaussian distribution is fitted separately to all 
samples and samples with little outages and many outages (classes 1 and 2 
specified in Section 3.3). 
 



 
Figure A2. Histogram of and fitted Gaussian distribution of selected predictive           
parameters in the national dataset. The Gaussian distribution is fitted separately to all             
samples and samples with little outages and many outages (classes 1 and 2             
specified in Section 3.3). 

 
 
  



Short comment 1 
Peter Watson 

Responds to the general remarks 

A thoroughly interesting paper. The methodology for identifying storms is especially           
interesting. However, there may be a few ways to improve the work presented. More              
specifically: 

1) In lines 46 to 48, the authors claim that modeling power outages caused by extratropical
events is an understudied problem. However there are actually several papers that describe
a power outage prediction system designed specifically for modeling power outages from
extratropical storms that are not cited: Yang et al,
https://www.mdpi.com/2071-1050/12/4/1525; and Cerrai et al,
https://ieeexplore.ieee.org/abstract/document/8656482

We appreciate this advice and added mentioned papers to the previous work.            
(Updated manuscript page 2, lines 52-54). 

2) In figure 4b, it’s unclear why the data contains prominent examples where there are very              
few or no outages, but have a large number of customers affected. Is this trendreal, or is it an                  
artifact of noise in the data?

Only six customers usually lose electricity in one outage in the national datasets. In              
some cases, however, outages affect many more customers. We can not ensure the             
correctness of each data point, but we did check some extreme cases. Typically             
these cases occur in urban areas and are rare because the power network is mainly               
underground in these areas. 

We added a comment about this matter to the updated manuscript in page 10, lines               
195-196:

“Notably, in some rare cases, many more customers are affected. Based on our             
random inspections, these cases occur typically in urban areas and are rare because             
the power network is mainly underground in these areas.” 

3) By using week as a predictor variable the authors may be over-fitting. For example,to my              
knowledge, there’s no specific mechanism of why a storm on the 42nd week of the year               
would be particularly strong. But if you had several examples of strong storms on that week,               
the model would learn that trend and begin to predict strong outages just because of the               
week, independent of the actual meteorological characteristics of the storms. There are           
probably other, less problematic ways to describe seasonal aspects of storms to the model.



This is truly a very valid concern. During the review process, we conducted a              
permutation feature importance analysis using the Gaussian processes (GP) model          
and randomly selected test set of the national dataset. The results of the analysis are               
shown below. Please consult responses to RC1 or RC2 for more information. 

The results indicate that permuting week during the training process had           
only a little effect (0.015 +/- 0.001) on F1 score. Moreover, we conducted             
the feature importance study also using corresponding train data. In that           
case the week had almost the same effect (0.013 +/- 0.002) on the F1              
score, which also indicates that using the week as a predictor does not lead              
to overfitting. 

4) I would recommend a more rigorous and comprehensive method for validating the model.            
As discussed in the paper, the k-fold cross-validation approach may not sufficiently isolate            
temporally or spatially correlated information from the model, and thus inflate the model’s            
performance. The 2010 to 2011 holdout approach is presented as an alternative to this             
approach, but the types of storm events that occur often vary widely from year to year. A                
leave-one-day/week/month/year-out cross validation (where foreach day, week, month, or        
year in the database you hold out that data, train the model on the remaining data, and                
predict on the withheld data. Then evaluate the model on all of those results) would provide               
more compelling results.

Thank you for the comment. 

First, we would like to clarify that the test results does not represent k-fold              
cross-validation but randomly selected holdout as stated in the beginning of Chapter            
4 (page 12, lines 208-209 in the originally submitted manuscript).  

The validation could still be extended to more rigorous methods like the one             
suggested by the reviewer. We are aware of a potential autocorrelation issue when             
selecting the testset randomly. We selected to address this issue by solid year             



holdout since based on the data analysis (for example Figure 2, attached also below)              
2010 to 2011 represents the whole data relatively well in terms of number of outages               
and storm objects. 

We would also like to note that there is no significant difference between two different               
testset (randomly picked and continuous holdout). Thus, we believe that our method            
provided sufficient validation scores. 

Nevertheless, we commented the issue in the Discussion section (page 22, lines            
430-433 in the updated manuscript) :

“Especially in the randomly selected test set, data may be autocorrelated, which may             
lead to unrealistically good results. We have addressed this issue by also using a              
continuous time series (from 2010 to 2011) for the test set. The evaluation could also               
be extended with a leave-one-day-out or leave-one-week-out method where for each           
week one day or for each month one week is hold out for validation purposes.” 
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Abstract. Strong winds induced by extratropical storms cause a large number of power outages, especially in highly forested

countries such as Finland. Thus, predicting the impact of the storms is one of the key challenges for power grid operators.

This article introduces a novel method to predict the storm severity for the power grid employing ERA5 reanalysis data

combined with forest inventory. We start by identifying storm objects from wind gust and pressure fields by using contour

lines of 15 m s−1 and 1000 hPa respectively. The storm objects are then tracked and characterized with features derived from5

surface weather parameters and forest vegetation information. Finally, objects are classified with a supervised machine learning

method based on how much damage to the power grid they are expected to cause. Random Forest Classifier, Support Vector

Classifier, Naive Bayes, Gaussian Processes, and Multilayer Perceptron were evaluated for the classification task, Support

Vector Classifier providing the best results.

Copyright statement. TEXT10

1 Introduction

Strong winds caused by extratropical storms are among the most significant natural hazards in Europe, causing massive damage

to the forests and society (e.g. Schelhaas et al. (2003); Schelhaas (2008); Ulbrich et al. (2008); Seidl et al. (2014); Valta et al.

(2019)); extratropical storms are responsible for 53 percent of all losses related to natural hazards in Europe (Kron W., Schuck

A., 2013). Such storms pose a huge challenge for power distribution companies in highly-forested countries such as Finland15

(Gardiner et al., 2010) where falling trees cause power outages for hundreds of thousands of customers every year (Niemelä,

2018). The windstorms create a significant risk for the power supply in Finland, which has over 90 000 kilometers of overhead

lines (70 percent of it medium-voltage, 1-35 kV, network) passing through forest (Kufeoglu and Lehtonen, 2015). Between

the years 2010 and 2018, on average 46 percent of all transmission faults in Finland were caused by extratropical storms

(Finnish Energy, 2010-2018). During the years of the most damaging storms, 2011 and 2013, the share of windstorm damages20

of all fault causes was up to 69 percent (Finnish Energy, 2011, 2013). The need for managing power interruptions is even more

urgent since the power suppliers in Finland are obliged to financially compensate customers of urban areas after 6 hours and
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rural areas after 36 hours of interruption in electricity distribution (Nurmi et al., 2019). Thus they require a large amount of

workforce to fix caused damages rapidly.

As Ulbrich et al. (2009) describe, there is no scientific consensus on how the occurrence and magnitude of extratropical25

storms will evolve in the future. Based on existing literature, the windstorm-related damages are increasing, while it remains

unclear whether this is due to the higher exposure of society or the number and intensity of extratropical storms. Gregow

et al. (2017) discovered that windstorm damages had increased significantly during the previous three decades, especially

in northern, central, and western Europe. Also, several other studies suggest an increase in wind-related damages in Europe

(Csilléry et al. (2017); Haarsma et al. (2013); Gardiner et al. (2010)). Interestingly, some studies detected a decrease in the total30

number of extratropical storms (i.e. Donat et al. (2011)), while others found an increase in the number of extreme storms in

specific regions, like western Europe and northeast Atlantic (Pinto et al., 2013). Another supporting view of a potential increase

in extratropical storms in northern Europe can be found in the IPCC (2018) report. The report states that extratropical storm

tracks are shifting towards the poles, which might affect the storminess in northern Europe. Thus, it may be concluded that

also the losses related to extratropical storms are likely to increase especially in northern Europe. However, as Barredo (2010)35

emphasizes, the cause for increased losses can at least partly be explained by the increasing exposure of society rather than the

increased number of windstorms.

Several previous studies respond to the demand for storm impact estimation for power distribution, many of them focusing on

the hurricane-induced power blackouts in northern America (Eskandarpour and Khodaei (2017); Guikema et al. (2014, 2010);

Nateghi et al. (2014); Han et al. (2009); Wang et al. (2017); Allen et al. (2014); Chen and Kezunovic (2016); He et al. (2017);40

Liu et al. (2018)). Convective thunderstorms have also been investigated thoroughly. Li et al. (2015) introduced an area-based

outage prediction method further developed to take power grid topology into account (Singhee and Wang, 2017). Shield et al.

(2018) studied outage prediction by applying a random forest classifier to weather forecast data in a regular grid. Kankanala et

al. used data from ground observation stations and experimented regression (Kankanala et al., 2011), a multilayer perceptron

neural network (Kankanala et al., 2012), and ensemble learning (Kankanala et al., 2014) to predict outages caused by wind and45

thunder. The Bayesian outage probability (BOP) prediction model developed by Yue et al. (2018) combines weather radar data

and unifies it to a regular grid. Cintineo et al. (2014) create spatial objects from satellite and weather radar data, and track and

classify the objects with the Naïve Bayesian classifier. Rossi (2015) developed a method to detect and track convective storms.

The method was further developed to predict power outages (Tervo et al., 2019).

While much work exists on damage caused by hurricanes and convective thunderstorms, relatively few examples exist50

relating to outages caused by mid-latitude extratropical storms differing from hurricanes and convective storms in available

data, time-span, and applicable methods for detecting and tracking. Extratropical storms are considered, for example, in Yang

et al. (2020), where different decision tree methods are applied to a regular grid in the outage prediction task. Cerrai et al.

(2019) also uses decision trees and regular grid for the outage prediction taking tree-leaf conditions into account as a predictive

feature. Related forest damage studies have been conducted with random forest classifiers and neural networks. Hart et al.55

(2019) showed that random forest regression and artificial neural networks could predict the number of falling trees in France

caused by the wind. Hanewinkel (2005) conducted a similar study in Germany using artificial neural networks. Artificial

2



neural networks have been used to predict extreme weather in Finland (Ukkonen et al., 2017; Ukkonen and Mäkelä, 2019). The

framework of IPCC (2018) emphasizes that the impacts of extreme weather risks can be analyzed by estimating the hazard,

vulnerability, and exposure. In an increasing manner, connecting these fields (i.e., the natural hazard with the societal factors)60

is done with machine learning (Chen et al., 2008).

We present a novel method to identify, track, and classify extratropical storm objects based on how much power outages they

are expected to induce. We adapt convective storm object detection (Rossi (2015), Tervo et al. (2019), Cintineo et al. (2014))

to find potentially harmful areas from extratropical storms by contouring objects from pressure and wind gust fields. Instead

of highly-localized convective storms, we aim at larger but still regional geospatial accuracy so that, for example, damages65

in western and eastern Finland can be distinguished. We train a supervised machine learning model to classify storm objects

according to their damage potential. To our knowledge, our method is the first that employs the extratropical storm objects as

polygons and combines them with meteorological and non-meteorological features to predict power outages. The method can

be used as a decision support tool in power distribution companies or as part of elaborating impact forecast by duty forecasters

in national hydro-meteorological centers. The ERA5 atmospheric reanalysis (European Centre for Medium-Range Weather70

Forecasts, 2017) provides the primary meteorological input data for this study, while the national forest inventory provided by

The Natural Resources Institute Finland (Luke) is used to represent the forest conditions in the prediction. Finally, historically

occurred power outages from two sources are used to train the model. However, the operational use of the model would require

the use of weather prediction data instead of reanalysis.

This paper is organized as follows: Chapter 2 presents the used data, which is followed by a step-by-step method description75

in Chapter 3. Chapter 3.1 discusses identifying storm objects and explains the storm tracking algorithm. Chapter 3.2 considers

storm and forest characteristics, hereafter called features. Chapter 3.3 discusses how to define labels of storm objects based on

the outage data. Chapter 3.4 describes the used machine learning methods. In Chapter 4, we discuss the performance of the

method. Finally, Chapter 5 includes a discussion and conclusions.

2 Data80

We base our method on three main data sources: ERA5 reanalysis data (Hersbach et al., 2019), multi-source national forest

inventory (ms-nfi) provided by The Natural Resources Institute Finland (Luke), and occurred power outages obtained from two

sources: First, the local dataset is gathered from two power distribution companies, Loiste and Järvi-Suomen Energia (JSE),

located in Eastern Finland. Second, the national dataset is obtained from Finnish Energy (ET), a branch organization for the

industrial and labor market policy of the energy sector. All data consider years from 2010 to 2018.85

ERA5 is the newest generation reanalysis data provided by ECMWF. ERA5 covers the years from 1979 onward with a

one-hour temporal resolution, has a horizontal resolution of 31 km, and covers the atmosphere using 137 levels up to a height

of 80 km (Hersbach et al., 2019). Compared to in-situ wind observations, reanalysis data provides a spatiotemporally wider

dataset. However, a question may arise about the accuracy of the reanalysis data. Ramon et al. (2019) examined the wind speed

characteristics of a total of five state-of-the-art global reanalyses concerning 77 instrumented towers. In their study, ERA590
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had the best agreement with in-situ observations on daily time scales; this suggests the ERA5 wind parameters to be adequate

in windstorm damage examinations as well. ERA5 data are also known to contain unrealistically large surface wind speeds

in some locations (European Centre for Medium-Range Weather Forecasts, 2019). None of these locations are, nevertheless,

inside the geographical domain of this work.

The multi-source forest inventory data is based on field measurements, satellite observations, digital maps, and other geo-95

referenced data sources (Mäkisara et al., 2016). The data consists of estimates for the forest age, tree species dominance, the

mean and total volume, and the biomass (total and tree species-specific). The original geospatial resolution of the data is 16

meters, which has been reduced to approximately 1.6 km resolution to speed up the processing. Taking into account the size of

extratropical cyclones (diameter 1000 km) and the wide areas where wind damages typically occur e.g. near to the cold front,

we consider a resolution of 1.6 km being sufficiently high for modeling wind storm damages.100

Power outage data are obtained from two complementary sources. The national dataset is acquired from the Finnish Energy

(2010-2018) who aggregates the data from power distribution companies in Finland. The national data are provided only for

research purposes and for areas containing a minimum of six grid companies; this is, for example, to ensure energy users’

anonymity. Therefore, the national dataset does not include exact locations of the faults. We have also obtained some parts of

the data with better spatial accuracy from two individual power distribution companies. In this paper, we refer to this data as105

the local dataset. In the local dataset, the fault locations are reported in relation to transformers, i.e. the spatial resolution of

the outages ranges from a few meters to kilometers.

Figure 1 illustrates the geographical coverage of the power outage data. The local dataset contains all outages from 2010

to 2018 in the northern area (Loiste) and outages related to major storms in the southern area (JSE), shown in Figure 1a. The

national dataset contains all outages in Finland from 2010 to 2018 divided into five regions, shown in Figure 1b. The national110

dataset contains in total 6 140 434 outages with relatively low geographical accuracy. On the other hand, the local dataset rep-

resents a substantially smaller geographical area with a good geographical accuracy but contains only 22 028 outages in total.

We train our classification models, described in more detail in Chapter 3.4, with both datasets to evaluate their performance for

different types of data.

3 Method115

We predict power outages by classifying storm objects identified from gridded weather data into three classes based on the

number of power outages the storm typically causes. The overall process consists of the following steps: (1) identifying storm

objects from weather fields by finding contour lines of particular thresholds, (2) tracking the storm object movement, (3)

gathering features of the storm objects, and (4) classifying each storm object individually. The classification is conducted for

each storm object separately to distinguish the different damage potential. Tracking is, however, necessary to gather necessary120

features such as object movement speed and direction. In the following, we discuss these phases in more detail.
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(a) (b)

Figure 1. (a) Geographical coverage of the outage data (local dataset). The red lines represent the power grid of Loiste (northern grid

company) and the green lines the operative areas of JSE (southern grid company). Outages of the local dataset are collected from both areas.

(b) Regions in the national outage dataset. Outages are gathered from entire Finland and aggregated to the regions shown in the figure.

3.1 Identifying and tracking storm objects

Storm objects are identified by finding contour lines of 10-meter wind gust fields using 15 m s−1 thresholds from the ERA5

surface level grid with a time step of 1 hour. The contouring algorithm is capable of finding interior rings of the polygons. The

used wind gust fields did not, however, contain such cases. Thus one storm object represents a solid area (polygon) where the125

hourly maximum wind gust exceeds 15 m s−1 during one particular hour. The threshold of 15 m s−1 is selected as different

sources indicate Finland being vulnerable for windstorms and rather moderate winds (from 15 m s−1) causing damages to

forests (Valta et al., 2019; Gardiner et al., 2013). Valta et al. (2019) developed a method to estimate the windstorm impacts on

forests by combining the recorded forest damages from the nine most intense storms and their observed maximum inland wind

gusts. According to the formula developed in the study, the inland wind gusts of 15 m s−1 alone result in forest damages of130

1800 m3. We also identify pressure objects by finding contour lines using a 1000 hPa threshold to connect potentially distant

storm objects around the low-pressure center to the same storm event.

After identification, storm objects are tracked by connecting them with each other. Each storm object is first connected to

nearby pressure objects from the current and preceding time steps. If pressure objects do not exist within the distance threshold,

the object is connected to nearby storm objects from the current and preceding time steps. The Algorithm enables assigning135

each storm object to an overall event (low pressure system) and tracking the objects’ movement. Algorithm 1 shows the details

of the process.
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We use a 500 km distance threshold for the distance between the storm and pressure objects. As the typical diameter of

an extratropical storm is approximately 1000 km (Govorushko, 2011), we assume the damaging storm objects to situate a

maximum 500 km from the center of the low pressure. The threshold for movement speed is 200 km h−1 for storm objects140

and 45 km h−1 for pressure objects. In other words, storm objects are not assumed to move more than 200 km and pressure

objects more than 45 km from the preceding hourly time step (Govorushko, 2011). Convective storms may move faster but are

outside the focus of this work.

3.2 Extracting storm object features

We characterize the storm objects identified by the methods discussed in Section 3.1 using the features listed in Table 1. The145

features are structured as four groups. The first group is a number of object characteristics such as size and movement speed and

direction, which are calculated from the contoured storm objects themselves. As the second group, relevant weather conditions,

such as wind speed, temperature, and others, are extracted from ERA5 data. We aggregate values as a minimum, maximum,

average, and standard deviation calculated over all grid cells under the object coverage to represent each parameter with one

number. Third, as most of the outages are caused by the trees falling on power grid lines (Campbell and Lowry, 2012), the150

characteristics of the forest contribute to the damages (Peltola et al., 1999), we complement our data with forest information.

As for weather parameters, values are aggregated over the storm object coverage. The fourth group consists of the number of

outages and affected customers used as labels in the model training process discussed in more detail in Chapter 3.4.

We selected the 35 parameters based on two main criteria: First, we prepared a list of potential parameters detected in related

studies, e.g. Suvanto et al. (2016); Peltola et al. (1999); Valta et al. (2019), or identified through the empirical experience of duty155

forecasters (Weather and Safety Center of Finnish Meteorological Institute - Duty forecasters, 05/2020). Second, we selected

the relevant parameters, which were available to us or accessible with a reasonable effort. However, some possibly essential

parameters, like soil temperature from ERA5 reanalysis, were left out because of the slow downloading process.

After the preliminary selection of the parameters, we conducted dozens of light experiments using different combinations of

parameters and models to find the best possible setup. To this end, we fitted the Gaussian distribution to each parameter using160

at first all samples, then samples with few outages, and finally with many outages (classes 1 and 2 specified in Section 3.3).

While many other distributions are known to suit better in modeling particular parameters, such as Gamma in precipitation,

Weibull in wind speed, and Lognormal in cloud properties (Wilks, 2011), the Gaussian distribution is a sufficient simplification

to help in selecting relevant parameters. We visually inspected the differences between fitted Gaussian distributions to deduce

the potential relevance of the parameter. Supposedly the distribution of one parameter is different for all samples and samples165

with many outages, and the classification method may exploit the parameter to predict the damage potential of the storm object.

The distributions of some selected parameters are shown in Appendix A. In total, 35 parameters, shown as boldfaced in Table

1, were chosen for the final classification.
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Algorithm 1 Storm tracking

Input

Storm and pressure objects So arranged by time

pressure distance threshold

wind distance threshold

speed threshold

time step

Output

Connected storm and pressure objects with storm ID

for all storm and pressure object Ow|p ∈ So do

current time← time of the object Ow|p

previous time← current time− time step

Current time pressure objects Sc
p← pressure objects having centroid within pressure distance threshold from

object Ow|p centroid and time stamp current time

Previous time pressure objects Sp
p ← pressure objects having centroid within speed threshold from

object Ow|p centroid and time stamp previous time

Current time storm objects Sc
w← storm objects having centroid within wind distance threshold from

object Ow|p centroid and time stamp current time

Previous time storm objects Sp
w← storm objects having centroid within speed threshold from

object Ow|p centroid and time stamp previous time

if pressure object Oc
p ∈ Sc

p exists with ID then

Use pressure object Oc
p ID

else if pressure object Op
p ∈ Sp

p exists with ID then

Use previous time pressure object Op
p ID

else if storm object Oc
w ∈ Sc

w exists with ID then

Use storm object Oc
w ID

else if storm object Op
w ∈ Sp

w exists with ID then

Use previous time storm object Op
w ID

else if storm or pressure object Op
w|p ∈ Sp

w ∪Sp
p exists without ID then

Give new ID to the previous object Op
w|p and current object Ow|p

else

Leave object Op
w|p without ID

end if

end for
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Table 1. Extracted features. Features used in the final classification marked as bold.

Feature Aggregation Explanation

Speed - Object movement speed

Angle - Object movement angle

Area - Object size

Area difference - Object area difference to the previous time step

Week - Week of the year

Snowdepth average, minimum, maximum Snow depth

Total column water vapor average, minimum, maximum Total amount of water vapour

Temperature average, minimum, maximum 2 meter air temperature

Snowfall average, minimum, maximum, sum Snowfall (meter of water equivalent)

Total cloud cover average, minimum, maximum Total cloud cover (0-1)

CAPE average, minimum, maximum Convective available potential energy (J/kg)

Precipitation kg/m2 average, minimum, maximum, sum Precipitation amount (kg/m2)

Wind gust average, minimum, maximum, standard deviation Hourly maximum wind gust (m s−1 )

Wind Speed average, minimum, maximum, standard deviation 10 meter wind speed (m s−1 )

Wind Direction average, minimum, maximum, standard deviation Wind direction (degrees))

Dewpoint average, minimum, maximum Dewpoint)

Mixed layer height average, minimum, maximum Boundary layer height

Pressure average, minimum, maximum Air pressure

Forest age average, minimum, maximum, standard deviation The age of the growing stock on a forest stand

Forest site fertility average, minimum, maximum, standard deviation Group of the forest by vegetation zones

Forest stand mean diameter average, minimum, maximum, standard deviation Forest stand mean mean diameter

Forest stand mean height average, minimum, maximum, standard deviation Forest stand mean height

Forest canopy cover average, minimum, maximum, standard deviation Forest canopy cover fraction (0-100%)

Outages - Number of occured outages

Customers - Number of affected customers

Tansformers - Number of transformers under the object

All customers - Number of customers under the object

Class - Assigned class
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3.3 Defining classes

As shown in Figures 2a and 2b, the outages in the local dataset are concentrated heavily on ‘hot-spots’, assumingly, due to170

forest characteristics and network topology. The local dataset contains 24 542 storm objects and 5 837 outages connected to

2 363 storm objects. Thus 22 179 storm objects in the local dataset did not cause any outages. The local power outage data

contain 16 191 outages, which can not be connected to any storm object. The national dataset contains 142 873 storm objects

and 5 965 324 outages connected to 33 796 storm objects. 109 077 storm objects are not connected to any outages, and 175 110

outages can not be connected to any storm object.175

(a) (b)

Figure 2. Spatial distribution of the outages between 2010 and 2018 visualised as a spatial heatmap. (a) JSE network (southern area) (b)

Loiste network (northern area)

It should be noticed that the damage may occur anywhere in the power grid. Outages are, however, always reported as

transformers without electricity. Typically one physical damage between the transformers causes several transformers to lose

power. Power grid operators can often turn part of the transformers back to operation even before fixing the actual damage,

which causes an unavoidable noise to the datasets.

Figure 3 represents the number of outages and storm objects in both local and national datasets. We can identify a large180

amount of 15 m s−1 storm objects in both sets, indicating that moderate wind without other influencing factors does not

damage the transformers. When identifying storm objects with the contour of 20 and 25 m s−1, the number of objects reduces

and starts to correlate more with a high number of outages, which supports views of previous studies showing the significance

of stronger wind gusts to more severe storm damages. The method seems to identify also the most critical storm days by

capturing several storm objects for those days. For instance, at the end of 2013, when the three major storms Eino, Oskari,185

9



Seija (Valta et al., 2019) hit Finland, both datasets contain plenty of storm objects with the 20 m s−1 threshold. Nevertheless,

our experiments indicated that employing 15 m s−1 storm objects yielded the best results. This is described more in Chapter 4.

Figure 3. Storm object time series (15, 20 and 25 m s−1 contours) with occurred outages for local and national datasets.

Figure 4 illustrates how much outages a single storm object typically produces. In the local dataset, most of the storm

objects cause only a few outages. Only 65 storm objects, which are only 0.3 percent of the whole dataset, induced more than

ten outages. On the other hand, in the national dataset where one storm object typically affects several different transformers,190

17 587 storm objects have caused more than ten outages, representing 12 percent of the whole dataset. Figure 5 renders how

many customers are typically affected by one outage. The figure contains all outages in both datasets, whether they are related

to a storm or not. In the local dataset, usually 20-30 customers lose electricity in one outage. In the national dataset, only six

customers usually lose electricity in one outage. We assume that this roots to different network topologies between the areas.

Notably, in some rare cases, a much higher number of customers are affected. We assume that these cases occur typically in195

urban areas and are rare because the power network is mainly underground in these areas.

We use three classes designed together with power grid companies aiming at a simple "at glance" view for power grid

operators. Class 0 represents no damage, class 1 low damage, and class 2 high damage. As the number of outages produced

by a single storm object varies significantly in the local and national datasets, we decided to define separate limits for the local
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(a) (b)

Figure 4. Number of storm objects per caused outages in (a) local dataset (b) national dataset.

(a) (b)

Figure 5. Relationship between number of outages and affected customers in (a) local dataset and (b) national dataset.

and the national datasets. The detailed limits are listed in Table 2. Class 1 is defined such that it represents roughly 80 percent200

of all cases with at least one outage. Class sizes are highly imbalanced as most of the storm objects do not cause any damage.

3.4 Classifying storm objects

We centered and normalized the data points by substracting the empirical mean and then dividing it by the empirical standard

deviation. The hyperparameters were determined using random search 5-fold cross-validation (Bergstra and Bengio, 2012). To

cope with the imbalanced class distribution, we generate artificial training samples using the synthetic minority over-sampling205
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Table 2. Class definitions

Class Outage limit in local dataset Local dataset size Outage limit in national dataset National dataset size

0 0 5 624 0 76 215

1 1-3 353 1- 140 14 417

2 ≥ 4 181 ≥ 141 3 085

technique SMOTE (Chawla et al., 2002). The SMOTE creates new training samples based on their k = 5 nearest neighbors

following:

xnew = xi +λ× (xzi−xi) (1)

where xi is an original class sample, xzi is one of xi’s k nearest neighbor and λ is a random variable drawn uniformly from the

interval [0,1]. After augmentation, all classes have an equal number of samples, which reduces the tendency of classification210

methods to always predict the majority class.

Five different models were evaluated to classify storm objects. We omit the mathematical definitions but shortly discuss the

characteristics of different models and describe the implementation details chosen in this work.

Random forest classification (RFC) is based on a random ensemble of decision trees and aggregating results from indi-

vidual trees to the final estimate. Trees in the ensemble are constructed with four steps: 1) use bootstrapping to generate a215

random sample of the data, 2) randomly select a subset of features at each node, 3) determine the best split at the node using

loss function, 4) grow the full tree (Breiman, 2001). RFC is good to cope with high-dimensional data. It has also been found

to provide adequate performance with imbalanced data (Tervo et al., 2019; Brown and Mues, 2012) and is widely used with

weather data (e.g. Karthick et al. (2020); Cerrai et al. (2019); Lagerquist et al. (2017)). The method is prone to overfit, which

is why hyperparameter-tuning is very important. Hyperparameters used in this work are listed in Table 3. We use RFC with the220

Gini impurity loss function.

Table 3. Hyperparameters for the RFC

Parameter Value

Number of trees in the forest 500

Max depth unlimited

Minimum nr. of samples to split 2

Minimun nr of samples to leaf 1

Features to consider for split
√

num. of feat.

Max nro of leaf nodes unlimited
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Support Vector Classifiers (SVC) construct a hyper-plane or classification function in a high-dimensional feature space

and maximize a distance between training samples and the hyperplane. The hyper-planes may be constructed with nonlinear

kernels such as gaussian radial basis function (RBF) (Shawe-Taylor et al., 2004) that often reform a nonlinear classification

problem to a linear one. Operating in the high-dimensional feature space without additional computational complexity makes225

SVC an attractive choice to extract meaningful features from a high-dimensional dataset. A domain-specific expert knowledge

can also be capitalized on the kernel design. On the other hand, finding the correct kernel is often a difficult task. Training

SVC is a convex optimization problem meaning that it has no local minima. Depending on the kernel, a training process may,

however, be a very memory-intensive process.

Suppose the SVM output is assumed to be the log odds of a positive sample. In that case, one can fit a parametric model230

to obtain the posterior probability function and thus get probabilities for samples to belong to the particular class (Platt et al.,

1999). For more details, we request the reader to consult for example Chang and Lin (2011) and Platt et al. (1999).

We implement the SVC in two phases. First, we separate class 0 (no outages) and other samples employing SVC with radial

basis function (RBF), defined in Equation 2. Second, we distinguish classes 1 and 2 using SVC with a dot-product kernel

defined in Equation 3 (Williams and Rasmussen, 2006). The second phase is performed only for the samples predicted to cause235

outages in the first phase. The approach is similar to the often-used one-vs-one classification, where a binary classifier is fitted

for each pair of classes. In our case different kernels were used for different pairs.

kRBF (x,x
′) = exp

(
− γ||x−x′||2

)
(2)

where x and x′ are two samples in the input space and γ is a kernel coefficient parameter.

k·(x,x
′) = σ0 +x ·x′ (3)240

where x and x′ are two samples in the input space and σ is a kernel inhomogenity parameter.

Gaussian Naive Bayes (GNB) (Chan et al., 1979) is a well-known and widely used method based on the Bayesian probabil-

ity theory. The method assumes that all samples are independent and identically distributed (i.i.d), which does not naturally hold

for the weather data. Despite the internal structure of the data, GNB is still used for weather data (e.g. Kossin and Sitkowski

(2009); Cintineo et al. (2014); Karthick et al. (2020)) and worth investigating in this context. The classification rule in GNB245

is ŷ = argmaxyP (y)
∏n

i=1P (xi | y), where P (y) is a frequency of class y and P (xi | y) is a likelihood of the ith feature

assumed to be gaussian. Because of the naive i.i.d assumption, each likelihood can be estimated separately, which helps to

cope with a curse of dimensionality and enable GNB to work relatively well with small datasets. On the other hand, estimating

likelihoods can be done effectively and iteratively, enabling the GNB to scale to large datasets. As a downside, the simple

method may lack expression power to perform well in a complex context.250

Gaussian Processes (GP) (Rasmussen, 2003) is a non-parametric probabilistic method that interprets the observed data

points as realizations of a Gaussian random process. GP is widely used for example in weather observation interpolation
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kriging (Holdaway, 1996). GP is a very flexible and powerful but computationally expensive method, which tends to lose its

power with high-dimensional data. GP hinges on a kernel function that encodes the covariance between different data points.

As a kernel, we use a product of dot-product kernel (Equation 3) and pairwise kernel with laplacian distance (Rupp, 2015),255

defined in Equation 4. The kernel parameters were optimized on the training data by maximizing the log-marginal-likelihood.

kpairwise(x,x
′) = exp

(
− γ||x−x′||1

)
(4)

where x and x′ are two samples in the input space and γ is a kernel coefficient parameter.

Multilayer perceptrons (MLP) (Goodfellow et al., 2016) are the most basic form of artificial neural networks. Good

results achieved by MLP in predicting storms (Ukkonen and Mäkelä, 2019), they are a natural choice to experiment in this260

work. Neural networks are very adaptive methods as they can learn a representation of the input at their hidden layers. Unlike

GNB, they do not make any assumptions about the distribution of the data. As a downside, MLP requires large amounts of data,

and the training process is computing-intensive. They also have a large number of hyperparameters to be optimized, including

the correct network topology.

We searched the correct model parameters and network topology for local and national datasets by running multiple iterations265

of random search 5-fold cross-validation to obtain the best possible micro average of F1-score (defined in Chapter 4) employing

Talos library (Autonomio, 2020). The final setup composes of Nadam optimizer (Dozat, 2016), random normal initializer, and

relu activation function for hidden layers. Binary cross-entropy was used as a loss function. Optimal network topology varied

in different datasets: For the local dataset, the best results were obtained with a network containing three hidden layers with

75, 145, and 35 neurons. For the national dataset, the best results were obtained with a network containing three hidden layers270

with 75, 195, and 300 neurons. During the optimization process, the results varied between different setups from 0.6 to 0.95 in

terms of F1-score.

4 Results

We used two different methods for splitting the data into training and test set. The first method is to use 25 percent of randomly

picked samples in the test set. The second method is to construct a test set from a one-year continuous time range (2010-2011).275

Both approaches have their advantages. Continuous time range ensures that the model has not seen any autocorrelated samples

caused by an internal structure of the weather data in the training phase (Roberts et al., 2017). However, having only nine years

of data from a relatively small geographical area, the continuous test set cannot contain many storms as most of the data needs

to be reserved for the training process. Thus, the test set may only contain a single type of storms to which the model may work

especially well or bad. Picking the test set randomly minimizes this risk and provides more insight into the model performance.280

We evaluate the models with a weighted average of precision and recall, and both weighted and macro average of F1-score.

Precision (Equation 5) reports how many samples are correctly predicted to belong to a class. Recall (Equation 6) tells how

many samples belonging to a class are found in the prediction. F1-score (Equations 7 and 8) calculates a harmonic mean of
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precision and recall. Finally, as the datasets are extremely imbalanced, we calculate a weighted average of the metrics utilizing

a number of samples in each class and a macro average of F1-score using an average of F1-score of each class. A model with285

a higher macro average of F1-score performs better with small classes. The selected metrics do not take a distance between

predicted and true class into account. It is naturally worse to predict, for example, class 0 (no damage) in the case of true class

2 (high damage) than in the case of true class 1 (low damage). We decided, however, to use metrics that measure the method

performance properly with imbalanced classes.

Precision=
1∑

c∈C |ŷc|
∑
c∈C

(
|ŷc|

tp

tp+ fp

)
(5)290

where C represents the set of classes, ŷ predicted the class, tp true positives, and fp false positives.

Recall =
1∑

c∈C |ŷc|
∑
c∈C

(
|ŷc|

tp

tp+ fn

)
(6)

where C represents the set of classes, ŷ predicted the class, tp true positives, and fn false negatives.

F1weighted =
1∑

c∈C |ŷc|
∑
c∈C

(
|ŷc|

Precisionc×Recallc
Precisionc +Recallc

)
(7)

where C represents the set of classes, ŷ predicted the class, Precision defined in Equation 5, and Recall defined in Equation 6.295

F1macro =
1

|C|
∑
c∈C

(Precisionc×Recallc
Precisionc +Recallc

)
(8)

where C represents the set of classes, Precision defined in Equation 5, and Recall defined in Equation 6.

Tables 4 and 5 divulge the results for each models using the local and national dataset respectively. Models trained with

the local dataset can reach the better-weighted F1-score, while the best models trained with the national dataset provide a

significantly better macro average of F1-score. The national dataset contains many more samples in classes 1 and 2, which300

enables models to learn the classes better and thus enhance the macro average of the F1-score. Whether the test set is randomly

chosen or continuous does not seem to make a large difference in most cases. The only affected model is the RFC having

contradictory better results trained with the continuous test set from the local dataset and the random test set from the national

dataset. Assumingly, this squeal more about the unstable performance of RFC than the relevance of the dataset split method.

The confusion matrices are depicted in Figure 6. RFC provides the best results in terms of the selected metrics. However,305

closer exploration reveals that this performance is largely due to the best performance in predicting class 0, which is the largest

class. SVC results are one of the most balanced ones being the best only in the local dataset with a random test set but yielding

good stable results in all cases. The confusion matrix, shown in Figure 6b, displays that it is not the best model to predict class
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Table 4. Results for each models trained with the local dataset obtained from two local power grid companies (defined in Chapter 3.3)

Model Split method Precision Recall Weighted F1-score Macro AVG F1-score

test test train test train test

Random Forest Classifier (RFC) Random 0.82 0.76 0.93 0.79 0.93 0.40

Continuous 0.88 0.91 0.93 0.89 0.93 0.48

Support Vector Classifier (SVC) Random 0.85 0.73 0.78 0.78 0.78 0.44

Continuous 0.87 0.72 0.77 0.78 0.77 0.42

Gaussian Naive Bayes (GNB) Random 0.87 0.61 0.59 0.70 0.59 0.42

Continuous 0.89 0.59 0.59 0.69 0.59 0.40

Gaussian Processes (GP) Random 0.84 0.70 1.0 0.76 1.0 0.43

Continuous 0.85 0.67 0.94 0.74 0.94 0.41

Multilayer perceptor (MLP) Random 0.82 0.81 0.98 0.80 0.91 0.41

Continuous 0.81 0.79 0.97 0.80 0.91 0.41

Table 5. Results for each models trained with the national dataset covering whole Finland (defined in Chapter 3.3)

Model test set split method Precision Recall Weighted F1-score Macro AVG F1-score

test test train test train test

Random Forest Classifier (RFC) Random 0.83 0.84 1.0 0.83 1.0 0.62

Continuous 0.77 0.81 1.0 0.78 1.0 0.40

Support Vector Classifier (SVC) Random 0.81 0.61 0.68 0.68 0.68 0.60

Continuous 0.62 0.60 0.60 0.60 0.60 0.60

Gaussian Naive Bayes (GNB) Random 0.75 0.60 0.66 0.66 0.45 0.39

Continuous 0.77 0.60 0.45 0.66 0.45 0.40

Gaussian Processes (GP) Random 0.57 0.56 0.71 0.55 0.71 0.55

Continuous 0.67 0.65 0.94 0.65 0.94 0.61

Multilayer perceptor (MLP) Random 0.79 0.75 0.94 0.77 0.90 0.52

Continuous 0.76 0.78 0.93 0.78 0.85 0.40

0, but only a little share of true class 2 cases and the smallest share of true class 1 cases are predicted as class 0. That is to say,

SVC misses the smallest number of destructive storms, although it confuses in the amount of caused damage.310
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GP is another strong option that performs even better with class 0 while still providing good performance with class 2.

A significant connecting aspect between GP and SVC is an almost identical kernel. Based on these experiments, RBF and

pairwise kernels separate harmless and harmful samples from each other while dot-product kernel separates the classes 1 and

2 even better than exponential functions. We select GP for further analysis in this paper since it provides the best performance

in class 2.315

Using the 15 m s−1 threshold for detecting storm objects yields clearly better results than the 20 m s−1 threshold. For

example, SVC trained with the national dataset using the 20 m s−1 threshold and randomly chosen test set provide only 0.48

macro average of F1-score being 12 percentage points below corresponding model using the 15 m s−1 threshold. The 15 m s−1

threshold have two major advantages compared to the 20 m s−1. First, it provides a significantly larger dataset and second, in

contrast to the 20 m s−1 threshold, it is able to catch virtually all extratropical storms causing outages.320

4.1 Feature importances in the model performance

The relevance of the individual predictive features can be explored by using the permutation test, as done by Breiman (2001).

First, the baseline score of the fitted model is calculated using the test set. Then each feature is randomly permuted, and the

difference in the scoring function is calculated. The random permutation is repeated 30 times for each parameter, and the

average of the results is used. The procedure offers information on how important the feature is to obtain good results. It should325

be mentioned that highly correlated features may get low importance as other features work as a proxy to the permuted feature.

However, using completely independent features is not possible in weather data since weather parameters are often dependent

on each other, and eliminating even the most apparent pairs from the used features impaired the results in our experiments.

We used the macro average of F1 defined in Equation 8 as a scoring function and the randomly selected test set from the

national data. The relevance is shown in Figure 7. Most features show at least little relevance for the results. The first twelve330

features are significantly more relevant than the rest. The most important features contain at least one representative of all

meteorological parameters used in the training. In other words, all employed meteorological parameters are important for the

prediction, while different aggregations are contributing to the "fine-tuning" of the model.

As Figure 7 shows, the most significant parameter regarding our model performance is the average wind speed. Numerous

studies support our result of wind being the most important damaging factor (Virot et al., 2016; Valta et al., 2019; Jokinen et al.,335

2015). The studies are, however, highlighting the importance of maximum wind gusts instead of the average wind. Surprisingly,

in our analysis, the wind gust speed does not belong to the most critical parameters. Instead, maximum mixed layer height,

related to the wind gustiness, contributes crucially to the model performance. The dependencies between predictive features

might be one reason for some parameters to have a lower rank in the results.

The stand mean diameter and height are the most important features regarding the forest parameters, which corresponds to340

our expectations. Previous studies also state these features to influence the wind damage in forests (Pellikka and Järvenpää,

2003) and hence indirectly electricity grids. As Pellikka and Järvenpää (2003) and Suvanto et al. (2016) discuss, also the age

of the forest has an impact on storm damages. However, in the feature importance test, forest age does not seem to contribute

significantly to the prediction outcome.
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(a) (b) (c)

(d) (e)

Figure 6. Confusion matrices produced using the randomly selected national dataset and (a) RFC (b) SVC (c) GNB (d) GP (e) MLP. Each

cell of the confusion matrices represents a share of predictions having a corresponding combination of predicted and true class. For example,

the middle right cell tells the share of samples belonging to class 1 but predicted to have class 2.

The most important object feature is the size of the object. Object movement speed and direction did not contribute strongly345

to the results. However, previous studies indicate that besides the size of the impacted area, the duration of strong winds – i.e.,

the propagation speed of the system – influences also the amount of damage (Lamb and Knud, 1991).
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Figure 7. Permutation feature importance using the GP classification method trained with the randomly selected national dataset. The higher

effect on the F1 score is (y-axis), the bigger is the significance.

4.2 Case Examples

We illustrate the prediction produced using GP classification method with the three most interesting examples of well-known

storms in Figure 8a. We chose the cases among a number of test cases to illustrate the strengths and weaknesses of the method.350

The examples are chosen from the randomly picked test set, which was not used to train the model. Because of the random

sample, we cannot represent the entire prediction of individual storms, only individually picked time steps. In two of the

example cases, the model performs well (storms Tapani and Pauliina) and in one (storm Rauli) with less accurate prediction

results.

4.2.1 Event 1: Extratropical Storm Tapani (26 December 2011)355

The first example is one of the most known extratropical storms in Finland. Storm Tapani, also known as Cyclone Dagmar

(Kufeoglu and Lehtonen, 2015), was a rare winter storm, causing broad and long-lasting electricity interruptions. Extreme wind

gusts of over 30 m s−1 caused widespread damage, especially in the southern and western parts of the country. Approximately

570 000 households were left without electricity, causing 30 million euros repair costs and 80 million euros of monetary
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compensation for electricity distribution companies to their customers (Hanninen and Naukkarinen, 2012). Exceptionally warm360

December and the Boxing day being the warmest in 50 years (Finnish Meteorological Institute, 2011) resulted in wet and

unfrozen soil. Thus, the trees were poorly anchored and exposed to significant storm damage.

Figure 8a represents the outage prediction (raster-covered areas) and the actual, true classes (numbers) based on the damage

data at 15:00 UTC, 26 December 2011. Wide areas in central and western parts of Finland are predicted to have high (class

2) damages. The predicted class is in line with the true class. Also, the damage areas of the storm correlate with the wind365

gust observations of the Finnish Meteorological Institute. The strongest gusts occurred in western (15-27 m s−1) and southern

(18-28 m s−1) Finland and north-western part of Lapland (13-31m s−1) (Finnish Meteorological Institute, 2020). In the rest of

Finland, the maximum wind gusts remained between 10-15 m s−1, and therefore the damages were minor. Overall, the model

predicted the damages accurately in this particular example.

4.2.2 Event 2: Extratropical Storm Rauli (27 August 2016)370

Extratropical storm Rauli was an exceptionally strong summer storm, especially regarding the impacts. It caused severe dam-

ages to the power grid in the western and middle parts of Finland for various reasons. The trees were carrying leaves, the

soil was wet after a rainy August, the strong wind areas of Rauli were widely spread, and the solar radiation was intensifying

the wind gusts during the afternoon (Finnish Meteorological Institute, 2016). Rauli was impacting especially the middle and

southern parts of Finland, which are also the most densely populated areas. The power outages were increasing rapidly in375

the middle part of Finland, starting at midday and reaching the highest values, 200 000 households without electricity (Ilta-

Sanomat, 2016), around 5 pm. The winds were blowing exceptionally long, nearly 24 hours. The typical duration of summer

storms is between 6-12 hours.

Figure 8b shows the predicted outages and true classes at 12:00 UTC, 27 August 2016. In this particular time step, the

model is over-predicting the class, however, the predicted outage area seems to correlate with the wind gust maximums of that380

afternoon. The strongest wind gusts were measured in the southern and middle parts of the country, maximum gusts reaching

on land stations up to 24,9 m s−1 (Klemettilä, Vaasa and Maaninka, Pohjois-Savo) and on wide areas up to 20 m s−1 apart

from the northern part of Finland.

4.2.3 Event 3: Extratropical storm Pauliina (22 June 2018)

The last example is a strong extratropical storm, called Pauliina (Finnish Meteorological Institute, 2018) that caused numerous385

power outages in Finland. The most significant part of the power outages happened in the network of power grid company JSE

included in the local dataset. The highest peak in the damages was reached between 6 and 8 pm with over 28 000 households

without electricity. The strongest wind gust on land reached 22,7 m s−1 in Helsinki, Kumpula observation station, and the

inland gusts were widely between 15-20 m s−1 (Finnish Meteorological Institute, 2020; Finnish Meteorological Institute,

Twitter). The strong wind gusts continued until the dawn of the 23rd of June.390

Figure 8c presents the predicted and true damage classes at 01:00, UTC, 22 June 2018. We chose extratropical storm Pauliina

as an example storm for two reasons: 1) Pauliina represents a low damage class 2) Pauliina represents a rare, summer-season
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extratropical storm. Figure 8c shows the predicted and true classes correlating. While weather warnings were issued to large

areas in southern and middle parts of Finland, (myrskyvaroitus.com, 2018) predicted and true damage to the power grid

occurred in a relatively small geographical area.395

(a) Tapani, 26 December 2011 11:00 (b) Rauli, 27 August 2016 10:00 (c) Pauliina, 22 June 2018 01:00

Figure 8. Selected examples (a) Extratropical storm Tapani (b) Extratropical storm Rauli (c) Extratropical storm Pauliina, produced by

employing the SVC model trained with the national dataset. The storm objects are colored based on the predicted class while the true class

is stated as a colored number over the object. The time is represented as UTC time.

5 Discussion and conclusions

This paper introduces a novel method to predict the damage potential of extratropical storms to power grids. The method

consists of identifying storm objects by contouring surface wind gust fields with the 15 m s−1 threshold along with pressure

objects with a 1000 hPa threshold, tracking the objects, and then classifying them into three classes based on their damage

potential to the power grid. For the classification task, we evaluated five different machine learning methods, all employing in400

a total of 35 predictive features and trained with eight years of power outage data from Finland.
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Both Gaussian Processes and Support Vector Classifiers provided good results. The model recognizes harmful storm objects

well and can distinguish extremely harmful objects among others adequately. While the results still leave a lot to improve, the

developed model can be already used to support decisions in power grid companies. In some cases, the model is able to provide

a more specific and geospatially accurate prediction of potential damage to the power grid than, for example, weather warning.405

The evaluation was, however, based on the ERA5 reanalysis data. Using the method in an operational setting would require

weather prediction data, which introduces additional uncertainty to the outage prediction.

The presented object-based approach has both advantages and disadvantages. Extracting storm objects in advance prepro-

cesses the data for machine-learning techniques, such as RFC, which do not perform feature learning. It enables machine-

learning methods to focus only on the relevant parts of the data. Methods not containing feature learning, such as RFC and410

logistic regression, have been found to outperform neural networks for forest (Hart et al., 2019) and weather data (Tervo et al.,

2019). It also leads to significantly faster training times. Processing objects instead of the grid makes it also easier to track and

use object attributes such as age, speed, and movement. Moreover, objects are easy to visualize, and user interfaces may be

enriched with related actions such as tracking and alarms.

On the other hand, storm objects use only aggregated attributes, which may decrease the classification accuracy when415

predictive features vary significantly under the storm object area. Several machine-learning methods, i.e., deep neural networks,

could be trained to employ those local features to gain better accuracy. Such methods could also utilize three-dimensional data.

Extracting storm objects requires a fixed threshold of wind gust and pressure, which may vary depending on the characteris-

tics of geospatial locations. Nevertheless, the previous studies indicate the critical threshold to wind gust speed to be the same

for almost entire geospatial domain of this work (Gardiner et al., 2013). Moreover, the correct threshold may vary depending420

on the data source. When extending the geospatial domain or changing the data source, this might become a more serious issue,

and different thresholds might be needed. One possibility to determine the optimal threshold might be to use specific quantiles

of the parameter values, but this would need further investigation.

The work opens several possible avenues for further studies. It would be interesting to compare the current solution with

a grid-based approach and deep neural networks. Including data on soil moisture, soil temperature, and leaf index would425

most likely enhance the results, if available with sufficient spatial and temporal resolution, since they would provide critical

information about the environmental conditions. Different thresholds could be investigated as well, especially for pressure

objects where lower thresholds might yield better results. By design, applying the method to other regions is possible, but it

is subject to the availability of power outage records, forest inventory, impact and meteorological data. For the classification

task, carefully designed Bayesian networks could provide good results as well. Especially in the randomly selected test set,430

data may be autocorrelated, which may lead to unrealistically good results. We have addressed this issue by also using a

continuous time series (from 2010 to 2011) for the test set. The evaluation could also be extended with a leave-one-day-out or

leave-one-week-out method where for each week one day or for each month one week is hold out for validation purposes.

End users, especially expert users like duty forecasters, might benefit from the uncertainty information originating as the

probabilistic prediction of the classification model. However, the presentation of such information should be very carefully435

chosen not to mislead non-expert users for overconfidence.
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Experiments in this study were conducted with ERA5 reanalysis and additional forest data. As the method employs common

features existing also in various other datasets, data provided by other vendors could be used as well. By employing weather

forecasts as input, this method could be used as a base for a decision support tool and as a part of an existing early warning

system for both duty forecasters of national hydro-meteorological centers and operators of electricity transmission companies.440

Code and data availability. The source code is available in the repositories https://github.com/fmidev/sasse-era5-smartmet-grid and

https://github.com/fmidev/sasse-polygon-process. ERA5 data may be downloaded from the Copernicus Climate Data Store:

https://cds.climate.copernicus.eu. Forest inventory may be downloaded from LUKE open data service: http://kartta.luke.fi/index-en.html.

The power outage data is propriety data which the authors have no property rights to distribute.
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Appendix A: Gaussian distribution fitted to the storm object features445

Figure A1. Histogram of and fitted Gaussian distribution of selected predictive parameters in the local dataset. The Gaussian distribution is

fitted separately to all samples and samples with little outages and many outages (classes 1 and 2 specified in Section 3.3).
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Figure A2. Histogram of and fitted Gaussian distribution of selected predictive parameters in the national dataset. The Gaussian distribution

is fitted separately to all samples and samples with little outages and many outages (classes 1 and 2 specified in Section 3.3).
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Abstract. Strong winds induced by extratropical storms cause a large number of power outages,
:
especially in highly forested

countries such as Finland. Thus, predicting the impact of the storms is one of the key challenges for power grid operators.

This article introduces a novel method to predict the storm severity for the power grid employing ERA5 reanalysis data

combined with forest inventory. We start by identifying storm objects from wind gust and pressure fields by using contour

lines of 15 m s−1 and 1000 hPa respectively. The storm objects are then tracked and characterized with features derived from5

surface weather parameters and forest vegetation information. Finally, objects are classified with a supervised machine learning

method based on how much damage to the power grid they are expected to cause. Random Forest Classifier, Support Vector

Classifier, Naive Bayes, Gaussian Processes, and Multilayer Perceptron were evaluated for the classification task, Support

Vector Classifier providing the best results.

Copyright statement. TEXT10

1 Introduction

Strong winds , caused by extratropical storms are among the biggest
::::
most

:::::::::
significant

:
natural hazards in Europe

:
,
:
causing

massive damage to the forests and society (i.e.
:::
e.g.

:
Schelhaas et al. (2003); Schelhaas (2008); Ulbrich et al. (2008); Seidl et al.

(2014); Valta et al. (2019)); extratropical storms are responsible for 53 percent of all losses related to natural hazards in Europe

(Kron W., Schuck A., 2013). Such storms pose a huge challenge for power distribution companies in highly-forested countries15

such as Finland (Gardiner et al., 2010) where falling trees cause power outages for hundreds of thousands of customers every

year (Niemelä, 2018). Having
:::
The

::::::::::
windstorms

::::::
create

:
a
:::::::::
significant

::::
risk

:::
for

:::
the

::::::
power

::::::
supply

::
in

:::::::
Finland,

::::::
which

:::
has

:
over 90

000 kilometers overhead line
::
of

::::::::
overhead

::::
lines

:
(70 percent of it medium-voltage, 1-35 kV, network) passing through forest

(Kufeoglu and Lehtonen, 2015), the windstorms create significant risk for the power supply in Finland. Between the years

2010 and 2018, on average 46 percent of all transmission faults in Finland were caused by extra-tropical
::::::::::
extratropical storms20

(Finnish Energy, 2010-2018). During the years of the most damaging storms, 2011 and 2013, the share of windstorm damages

of all fault causes was up to 69 percent (Finnish Energy, 2011, 2013)compared to previous years. The need for managing

power interruptions is even more urgent since the power suppliers in Finland are obliged to
::::::::
financially

:
compensate customers

1



of urban areas after 6 hours and rural areas after 36 hours of interruption in electricity distribution (Nurmi et al., 2019), thus
:
.

::::
Thus

:
they require a large amount of manpower

::::::::
workforce

:
to fix caused damages rapidly.25

Based on Gregow et al. (2017), the windstorm damages especially in Northern, Central, and Western Europe have increased

during the past three decadessignificantly
::
As

:::::::::::::::::
Ulbrich et al. (2009)

:::::::
describe,

:::::
there

:
is
:::
no

:::::::
scientific

:::::::::
consensus

::
on

::::
how

:::
the

:::::::::
occurrence

:::
and

:::::::::
magnitude

::
of

:::::::::::
extratropical

::::::
storms

::::
will

:::::
evolve

:::
in

:::
the

:::::
future.

::::::
Based

:::
on

::::::
existing

:::::::::
literature,

:::
the

:::::::::::::::
windstorm-related

::::::::
damages

::
are

::::::::::
increasing,

:::::
while

::
it

:::::::
remains

::::::
unclear

:::::::
whether

::::
this

::
is

:::
due

::
to

:::
the

::::::
higher

::::::::
exposure

::
of

::::::
society

:::
or

:::
the

::::::
number

::::
and

:::::::
intensity

:::
of

::::::::::
extratropical

::::::
storms.

::::::::::::::::::
Gregow et al. (2017)

:::::::::
discovered

:::
that

:::::::::
windstorm

::::::::
damages

:::
had

::::::::
increased

:::::::::::
significantly

:::::
during

:::
the

::::::::
previous30

::::
three

::::::::
decades,

::::::::
especially

:::
in

::::::::
northern,

::::::
central,

::::
and

:::::::
western

::::::
Europe. Also, other studies are suggesting

::::::
several

::::
other

:::::::
studies

::::::
suggest

:
an increase in wind-related damages in Europe (Csilléry et al. (2017); Haarsma et al. (2013); Gardiner et al. (2010)).

Although Ulbrich et al. (Ulbrich et al., 2009) describe the future of extratropical storms to be complex to foresee, it seems

that
::::::::::
Interestingly,

:::::
some

::::::
studies

::::::::
detected

:
a
::::::::

decrease
::
in

:
the total number of storms might decrease

::::::::::
extratropical

::::::
storms

:
(i.e.

Donat et al. (2011))but on
:
,
:::::
while

:::::
others

::::::
found

::
an

:::::::
increase

:::
in

:::
the

:::::::
number

::
of

:::::::
extreme

::::::
storms

::
in

:
specific regions, like west-35

ern Europe and Northeast Atlantic , the number of extreme storms increases (e. g. Pinto et al. (2013)). Besides, the tracks of

extratropical storms have already been shifted and are likely to shift also in the future
::::::::
northeast

:::::::
Atlantic

:::::::::::::::
(Pinto et al., 2013)

:
.

:::::::
Another

:::::::::
supporting

::::
view

::
of

::
a
:::::::
potential

::::::::
increase

::
in

::::::::::
extratropical

::::::
storms

::
in
::::::::
northern

::::::
Europe

:::
can

:::
be

:::::
found

::
in

:::
the

::::::::::::
IPCC (2018)

:::::
report.

::::
The

::::::
report

:::::
states

:::
that

:::::::::::
extratropical

::::::
storm

:::::
tracks

:::
are

:::::::
shifting

:
towards the poles(IPCC, 2018), which might affect the

storminess in northern Europe. According to (Barredo, 2010) the increased disaster losses to be caused rather by
::::
Thus,

::
it

::::
may40

::
be

:::::::::
concluded

:::
that

::::
also

:::
the

:::::
losses

::::::
related

::
to

:::::::::::
extratropical

::::::
storms

:::
are

:::::
likely

::
to

:::::::
increase

::::::::
especially

::
in
::::::::

northern
:::::::
Europe.

::::::::
However,

::
as

:::::::::::::
Barredo (2010)

::::::::::
emphasizes,

:::
the

:::::
cause

:::
for

::::::::
increased

::::::
losses

:::
can

::
at
:::::
least

:::::
partly

::
be

:::::::::
explained

:::
by

:::
the increasing exposure of

society
:::::
rather than the increased number of windstorms.

Several previous studies respond to the demand for storm impact estimation for power distribution, many of them focusing

on the hurricane-induced power blackouts in Northern
:::::::
northern

:
America (Eskandarpour and Khodaei (2017); Guikema et al.45

(2014, 2010); Nateghi et al. (2014); Han et al. (2009); Wang et al. (2017); Allen et al. (2014); Chen and Kezunovic (2016); He

et al. (2017); Liu et al. (2018)). Convective thunderstorms have been also
::::
also

::::
been investigated thoroughly. Li et al. (2015)

introduced an area-based outage prediction method further developed to take power grid topology into account (Singhee and

Wang, 2017). Shield et al. (2018) studied outage prediction
::
by

:
applying a random forest classifier to weather forecast data

in a regular grid. Kankanala et al. used data from ground observation stations and experimented regression (Kankanala et al.,50

2011), a multilayer perceptron neural network (Kankanala et al., 2012), and ensemble learning (Kankanala et al., 2014) to

predict outages caused by wind and thunder.
:::
The

:
Bayesian outage probability (BOP) prediction model (Yue et al., 2018)

::::::::
developed

:::
by

::::::::::::::
Yue et al. (2018) combines weather radar data and unifies it to a regular grid. Cintineo et al. (2014) create spatial

objects from satellite and weather radar data, and track and classify the objects with
::
the

:
Naïve Bayesian classifier. Rossi (2015)

developed a method to detect and track convective storms. The method was later
:::::
further

:
developed to predict power outages55

(Tervo et al., 2019).

While much work exists on damage caused by large-scale storms (hurricanes ) and small-scale storms (convective thunderstorms),

relatively little has been done to be prepared for
::::::::
hurricanes

::::
and

::::::::
convective

:::::::::::::
thunderstorms,

::::::::
relatively

:::
few

::::::::
examples

::::
exist

:::::::
relating
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::
to outages caused by mid-latitude extratropical storms differing from hurricanes and convective storms in available data, time-

span, and applicable methods for detecting and tracking.
::::::::::
Extratropical

::::::
storms

:::
are

::::::::::
considered,

::
for

::::::::
example,

::
in

:::::::::::::::
Yang et al. (2020)60

:
,
:::::
where

:::::::
different

:::::::
decision

::::
tree

:::::::
methods

:::
are

::::::
applied

::
to
::
a
::::::
regular

::::
grid

::
in

:::
the

::::::
outage

::::::::
prediction

::::
task.

:::::::::::::::::
Cerrai et al. (2019)

:::
also

::::
uses

:::::::
decision

::::
trees

:::
and

::::::
regular

::::
grid

:::
for

:::
the

::::::
outage

::::::::
prediction

::::::
taking

:::::::
tree-leaf

:::::::::
conditions

:::
into

:::::::
account

::
as

:
a
:::::::::
predictive

::::::
feature.

:
Related

forest damage studies have been conducted , though, with random forest classifiers and neural networks. Hart et al. (2019)

showed at
:::
that

:
random forest regression and artificial neural networks can predict a

::::
could

::::::
predict

:::
the

:
number of falling trees in

France caused by the wind. Hanewinkel (2005) conducted a similar study in Germany using artificial neural networks. Artificial65

neural networks have been used to predict extreme weather in Finland (Ukkonen et al. (2017), Ukkonen and Mäkelä (2019)).

To summarise, according to various sources, for example, the
:::::::::::::::::::::::::::::::::::::::::
(Ukkonen et al., 2017; Ukkonen and Mäkelä, 2019).

::::
The frame-

work of IPCC (Masson-Delmotte et al., 2018),
:::::
(2018

:
)
:::::::::
emphasizes

::::
that the impacts of the extreme weather risks can be analyzed

by estimating the hazard, vulnerability, and exposurewhile machine learning techniques are becoming more popular in the task

of connecting the natural hazards
:
.
::
In

:::
an

:::::::::
increasing

:::::::
manner,

:::::::::
connecting

:::::
these

:::::
fields

::::
(i.e.,

:::
the

::::::
natural

::::::
hazard with the societal70

impact forecasts
::::::
factors)

:
is
:::::
done

::::
with

:::::::
machine

:::::::
learning

:
(Chen et al., 2008).

We present a novel method to identify, track, and classify extratropical storm objects based on how much power out-

ages they are expected to induce. We adapt
::::::::
convective

:
storm object detection (Rossi (2015), Tervo et al. (2019), Cintineo

et al. (2014)) to find potentially harmful areas from extratropical storms by contouring objects from pressure and wind

gust fields. We then
::::::
Instead

:::
of

:::::::::::::
highly-localized

::::::::::
convective

::::::
storms,

:::
we

::::
aim

::
at

::::::
larger

:::
but

::::
still

:::::::
regional

:::::::::
geospatial

::::::::
accuracy75

::
so

::::
that,

:::
for

::::::::
example,

::::::::
damages

::
in

:::::::
western

::::
and

::::::
eastern

:::::::
Finland

::::
can

::
be

::::::::::::
distinguished.

:::
We

:
train a supervised machine learn-

ing model to classify storm objects according to their damage potential. To our knowledge, our method is the first that em-

ploys the extratropical storm objects as polygons and combines them with meteorological and non-meteorological features

to predict power outages. The method can be used as a decision support tool in power distribution companies or as part of

elaborating impact forecast by duty forecasters in national hydro-meteorological centers.
:::
The

::::::
ERA5

::::::::::
atmospheric

:::::::::
reanalysis80

:::::::::::::::::::::::::::::::::::::::::::::::::::
(European Centre for Medium-Range Weather Forecasts, 2017)

:::::::
provides

:::
the

:::::::
primary

:::::::::::::
meteorological

::::
input

::::
data

:::
for

:::
this

::::::
study,

::::
while

:::
the

:::::::
national

::::::
forest

::::::::
inventory

:::::::
provided

:::
by

:::
The

:::::::
Natural

:::::::::
Resources

:::::::
Institute

:::::::
Finland

::::::
(Luke)

:
is
:::::
used

::
to

::::::::
represent

:::
the

:::::
forest

::::::::
conditions

::
in

:::
the

:::::::::
prediction.

:::::::
Finally,

:::::::::
historically

:::::::
occurred

::::::
power

::::::
outages

::::
from

::::
two

::::::
sources

:::
are

::::
used

::
to

::::
train

:::
the

::::::
model.

::::::::
However,

::
the

::::::::::
operational

:::
use

::
of

:::
the

::::::
model

:::::
would

::::::
require

:::
the

:::
use

:::
of

::::::
weather

:::::::::
prediction

::::
data

::::::
instead

::
of

:::::::::
reanalysis.

:

This paper is organized as follows: Chapter 2 presents used data and followed by
::
the

:::::
used

::::
data,

::::::
which

::
is

:::::::
followed

:::
by

::
a85

step-by-step method description in Chapter 3. Chapter 3.1 discusses identifying storm objects and present
:::::::
explains

:::
the storm

tracking algorithm. Chapter 3.2 discusses
:::::::
considers

::::::
storm

:::
and

::::::
forest

::::::::::::
characteristics,

::::::::
hereafter

::::::
called

:
features. Chapter 3.3

discusses how to define labels of storm objects based on
:::
the outage data. Chapter 3.4 describes

:::
the used machine learning

methods. In Chapter 4, we discuss the performance of the methodfollowed by conclusion in Chapter 5 .
:::::::

Finally,
:::::::
Chapter

::
5

:::::::
includes

:
a
:::::::::
discussion

:::
and

::::::::::
conclusions.90
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2 Data

We base our method on three main data sources: ERA5 reanalysis data (Hersbach et al., 2019), multi-source national forest

inventory (ms-nfi) provided by The Natural Resources Institute Finland (Luke)
:
, and occurred power outages obtained from two

sources.
:
: First, the local dataset is gathered from two power distribution companies, Loiste and Järvi-Suomen Energia (JSE),

located in Eastern Finland. Second, the national dataset is obtained from Finnish Energy (ET), a branch organization for the95

industrial and labor market policy of the energy sector. All data is gathered
:::::::
consider

::::
years

:
from 2010 to 2018. These data are

described in the following.

ERA5 is the newest generation reanalysis data provided by ECMWF. ERA5 covers the years from 1979 onward with a

one-hour temporal resolution, has a horizontal resolution of 31 km, and covers the atmosphere using 137 levels up to a height

of 80 km (Hersbach et al., 2019). Compared to in-situ wind observations, reanalysis data provides a spatiotemporally wider100

dataset. However, a question may arise about the accuracy of the reanalysis data. Ramon et al. (2019) examined the wind

speed characteristics of a total of five state-of-the-art global reanalyses concerning 77 instrumented towers. In their study,

ERA5 had the best agreement with in-situ observations on daily time scales; this suggests the ERA5 wind parameters to be

decent
:::::::
adequate in windstorm damage examinations as well.

:::::
ERA5

:::
data

:::
are

::::
also

::::::
known

::
to

::::::
contain

::::::::::::
unrealistically

:::::
large

::::::
surface

::::
wind

::::::
speeds

::
in

:::::
some

::::::::
locations

::::::::::::::::::::::::::::::::::::::::::::::::::::
(European Centre for Medium-Range Weather Forecasts, 2019).

:::::
None

::
of

:::::
these

::::::::
locations

::::
are,105

::::::::::
nevertheless,

::::::
inside

:::
the

::::::::::
geographical

:::::::
domain

::
of

:::
this

::::::
work.

The multi-source forest inventory data is based on field measurements, satellite observations, digital maps, and other geo-

referenced data sources (Mäkisara et al., 2016). The data consists of estimates for the forest age, tree species dominance, the

mean and total volume, and the biomass (total and tree species-specific).
:::
The

:::::::
original

::::::::
geospatial

:::::::::
resolution

::
of

:::
the

::::
data

::
is

:::
16

::::::
meters,

:::::
which

:::
has

:::::
been

::::::
reduced

::
to
::::::::::::
approximately

:::
1.6

:::
km

:::::::::
resolution

::
to

:::::
speed

::
up

:::
the

::::::::::
processing.

::::::
Taking

:::
into

:::::::
account

:::
the

::::
size

::
of110

::::::::::
extratropical

::::::::
cyclones

::::::::
(diameter

:::::
1000

:::
km)

::::
and

:::
the

::::
wide

:::::
areas

:::::
where

:::::
wind

:::::::
damages

::::::::
typically

:::::
occur

:::
e.g.

::::
near

::
to

:::
the

::::
cold

:::::
front,

::
we

::::::::
consider

:
a
::::::::
resolution

:::
of

:::
1.6

:::
km

:::::
being

:::::::::
sufficiently

::::
high

:::
for

::::::::
modeling

:::::
wind

:::::
storm

::::::::
damages.

Each power distribution company in Finland is monitoring and collecting the power interruption data. The raw data consist

of many parameters, including the start and end times of
:::::
Power

::::::
outage

::::
data

::
are

::::::::
obtained

::::
from

:::
two

:::::::::::::
complementary

:::::::
sources.

::::
The

:::::::
national

::::::
dataset

:
is

:::::::
acquired

:::::
from the interruption along with a location of a distribution transformer. This data is collected by115

the Finnish Energy (Finnish Energy, 2010-2018)
::::::::::
(2010-2018)

::::
who

:::::::::
aggregates

::::
the

:::
data

:::::
from

::::::
power

:::::::::
distribution

::::::::::
companies

::
in

::::::
Finland. The national data can be acquired

::
are

::::::::
provided

::::
only for research purposes but only

:::
and

:
for areas containing a minimum

of five
::
six

:
grid companies; this is, for example, to ensure the anonymity of energy users. The same data can be obtained also

from some
::::::
energy

:::::
users’

::::::::::
anonymity.

:::::::::
Therefore,

:::
the

:::::::
national

::::::
dataset

:::::
does

:::
not

::::::
include

:::::
exact

::::::::
locations

::
of

::::
the

:::::
faults.

:::
We

:::::
have

:::
also

::::::::
obtained

::::
some

:::::
parts

::
of

:::
the

::::
data

::::
with

:::::
better

::::::
spatial

:::::::
accuracy

:::::
from

:::
two

:
individual power distribution companieswith better120

spatial accuracy. .
::
In

::::
this

:::::
paper,

:::
we

::::
refer

::
to

::::
this

:::
data

:::
as

::
the

:::::
local

::::::
dataset

:
.
::
In

:::
the

::::
local

:::::::
dataset,

:::
the

::::
fault

::::::::
locations

:::
are

:::::::
reported

::
in

::::::
relation

::
to

:::::::::::
transformers,

:::
i.e.

:::
the

::::::
spatial

::::::::
resolution

:::
of

::
the

:::::::
outages

::::::
ranges

::::
from

::
a

:::
few

::::::
meters

::
to

:::::::::
kilometers.

:

:::::
Figure

::
1
::::::::
illustrates

:::
the

:::::::::::
geographical

::::::::
coverage

::
of

:::
the

::::::
power

::::::
outage

::::
data.

::::
The

:::::
local

::::::
dataset

:::::::
contains

:::
all

:::::::
outages

::::
from

:::::
2010

::
to

::::
2018

:::
in

:::
the

:::::::
northern

::::
area

:::::::
(Loiste)

::::
and

:::::::
outages

::::::
related

::
to

::::::
major

::::::
storms

::
in

:::
the

::::::::
southern

::::
area

:::::
(JSE),

::::::
shown

:::
in

::::::
Figure

:::
1a.
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:::
The

:::::::
national

::::::
dataset

::::::::
contains

:::
all

::::::
outages

:::
in

::::::
Finland

:::::
from

:::::
2010

::
to

:::::
2018

::::::
divided

::::
into

::::
five

:::::::
regions,

::::::
shown

::
in

::::::
Figure

:::
1b.

::::
The125

::::::
national

:::::::
dataset

:::::::
contains

::
in

::::
total

:::::::::
6 140 434

:::::::
outages

::::
with

::::::::
relatively

::::
low

:::::::::::
geographical

::::::::
accuracy.

:::
On

:::
the

:::::
other

:::::
hand,

:::
the

:::::
local

::::::
dataset

::::::::
represents

::
a
:::::::::::

substantially
:::::::
smaller

:::::::::::
geographical

::::
area

:::::
with

:
a
:::::

good
:::::::::::
geographical

::::::::
accuracy

::::
but

:::::::
contains

::::
only

:::::::
22 028

::::::
outages

::
in
:::::

total.
:::
We

:::::
train

:::
our

:::::::::::
classification

:::::::
models,

:::::::::
described

::
in

:::::
more

:::::
detail

::
in

:::::::
Chapter

::::
3.4,

::::
with

::::
both

:::::::
datasets

::
to
::::::::

evaluate

::::
their

::::::::::
performance

:::
for

:::::::
different

:::::
types

::
of

:::::
data.

(a) (b)

Figure 1.
::
(a)

::::::::::
Geographical

:::::::
coverage

::
of
:::

the
::::::

outage
:::
data

:::::
(local

:::::::
dataset).

:::
The

:::
red

:::::
lines

:::::::
represent

:::
the

:::::
power

:::
grid

:::
of

:::::
Loiste

:::::::
(northern

::::
grid

:::::::
company)

:::
and

:::
the

::::
green

::::
lines

:::
the

:::::::
operative

::::
areas

::
of

:::
JSE

:::::::
(southern

::::
grid

::::::::
company).

::::::
Outages

::
of

:::
the

::::
local

:::::
dataset

:::
are

:::::::
collected

::::
from

:::
both

:::::
areas.

::
(b)

::::::
Regions

::
in
:::
the

::::::
national

:::::
outage

::::::
dataset.

:::::::
Outages

::
are

:::::::
gathered

::::
from

::::
entire

::::::
Finland

:::
and

:::::::::
aggregated

::
to

::
the

::::::
regions

:::::
shown

::
in

:::
the

:::::
figure.

3 Method130

We predict power outages by classifying storm objects identified from gridded weather data into three classes based on a
:::
the

number of power outages the storm can typically cause
:::::::
typically

::::::
causes. The overall process contains

::::::
consists

::
of

:
the follow-

ing steps: (1) identifying storm objects from weather fields by finding contour lines of some particular threshold
::::::::
particular

::::::::
thresholds, (2) tracking the storm object movement, (3) gathering features of the storm objects, and (4) classifying the objects.

::::
each

:::::
storm

::::::
object

::::::::::
individually.

::::
The

:::::::::::
classification

::
is
:::::::::
conducted

:::
for

:::::
each

:::::
storm

:::::
object

:::::::::
separately

:::
to

:::::::::
distinguish

:::
the

::::::::
different135

::::::
damage

::::::::
potential.

::::::::
Tracking

::
is,

::::::::
however,

::::::::
necessary

::
to
::::::

gather
::::::::
necessary

:::::::
features

::::
such

:::
as

:::::
object

:::::::::
movement

:::::
speed

::::
and

::::::::
direction.

::
In

:::
the

::::::::
following,

:::
we

::::::
discuss

:::::
these

::::::
phases

::
in

:::::
more

:::::
detail.
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3.1 Identifying and tracking storm objects

Storm objects are identified by finding contour lines of
:::::::
10-meter

:
wind gust fields and pressure fields with several thresholds.

We define the storm objects using 15 m s−1 thresholds from the ERA5 surface level grid with a time step of 1 hour.
:::
The140

:::::::::
contouring

::::::::
algorithm

::
is

:::::::
capable

::
of

::::::
finding

::::::
interior

:::::
rings

::
of

:::
the

:::::::::
polygons.

:::
The

::::
used

:::::
wind

::::
gust

:::::
fields

:::
did

::::
not,

:::::::
however,

:::::::
contain

::::
such

:::::
cases. Thus one storm object represents a solid area (polygon) where

:::
the hourly maximum wind gust exceeds 15 m s−1

during one particular hour. The threshold of 15 m s−1 is selected as different sources indicate Finland being vulnerable for

windstorms and rather moderate winds (from 15 m s−1) causing damages to forests (Valta et al., 2019; Gardiner et al., 2013).

To
:::::::::::::::
Valta et al. (2019)

::::::::
developed

::
a
::::::
method

::
to

:
estimate the windstorm impacts on forests , Valta et al. (2019) developed a method145

by combining the recorded forest damages from the nine most intense storms and their observed maximum inland wind gusts.

According to the formula developed in the study, alone the inland wind gusts of 15 m s−1
::::
alone

:
result in forest damages of

1800 m3.
:::
We

:::
also

:::::::
identify

:::::::
pressure

:::::::
objects

::
by

::::::
finding

:::::::
contour

::::
lines

:::::
using

::
a

::::
1000

:
hPa

:::::::
threshold

::
to

:::::::
connect

:::::::::
potentially

::::::
distant

:::::
storm

::::::
objects

::::::
around

:::
the

::::::::::
low-pressure

::::::
center

::
to

:::
the

::::
same

::::::
storm

:::::
event.

After identification, storm objects are connected to preceding objects using Algorithm 1. Each object having pressure objects150

or preceding
:::::
tracked

:::
by

:::::::::
connecting

:::::
them

::::
with

::::
each

:::::
other.

::::
Each

::::::
storm

:::::
object

::
is

:::
first

:::::::::
connected

::
to

::::::
nearby

:::::::
pressure

::::::
objects

:::::
from

::
the

:::::::
current

:::
and

:::::::::
preceding

::::
time

:::::
steps.

::
If
::::::::

pressure
::::::
objects

:::
do

:::
not

::::
exist

::::::
within

:::
the

::::::::
distance

::::::::
threshold,

:::
the

::::::
object

::
is

:::::::::
connected

::
to

::::::
nearby

:::::
storm

::::::
objects

::::
from

:::
the

:::::::
current

:::
and

:::::::::
preceding

::::
time

:::::
steps.

::::
The

:::::::::
Algorithm

::::::
enables

::::::::
assigning

::::
each

::::::
storm

:::::
object

::
to

:::
an

:::::
overall

:::::
event

::::
(low

:::::::
pressure

:::::::
system)

::::
and

:::::::
tracking

::
the

:
objectswithin the threshold, are assigned to the same storm event and gets

the same storm ID. Notably, nearby pressure objectsare considered along with previous wind objects in assigning ID. This155

allows several, potentially distant wind objects around the low-pressure center to be assigned to the same storm event. Single

wind objects without nearby pressure object or preceding objects are left without ID as they are not assumed to be part of any

storm. ’
::::::::::
movement.

::::::::
Algorithm

::
1
:::::
shows

:::
the

::::::
details

::
of

:::
the

:::::::
process.

:

We use a 500 km distance threshold for the distance between wind
:::
the

:::::
storm

:
and pressure objects. As the typical diameter

of an extratropical storm is approximately 1000 km (Govorushko, 2011), we assume , the damaging wind
::
the

:::::::::
damaging

:::::
storm160

objects to situate a maximum 500 km from the center of the low pressure. The thresholds for motion speed for wind objects

:::::::
threshold

:::
for

:::::::::
movement

:::::
speed

:
is 200 km h−1

::
for

:::::
storm

::::::
objects

:
and 45 km h−1 for pressure objects. Wind objects are i.e.

::
In

::::
other

::::::
words,

:::::
storm

::::::
objects

:::
are

:
not assumed to move over

::::
more

::::
than

:
200 km and pressure objects over

:::::
more

::::
than 45 km

::::
from

::
the

:::::::::
preceding

::::::
hourly

::::
time

:::
step

:
(Govorushko, 2011). Convective storms may move faster but are outside the focus of this work.

3.2 Extracting storm object features165

We characterize the storm objects identified by the methods discussed in Section 3.1 using the features listed in Table 1. The

features are structured as four groups. The first group is
:
a

::::::
number

:::
of object characteristics such as size and movement speed

and direction,
::::::
which are calculated from the contoured storm objects themselves. As a

:::
the second group, relevant weather

conditions, such as wind speed, temperature, etc.
:::
and

:::::
others, are extracted from ERA5 data. To

::
We

:::::::::
aggregate

::::::
values

::
as

::
a

::::::::
minimum,

:::::::::
maximum,

:::::::
average,

::::
and

:::::::
standard

::::::::
deviation

:::::::::
calculated

::::
over

::
all

::::
grid

::::
cells

:::::
under

:::
the

:::::
object

::::::::
coverage

::
to represent each170
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Algorithm 1 Storm tracking

Input

Individual storm objects
:::::
Storm

:::
and

::::::
pressure

::::::
objects

::
So:::::::

arranged
::
by

::::
time

pressure distance threshold

wind distance threshold

speed threshold

::::::::::
time step

Output

Connected storm object
:::
and

::::::
pressure

::::::
objects with storm ID

for all storm and pressure object Ow|p ∈ So do

:::::::::::::
current time←

:::
time

::
of
:::
the

:::::
object

::::
Ow|p:

::::::::::::::::::::::::::::::::::
previous time← current time− time step

:

:::::
Current

::::
time

:::::::
pressure

:::::
objects

:::::
Sc
p←::::::

pressure
::::::
objects

:::::
having

:::::::
centroid

:::::
within

:::::::::::::::::::::::
pressure distance threshold

::::
from

:::::
object

::::
Ow|p::::::

centroid
:::
and

::::
time

:::::
stamp

:::::::::::
current time

::::::
Previous

::::
time

::::::
pressure

::::::
objects

:::::
Sp
p ←::::::

pressure
::::::
objects

:::::
having

::::::
centroid

:::::
within

::::::::::::::
speed threshold

::::
from

:::::
.8mm

::::
object

:::::
Ow|p ::::::

centroid
:::
and

::::
time

::::
stamp

::::::::::::
previous time

:

:::::
Current

::::
time

:::::
storm

:::::
objects

:::::
Sc
w←:::::

storm
:::::
objects

::::::
having

::::::
centroid

:::::
within

::::::::::::::::::::
wind distance threshold

::::
from

:

:::::
.8mm

::::
object

:::::
Ow|p ::::::

centroid
:::
and

::::
time

::::
stamp

:::::::::::
current time

:

::::::
Previous

::::
time

::::
storm

::::::
objects

:::::
Sp
w←:::::

storm
:::::
objects

:::::
having

:::::::
centroid

:::::
within

:::::::::::::
speed threshold

::::
from

::::
.8mm

:::::
object

::::
Ow|p::::::

centroid
:::
and

::::
time

:::::
stamp

:::::::::::
previous time

:

if pressure object Oc
p ∈ Sc

p exists with ID then

Use pressure object ID
:::::
Oc

p ID

else if pressure object Op
p ∈ Sp

p exists with ID then

Use previous pressure object ID
:::
time

:::::::
pressure

:::::
object

:::::
Op

p ID
:

else if storm object Oc
w ∈ Sc

w exists with ID then

Use other object ID
::::
storm

:::::
object

::::::
Oc

w ID
:

else if storm object Op
w ∈ Sp

w exists with ID then

Use previous object ID
:::
time

::::
storm

:::::
object

::::::
Op

w ID
:

else if storm or pressure object Op
w|p ∈ Sp

w ∪Sp
p exists without ID then

Give new ID to the previous
:::::
object

::::
Op

w|p and current object
::::
Ow|p

else

Leave object
:::
Op

w|p:without ID

end if

end for

7



parameter with one number, we aggregate values from the object coverage using functions listed in Table 1. Third, as most

of the outages are caused by the trees falling over
::
on

:
power grid lines (Campbell and Lowry, 2012), and thus the features

:::
the

:::::::::::
characteristics

:
of the forest (i.e. tree height, age, or specie) contribute in

::::::::
contribute

::
to
:

the damages (Peltola et al., 1999), we

support
::::::::::
complement our data with forest information. As with

::
for

:
weather parameters, values are aggregated from

::::
over the

storm object coverage. The fourth group consists of the number of outages and affected customers used as labels in the model175

training process discussed more
::
in

::::
more

:::::
detail

:
in Chapter 3.4.

We first gather several parameters and further select the most relevant ones.
::
We

:::::::
selected

:::
the

::
35

::::::::::
parameters

:::::
based

::
on

:::
two

:::::
main

::::::
criteria:

:::::
First,

::
we

::::::::
prepared

:
a
:::
list

::
of

:::::::
potential

::::::::::
parameters

:::::::
detected

::
in

:::::
related

:::::::
studies,

:::
e.g.

:::::::::::::::::::::::::::::::::::::::::::::::::
Suvanto et al. (2016); Peltola et al. (1999); Valta et al. (2019)

:
,
::
or

:::::::
identified

:::::::
through

:::
the

::::::::
empirical

:::::::::
experience

::
of

::::
duty

:::::::::
forecasters

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Weather and Safety Center of Finnish Meteorological Institute - Duty forecasters, 05/2020)

:
.
::::::
Second,

:::
we

:::::::
selected

:::
the

:::::::
relevant

:::::::::
parameters,

::::::
which

::::
were

::::::::
available

::
to

::
us

::
or

::::::::
accessible

::::
with

::
a
:::::::::
reasonable

:::::
effort.

::::::::
However,

:::::
some180

:::::::
possibly

:::::::
essential

::::::::::
parameters,

::::
like

::::
soil

::::::::::
temperature

::::
from

::::::
ERA5

:::::::::
reanalysis,

:::::
were

:::
left

::::
out

:::::::
because

::
of

:::
the

:::::
slow

:::::::::::
downloading

::::::
process.

:

::::
After

:::
the

::::::::::
preliminary

::::::::
selection

::
of

:::
the

::::::::::
parameters,

:::
we

:::::::::
conducted

::::::
dozens

::
of

:::::
light

::::::::::
experiments

:::::
using

:::::::
different

::::::::::::
combinations

::
of

:::::::::
parameters

::::
and

::::::
models

::
to
::::

find
:::
the

::::
best

:::::::
possible

::::::
setup. To this end, we plot the difference in fitted Gaussian distribution

between all samplesand class one and two samples
::::
fitted

:::
the

::::::::
Gaussian

:::::::::
distribution

:::
to

::::
each

::::::::
parameter

:::::
using

::
at

::::
first

::
all

::::::::
samples,185

:::
then

::::::::
samples

::::
with

:::
few

::::::::
outages,

:::
and

::::::
finally

::::
with

:::::
many

:::::::
outages

:::::::
(classes

:
1
::::
and

::
2

:::::::
specified

::
in
:::::::

Section
::::
3.3). While many other

distributions are known to suit better in modeling particular parameters(
:
, such as Gamma in precipitation, Weibull in wind

speed, and Lognormal in cloud properties (Wilks, 2011)), ,
:::
the

:
Gaussian distribution is a sufficient simplification to help in

selecting relevant parameters. Distribution of
:::
We

:::::::
visually

::::::::
inspected

:::
the

::::::::::
differences

:::::::
between

:::::
fitted

::::::::
Gaussian

:::::::::::
distributions

::
to

::::::
deduce

:::
the

:::::::
potential

::::::::
relevance

:::
of

:::
the

:::::::::
parameter.

:::::::::
Supposedly

:::
the

::::::::::
distribution

::
of
::::

one
::::::::
parameter

::
is
::::::::
different

:::
for

::
all

:::::::
samples

::::
and190

::::::
samples

:::::
with

:::::
many

:::::::
outages,

:::
and

::::
the

:::::::::::
classification

::::::
method

::::
may

:::::::
exploit

:::
the

::::::::
parameter

:::
to

::::::
predict

:::
the

:::::::
damage

:::::::
potential

:::
of

:::
the

:::::
storm

::::::
object.

:::
The

:::::::::::
distributions

::
of some selected parameters is shown in Appendices A1 and A1

:::
are

:::::
shown

:::
in

::::::::
Appendix

::
A. In

total,
:
35 parameters, shown as bolded

:::::::
boldfaced

:
in Table 1,

:
were chosen for the final classification.

3.3 Defining classes

We use three classes designed together with power grid companies aiming at a simple "at glance" view for power grid operators.195

Class 0 represents no damage, class 1 low damage, and class 2 high damage. Next, we discuss the power outage data used in

this project and then define limits for the classes.

The geographical coverage of the power outage data is illustrated in Figures 1a and 1b. The local dataset contains all outages

from Northen Area (Loiste) and outages related to major storms in the Southern area (JSE). The national dataset contains all

outages in Finland divided into five regions shown in Figure 1b. As shown in Figures ?? and ??
:
2a

::::
and

::
2b, the outages

::
in

:::
the200

::::
local

::::::
dataset

:
are concentrated heavily on ‘hot-spots’, assumingly, due to forest characteristics and network topology. In total,

the
:::
The

:
local dataset contains 24 542

:::::
24 542

:
storm objects and 5 837 outages attributed to a storm

::::
5 837

:::::::
outages

:::::::::
connected

::
to

:::::
2 363

:::::
storm

::::::
objects.

:::::
Thus

::::::
22 179

:::::
storm

::::::
objects

::
in

:::
the

:::::
local

::::::
dataset

:::
did

:::
not

:::::
cause

:::
any

:::::::
outages.

::::
The

:::::
local

:::::
power

::::::
outage

::::
data

::::::
contain

::::::
16 191

:::::::
outages,

:::::
which

::::
can

:::
not

::
be

:::::::::
connected

::
to

:::
any

:::::
storm

:
object. The national dataset contains 142 873

:::::::
142 873 storm
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Table 1. Extracted features. Features used in the final classification marked as bold.

Feature Aggregation Explanation

Speed - Object movement speed

Angle - Object movement angle

Area - Object size

Area difference - Object area difference to the previous time step

Week - Week of the year

Snowdepth average, minimum, maximum Snow depth

Total column water vapor average, minimum, maximum Total amount of water vapour

Temperature average, minimum, maximum 2 meter air temperature

Snowfall average, minimum, maximum, sum Snowfall (meter of water equivalent)

Total cloud cover average, minimum, maximum Total cloud cover (0-1)

CAPE average, minimum, maximum Convective available potential energy (J/kg)

Precipitation kg/m2 average, minimum, maximum, sum Precipitation amount (kg/m2)

Wind gust average, minimum, maximum, standard deviation Hourly maximum wind gust (m s−1 )

Wind Speed average, minimum, maximum, standard deviation 10 meter wind speed (m s−1 )

Wind Direction average, minimum, maximum, standard deviation Wind direction (degrees))

Dewpoint average, minimum, maximum Dewpoint)

Mixed layer height average, minimum, maximum Boundary layer height

Pressure average, minimum, maximum Air pressure

Forest age average, minimum, maximum, standard deviation The age of the growing stock on a forest stand

Forest site fertility average, minimum, maximum, standard deviation Group of the forest by vegetation zones

Forest stand mean diameter average, minimum, maximum, standard deviation Forest stand mean mean diameter

Forest stand mean height average, minimum, maximum, standard deviation Forest stand mean height

Forest canopy cover average, minimum, maximum, standard deviation Forest canopy cover fraction (0-100%)

Outages - Number of occured outages

Customers - Number of affected customers

Tansformers - Number of transformers under the object

All customers - Number of customers under the object

Class - Assigned class

objects and 5 965 324 outages attributed to some storm
::::::::
5 965 324

:::::::
outages

:::::::::
connected

::
to

::::::
33 796

:::::
storm

:::::::
objects.

:::::::
109 077

:::::
storm205

::::::
objects

:::
are

:::
not

::::::::
connected

::
to

::::
any

:::::::
outages,

:::
and

:::::::
175 110

:::::::
outages

:::
can

:::
not

:::
be

::::::::
connected

::
to

::::
any

:::::
storm object.

9



(a) (b)

Figure 2. (a) Geographical coverage
:::::
Spatial

:::::::::
distribution of the outages in local dataset

::::::
between

::::
2010

:::
and

::::
2018

::::::::
visualised

::
as

:
a
:::::
spatial

::::::
heatmap.

Red lines represents the power grid where outages are gathered from. (b
:
a) Regions in national outage dataset. Outages are gathered from

the whole Finland but aggregated to the regions shown in the image. (c) Spatial distribution of the outages in the JSE Network
::::::
network

(Southern
::::::
southern

:
area) , data gathered between 2010 and 2018. (d

:
b) Spatial distribution of the outages in the Loiste Network

::::::
network

(Northern
::::::

northern area), data gathered between 2010 and 2018.

It is notable,
:::::
should

:::
be

::::::
noticed that the damage may occur anywhere in the power grid. Outages are, however, always reported

as transformers without electricity. Typically one physical damage between the transformers causes several transformers to lose

power. Power grid operators can often afterward turn part of the transformers back to operation even before fixing the original

damage. This
:::::
actual

:::::::
damage,

::::::
which causes an unavoidable noise to the datasets.210

Figure 3 depicts
:::::
Figure

:
3
:::::::::
represents

:
the number of outages and storm objects in both , local and national datasets. We can

identify a large amount of 15 m s−1 storm objects in both sets
:
, indicating that moderate wind objects without other influencing

factors , do not cause damage for
:::
does

:::
not

:::::::
damage the transformers. When identifying

::::
storm

:
objects with the contour of 20 and

25 m s−1, the number of objects reduces and correlates
::::
starts

::
to

:::::::
correlate

:
more with a high number of outages. This ,

::::::
which

supports views of previous studies showing the significance of stronger wind gusts to higher
::::
more

::::::
severe

:
storm damages. The215

method seems to identify also the most important
::::::
critical storm days by capturing several storm objects for those days. For

instance, at the end of 2013when
:
,
:::::
when

:::
the three major storms Eino, Oskari, Seija (Valta et al., 2019) hit Finland, both datasets

contain plenty of wind objects with
:::::
storm

::::::
objects

::::
with

:::
the

:
20 m s−1 threshold.

:::::::::::
Nevertheless,

:::
our

::::::::::
experiments

::::::::
indicated

::::
that

:::::::::
employing

::
15

:
m s−1

:::::
storm

::::::
objects

::::::
yielded

:::
the

::::
best

::::::
results.

::::
This

::
is

::::::::
described

:::::
more

::
in

:::::::
Chapter

::
4.

Figure 4 illustrates how much outages a single storm object typically produces. In the local dataset, most of the storm objects220

cause only a few outages. Only 65 storm objects, which are only 0.3 percent of the whole dataset, induced more than 10
:::
ten

outages. On the other hand,
:
in the national dataset where one storm object typically affects several different transformers, 17

10



Figure 3. Storm object time series (15, 20 and 25 m s−1 contours) with occurred outages for local and national datasets.

587
:::::
17 587

:
storm objects have caused more than 10 outageswhich represent

:::
ten

:::::::
outages,

::::::::::
representing

:
12 percent of the whole

dataset. Based on the approximation, shown in Figure 5, one outage typically affects on 200 - 300 customers .
:::::
Figure

:
5
:::::::
renders

:::
how

:::::
many

:::::::::
customers

:::
are

::::::::
typically

:::::::
affected

::
by

::::
one

::::::
outage.

::::
The

:::::
figure

::::::::
contains

::
all

:::::::
outages

::
in

::::
both

::::::::
datasets,

:::::::
whether

::::
they

:::
are225

:::::
related

:::
to

:
a
:::::
storm

:::
or

:::
not.

:::
In

:::
the

::::
local

:::::::
dataset,

::::::
usually

:::::
20-30

:::::::::
customers

::::
lose

:::::::::
electricity

::
in

:::
one

:::::::
outage.

::
In

:::
the

:::::::
national

:::::::
dataset,

::::
only

::
six

:::::::::
customers

::::::
usually

::::
lose

::::::::
electricity

::
in

::::
one

::::::
outage.

:::
We

::::::
assume

::::
that

:::
this

:::::
roots

::
to

:::::::
different

:::::::
network

:::::::::
topologies

:::::::
between

:::
the

:::::
areas.

:::::::
Notably,

::
in

:::::
some

:::
rare

:::::
cases,

::
a

::::
much

::::::
higher

:::::::
number

::
of

::::::::
customers

:::
are

:::::::
affected.

:::
We

:::::::
assume

:::
that

:::::
these

::::
cases

:::::
occur

::::::::
typically

::
in

:::::
urban

::::
areas

::::
and

:::
are

:::
rare

:::::::
because

:::
the

:::::
power

:::::::
network

::
is
::::::
mainly

:::::::::::
underground

::
in

:::::
these

:::::
areas.

:::
We

:::
use

:::::
three

::::::
classes

::::::::
designed

:::::::
together

:::::
with

:::::
power

::::
grid

:::::::::
companies

:::::::
aiming

::
at

::
a

::::::
simple

:::
"at

::::::
glance"

:::::
view

:::
for

::::::
power

::::
grid230

::::::::
operators.

:::::
Class

:
0
:::::::::
represents

::
no

:::::::
damage,

:::::
class

:
1
::::
low

:::::::
damage,

:::
and

:::::
class

:
2
::::
high

:::::::
damage.

:
As the number of outages produced by

a single storm object varies a lot
::::::::::
significantly

:
in the local and national datasets, we end up defining

::::::
decided

::
to

::::::
define separate

limits for the local and the national datasets. The detailed limits are listed in Table 2. Class 1 is defined such that it represents

roughly 80 percent of all cases with at least one outage. Class sizes are highly imbalanced as most of the storm objects do not

cause any damage.235
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(a) (b)

Figure 4. Number of storm objects per caused outages in (a) local dataset (b) national dataset.

(a) (b)

Figure 5. Relationship between number of outages and affected customers in (a) local dataset and (b) national dataset.

3.4 Classifying storm objects

We centered and normalized the data points by substracting the empirical mean and then dividing
:
it by the empirical standard

deviation. The hyperparameters were determined using random search 5-fold cross-validation (Bergstra and Bengio, 2012). To

cope with the imbalanced class distribution, we generate artificial training samples using the synthetic minority over-sampling

technique SMOTE (Chawla et al., 2002).
:::
The

::::::::
SMOTE

::::::
creates

::::
new

:::::::
training

:::::::
samples

:::::
based

::
on

:::::
their

:::::
k = 5

::::::
nearest

:::::::::
neighbors240
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Table 2. Classes for local dataset
::::
Class

::::::::
definitions

Class Outage limit in local tdataset
::::::
dataset Local dataset size Outage limit in national dataset National dataset size

0 0 5 624 0 76 215

1 1-3 353 1- 140 14 417

2 ≥ 4 181 ≥ 141 3 085

::::::::
following:

:

xnew = xi +λ× (xzi−xi)
::::::::::::::::::::::

(1)

:::::
where

::
xi::

is
::
an

:::::::
original

::::
class

:::::::
sample,

:::
xzi::

is
:::
one

::
of

::::
xi’s:

k
:::::::
nearest

:::::::
neighbor

:::
and

::
λ
::
is

:
a
:::::::
random

:::::::
variable

:::::
drawn

::::::::
uniformly

:::::
from

:::
the

::::::
interval

:::::
[0,1].

:::::
After

::::::::::::
augmentation,

::
all

::::::
classes

:::::
have

::
an

:::::
equal

:::::::
number

::
of

::::::::
samples,

:::::
which

:::::::
reduces

:::
the

:::::::
tendency

:::
of

:::::::::::
classification

:::::::
methods

::
to

::::::
always

::::::
predict

:::
the

:::::::
majority

:::::
class.

:
245

Five different models were evaluated to classify storm objects. We omit the more mathematical definitions but shortly discuss

the characteristics of different models and describe the implementation details chosen in this work.

Random forest classification (RFC) is based on a random ensemble of decision trees and aggregate
::::::::::
aggregating results from

individual trees to final estimation
::
the

::::
final

::::::::
estimate. Trees in the ensemble are constructed with four steps: 1) use bootstrapping

to generate a random sample of the data
:
,
:
2) randomly selected

:::::
select

:
a
:
subset of features at each node,

:
3) determine the best250

split at the node using loss function,
:

4) grow the full tree (Breiman, 2001). RFC is also
::::
good

:::
to

::::
cope

::::
with

:::::::::::::::
high-dimensional

::::
data.

:
It
::::
has

:::
also

::::
been

:
found to provide adequate performance with imbalanced data (Tervo et al., 2019; Brown and Mues, 2012)

.
:::
and

::
is

:::::
widely

:::::
used

::::
with

::::::
weather

::::
data

::::
(e.g.

::::::::::::::::::::::::::::::::::::::::::::::::::::::
Karthick et al. (2020); Cerrai et al. (2019); Lagerquist et al. (2017)

:
).
::::
The

::::::
method

::
is

:::::
prone

::
to

::::::
overfit,

:::::
which

::
is

::::
why

:::::::::::::::::::
hyperparameter-tuning

::
is

::::
very

::::::::
important.

:::::::::::::::
Hyperparameters

::::
used

::
in

:::
this

:::::
work

:::
are

:::::
listed

::
in

:::::
Table

::
3. We use RFC with the Gini impurity loss function. Hyperparameters listed in Table 3.255

Table 3. Hyperparameters for the RFC

Parameter Value

Number of trees in the forest 500

Max depth unlimited

Minimum nr. of samples to split 2

Minimun nr of samples to leaf 1

Features to consider for split
√

num. of feat.

Max nro of leaf nodes unlimited
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Support Vector Classifiers (SVC) construct a hyper-plane or classification function , in a high dimensional
::
in

:
a
::::::::::::::
high-dimensional

feature space and maximize a distance between training samples and the hyperplane. The hyper-planes may be constructed

with non-linear
::::::::
nonlinear kernels such as gaussian radial basis function (RBF)

::::::::::::::::::::::
(Shawe-Taylor et al., 2004) that often reform

a non-linear
::::::::
nonlinear

:
classification problem to linear

:
a
:::::
linear

:::
one. Operating in the high-dimensional feature space without

additional computational complexity makes SVC an attractive choice to extract meaningful features from a high dimensional260

data set. Furthermore, if
::::::::::::::
high-dimensional

:::::::
dataset.

::
A

:::::::::::::
domain-specific

::::::
expert

:::::::::
knowledge

:::
can

::::
also

::
be

::::::::::
capitalized

::
on

:::
the

::::::
kernel

::::::
design.

:::
On

:::
the

::::
other

:::::
hand,

:::::::
finding

:::
the

::::::
correct

:::::
kernel

::
is
:::::
often

:
a
:::::::
difficult

::::
task.

::::::::
Training

::::
SVC

::
is
::
a

::::::
convex

::::::::::
optimization

::::::::
problem

:::::::
meaning

:::
that

::
it
:::
has

:::
no

::::
local

::::::::
minima.

:::::::::
Depending

:::
on

:::
the

::::::
kernel,

:
a
:::::::
training

::::::
process

:::::
may,

::::::::
however,

::
be

::
a

::::
very

:::::::::::::::
memory-intensive

::::::
process.

:

:::::::
Suppose

:::
the SVM output is assumed to be

:::
the log odds of a positive sample

:
.
::
In

::::
that

::::
case, one can fit a parametric model265

to obtain the posterior probability function and thus get probabilities for samples to belong to the particular class (Platt et al.,

1999). For more details, we request the reader to consult for example Chang and Lin (2011) and Platt et al. (1999).

We implement the SVC in two phases. First, we separate class 0 (no outages) and other samples employing SVC with radial

basis function (RBF), defined in Equation 2. Second, we distinguish classes 1 and 2 using SVC with
:
a
:
dot-product kernel

defined in Equation 3 (Williams and Rasmussen, 2006). The second phase is performed only for the samples predicted to cause270

outages in the first phase. The approach is similar to
:::
the often-used one-vs-one classification,

:
where a binary classifier is fitted

for each pair of classesexcept that .
::
In

:::
our

::::
case

:
different kernels were used for different pairs.

kRBF (x,x
′) = exp

(
− γ||x−x′||2

)
(2)

:::::
where

::
x

:::
and

::
x′

:::
are

::::
two

:::::::
samples

::
in

:::
the

::::
input

:::::
space

::::
and

:
γ
::
is

:
a
::::::
kernel

:::::::::
coefficient

:::::::::
parameter.

k·(x,x
′) = σ0 +x ·x′ (3)275

:::::
where

::
x

:::
and

::
x′

:::
are

::::
two

:::::::
samples

::
in

:::
the

::::
input

:::::
space

::::
and

:
σ
::
is

::
a

:::::
kernel

::::::::::::
inhomogenity

::::::::
parameter.

:

Gaussian Naive Bayes (GNB) (Chan et al., 1979) is a well-known and widely used method based on the Bayesian probabil-

ity theory. The method assumes that all samples are independent and identically distributed (i.i.d)
:
, which does not naturally hold

for the weather data. Despite the internal structure of the data, GNB is still sometimes used for weather time series (for example

Lindsay and Cox (2005)
::::
data

::::
(e.g.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Kossin and Sitkowski (2009); Cintineo et al. (2014); Karthick et al. (2020)) and worth in-280

vestigating also in this context.
:::
The

:::::::::::
classification

:::
rule

::
in

:::::
GNB

::
is

::::::::::::::::::::::::::::
ŷ = argmaxyP (y)

∏n
i=1P (xi | y),::::::

where
::::
P (y)

::
is

:
a
:::::::::
frequency

::
of

::::
class

::
y

:::
and

::::::::
P (xi | y)::

is
::
a

::::::::
likelihood

::
of

:::
the

:::
ith

::::::
feature

::::::::
assumed

::
to

::
be

::::::::
gaussian.

::::::::
Because

::
of

:::
the

:::::
naive

:::
i.i.d

::::::::::
assumption,

:::::
each

::::::::
likelihood

:::
can

:::
be

::::::::
estimated

:::::::::
separately,

:::::
which

:::::
helps

::
to

::::
cope

::::
with

::
a
:::::
curse

::
of

::::::::::::
dimensionality

::::
and

:::::
enable

:::::
GNB

::
to

:::::
work

::::::::
relatively

:::
well

:::::
with

::::
small

::::::::
datasets.

:::
On

:::
the

:::::
other

::::
hand,

:::::::::
estimating

::::::::::
likelihoods

:::
can

:::
be

::::
done

:::::::::
effectively

::::
and

::::::::
iteratively,

::::::::
enabling

:::
the

:::::
GNB

::
to

::::
scale

::
to

::::
large

::::::::
datasets.

:::
As

:
a
::::::::
downside,

:::
the

::::::
simple

:::::::
method

::::
may

:::
lack

:::::::::
expression

::::::
power

::
to

:::::::
perform

::::
well

::
in

:
a
:::::::
complex

:::::::
context.

:
285

Gaussian Processes (GP) (Rasmussen, 2003) is a non-parametric probabilistic method that interprets the observed data

points as realizations of a Gaussian random process. GP is widely used for example in weather observation interpolation kriging
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(Holdaway, 1996). They are, however, computationally expensive and they tend to lose
:::
GP

::
is

:
a
::::
very

:::::::
flexible

:::
and

::::::::
powerful

:::
but

:::::::::::::
computationally

::::::::
expensive

::::::::
method,

:::::
which

:::::
tends

::
to

::::
lose

::
its

:
power with high-dimensional data. GP models hinge

::::::
hinges on a

kernel function that encodes the covariance between different data points. As a kernel, we use a product of dot-product kernel290

(Equation 3) and pairwise kernel with laplacian distance
:::::::::::
(Rupp, 2015), defined in Equation 4. The kernel parameters were

optimized on the training data by maximizing the log-marginal-likelihood.

kpairwise(x,x
′) = exp

(
− γ||x−x′||1

)
(4)

:::::
where

::
x

:::
and

::
x′

:::
are

::::
two

:::::::
samples

::
in

:::
the

::::
input

:::::
space

::::
and

:
γ
::
is

:
a
::::::
kernel

:::::::::
coefficient

:::::::::
parameter.

Multilayer perceptrons (MLP) (Goodfellow et al., 2016) are the most basic form of an artificial neural network
:::::::
artificial295

:::::
neural

::::::::
networks. Good results achieved by MLP in predicting storms (Ukkonen and Mäkelä, 2019), they are a natural choice

to experiment also in this work. The downsideof the method is
:::::
Neural

::::::::
networks

:::
are

::::
very

:::::::
adaptive

:::::::
methods

:::
as

::::
they

:::
can

::::
learn

::
a

:::::::::::
representation

::
of
:::
the

:::::
input

::
at

::::
their

::::::
hidden

::::::
layers.

::::::
Unlike

:::::
GNB,

::::
they

::
do

:::
not

:::::
make

::::
any

::::::::::
assumptions

:::::
about

:::
the

::::::::::
distribution

::
of

:::
the

::::
data.

:::
As

:
a
:::::::::
downside,

:::::
MLP

:::::::
requires

::::
large

:::::::
amounts

:::
of

::::
data,

::::
and

:::
the

::::::
training

:::::::
process

::
is

:::::::::::::::::
computing-intensive.

:::::
They

::::
also

::::
have

:
a

large number of hyperparameters
::
to

::
be

:::::::::
optimized, including the correct network topology.300

We searched the correct model parameters and network topology for local and national datasets by running multiple iterations

of random search 5-fold cross-validation
:
to

:::::
obtain

:::
the

::::
best

:::::::
possible

:::::
micro

:::::::
average

::
of

:::::::
F1-score

:::::::
(defined

::
in

:::::::
Chapter

::
4) employing

Talos library (Autonomio, 2020). Final
:::
The

::::
final

:
setup composes of Nadam optimizer (Dozat, 2016), random normal initializer,

and relu activation function for hidden layers. Binary cross-entropy was used as a loss function. Optimal network topology

varied in different datasets.
:
: For the local dataset, the used network contained

:::
best

::::::
results

:::::
were

:::::::
obtained

:::::
with

:
a
::::::::

network305

::::::::
containing

:
three hidden layers with 75, 145, and 35 neurons. For the national dataset, the network contained

::::
best

:::::
results

:::::
were

:::::::
obtained

::::
with

:
a
:::::::
network

:::::::::
containing

:
three hidden layers with 75, 195, and 300 neurons.

::::::
During

:::
the

::::::::::
optimization

:::::::
process,

:::
the

::::::
results

:::::
varied

:::::::
between

::::::::
different

:::::
setups

:::::
from

:::
0.6

::
to

::::
0.95

::
in

:::::
terms

::
of

::::::::
F1-score.

4 Results

We used two different methods for splitting the data into training and test set. The first method is to use 25 percent of randomly310

picked samples in the test set. The second method is to construct a test set from a one-year continuous time range (2010-2011).

Both approaches have their advantages. Continuous time range ensures that the model has not seen any autocorrelated samples

caused by an internal structure of the weather data in the training phase (Roberts et al., 2017). However, having only 9
::::
nine

years of data from a relatively small geographical area, the continuous test set cannot contain many storms as most of the data

needs to be reserved for the training process. Thus, the test set may only contain a single type of storms to which the model315

may work especially well or bad. Picking the test set randomly minimizes this risk and provide more insight to
:::::::
provides

:::::
more

:::::
insight

::::
into

:::
the

:
model performance.

We evaluate the models with a weighted average of precision and recall
:
, and both weighted and macro average of F1-score.

Precision (Equation 5) reports how many samples are correctly predicted to belong to a class. Recall (Equation 6) tells how
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many samples belonging to a class are found in the prediction. F1-score (Equations 7 and 8) calculates a harmonic mean of320

precision and recall. Finally, as the datasets are extremely imbalanced, we calculate a weighted average of the metrics utilizing

a number of samples in each class and a macro average of F1-score using an average of F1-score of each class. A model with

a higher macro average of F1-score performs better with small classes.
:::
The

::::::::
selected

::::::
metrics

:::
do

:::
not

::::
take

:
a
:::::::
distance

::::::::
between

:::::::
predicted

::::
and

:::
true

:::::
class

:::
into

::::::::
account.

:
It
::
is
::::::::
naturally

:::::
worse

::
to

:::::::
predict,

::
for

::::::::
example,

:::::
class

:
0
:::
(no

::::::::
damage)

::
in

:::
the

::::
case

::
of

:::
true

:::::
class

:
2
:::::
(high

:::::::
damage)

::::
than

::
in

:::
the

::::
case

:::
of

:::
true

:::::
class

:
1
::::
(low

::::::::
damage).

::::
We

:::::::
decided,

::::::::
however,

::
to

:::
use

::::::
metrics

::::
that

:::::::
measure

:::
the

:::::::
method325

::::::::::
performance

:::::::
properly

::::
with

::::::::::
imbalanced

:::::::
classes.

Precision=
1∑

c∈C |ŷc|
∑
c∈C

(
|ŷc|

tp

tp+ fp

)
(5)

where C represents
::
the

:
set of classes, ŷ predicted

::
the class, tp true positives

:
, and fp false positives.

Recall =
1∑

c∈C |ŷc|
∑
c∈C

(
|ŷc|

tp

tp+ fn

)
(6)

where C represents
::
the

:
set of classes, ŷ predicted

::
the class, tp true positives

:
, and fn false negatives.330

F1weighted =
1∑

c∈C |ŷc|
∑
c∈C

(
|ŷc|

Precisionc×Recallc
Precisionc +Recallc

)
(7)

where C represents
::
the

:
set of classes, ŷ predicted

::
the class, Precision defined in Equation 5

:
, and Recall defined in Equation 6.

F1macro =
1

|C|
∑
c∈C

(Precisionc×Recallc
Precisionc +Recallc

)
(8)

where C represents
::
the

:
set of classes, Precision defined in Equation 5

:
, and Recall defined in Equation 6.

Tables 4 and 5 divulge the results for each models using
:::
the local and national dataset respectively. Models trained with335

the local dataset can reach the better-weighted F1-score,
:

while the best models trained with the national dataset provide a

significantly better macro average of F1-score. The national dataset contains many more samples in classes 1 and 2which

enable ,
::::::

which
:::::::
enables

:
models to learn the classes better and thus enhance the macro average of the F1-score. Randomly

chosen and continuous test set seems not
:::::::
Whether

:::
the

:::
test

:::
set

::
is

::::::::
randomly

::::::
chosen

::
or

:::::::::
continuous

::::
does

:::
not

:::::
seem

:
to make a large

difference in most cases. The only affected model is the RFC having contradictory better results trained with the continuous340

test set from the local dataset and the random test set from the national dataset. Assumingly, this squeal more about the unstable

performance of RFC than the relevance of the dataset split method.

Confusion matrices are depicted in Figure 6. RFC provides the best results in terms of the selected metrics. Closer exploration

revels, however, that this performance is largely due to the best performance in predicting class 0, which is the largest class.

SVC results are one of the most balanced ones being the best only in the local dataset with a random test set but yielding good345
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stable results in all cases. The confusion matrix, shown in Figure 6b, displays that it is not the best model to predict class 0 but

only a little share of true class 2 cases and the smallest share of true class 1 cases are predicted as class 0. That is to say, SVC

misses the smallest number of harmful storms although it confuses in the amount of caused damage.

GP is another strong option that performs an even better job with class 0 while still providing good performance with class 2.

A notable connecting aspect between GP and SVC is an almost identical kernel. Based on these experiments, in particular, RBF350

and pairwise kernels separate harmless and harmful samples from each other while dot-product kernel separates the classes 1

and 2 even better than exponential functions.

Using 15 threshold for detecting wind objects yields clearly better results than 20 threshold. For example SVC trained

with national dataset using 20 threshold and randomly chosen test set provide only 0.48 macro average of F1-score being 12

percentage points below corresponding model using 15 threshold. 15 threshold have two major advantages compared to 20355

. First, it provide significantly larger dataset and second, it is able to catch virtually all extratropical storms causing outages

while 20 can not.

Table 4. Results for each models
:::::

trained with
::
the local dataset obtained from two local two power grid companies and (defined in Chapter

3.3
:
)

Model Split method Precision Recall Weighted F1-score Macro AVG F1-score

test test train test train test

Random Forest Classifier (RFC) Random 0.82 0.76 0.93 0.79 0.93 0.40

Continuous 0.88 0.91 0.93 0.89 0.93 0.48

Support Vector Classifier (SVC) Random 0.85 0.73 0.78 0.78 0.78 0.44

Continuous 0.87 0.72 0.77 0.78 0.77 0.42

Gaussian Naive Bayes (GNB) Random 0.87 0.61 0.59 0.70 0.59 0.42

Continuous 0.89 0.59 0.59 0.69 0.59 0.40

Gaussian Processes (GP) Random 0.84 0.70 1.0 0.76 1.0 0.43

Continuous 0.85 0.67 0.94 0.74 0.94 0.41

Multilayer perceptor (MLP) Random 0.82 0.81 0.98 0.80 0.91 0.41

Continuous 0.81 0.79 0.97 0.80 0.91 0.41

:::
The

:::::::::
confusion

:::::::
matrices

:::
are

:::::::
depicted

:::
in

:::::
Figure

::
6.
:::::

RFC
:::::::
provides

:::
the

::::
best

::::::
results

::
in

:::::
terms

::
of

:::
the

::::::::
selected

:::::::
metrics.

::::::::
However,

:::::
closer

:::::::::
exploration

::::::
reveals

::::
that

:::
this

:::::::::::
performance

::
is

::::::
largely

:::
due

::
to

:::
the

:::
best

:::::::::::
performance

::
in

:::::::::
predicting

::::
class

::
0,

:::::
which

::
is

:::
the

::::::
largest

::::
class.

:::::
SVC

:::::
results

:::
are

::::
one

::
of

:::
the

::::
most

::::::::
balanced

::::
ones

:::::
being

:::
the

:::
best

::::
only

::
in
:::
the

:::::
local

::::::
dataset

::::
with

:
a
:::::::
random

:::
test

:::
set

:::
but

:::::::
yielding360

::::
good

:::::
stable

::::::
results

::
in

::
all

::::::
cases.

:::
The

:::::::::
confusion

::::::
matrix,

:::::
shown

::
in
::::::
Figure

:::
6b,

:::::::
displays

::::
that

:
it
::
is

:::
not

:::
the

::::
best

:::::
model

::
to

::::::
predict

:::::
class

17



Table 5. Results for each models
:::::
trained

:
with

::
the

:
national dataset covering whole Finland and

:
(defined in Chapter 3.3)

Model test set split method Precision Recall Weighted F1-score Macro AVG F1-score

test test train test train test

Random Forest Classifier (RFC) Random 0.83 0.84 1.0 0.83 1.0 0.62

Continuous 0.77 0.81 1.0 0.78 1.0 0.40

Support Vector Classifier (SVC) Random 0.81 0.61 0.68 0.68 0.68 0.60

Continuous 0.62 0.60 0.60 0.60 0.60 0.60

Gaussian Naive Bayes (GNB) Random 0.75 0.60 0.66 0.66 0.45 0.39

Continuous 0.77 0.60 0.45 0.66 0.45 0.40

Gaussian Processes (GP) Random 0.57 0.56 0.71 0.55 0.71 0.55

Continuous 0.67 0.65 0.94 0.65 0.94 0.61

Multilayer perceptor (MLP) Random 0.79 0.75 0.94 0.77 0.90 0.52

Continuous 0.76 0.78 0.93 0.78 0.85 0.40

::
0,

:::
but

::::
only

:
a
::::
little

:::::
share

::
of

::::
true

::::
class

::
2

::::
cases

::::
and

:::
the

:::::::
smallest

::::
share

::
of
::::
true

::::
class

::
1
:::::
cases

:::
are

::::::::
predicted

::
as

::::
class

::
0.

::::
That

::
is

::
to

::::
say,

::::
SVC

::::::
misses

:::
the

:::::::
smallest

::::::
number

::
of
::::::::::
destructive

::::::
storms,

::::::::
although

:
it
::::::::
confuses

::
in

:::
the

::::::
amount

::
of

::::::
caused

:::::::
damage.

:

:::
GP

::
is

::::::
another

::::::
strong

::::::
option

::::
that

::::::::
performs

::::
even

:::::
better

::::
with

:::::
class

::
0

:::::
while

::::
still

::::::::
providing

:::::
good

:::::::::::
performance

::::
with

:::::
class

::
2.

:
A
:::::::::

significant
::::::::::

connecting
::::::
aspect

:::::::
between

:::
GP

::::
and

::::
SVC

::
is
:::

an
::::::
almost

::::::::
identical

::::::
kernel.

:::::
Based

:::
on

:::::
these

:::::::::::
experiments,

::::
RBF

::::
and365

:::::::
pairwise

::::::
kernels

:::::::
separate

::::::::
harmless

:::
and

:::::::
harmful

:::::::
samples

:::::
from

::::
each

::::
other

:::::
while

::::::::::
dot-product

::::::
kernel

::::::::
separates

:::
the

::::::
classes

:
1
::::
and

:
2
::::
even

:::::
better

::::
than

::::::::::
exponential

::::::::
functions.

::::
We

:::::
select

:::
GP

:::
for

:::::
further

:::::::
analysis

::
in
::::

this
:::::
paper

::::
since

::
it
:::::::
provides

:::
the

::::
best

:::::::::::
performance

::
in

::::
class

::
2.

:::::
Using

:::
the

:::
15 m s−1

::::::::
threshold

:::
for

::::::::
detecting

:::::
storm

:::::::
objects

:::::
yields

::::::
clearly

::::::
better

::::::
results

::::
than

:::
the

:::
20 m s−1

::::::::
threshold.

::::
For

:::::::
example,

:::::
SVC

::::::
trained

::::
with

:::
the

:::::::
national

::::::
dataset

:::::
using

:::
the

::
20

:
m s−1

:::::::
threshold

::::
and

::::::::
randomly

::::::
chosen

:::
test

:::
set

:::::::
provide

::::
only

::::
0.48370

:::::
macro

:::::::
average

::
of

:::::::
F1-score

:::::
being

::
12

:::::::::
percentage

::::::
points

:::::
below

::::::::::::
corresponding

:::::
model

:::::
using

:::
the

::
15

:
m s−1

::::::::
threshold.

::::
The

::
15

:
m s−1

:::::::
threshold

:::::
have

:::
two

:::::
major

::::::::::
advantages

::::::::
compared

::
to

:::
the

:::
20 m s−1

:
.
:::::
First,

:
it
::::::::
provides

:
a
::::::::::
significantly

::::::
larger

::::::
dataset

:::
and

:::::::
second,

::
in

::::::
contrast

::
to
:::
the

:::
20 m s−1

::::::::
threshold,

:
it
::
is
::::
able

::
to

:::::
catch

:::::::
virtually

:::
all

::::::::::
extratropical

::::::
storms

:::::::
causing

:::::::
outages.

4.1
::::::
Feature

:::::::::::
importances

::
in

:::
the

::::::
model

::::::::::::
performance

:::
The

::::::::
relevance

::
of

:::
the

:::::::::
individual

:::::::::
predictive

::::::
features

::::
can

::
be

::::::::
explored

::
by

:::::
using

:::
the

::::::::::
permutation

::::
test,

::
as

:::::
done

::
by

::::::::::::::
Breiman (2001)375

:
.
::::
First,

::::
the

:::::::
baseline

:::::
score

::
of

:::
the

:::::
fitted

::::::
model

::
is

:::::::::
calculated

:::::
using

:::
the

:::
test

::::
set.

::::
Then

:::::
each

::::::
feature

::
is

::::::::
randomly

:::::::::
permuted,

::::
and

::
the

:::::::::
difference

::
in

:::
the

:::::::
scoring

:::::::
function

::
is

:::::::::
calculated.

::::
The

::::::
random

::::::::::
permutation

::
is
::::::::
repeated

::
30

:::::
times

:::
for

::::
each

:::::::::
parameter,

::::
and

:::
the

::::::
average

::
of

:::
the

::::::
results

::
is

::::
used.

::::
The

::::::::
procedure

:::::
offers

::::::::::
information

:::
on

:::
how

:::::::::
important

::
the

::::::
feature

::
is
::
to

::::::
obtain

::::
good

::::::
results.

::
It

::::::
should
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(a) (b) (c)

(d) (e)

Figure 6. Confusion matrices produced using
::
the randomly selected national dataset and (a) RFC (b) SVC (c) GNB (d) GP (e) MLP.

::::
Each

:::
cell

::
of

::
the

::::::::
confusion

::::::
matrices

::::::::
represents

:
a
::::
share

::
of

:::::::::
predictions

:::::
having

:
a
:::::::::::
corresponding

:::::::::
combination

::
of

:::::::
predicted

:::
and

::::
true

::::
class.

:::
For

:::::::
example,

::
the

::::::
middle

::::
right

:::
cell

:::
tells

:::
the

::::
share

::
of

::::::
samples

::::::::
belonging

::
to

::::
class

:
1
:::
but

:::::::
predicted

::
to

:::
have

::::
class

::
2.

::
be

:::::::::
mentioned

:::
that

::::::
highly

::::::::
correlated

:::::::
features

::::
may

:::
get

:::
low

::::::::::
importance

::
as

::::
other

:::::::
features

:::::
work

::
as

:
a
:::::
proxy

::
to

:::
the

::::::::
permuted

:::::::
feature.

::::::::
However,

::::
using

::::::::::
completely

::::::::::
independent

:::::::
features

::
is

:::
not

:::::::
possible

::
in

:::::::
weather

::::
data

::::
since

:::::::
weather

:::::::::
parameters

:::
are

:::::
often

:::::::::
dependent380

::
on

::::
each

:::::
other,

::::
and

:::::::::
eliminating

::::
even

:::
the

:::::
most

:::::::
apparent

::::
pairs

:::::
from

:::
the

::::
used

:::::::
features

:::::::
impaired

:::
the

::::::
results

::
in

:::
our

:::::::::::
experiments.

:

:::
We

::::
used

:::
the

::::::
macro

::::::
average

:::
of

::
F1

:::::::
defined

::
in

::::::::
Equation

:
8
:::

as
:
a
:::::::
scoring

:::::::
function

::::
and

:::
the

::::::::
randomly

:::::::
selected

:::
test

:::
set

:::::
from

:::
the

::::::
national

:::::
data.

::::
The

::::::::
relevance

::
is

:::::
shown

::
in
::::::

Figure
::
7.
:::::
Most

:::::::
features

:::::
show

::
at

::::
least

::::
little

::::::::
relevance

:::
for

:::
the

::::::
results.

::::
The

::::
first

::::::
twelve

::::::
features

:::
are

:::::::::::
significantly

:::::
more

:::::::
relevant

::::
than

:::
the

::::
rest.

::::
The

:::::
most

::::::::
important

:::::::
features

:::::::
contain

::
at

::::
least

::::
one

::::::::::::
representative

::
of

:::
all
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::::::::::::
meteorological

:::::::::
parameters

:::::
used

::
in

:::
the

:::::::
training.

::
In

:::::
other

::::::
words,

::
all

:::::::::
employed

::::::::::::
meteorological

::::::::::
parameters

:::
are

::::::::
important

:::
for

:::
the385

:::::::::
prediction,

:::::
while

:::::::
different

:::::::::::
aggregations

:::
are

::::::::::
contributing

::
to

:::
the

:::::::::::
"fine-tuning"

::
of

:::
the

::::::
model.

::
As

::::::
Figure

::
7

::::::
shows,

:::
the

::::
most

:::::::::
significant

::::::::
parameter

:::::::::
regarding

:::
our

:::::
model

:::::::::::
performance

::
is

:::
the

:::::::
average

::::
wind

::::::
speed.

:::::::::
Numerous

::::::
studies

::::::
support

:::
our

:::::
result

::
of

::::
wind

:::::
being

:::
the

::::
most

::::::::
important

:::::::::
damaging

:::::
factor

::::::::::::::::::::::::::::::::::::::::::::::
(Virot et al., 2016; Valta et al., 2019; Jokinen et al., 2015)

:
.
:::
The

::::::
studies

::::
are,

::::::::
however,

::::::::::
highlighting

:::
the

:::::::::
importance

:::
of

::::::::
maximum

:::::
wind

:::::
gusts

::::::
instead

::
of

:::
the

:::::::
average

:::::
wind.

:::::::::::
Surprisingly,

::
in

:::
our

:::::::
analysis,

:::
the

::::
wind

::::
gust

:::::
speed

::::
does

:::
not

::::::
belong

::
to

:::
the

::::
most

::::::
critical

::::::::::
parameters.

:::::::
Instead,

::::::::
maximum

::::::
mixed

::::
layer

::::::
height,

::::::
related390

::
to

:::
the

::::
wind

::::::::
gustiness,

::::::::::
contributes

:::::::
crucially

::
to

:::
the

::::::
model

:::::::::::
performance.

:::
The

::::::::::::
dependencies

:::::::
between

::::::::
predictive

:::::::
features

:::::
might

:::
be

:::
one

::::::
reason

::
for

:::::
some

:::::::::
parameters

::
to
:::::
have

:
a
:::::
lower

::::
rank

::
in

:::
the

::::::
results.

:

:::
The

:::::
stand

:::::
mean

:::::::
diameter

::::
and

:::::
height

:::
are

:::
the

:::::
most

::::::::
important

:::::::
features

::::::::
regarding

:::
the

:::::
forest

::::::::::
parameters,

:::::
which

:::::::::::
corresponds

::
to

:::
our

:::::::::::
expectations.

:::::::
Previous

::::::
studies

:::
also

::::
state

:::::
these

:::::::
features

::
to

:::::::
influence

:::
the

::::
wind

:::::::
damage

::
in

::::::
forests

:::::::::::::::::::::::::
(Pellikka and Järvenpää, 2003)

:::
and

:::::
hence

::::::::
indirectly

:::::::::
electricity

:::::
grids.

:::
As

:::::::::::::::::::::::::
Pellikka and Järvenpää (2003)

:::
and

::::::::::::::::::
Suvanto et al. (2016)

::::::
discuss,

::::
also

:::
the

:::
age

:::
of

:::
the395

:::::
forest

:::
has

:::
an

::::::
impact

:::
on

:::::
storm

::::::::
damages.

:::::::::
However,

::
in

::::
the

::::::
feature

::::::::::
importance

::::
test,

:::::
forest

::::
age

::::
does

::::
not

::::
seem

:::
to

:::::::::
contribute

::::::::::
significantly

::
to

:::
the

::::::::
prediction

::::::::
outcome.

:

:::
The

::::
most

:::::::::
important

:::::
object

::::::
feature

::
is

:::
the

:::
size

:::
of

:::
the

:::::
object.

::::::
Object

:::::::::
movement

:::::
speed

:::
and

::::::::
direction

:::
did

:::
not

:::::::::
contribute

:::::::
strongly

::
to

::
the

:::::::
results.

::::::::
However,

:::::::
previous

::::::
studies

:::::::
indicate

::::
that

::::::
besides

:::
the

:::
size

:::
of

:::
the

:::::::
impacted

:::::
area,

:::
the

:::::::
duration

::
of

::::::
strong

:::::
winds

:
–
::::
i.e.,

::
the

::::::::::
propagation

::::::
speed

::
of

:::
the

::::::
system

:
–
:::::::::
influences

::::
also

::
the

:::::::
amount

::
of

:::::::
damage

::::::::::::::::::::
(Lamb and Knud, 1991).

:
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4.2 Case Examples

We illustrate the prediction
::::::::
produced

:::::
using

:::
GP

:::::::::::
classification

::::::
method

:
with the three most interesting examples of well-known

storms in Figure 8a. We chose the cases among a number of test cases to represent
:::::::
illustrate

:
the strengths and weaknesses of

the method. The examples are chosen from the randomly picked test set, which was not used to train the model. Because of the

random sample, we cannot represent the entire prediction of individual storms, only individually picked time steps. In two of405

the example cases
:
, the model performs well (storms Tapani and Pauliina) and in one (storm Rauli) with less accurate prediction

results.

4.2.1 Event 1: Extratropical Storm Tapani (26 December 2011)

The first example is one of the most known extratropical storms in Finland. Storm Tapani, known also
:::
also

::::::
known

:
as Cyclone

Dagmar (Kufeoglu and Lehtonen, 2015), was a rare winter storm, causing wide
:::::
broad and long-lasting electricity interrup-410

tions. Extreme wind gusts of over 30 m s−1 caused widespread damage,
:
especially in the southern and western parts of the

country. Approximately 570 000 households were left without electricity, causing 30 million euros repair costs and 80 million

euros of monetary compensation for electricity distribution companies to their customers . (Hanninen and Naukkarinen, 2012)

::::::::::::::::::::::::::::
(Hanninen and Naukkarinen, 2012)

:
. Exceptionally warm December and the Boxing day being the warmest in 50 years (Finnish

Meteorological Institute, 2011) resulted in wet and unfrozen soil, thus,
:
.
:::::
Thus, the trees were poorly anchored and exposed to415

major
::::::::
significant

:
storm damage.
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Figure 7.
:::::::::
Permutation

:::::
feature

:::::::::
importance

::::
using

:::
the

:::
GP

:::::::::
classification

::::::
method

::::::
trained

:::
with

:::
the

:::::::
randomly

::::::
selected

:::::::
national

:::::
dataset.

::::
The

:::::
higher

::::
effect

::
on

:::
the

::
F1

:::::
score

:
is
:::::::
(y-axis),

::
the

:::::
bigger

::
is
:::
the

:::::::::
significance.

Figure 8a represents the outage prediction (raster-covered areas) and the actual, true classes (numbers) based on the damage

data at 15:00 UTC, 26 December 2011. Wide areas in central and western parts of Finland are predicted to have high ,
:
(class

2
:
) damages. The predicted class is in line with the true class. Also, the damage areas of the storm correlate with the wind

gust observations of the Finnish Meteorological Institute. The strongest gusts situated
:::::::
occurred

:
in western (15-27 m s−1) and420

southern (18-28 m s−1) Finland and north-western part of Lapland (13-31m s−1) (Finnish Meteorological Institute, 2020). In

the rest of Finland, the maximum wind gusts remained between 10-15 m s−1,
:
and therefore the damages were also minor.

Overall, the model works
:::::::
predicted

:::
the

::::::::
damages

::::::::
accurately

:
in this particular exampleaccurately.

:
.

4.2.2 Event 2: Extratropical Storm Rauli (27 August 2016)

Extratropical storm Rauli was exceptionally strong for the summer season
::
an

::::::::::::
exceptionally

:::::
strong

:::::::
summer

::::::
storm, especially425

regarding the impacts. It caused severe damages for
::
to

:
the power grid in the western and middle parts of Finland for various

reasons. The trees had leaveson
::::
were

:::::::
carrying

::::::
leaves, the soil was wet after a rainy August, the strong wind areas of Rauli were

widely spread
:
, and the solar radiation was intensifying the wind gusts during the afternoon (Finnish Meteorological Institute,
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2016). Rauli was impacting especially the middle and southern parts of Finland,
:

which are also the most densely populated

areas. The power outages were increasing rapidly in the middle part of Finland, starting at midday and reaching the highest430

values, 200 000 households without electricity (Ilta-Sanomat, 2016), around 5 pm. The winds were blowing exceptionally long,

nearly 24 hours. The typical duration of summer storms is between 6-12 hours.

Figure 8b shows the predicted outages and true classes at 12:00 UTC, 27 August 2016. In this particular time step, the model

is over-predicting the class, however, the predicted outage area seems to correlate with the wind gust maxims during
:::::::::
maximums

::
of that afternoon. The strongest wind gusts were measured in the southern and middle parts of the country, maximum gusts435

reaching on land stations up to 24,9 m s−1 (Klemettilä, Vaasa and Maaninka, Pohjois-Savo) and on wide areas up to 20 m s−1

apart from the northern part of Finland.

4.2.3 Event 3: Extratropical storm Pauliina (22 June 2018)

The last example is a strong extratropical storm, called Pauliina which (Finnish Meteorological Institute, 2018)
:::::::::::::::::::::::::::::::::
(Finnish Meteorological Institute, 2018)

:::
that

:
caused numerous power outages in Finland. The most significant part of the power outages happened in the network of440

power grid company JSE which is included in the local dataset. The highest peak in the damages was reached between 6 and 8

p.m
::
pm

:
with over 28 000 households without electricity. The strongest wind gust on land reached 22,7 m s−1 on

::
in Helsinki,

Kumpula observation station
:
, and the inland gusts were widely between 15-20 m s−1 (Finnish Meteorological Institute, 2020;

Finnish Meteorological Institute, Twitter). The strong wind gusts continued until the dawn of the 23rd of June.

Figure 8c presents the predicted and true damage classes at 01:00, UTC, 22 June 2018. We chose extratropical storm Pauliina445

as an example storm for two reasons: 1) Pauliina represents a low damage class 2) Pauliina represents a rare, summer-season

extratropical storm. Figure 8c shows the predicted and true classes correlating. While weather warnings were given
:::::
issued

to large areas in southern and middle parts of Finland, (myrskyvaroitus.com, 2018) predicted and true damage to the power

grid occurred in a relatively small geographical area. This example shows the potential added value of the model compared to

weather warnings providing more accurate information to the power grid operators.450

5 Discussion and conclusions

This paper introduced
:::::::::
introduces a novel method to predict the damage potential of extratropical storms to power grids. The

method consists of identifying wind
::::
storm

:
objects by contouring surface wind gust field with

::::
fields

::::
with

:::
the 15 m s−1 threshold

along with pressure objects with
:
a
:
1000 hPa threshold, tracking the objects, and classifying them in

:::
then

::::::::::
classifying

::::
them

::::
into

three classes based on their damage potential to the power grid. For the classification task, we evaluated five different machine455

learning methods,
:
all employing in a total of 35 predictive features and trained with 8

::::
eight years of power outage data from

Finland.

The most balanced results were gained with the Support Vector Classifier
::::
Both

::::::::
Gaussian

:::::::::
Processes

::::
and

:::::::
Support

::::::
Vector

::::::::
Classifiers

::::::::
provided

::::
good

::::::
results. The model recognizes harmful storm cells

::::::
objects well and can distinguish extremely harmful

cells
::::::
objects

:
among others adequately. While the results still left

::::
leave

:
a lot to improve, the developed model can be already460
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(a) Tapani, 26 December 2011 11:00 (b) Rauli, 27 August 2016 10:00 (c) Pauliina, 22 June 2018 01:00

Figure 8. Selected examples (a) Extratropical storm Tapani (b) Extratropical storm Rauli (c) Extratropical storm Pauliina
:
,
:
produced

::
by

employing
::
the

:
SVC model trained with

::
the

:
national dataset. The storm objects are coloured

::::::
colored based on the predicted class while the

true class is stated as a coloured
::::::
colored number over the object. The time is represented as UTC time.

used to help decisions made
::::::
support

::::::::
decisions in power grid companies. The

:
In

:::::
some

::::::
cases,

:::
the model is able to provide a

more specific and geospatially accurate prediction of caused
:::::::
potential

:
damage to the power grid thanfor example ,

:::
for

::::::::
example,

weather warning.
:::
The

:::::::::
evaluation

::::
was,

::::::::
however,

:::::
based

::
on

:::
the

::::::
ERA5

::::::::
reanalysis

::::
data.

::::::
Using

:::
the

::::::
method

::
in

::
an

::::::::::
operational

::::::
setting

:::::
would

::::::
require

:::::::
weather

:::::::::
prediction

::::
data,

:::::
which

:::::::::
introduces

:::::::::
additional

:::::::::
uncertainty

::
to

:::
the

::::::
outage

:::::::::
prediction.

:

The work
:::
The

::::::::
presented

:::::::::::
object-based

::::::::
approach

:::
has

::::
both

:::::::::
advantages

::::
and

::::::::::::
disadvantages.

:::::::::
Extracting

:::::
storm

::::::
objects

::
in

:::::::
advance465

::::::::::
preprocesses

::::
the

::::
data

:::
for

:::::::::::::::
machine-learning

::::::::::
techniques,

::::
such

:::
as

:::::
RFC,

::::::
which

:::
do

:::
not

:::::::
perform

:::::::
feature

::::::::
learning.

::
It

:::::::
enables

::::::::::::::
machine-learning

:::::::
methods

:::
to

:::::
focus

::::
only

:::
on

:::
the

:::::::
relevant

::::
parts

:::
of

:::
the

::::
data.

::::::::
Methods

:::
not

:::::::::
containing

::::::
feature

::::::::
learning,

::::
such

:::
as

::::
RFC

:::
and

:::::::
logistic

:::::::::
regression,

:::::
have

::::
been

:::::
found

:::
to

:::::::::
outperform

::::::
neural

::::::::
networks

:::
for

:::::
forest

::::::::::::::::
(Hart et al., 2019)

:::
and

:::::::
weather

::::
data

:::::::::::::::
(Tervo et al., 2019)

:
.
:
It
::::
also

:::::
leads

::
to

::::::::::
significantly

:::::
faster

:::::::
training

:::::
times.

:::::::::
Processing

::::::
objects

::::::
instead

::
of

:::
the

::::
grid

:::::
makes

::
it
::::
also

:::::
easier

::
to

::::
track

:::
and

:::
use

::::::
object

::::::::
attributes

::::
such

::
as

::::
age,

:::::
speed,

:::
and

::::::::::
movement.

::::::::
Moreover,

::::::
objects

:::
are

::::
easy

::
to
::::::::
visualize,

::::
and

::::
user

::::::::
interfaces470

:::
may

:::
be

:::::::
enriched

::::
with

::::::
related

::::::
actions

:::::
such

::
as

:::::::
tracking

:::
and

::::::
alarms.

:
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::
On

::::
the

:::::
other

:::::
hand,

:::::
storm

:::::::
objects

:::
use

::::
only

::::::::::
aggregated

:::::::::
attributes,

:::::
which

:::::
may

:::::::
decrease

:::
the

::::::::::::
classification

::::::::
accuracy

:::::
when

::::::::
predictive

:::::::
features

::::
vary

::::::::::
significantly

:::::
under

:::
the

:::::
storm

:::::
object

::::
area.

::::::
Several

:::::::::::::::
machine-learning

::::::::
methods,

:::
i.e.,

::::
deep

::::::
neural

::::::::
networks,

::::
could

:::
be

::::::
trained

::
to

::::::
employ

:::::
those

::::
local

:::::::
features

::
to

::::
gain

:::::
better

::::::::
accuracy.

::::
Such

::::::::
methods

::::
could

::::
also

::::::
utilize

::::::::::::::
three-dimensional

:::::
data.

475

::::::::
Extracting

:::::
storm

::::::
objects

:::::::
requires

:
a
:::::
fixed

::::::::
threshold

::
of

::::
wind

::::
gust

:::
and

::::::::
pressure,

:::::
which

::::
may

::::
vary

::::::::
depending

:::
on

::
the

::::::::::::
characteristics

::
of

::::::::
geospatial

:::::::::
locations.

:::::::::::
Nevertheless,

:::
the

:::::::
previous

::::::
studies

:::::::
indicate

:::
the

::::::
critical

::::::::
threshold

::
to

:::::
wind

::::
gust

:::::
speed

::
to

::
be

:::
the

:::::
same

:::
for

:::::
almost

:::::
entire

:::::::::
geospatial

:::::::
domain

::
of

:::
this

:::::
work

:::::::::::::::::::
(Gardiner et al., 2013).

:::::::::
Moreover,

:::
the

::::::
correct

::::::::
threshold

::::
may

::::
vary

:::::::::
depending

:::
on

::
the

::::
data

:::::::
source.

:::::
When

::::::::
extending

:::
the

:::::::::
geospatial

:::::::
domain

::
or

::::::::
changing

:::
the

::::
data

::::::
source,

:::
this

::::::
might

::::::
become

::
a
::::
more

:::::::
serious

:::::
issue,

:::
and

:::::::
different

:::::::::
thresholds

:::::
might

::
be

:::::::
needed.

::::
One

:::::::::
possibility

::
to

::::::::
determine

:::
the

:::::::
optimal

::::::::
threshold

:::::
might

::
be

::
to

:::
use

:::::::
specific

::::::::
quantiles480

::
of

:::
the

::::::::
parameter

::::::
values,

:::
but

::::
this

:::::
would

::::
need

::::::
further

:::::::::::
investigation.

:

:::
The

:::::
work opens several possible avenues for further studies. Soil

:
It

:::::
would

:::
be

:::::::::
interesting

::
to

:::::::
compare

:::
the

::::::
current

:::::::
solution

::::
with

:
a
:::::::::
grid-based

::::::::
approach

:::
and

::::
deep

::::::
neural

::::::::
networks.

::::::::
Including

::::
data

:::
on

:::
soil

:
moisture, soil temperature, and leaf index would most

probably
::::
likely

:
enhance the resultsas ,

::
if
::::::::
available

::::
with

::::::::
sufficient

::::::
spatial

::::
and

:::::::
temporal

::::::::::
resolution,

::::
since

:
they would provide

critical information about the environmental conditions. Different thresholds could be investigated as well, especially for485

pressure objects where lower thresholds might yield better results. By design, applying the method on other regions should be

possibleas well by using available
::
to

::::
other

:::::::
regions

::
is

:::::::
possible,

:::
but

::
it

:
is
::::::
subject

::
to
:::
the

::::::::::
availability

::
of

:::::
power

::::::
outage

:::::::
records,

:::::
forest

::::::::
inventory,

:
impact and meteorological data. For the classification task, carefully designed Bayesian networks could provide

good results as well.
::::::::
Especially

::
in

:::
the

::::::::
randomly

:::::::
selected

:::
test

:::
set,

::::
data

::::
may

::
be

:::::::::::::
autocorrelated,

:::::
which

::::
may

::::
lead

::
to

::::::::::::
unrealistically

::::
good

::::::
results.

::::
We

::::
have

:::::::::
addressed

:::
this

:::::
issue

::
by

::::
also

:::::
using

::
a
:::::::::
continuous

::::
time

::::::
series

:::::
(from

:::::
2010

::
to

:::::
2011)

:::
for

:::
the

::::
test

:::
set.

::::
The490

::::::::
evaluation

:::::
could

::::
also

::
be

::::::::
extended

::::
with

:
a
:::::::::::::::
leave-one-day-out

::
or

:::::::::::::::::
leave-one-week-out

::::::
method

:::::
where

:::
for

::::
each

:::::
week

:::
one

::::
day

::
or

:::
for

::::
each

:::::
month

::::
one

::::
week

::
is
::::
hold

:::
out

:::
for

:::::::::
validation

::::::::
purposes.

:::
End

:::::
users,

:::::::::
especially

::::::
expert

::::
users

::::
like

::::
duty

::::::::::
forecasters,

:::::
might

:::::::
benefit

::::
from

:::
the

::::::::::
uncertainty

::::::::::
information

:::::::::
originating

:::
as

:::
the

::::::::::
probabilistic

:::::::::
prediction

::
of

:::
the

:::::::::::
classification

:::::::
model.

::::::::
However,

:::
the

::::::::::
presentation

:::
of

::::
such

::::::::::
information

::::::
should

:::
be

::::
very

::::::::
carefully

::::::
chosen

:::
not

::
to

::::::
mislead

::::::::::
non-expert

::::
users

:::
for

:::::::::::::
overconfidence.

:
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Experiments in this study were conducted with ERA5 reanalysis and additional forest data. As the method employs common

features existing also in various other datasets, data provided by other vendors could be used as well. In the future
:::
By

:::::::::
employing

::::::
weather

::::::::
forecasts

::
as

:::::
input, this method could be used as a base for a decision support tool and as a part of an existing early

warning system , for both ,
:::
for

::::
both

:
duty forecasters of national hydro-meteorological centers as well as

:::
and

:
operators of

electricity transmission companies.500

Code and data availability. The source code is available in the repositories https://github.com/fmidev/sasse-era5-smartmet-grid and

https://github.com/fmidev/sasse-polygon-process. ERA5 data may be downloaded from the Copernicus Climate Data Store:

https://cds.climate.copernicus.eu. Forest inventory may be downloaded from LUKE open data service: http://kartta.luke.fi/index-en.html.

The power outage data is propriety data which the authors have no property rights to distribute.

24



Appendix A: Gaussian distribution fitted to the storm object features505

A1 Local dataset
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Figure A1. Distribtution
:::::::
Histogram

:
of the

::
and

:::::
fitted

:::::::
Gaussian

:::::::::
distribution

::
of selected

:::::::
predictive

:
parameters of

::
in

:::
the

::::
local

::::::
dataset.

::::
The

:::::::
Gaussian

::::::::
distribution

::
is
:::::
fitted

::::::::
separately

::
to all storm objects (samples ) and objects

::::::
samples

:
with class 2. Local dataset

:::
little

:::::::
outages

:::
and

::::
many

::::::
outages

::::::
(classes

:
1
:::
and

::
2
:::::::
specified

:
in
::::::
Section

::::
3.3).
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A1 National dataset
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Figure A2. Distribtution
:::::::
Histogram

:
of

:::
and

::::
fitted

:::::::
Gaussian

:::::::::
distribution

::
of

:
selected

:::::::
predictive

:
parameters of

::
in

:::
the

:::::::
national

::::::
dataset.

::::
The

:::::::
Gaussian

::::::::
distribution

::
is
::::
fitted

::::::::
separately

::
to all storm objects (samples ) and objects

::::::
samples with class 2. National dataset

::::
little

::::::
outages

:::
and

::::
many

::::::
outages

::::::
(classes

:
1
:::
and

::
2
:::::::
specified

:
in
::::::
Section

::::
3.3).
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