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Abstract. In mountainous areas, rockfalls, rock avalanches, and debris flows constitute a risk to human life and property.

Seismology has proven a useful tool to monitor such mass movements while increasing data volumes and availability of

real-time data streams demand new solutions for automatic signal classification. Ideally, seismic monitoring arrays have large

apertures and record a significant number of mass movements to train detection algorithms. However, this is rarely the case,

as a result of cost and time constraints and the rare occurrence of catastrophic mass movements. Here, we use the supervised5

random forest algorithm to classify windowed seismic data on a continuous data stream. We investigate algorithm performance

for signal classification into noise (NO), slope failure (SF), and earthquake (EQ) classes and explore the influence of non-ideal

though commonly encountered conditions: poor network coverage, imbalanced data sets, and low signal-to-noise ratios (SNR).

To this end we use data from two separate locations in the Swiss Alps: data set (i), recorded at Illgraben, contains signals of

several dozen slope failures with low SNR, data set (ii), recorded at Pizzo Cengalo, contains only five slope failure events albeit10

with higher SNR. The low SNR of slope failure events in data set (i) leads to a classification accuracy of 70% for SF, with the

largest confusion between NO and SF. Although data set (ii) is highly imbalanced, lowering the prediction threshold for slope

failures leads to a prediction accuracy of 80% for SF, with the largest confusion between SF and EQ. Standard techniques to

mitigate training data imbalance do not increase prediction accuracy. The classifier of data set (ii) is then used to train a model

for the classification of 176 days of continuous seismic recordings containing four slope failure events. The model classifies15

eight events as slope failures, of which two are snow avalanches, and one is a rock slope failure. The other events are local or

regional earthquakes. By including earthquake detection of a permanent seismic station at 131 km distance to the test site into

the decision-making process, all earthquakes falsely classified as slope failures can be excluded. Our study shows that even for

limited training data and non-optimal network geometry, machine learning algorithms applied to high-quality seismic records

can be used to monitor mass movements automatically.20
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1 Introduction

High mountain areas are particularly affected by climate change. Deglaciation and thawing of permafrost has implications on

rock wall stability at high elevation and, consequently, on communities down-valley (e.g., Allen and Huggel, 2013; Phillips

et al., 2017; Coe et al., 2018; Hock et al., 2019). The increasing threat to mountain communities, especially in densely populated25

areas, demands new monitoring techniques at high temporal resolution and broad spatial coverage to improve predictability,

alarm time and post-event intervention. As a result of incomplete data and knowledge on relevant processes and triggering

mechanisms, accurate prediction of rockfall events is still not possible (van Westen et al., 2006). However, an increase in

slope activity (pre-event acceleration and increased frequency of small events) is a possible precursor to larger destructive

events (Rosser et al., 2007). Existing methods to monitor slope failures include point measurements (e.g., extensometers)30

and large scale monitoring such as terrestrial laser scanners, interferometric radar, and video image recognition (e.g., Abellán

et al., 2011). However, these techniques suffer from disadvantages like high operating costs, limited spatial coverage, and

susceptibility to atmospheric conditions.

In the last decade, seismology has evolved into a method to monitor earth surface processes. Knowledge from wave propaga-

tion within the earth and generation mechanisms of seismic waves is transferred from its original study objectives, earthquakes,35

to the so-called field of environmental seismology (e.g., Burtin et al., 2008; Deparis et al., 2008; Helmstetter and Garambois,

2010; Gimbert et al., 2014; Hibert et al., 2014; Larose et al., 2015; Dietze et al., 2017; Allstadt et al., 2018; Lai et al., 2018).

Seismic signals generated by mass movements are typically emergent with dominant frequencies of 5 – 10 Hz and few or no

distinguishable seismic phases. Signals of large events (> 105 m3) recorded at far distances are characterized by long-period

seismic waves (< 0.1Hz) (e..g., Allstadt, 2013). Signal duration varies between seconds and several minutes, depending on the40

type of slope failures and slope scales (e.g., Vilajosana et al., 2008; Hibert et al., 2011; Dietze et al., 2017).

Seismometers can record large mass movements up to hundreds of kilometers away from the source (e.g., Allstadt, 2013;

Walter et al., 2020) and allow continuous monitoring of large areas with real-time data transmission (e.g., Ekström and Stark,

2013). Additionally, the installation of seismometers is relatively low-cost and straightforward as no high-power supply and

little or no or construction is needed, which is required, e.g., for interferometric radar. On the other hand, seismic sensors are45

sensitive to various sources like earthquakes, anthropogenic noise, atmospheric signals, runoff, and slope instabilities. Conse-

quently, to distinguish signals of slope failures from other mechanisms, automated techniques for detection and classification

are needed.

One approach that is often used to detect seismic signals is the well established short-term average over long-term average

(STA/LTA) detection method, based on signal amplitudes (Allen, 1982). However, to classify source mechanisms, information50

on signal frequency content is often also required. For signals with similar frequency content, amplitudes and signal dura-

tion, such as earthquakes and slope failures, detection of signals from only one source mechanism with STA/LTA is therefore

impossible. Additionally, parameter selection for optimizing STA/LTA is a tedious process that requires detailed knowledge

of the data. Furthermore, seismic signals of slope instabilities are characterized by an emergent onset, making detection with

STA/LTA difficult. For this reason, Helmstetter and Garambois (2010) suggested an STA/LTA algorithm for use in the fre-55
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quency domain that reliably detects seismic signals without impulsive onsets (e.g., Hibert et al., 2017). Nevertheless, the de-

tector does not allow a distinction between different generation mechanisms. Therefore, Hibert et al. (2017) and Provost et al.

(2017) used a supervised machine learning algorithm, random forest, to automatically classify local events detected with the

adapted STA/LTA algorithm of Helmstetter and Garambois (2010). High accuracy (99 % and 93 %, respectively) emphasizes

such algorithms’ capability to classify seismic signals.60

One downside of the combined STA/LTA approach by Hibert et al. (2017) and Helmstetter and Garambois (2010) is that

this method requires two optimization steps - choosing the correct parameters for the STA/LTA algorithm and for the classifier.

For this reason, this approach is called the two-step approach in the further course of the manuscript. Moreover, STA/LTA

algorithms generally fail to detect signals which emerge over a timescale larger than the long term average window.

As an alternative to the two-step approach, a stochastic classifier, hidden Markov models (HMMs), has been used to au-65

tomatically detect and classify a variety of seismic sources (e.g., Hammer et al., 2013; Dammeier et al., 2016; Heck et al.,

2018). Hammer et al. (2013) and Dammeier et al. (2016) focused on a regional scale with larger rockfall volumes (> 1000 m3)

detected tens to hundreds of kilometers away from the source. They show that HMMs successfully classify seismic signals on

a continuous data stream. However, to minimize false detection and misclassification, careful retraining and post-processing

steps were required. Dammeier et al. (2016) compared the classification output with an earthquake catalog and suggested that70

when using HMMs in an actual operational setting, the on-duty operator should manually inspect the signal and decide if the

event is an earthquake or a slope failure. Yuan et al. (2019) used random forest to classify seismic signals in several minute-long

windows of seismic data. The study focuses on multiple days of data recorded near a geyser to detect pre-eruption seismicity,

which is hidden in the noise. In the following, signal classification on the continuous data stream that does not require separate

event detection is called the one-step approach.75

In this paper, we use the random forest algorithm (Breiman, 2001) to perform automatic signal classification on continuous

data on a local scale and throughout an extended time period with a large variety of noise signals. Previous local-scale two-step

approaches have used specialized networks designed to maximize monitoring capabilities (e.g. Provost et al., 2017). However,

due to logistical and financial constraints, this is often not possible for potential hazard sites. Here, we compare the one-step

approach’s performance in non-ideal conditions applying it to a data set with (i) many small slope failure events with low80

signal-to-noise ratio (Illgraben) and (ii) few events but a higher signal-to-noise ratio (Pizzo Cengalo). Furthermore, we show

that by adjusting our methodology to a network with a sub-optimal configuration and a data set with only a few recorded events

available for training, automatic detection of potential slope failures is still possible.

The scope of this study is to a) test a system of continuous classification of windowed seismic data on two different types of

data sets, b) test the influence of signal to noise ratios and an imbalanced training data set on classifier performance, c) discuss85

insights on the transferability of trained classifiers to other sites, and d) mimic operational conditions to assess our approach’s

capability as an alarm system for slope failures. The investigation of source mechanisms and processes of seismogenic mass

movements is outside our study’s scope. Such an endeavor should not be based on weak seismic signals, which make up a large

part of our catalog.
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2 Study Sites and Data Set90

2.1 Illgraben, Switzerland

The Illgraben catchment in southwest Switzerland is one of the most active mass wasting sites in the European Alps (Fig. 1a).

Yearly precipitation is controlled by summer rainstorms with high rainfall intensity during which mass wasting with rock-slope

failures and debris flows occur regularly (e.g., Badoux et al., 2009). From its highest point at the Illhorn (2716 m.a.s.l), the

Illgraben catchment reaches down to the Rhone Valley (600 m.a.s.l), where its main torrent flows into the Rhone River. The 9.595

km2 Illgraben catchment is characterized by complex geology, where highly fractured quartzite is the dominating bedrock at

the north-west face of the Illhorn and the head of the channel trunk and limestone at the southeast facing slope of the catchment

(Schlunegger et al., 2009; Bennett et al., 2013). The fractured quartzite with erosion rates of tens of centimeters per year is the

main contributor to sediments transported via debris flows (Bennett et al., 2013). A seismic network of 8 high-quality stations

was installed throughout Illgraben between May and September 2017 to monitor rock-slope as well as debris-flow activity.100

Walter et al. (2017) used seismic data from a similar array to locate a debris-flows front as it propagated along the channel.

In this study, we focus on slope activity at the Illhorn north-west face, which at peak times is characterized by several slope

failures per day. Slope-failure volumes are to date not quantified, but direct field observations by the authors indicate volumes

of tens to hundreds of cubic meters. We use seismic data recorded by three seismic stations (ILL06, ILL07, ILL08) in 2017,

located closest to the area of interest (Fig. 1a). The three-component seismometers (LE-3Dlite) with a lower cutoff frequency105

of 1 Hz and a sampling frequency of 100 Hz were installed with a mean inter-station distance of about 1 km and hundreds of

meters from the Illhorn north-west face.

2.2 Pizzo Cengalo, Switzerland

Pizzo Cengalo is a mountain located in Val Bondasca in Eastern Swizerland’s canton of Grisons (Fig. 1b) about 6 km south

east of the down-slope village of Bondo near the Italian border. Pizzo Cengalo’s slopes have been unstable for several decades,110

with multiple rock slope failures per year. Bergell Granite defines Pizzo Cengalo’s geology and part of its north facing walls

are covered by glaciers (Baer et al., 2017). After a large failure (∼ 1.5 × 106 m3) in 2011, systematic monitoring started in

2012 (Baer et al., 2017). In 2017, an even larger rock avalanche (> 3.5 × 106 m3) killed eight hikers and resulted in a series of

debris flows that destroyed parts of the village of Bondo (Walter et al., 2020). A warning had been issued weeks prior to the

catastrophic failure because an acceleration of slope displacement was observed, as well as several smaller failure events before115

the rock avalanche. The large event in 2017 prompted an extension of the monitoring system, which included the installation

of three seismometers (LERA1 – 3) close to the Bondasca river, the outlet of the catchment, some 3.5 km down-valley of Pizzo

Cengalo and 2.5 km up-valley of Bondo.

The one component, short-period geophones (GeoSig 0.9 Hz), with a flat response from 0.9 Hz to 89 Hz and a sampling

frequency of 200 Hz, were installed along the channel with a mean inter-station distance of about 20 m (Fig. 1b). An array120

in such a configuration can be used to detect debris flows based on amplitude differences while the flow approaches, passes

by, and moves away from the stations (Coviello et al., 2019). Since the installation of the seismometers, seismic signals and
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spectrograms have been made available to stakeholders in hourly time windows in the online portal of the engineering company

Geopraevent, to recognize an increase in rockfall activity by visually evaluating the seismic data. Until now, this required daily

visual inspection of the seismic signals by employees of the canton of Grisons, who are not trained seismologists.125

In November 2017, we installed an automatic camera facing Pizzo Cengalo (768411 / 132790, Fig. 1b). Images were taken

every 30 minutes and transferred in real-time via a cellular connection. We used these images to validate detected events, and

the images were also available to stakeholders on the online portal of Geopraevent.

2.3 Labeled Data Set

For supervised machine learning algorithms, a set of labeled data has to be provided. Here, we focus on seismic data from130

3 sensors of the ILL array recorded in 2017 and the 3-sensor LERA array recorded in 2018 and 2019. We compiled an

event database for both study sites by visual inspection of the seismic waveforms and spectrograms of seismic stations at

Illgraben and Pizzo Cengalo and close-by stations of the Swiss Seismological Service (SED) (Illgraben: Stations CH.LKBD,

CH.VANNI; Pizzo Cengalo: Stations XP.PICE1, CH.VDL, CH.FIESA). Additionally, we use a list of observed slope failures

made available by the canton of Grisons for Pizzo Cengalo and earthquake catalogs from SED and the European-Mediterranean135

Seismological Centre (EMSC). For the classification, we decided to use three different classes: noise (NO), slope failures (SF),

and earthquakes (EQ). The NO class contains samples of continuous noise and noise signals of anthropogenic and atmospheric

origin (Marchetti et al., 2019). We use the SF class as an umbrella term for all types of mass movements that might occur

(e.g., snow/debris avalanches, rockfalls). We consider this assumption valid, as different granular flow types share the common

seismogenesis of particle ground impacts (e.g., Suriñach et al., 2005; Farin et al., 2019), although length and amplitudes depend140

on runout distance and volume. We assume that differences in signal characteristics between EQ, NO, and SF class are more

significant than discrepancies between different types of granular flow signals. The most critical parameters to manually classify

an event as slope failure are: dominant frequencies of 5-10 Hz, emergent onset, no phase arrivals, not listed in earthquake

catalog, not seen on surrounding seismic stations, or lower amplitude at surrounding stations.

The EQ class contains a set of local, regional, and teleseismic events. Extensive testing showed that lumping all earthquakes145

in one class does not negatively affect classifier performance (Fig. A2). An example signal of each class is presented in Fig.

2. For the continuous noise, we choose random times over the year. For noise signals, earthquake signals, and slope failure

signals, we manually picked the events’ start-time and end-time when the signal exceeds the noise level. The number of events

in each class for both study sites is presented in Fig. 3a and Tab. B1. Note that there are only five events that are related to slope

failures at Pizzo Cengalo in 2018. Due to instrument malfunction, these events were not captured by the automatic camera. The150

sparsity of recorded events leaves us with a poor data set for this class. This issue is addressed further in section 3.2. Figure

3b shows a boxplot of the signal to noise ratios of SF and EQ events at both sites. The signal-to-noise ratio for earthquakes

ranges between 1 and 103, with a mean of 5 (Fig. 3b). The signal-to-noise ratio for slope failures varies between 1 and 30, with

a mean of 4 for the Illgraben data set and 22 for the Pizzo Cengalo data set.
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3 Methodology155

A schematic illustration of our automatic one-step classifier applied to the Pizzo Cengalo data set is shown in Fig. 4a. We use

random forest, a supervised ensemble machine learning algorithm (Breiman, 2001), to classify different seismic sources using

a running window on a continuous data stream on all network stations. Random forest is based on the majority vote of several

weak decision trees, where each decision tree is built on a random subset of features and training data set. Decision trees

consist of nodes, branches, and final nodes. A split based on a threshold on a variable is performed on each node, resulting160

in one or two branches. This process continues until a classification result is obtained in a final node, a so-called leaf. A

single weak tree performs poorly in the classification task, as it is only trained on a subset of features and the training data

set. However, the performance improves as the aggregated decision trees perform a majority vote, where the proportion of

trees that voted for one class gives the probability for the class. The time window is then labeled according to the class with

the most votes, i.e., the highest probability. We choose random forest, because (i) it is a comprehensive machine learning165

algorithm that has shown to outperform other algorithms, like support vector machines and boosting ensembles, in a variety of

cases (Fernández-Delgado et al., 2014) and (ii) it already was successfully used to classify rock slope failures (Hibert et al.,

2017; Maggi et al., 2017; Provost et al., 2017; Malfante et al., 2018; Hibert et al., 2019). Moreover, random forest estimates

the feature importance by measuring the impurity, which describes how many samples of how many different classes belong

to one node after a split. Hence, if all samples in a node belong to one class, impurity is zero, and the classifier is perfect.170

The averaged impurity decrease from a feature over all decision trees then gives a ranking of the most discriminating feature.

This allows a more detailed analysis of potential causes for misclassification. For the implementation of random forest we use

scikit-learn, a python library for machine learning (Pedregosa et al., 2011).

3.1 Data Stream Handling

To avoid the extra step of detecting events with a trigger such as the STA/LTA algorithm, we classify a running window on the175

continuous data stream with an overlap of 2/3 of the window length. The overlap was chosen to avoid missing events on the

window margins but was not tested for optimal performance. We transform the event catalog with start-times and end-times

of all events into a catalog containing the times of all running windows that include an event for both the Illgraben and the

Pizzo Cengalo data set. For the Pizzo Cengalo data set, we make use of the network configuration at the study site, in order to

increase the number of training samples. At the frequency band of interest (1-10 Hz), associated wavelengths are larger than180

the inter-station distance, resulting in waveforms with only small differences. For earthquakes and slope failures, instead of

using the same onset for the sliding windows on all stations, we choose a random onset with a maximum of 2/3 of the sliding

window before the event start-time. This way, we catch different windows of the signal and increase the training data set by a

factor of three without using the same window several times. This procedure is unnecessary for the Illgraben data set, as the

source-receiver distances vary for each station. For discrete noise signals often recorded on only one station, we choose sliding185

windows on the recording station, again with a random onset up to 2/3 of the sliding window before the event start-time. For

the continuous noise, we choose a random station at each time step.
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We divide the catalog with labeled events into a training and test data set, with 70% of all events as training data and 30%

as test data. This partition was chosen to be able to meaningfully assess the algorithm performance for the small number of

slope failures in the Pizzo Cengalo data set. This way, there are windows of three slope failure events in the training and190

validation data set and windows of two slope failure events in the test data set. We choose a window length of 20 seconds as

an initial guess. Numbers for resulting training and test data set sizes for Pizzo Cengalo and Illgraben are presented in Tab. B1.

Following Provost et al. (2017), we then compute features of these sliding windows. As we do not use the entire waveform

of the event, but only the parts that appear in the sliding window, we exclude features related to the entire waveform of the

signal (e.g., duration and rise time). Additionally, the network configuration at Pizzo Cengalo does not allow network features195

(signals are too similar between stations), nor does it allow for polarity features (only vertical component available). For the

sake of comparison, we also disregard network and polarity features for the Illgraben data set. We are left with a total number

of 55 features, including waveform characteristics in the time and frequency domain (see Table A1). These features have been

proven significant for accurate seismic signal classification (e.g., Hibert et al., 2017; Provost et al., 2017). Additionally, we

tested a python tool for automatic feature generation for time series (TSFRESH, Christ et al. (2016)), which did not improve200

classification results compared to the features proposed by Provost et al. (2017). Before feature calculation, we apply a four

corners Butterworth bandpass filter (1 – 10 Hz). For feature generation after Provost et al. (2017), we choose frequency bands

of 1 – 3 Hz, 3 – 6 Hz, 5 – 7 Hz, 6 – 9 Hz, and 8 – 10 Hz.

3.2 Imbalanced Data Set Handling

The limited amount of data and, more specifically, the small number of SF events that happened in 2018 at Pizzo Cengalo lead to205

an imbalanced data set. As shown in Fig. 3a, the number of events is unevenly distributed among classes. This poses a problem

for machine learning algorithms, as they generally optimize the score, i.e., the number of correctly labeled classes. In a highly

imbalanced data set, the classification algorithm may be less sensitive to the minority class, as it does not drastically impair the

score if it is labeled incorrectly. For our data set, with the events that we are most interested in being the minority class, it is

particularly important to address this problem. Therefore, we introduce here different data augmentation and classifier tuning210

methods to improve the classifiers’ performance on the imbalanced Pizzo Cengalo data set.

There are several possibilities to handle imbalanced data sets, either based on manipulating the training data set or on

changes within the algorithm (Chawla, 2010). The most straightforward approaches are random undersampling (US) and naive

oversampling (OS) training data. For random undersampling, only a random subset of training data of the majority class is

chosen. This way, the data set becomes more balanced by reducing the samples in the majority classes. However, this might215

mean that important characteristics of the majority class are not captured. In contrast to undersampling, naive oversampling

randomly multiplies samples in the minority class but thus increases the risk of overfitting, the lack of generalization, within

the minority class.

A more sophisticated way of increasing training samples in the minority class is synthetic minority over-sampling (SMOTE)

(Chawla et al., 2002). SMOTE is based on the idea of creating new training samples in the minority class by interpolating220

between a sample and a random set of its k-nearest neighbors in feature space. Therefore, a new sample is generated with

7



features similar to already existing samples. This increases the sample size of the minority class but minimizes the problem

of overfitting. On the algorithm level, random forest opens two possibilities for imbalanced data: setting a class weight on the

minority class or undersample the training data for every single tree, a so-called balanced random forest (BRF) (Lemaître et al.,

2017). Here, we use a BRF classifier that undersamples the majority class and weighs the classes inversely to the number of225

samples in each class.

3.3 Training Process and Evaluation

We use two different metrics to evaluate model accuracy, the confusion matrix and receiver operating characteristic (ROC)

curves. The confusion matrix consists of the true label of each class’s samples as rows and the classifier predicted label as

columns (Fig. 4b). For a perfect classifier, all samples are located on the diagonal of the matrix. Using the confusion matrix,230

the classifier can be evaluated for each class separately. Furthermore, we normalize the confusion matrix, such that the sum

of each row is 1.0. The ROC curve uses the true positive rate (TPR) and false positive rate (FPR) for different probability

thresholds (Fawcett, 2006). TPR is defined as the number of true positives divided by the sum of true positives (TP) and false

negatives (FN) (TPR = TP/(TP + FN)). FPR is defined as the number of false positives (FP) divided by the sum of false

positives and true negatives (TN) (FPR = FP/(FP + TN)). Class prediction of random forest is based on the score of a class,235

i.e., its probability defined by the number of predictions out of all trees. By lowering the threshold for classification, i.e.,

the probability threshold for a class to be predicted, FPR and TPR increase as FN samples transition to TP and TN samples

transition to FP. As an example, we consider an imaginary two-class problem with a decision threshold of probability > 0.5 for

the "positive" class leading to a TP = 1, FP = 2 , TN = 3 and FN = 4 and resulting TPR = 1/5 and FPR = 2/5. When lowering

the probability threshold for the "positive" class to be predicted to, say, 0.2, TP will increase, but so will FP, giving TP = 4, FP240

= 3, TN, = 2, and FN = 1. This results in larger values of TPR and FPR (TPR = 4/5, FPR = 3/5). When plotting FPR against

TPR for each probability threshold, one obtains the ROC curve with a monotonous increase. For a schematic drawing, see Fig.

4b). The best-case scenario is a TPR of one, and an FPR of zero, i.e., a step transition from coordinates (0,0) to (0,1), whereas

a random classifier would result in a diagonal from (0,0) to (1,1). The area under the curve (AUC) can be used as a one value

metric for model performance. The larger the area under the ROC curve, the better the model accuracy. Both metrics, confusion245

matrix and ROC/AUC, can directly be transferred into a multiclass environment. For the confusion matrix, this simply results

in several columns and rows. The ROC curve can be computed for each class separately by bundling all other classes together.

We use the confusion matrix as an initial performance evaluation of random forest for both the Illgraben and the Pizzo

Cengalo data set. We then use the ROC/AUC analysis to estimate the influence of the window length and the imbalanced data

set handling techniques on the Pizzo Cengalo data set. For a more representative measure, we use k-fold cross validation when250

computing the ROC curves (e.g., Stone, 1974). As our training data set only contains three events in the minority class, we use

3-fold cross validation, with random 2/3 of each class in the training data set and 1/3 used for validation. This way, we obtain

three ROC curves and AUC values per class trained and tested on three different random subsets. We then take the mean TPR

and FPR to plot the ROC curves. We computed the 95% confidence level using Student’s t-distribution for small sample sizes

(n=3).255
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3.4 Simulated Real-Time Monitoring at Pizzo Cengalo

To test how the classifier performs in a real-life application, we use a model trained on the 2018 Pizzo Cengalo data set and

classify more than a million time windows of recorded seismic data at Pizzo Cengalo in 2019. We train, validate, and test

the model on 2018 data, containing five slope failure events, and then use the model to classify 2019 data. Seismograms and

spectrograms of the training events are shown in Appendix A1. For 2019, no full event catalog is available. We cross-check as260

slope failure classified events with earthquake catalogs, hiker reports, and pictures from the automated camera. If none of these

methods give clarity, we manually classify the seismic signals based on typical characteristics of slope-failure events, such as

dominant frequencies between 5 - 10 Hz, an emergent onset, and a duration of several tens of seconds (e.g., Hibert et al., 2011).

We benchmark our test with the two-step approach of STA/LTA detection in the frequency domain and classification of the

detected events using random forest. After extensive testing, we define the parameters that provide accurate detection for our265

data set as an STA window length of 1s and an LTA window length of 18s. The detector turns on when the STA/LTA ratio

exceeds four and turns off when the STA/LTA ratio becomes lower than two. Additionally, we use a coincidence trigger, with

a threshold of three, which means that the STA/LTA threshold needs to be exceeded at all three stations.

4 Results

4.1 Classifier Performance on Labeled Data Sets270

For an initial evaluation, we tested the random forest classifier’s performance on the Illgraben and the Pizzo Cengalo data set.

We used a randomized grid search to obtain the best performing hyper-parameters such as number and depth of decision trees.

The final parameters are presented in Tab. B2. Normalized confusion matrices for both data sets are shown in Fig. 5. We trained

the models on 20s window sizes, and no class balancing has been applied. For the Illgraben data set, the classifier correctly

classifies between 70% and 85% for all classes. The largest confusion occurs between the NO and SF class. For the Pizzo275

Cengalo data set, the classifier correctly classifies between 90% and 100% for the NO and EQ class, but only 44% of the SF

class. In this case, the largest confusion occurs between the SF and EQ class.

4.2 ROC Analysis on Pizzo Cengalo Data Set

We computed ROC curves and AUC values for different window sizes and under and oversampling techniques for the Pizzo

Cengalo data set (Fig. 6). Figure 6a shows the AUC values for the SF class plotted in a heatmap. Rows show different window280

sizes (10s - 60s) and columns different techniques. Associated standard deviations are shown in Fig. 6b. Darker colors mark a

larger AUC value and a smaller standard deviation. The different color maps highlight the difference between the AUC values

and AUC standard deviations. Although almost all values lie within the confidence intervals, overall, the smallest window

size and the largest window size give slightly better values with a small standard deviation. Additionally, the AUC value for a

simple random forest and balanced random forest (BRF) is higher without the data manipulation techniques.285
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As a compromise between large AUC value and small standard deviation, we choose 40-second windows and classical

random forest, i.e., without modifications for handling imbalanced data. The ROC curve of this configuration is shown in Fig.

6c. To make sure we correctly classify most of the windows containing a slope failure signal, we set the target TPR to > 0.9.

From the 3-fold cross-validation ROC analysis, we obtain a mean probability threshold of 0.23 for a TPR > 0.9 in the SF

class. As a next step, the optimal model parameters (i.e., number of decision trees, number of features chosen for each tree,290

maximum tree depth, ...) for the 40 seconds window size and random forest are chosen using the randomized cross-validation

search of scikit-learn (Pedregosa et al., 2011). We use the obtained classifier to classify the test data set from the 2018 data,

containing two SF events, which were not used for the model set-up and, therefore, an unbiased evaluation of the classifier. We

set the probability threshold for the SF class to 0.23 as obtained from the ROC curve. Consequently, for probabilities higher

than 0.23 for the SF class, the window will be classified as slope failures, even if another class has a higher probability.295

4.3 Classifier Performance with Classification Threshold on Pizzo Cengalo Data Set

We used the low probability threshold from the ROC analysis to label all 40 seconds time windows of the Pizzo Cengalo test

data set. The results of this set-up are shown in Fig. 7. The normalized confusion matrix (Fig. 7a) shows a misclassification

of 20% for slope failures. Additionally, 10% of earthquakes are classified as noise. The misclassification rate of noise is

however very small (1%). The most discriminating features are presented in Fig. 7b. The colors denote spectral and waveform300

features. Distinctive features are spectral gyration radius (gamma2), spectral centroid (gamma1), central frequency of the first

quartile (Fquart1), variance of the normalized fast Fourier transform (FFT) (VarFFT), frequency at the maximum of the FFT

(FmaxFFT), frequency at spectrum centroid (FCentroid), energy of the last 2/3 of the autocorrelation function (INT2), and the

energy of the seismic signal in the frequency band of 1-3 Hz (ES[0]) (Tab. A1, Provost et al., 2017). Figure 7b) shows that the

by far most discriminating features are characteristics in the frequency domain.305

4.4 Classifier Implementation on Pizzo Cengalo Seismic Data

As a next step, the model is used to classify seismic data recorded at Pizzo Cengalo in 2019, mimicking operational conditions

of a near real-time classification. We first compute the signal features of 40 second time windows with an overlap of 2/3 of the

window length for each station and perform a classification. Next, a majority vote of the stations is performed, and a label is

assigned to the time window. This means that if more than one station assigns the time window to the same class, the end label310

is chosen accordingly. In case every seismic station classifies the same time window into a different class, the time window will

be labeled as noise. We compare the results to an event catalog compiled from hiker reports, manual classification of seismic

data and automatic camera images. The classification parameters for the manual classification of the seismic data are consistent

with creating the training catalog.

In 176 days in 2019 (Julian Day 94 to 270), 21 days have at least one window classified as slope failure. To exclude315

misclassified windows because they only contain a small signal portion, we set a minimum threshold of three consecutive SF

classifications. With this threshold, we limit the number of slope failure detections to eight. Out of these eight, three correspond

to manually picked slope failures, two of which happened on 4 and 26 April and one on 16 July. However, the automatic camera
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shows that the April events are snow avalanches rather than rock slope failures (Fig. 8). Seismic waveforms and associated

classifications for 16 July are shown in Fig. 9, with a zoom on a rockfall event (c-e) and a noise signal (f-h). Four events that320

were classified as slope failures are earthquakes on 22 May, 29 July, 8 August and 29 August. Two out of these earthquakes

originate from the German lakeside of Lake Constance about 160 km north-west of Pizzo Cengalo, with a distance between

the epicenters of about 3 km and magnitudes of 3.6 and 3.4 (EMSC catalog). The two other earthquakes are Magnitude 3.3 and

2.2 earthquakes with epicenters about 170 km south and 33 km west of Pizzo Cengalo, respectively (EMSC catalog). The last

event classified as slope failure on August 13 is characterized by a duration of 10 s and is not listed in any earthquake catalog.325

All waveforms, spectrograms, and spectra are shown in Fig. 10.

To quantify the performance of the algorithm presented here, we benchmark the continuous approach against a two-step

approach with an STA/LTA detection on the Pizzo Cengalo data set. The continuous approach correctly classifies three slope

failures (TP), misses one slope failure (FN), and classifies four earthquakes as slope failures (FP). The two-step approach of

STA/LTA detection correctly classifies two slope failures (TP), misses two slope failures (FN), and classifies six earthquakes as330

slope failures (FP). For a simple comparison, we can use the critical success index (CSI = TP / (TP + FN + FP)) which ignores

all non events (TN). For the Pizzo Cengalo data set, we obtain a CSI of 0.375 for the continuous approach, whereas, for the

STA/LTA approach, we obtain a CSI of 0.2.

4.5 Transferability to other study sites

We tested the transferability of a trained model to other study sites by assessing the performance of a model trained on one335

site and tested on another, and trained on both sites and tested on one site. The result of all possible combinations is shown in

Figure 11. A classifier trained on one site and tested on another reduces the mean score over each class by about 30 % for the

Pizzo Cengalo and the Illgraben data set. Especially the score of the minority class, the slope failure class, is reduced to 20 %

and even 0 % respectively. For both the Illgraben and the Pizzo Cengalo data set, a classifier trained on both data sets increases

the mean test scores over all classes only marginally. However, in both cases, the slope failure class’s test scores increase by340

nearly 10 % compared to a classifier only trained on the respective data set.

5 Discussion

5.1 Data Set Comparison

We trained a random forest classifier on two different types of data sets: the Illgraben data set, with a balanced abundance

of all types of classes, and the Pizzo Cengalo data set, with a highly imbalanced number of events. Both the Illgraben and345

the Pizzo Cengalo data sets were aggregated by manual inspection of the seismic data and, for the Pizzo Cengalo data set,

direct observations at the site. Even though both data sets have been carefully examined, a misclassification of events cannot be

excluded. For earthquakes, a misclassification is highly improbable, as all events were cross-checked with publicly available

earthquake catalogs. However, cross-checking databases for rockfall events are rare, especially for events that have not affected
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infrastructure. Therefore, an inherent bias by manual labeling and falsely labeled events is possible but can hardly be avoided350

for these data sets.

The Illgraben data set contains only four weeks of manually labeled data, but in those four weeks, the number of recorded

slope failures and earthquakes is nearly the same (Fig. 3a). The large number of slope failure events during that period can be

explained by three extreme precipitation events that also triggered three debris flows (e.g., Wenner et al., 2019). Under these

conditions, slope failure activity increases drastically.355

The Pizzo Cengalo data set contains manually labeled data of the summer period (June - October). The LERA network

was set-up in the aftermath of a large rock avalanche event in 2017. Since then, slope activity has strongly decreased. This

implies that automatic detection and classification is based on a small number of training events in the slope failure class and

a comparably large number of events in other classes. The small number of recorded earthquakes can be attributed to general

poor data quality. Many recorded earthquakes barely exceeded the noise level and were therefore not included in the catalog.360

For slope failures, the Pizzo Cengalo data set includes fewer events than the Illgraben data set. However, the mean SNR is

higher. Overall, SNR of events in both data sets compare to SNR found in other studies (e.g., Dammeier et al., 2016). The SNR

distribution in both data sets is also reflected in the initial classification test (Fig. 5). In this test, no performance enhancement

was applied. Whereas the classifier performs similarly well for each class for the Illgraben data set, 22% of the slope failure

signals are misclassified as noise. The large number of misclassification could be related to the low SNR for slope failures365

in the data set. For the Pizzo Cengalo data set, the classifier performs significantly worse for the slope failure class, but the

confusion is more pronounced between the slope failure class and earthquake class than slope failure and noise. Hence, the

Pizzo Cengalo data set’s misclassification might not result from poor SNR, but the underrepresentation of the slope failure

class. We expect an improvement of the classifiers performance after adding slope failure seismic signals of future events to

the training data set.370

5.2 Performance Enhancement

One way to enhance the classifier’s performance on the Illgraben data set could be to add network and polarity features.

Provost et al. (2017) have shown that network features count among the most important features for classifying detected

events. However, the set-up of the LERA network at Pizzo Cengalo has an unfavorable aperture to detect and classify detected

seismic signals, as the stations are set-up in a line with interstation distances of 9 m and 31.5 m. This prohibits the usage of375

network characteristics, like arrival time differences and amplitude ratios.

To address the problem of the imbalanced Pizzo Cengalo data set and resulting misleading scores, we test several techniques

to handle such data sets and use receiver operating characteristic curves for performance assessment. The area under the curve

for SF is largest for a generic random forest. Further assessment shows that SF’s true positives are largest when using a

technique to handle imbalanced data sets, but leading to a substantial increase in EQ events being classified as SF. Using a380

generic random forest, SF is underrepresented, ending up with zero true positives but also zero false positives. By lowering

the probability threshold for SF, the true positive rate increases, whereas the false positive rate stays low. Therefore, for this

data set, we decided to ignore problems with imbalanced data sets and mitigate misclassifications by lowering the probability
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threshold. It remains to be seen if this approach performs equally well on other data sets, but in our case, it gives the best

results by maximizing the number of true positives in SF and minimizing the number of EQ classified as SF. This does not385

mean, however, that imbalance countermeasures did not work. Compared to the initial test (Fig. 5b), any of the measures

mentioned above improve the classification result.

We choose to use a 40s window as an operative window size to test on the 2019 data, even though 10s and 60s show

equally high AUC values and low standard deviations. On a continuous data stream a 10s window with 6s of overlap does

not leave enough time to compute features and classify the event in real-time. The 60s window, on the other hand, results in a390

classification delay of one minute and we assume that chances are higher to miss smaller events which are masked by a large

amount of noise in the 60s window.

Generally, an imbalanced data set can be tackled by increasing the amount of training data in the minority class. A classifier

trained for an area that is more active or has been monitored during a longer period is expected to give better results with

higher accuracy. Additionally, the small number of events in the slope failure class can lead to overfitting, i.e., an insufficient395

generalization of the model. Hence, small deviations in signal characteristics can lead to misclassification and undetected slope

failures. However, as seen on tests on the Illgraben data set, solely a larger training data set will not give a perfect classifier

either. We attribute the low SNR to the classifier’s relatively poor performance of 30% misclassified events in the slope failure

class at Illgraben.

5.3 One-step vs. two-step method at Pizzo Cengalo400

Several studies have shown that classification algorithms accurately classify events detected with the STA/LTA approach (e.g.,

Hibert et al., 2017; Provost et al., 2017). The benchmark analysis performed on the Pizzo Cengalo data set indicates, that our

continuous approach (CSI of 0.375) performs slightly better than a two-step approach (CSI of 0.2). However, the small number

of events prohibits a statement on robustness. Interestingly, there is a large overlap in the earthquakes being misclassified as

slope failures between the two approaches.405

Feature importance analysis for the continuous one-step approach presented here shows that the classifier predominantly

uses spectral features to distinguish between different classes. This is consistent with the fact that the windowing eliminates

information from the entire waveform. Provost et al. (2017) showed that for the two-step approach, several waveform features,

e.g., duration and the ratio between ascending and descending time of the signal, are powerful distinctive features of slope

failures and earthquakes. These are, however, characteristics of the entire waveform of an event. In our case, constant window410

size with start and end regardless of event start and end sacrifices this information, and the classifier, therefore relies on spectral

features. However, the spectral content of earthquakes and slope failures at our site is highly similar, which complicates a

correct classification (Fig. 2). This is illustrated by the univariate distributions and correlations in Fig. 7c, that show large

overlaps between the classes, even for the most discriminating features.

Despite the loss of several waveform features, the continuous approach outperforms the two-step approach in our case. We415

attribute the enhanced performance of the continuous approach to the reduced parameter tuning effort: In the two-step approach,
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the performance of the classifier is strongly influenced by the STA/LTA detectors accuracy. Tests show that a manually picked

catalog achieves up to a 15% higher accuracy than the same catalog compiled with an STA/LTA algorithm.

Even though not a focus of this study, we note that STA/LTA detection algorithms tuned to detect short signals (several tens

of seconds) miss events of long duration and gradual amplitude increase, such as debris flows, volcanic tremors, lahars, and420

glacier lake outburst floods. Coviello et al. (2019) show that with a window size of 10s and 100s for STA and LTA, respectively,

debris flows can be detected, excluding other events like earthquakes. However, this also excludes the detection of short slope-

failure signals. The continuous approach is capable of detecting such events and is therefore applicable in multiple contexts and

different sites. For example, intense precipitation raises the noise level by an increase in runoff and, consequently, seismogenic

sediment transport (Tsai et al., 2012; Burtin et al., 2016). Similarly, snow cover and strong temperature fluctuations can affect425

the instrument itself and change the noise level. A preliminary implementation of a classifier with a fourth class called runoff

trained on two days of increased water discharge (measured with gauges) found two additional days of peak discharge. Using

the two step-method of STA/LTA, requires a second STA/LTA algorithm with its own parameters to detect these signals.

Consequently, applying continuous random forest in different circumstances is potentially a low effort, as there is no need to

fine-tune the detection algorithm while improving the overall results over the two-steps approach.430

5.4 Test on 2019 Pizzo Cengalo data

Continuous random forest correctly classifies events in the test data with a high SNR. A slope failure that was observed by

hikers on 14 August was classified as noise. Often events create dust clouds that are easily noticeable despite a small mass-

movement volume. The misclassification likely results from a low SNR (Fig. 10), hence a probably relatively small volume of

the event, as all windows containing the event were classified as noise. For most waveform and spectral features, especially the435

most discriminating ones (feature importance analysis), values of time windows containing the slope failure signal do not differ

from that of windows that contain only noise. Filtering of the waveform to minimize noise is difficult, as the frequency band of

the slope failure coincides with the primary noise. Furthermore, the automatic camera pictures show no apparent detachment

zone (Fig. 8). This either means that the break-off happened outside of the camera field or validates our assumption of a small

volume event.440

Two of the events classified as slope failure are snow avalanches in April 2019 (Fig. 8). At this time, Pizzo Cengalo’s

active slope was partially covered by snow. As both avalanches happened during snowfall periods with obscured view from

the automated camera to Pizzo Cengalo, the events were only validated by pictures several days after the actual event. The

random forest classifier was only trained on data from the summer period, and therefore, snow avalanches were not part of the

training data set. However, the seismic signature of snow avalanches is highly similar to those of other mass movements (e.g.,445

Suriñach et al., 2001; van Herwijnen and Schweizer, 2011; Heck et al., 2018). This also validates your assumption that signal

differences between different mass movements are less prominent than differences associated with noise and earthquakes.

Hence, for training purposes, snow avalanches could be included in the slope failure class. This would allow the detection of

slope failure events in winter and in summer month and increase the number of events in the slope failure class, resulting in a

less imbalanced training data set.450
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We chose a minimal of three consecutive windows classified as slope failure for a slope failure event detection. If we were

to increase the number to four, the number of slope failure event detections is lowered to four. Out of these four, only one is

an actual slope failure and three are earthquakes. If we were to decrease the number of consecutive windows that need to be

classified as slope failure to one, three more earthquakes would cause a slope failure event detection. Even by lowering the

number of windows, the missed slope failure event would still not be detected. Thus, the classifiers’ performance in correctly455

classifying three slope failure events is overshadowed by the four false alarms despite the consecutive window threshold. For

operational use, a false alarm ratio > 50 % is not acceptable as operators will lose confidence in the classifier.

In a promising approach, Hammer et al. (2017) use Hidden Markov Models to detect snow avalanches by training a

background model from continuous seismic data and using seismic signals of only one avalanche to distinguish noise from

avalanches. However, the model was only tested on five days of data. Continuing with this approach Heck et al. (2018) clas-460

sify more than 100 days and find that for a reliable classification with a small number of false alarms, a daily update of the

background model, as well as extensive array-based post-processing is necessary. With our approach, using random forest, no

retraining of the background model is necessary and thus, the computational cost for a single parameter tuning is negligible.

For operational use at the Pizzo Cengalo site, array-based post-processing as proposed by Heck et al. (2018) is not possible.

Amongst other array-based post-processing steps Heck et al. (2019) include detections from a seismic station 14 kilometers465

away from the test site in the decision process to discriminate between noise signals and avalanches. We explore this approach

with our classification problem of earthquakes falsely classified as slope failures. We train a model for a seismic station of

the Swiss Seismological Service (CH.FIESA) located 130 km away from Pizzo Cengalo. At this distance local and regional

earthquakes that were misclassified as slope failures at Pizzo Cengalo are still recorded, but not slope failures. We use the

EMSC earthquake catalog to compile a training data set containing 45 earthquakes and 513 noise samples in 2018. We then470

train the model on 20s windows of seismic data. For the decision-making process, we test the trained model on seismic data

recorded when a slope failure was classified at Pizzo Cengalo in 2019. All four earthquakes falsely classified as slope failures

at Pizzo Cengalo were classified as earthquakes at FIESA. All time windows around the slope failures at Pizzo Cengalo were

classified as noise at FIESA. Therefore, a simple inclusion of a station at a regional distance to Pizzo Cengalo reduced the false

alarms to zero.475

Our approach is computationally inexpensive, as the classification model only has to be trained once. From there on, com-

putational power is only needed to compute features of the 40s windowed seismic data. For this near-real-time simulation, we

used a standard machine (2017, Inter Core i7), which was able to compute all features and classify the windowed data within

3 seconds. Combined with the consecutive window threshold, this allows for a short warning time within tens of seconds after

the event start480

5.5 Classifier Transferability

For future applications, a key question is how a classifier trained on one data set can be transferred to other environments and

study sites. Especially for sites previously not monitored, a classifier trained on other sites could give a head start in seismic

monitoring. Figure 11 clearly shows that a classifier trained on one site and tested on another performs poorly. However, for
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both the Illgraben and the Pizzo Cengalo data set, a classifier trained on both data sets increases the test scores for all classes,485

and especially the minority class, compared to a classifier only trained on the respective data set. Therefore, we suggest that

cross-context training and data set amalgamation has the potential to improve classification outcome and should be investigated

in future work.

6 Conclusions

In this study, we apply a random forest classifier on windowed seismic data to detect and distinguish between noise and seismic490

signals of slope failures and earthquakes. We test our workflow on two data sets and explore ways to improve its performance

on the imbalanced data sets. The improvement techniques allow us to overcome an obstacle that often occurs in natural hazard

detection: the deficiency of training data. The advantage of random forest compared to previously suggested approaches using

Hidden Markov Models is its simplicity and relative ease of implementation in terms of parameter tuning, post-processing, and

computational cost.495

We developed a new method to process continuous data streams in near-real-time, which combines detection and identifi-

cation of rare events. Additionally, this algorithm can outperform a two-step STA/LTA detector and event classifier. The high

number of true positives gives us confidence to detect slope failures. However, sub-optimal network configuration, similar fre-

quency content generated by different sources, and low SNR lead to a high false alarm rate. Inclusion of classification results

from a second seismic station at regional distance to the study site significantly reduces false positives and is therefore advised500

for operational use.

We show that two different data sets run into two different types of problems: Low SNR of targeted class and an imbalanced

data set. Training data manipulation or small adjustments to the classifier can both mitigate poor classification results due to an

imbalanced data set.

Our approach enables us to detect the occurrence of rare events of high interest in a large data set of more than a million505

windowed seismic signals. Our model, trained on rock slope failures, also detected snow avalanches. It therefore seems that

this method is well suited to detect mass movements in general.

Manual review of seismic data is a tedious task, and especially for non-experts, uncertainty and misclassification rates can

be high. An automatic classifier, however, can run in the background on a standard machine (in our case 2017, Intel Core i7)

and alert stakeholders in case of an event classified as slope failure. Our implementation of a machine learning algorithm for510

seismogenic mass movement detection may therefore in the future provide valuable support to natural hazard management.

Code and data availability. Data supporting this research are available in Geopravent (2017) and are not accessible to the public or research

community. To gain access contact Lorenz Meier. Computed feature files and code used in this study are available on https://github.com/

michaelawenner/Automatic_classification_Bondo.
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Appendix A: Slope Failure Signals515

Figure A1. Seismic signals, spectrograms and spectra of four additional slope failure events in 2018 used for training. Spectrograms have

been computed with a window length of 128 samples, an overlap of 120 samples and an FFT length of 2048.
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Figure A2. Confusion matrix of initial test of random forest on the Pizzo Cengalo data set. Left: all earthquakes lumped into one class. Right:

earthquakes divided in local and regional/teleseismic earthquakes.
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Table B1. Number of events and number of windowed seismic data (20s windows as an example) of the training and test data set of Pizzo

Cengalo and Illgraben

Events in data set Number of 20s windows

Pizzo Cengalo Illgraben Pizzo Cengalo Illgraben

Training data Noise 1025 222 2095 473

Slope failures 3 59 76 337

Earthquakes 17 66 438 674

Test data Noise 438 85 836 160

Slope failures 2 31 54 170

Earthquakes 13 34 373 373

Table B2. Random forest parameters

Number of trees 2000

Split quality measure Gini criterion

Minimum number of samples required to be a leaf node 4

Maximum depth of a tree 60

Minimum number of samples for an internal node to be split 2
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Figure 1. Illgraben catchment (left) and Bondasca valley (right) with locations in Switzerland (stars in middle panel).(a) Overview of the

Illgraben catchment in Switzerland and locations of stations ILL16 – 18 depicted as colored triangles. (b) Overview of the Bondasca valley.

Location of LERA network depicted as colored triangles. Zoom-in shows individual seismic stations (LERA1 – 3) in the upper right corner.
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Figure 2. Waveforms, spectrogram and spectra of example events for each class recorded at Illgraben (left) and Pizzo Cengalo (right)
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Figure 3. (a) Bar chart with events per class for both the Illgraben and the Pizzo Cengalo data set. (b) Boxplot of SNRs of all slope failure

and earthquake events at Illgraben and Pizzo Cengalo. The boxes denote the quartiles (25 - 75%), the black horizontal line denotes the mean

and the black vertical error bars indicate outliers.

Figure 4. (a) One-step classification scheme with continuous data stream, windowed data, classification per station and label for window, (b)

Confusion matrix for a two class problem (positive, negative), with true labels as rows and predicted labels as columns. True positives (TP)

and true negatives (TN) on the diagonal and false negatives (FN) and false positives (FP) on the off diagonal elements. (c) ROC curve with

true positive rate (TPR) on the y axis and false positive rate (FPR) on the x axis. Shaded area (AUC) measures model accuracy.
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Figure 5. Confusion matrices of an initial test of the continuous random forest approach on 20 s windowed data. Left: Illgraben data set,

right: Pizzo Cengalo data set.
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Figure 6. ROC analysis on the Pizzo Cengalo data set. (a) Heatmap of AUC values for SF class for different window sizes and different

methods to handle imbalanced data sets, namely undersampling (US), oversampling (OS), synthetic minority oversampling (SMOTE), ran-

dom forest with original data set (RF), balanced random forest (BRF). The darkest colors denote the largest AUC values. (b) Heatmap of

95% confidence interval of AUC values. Darker colors denote smaller standard deviation (c) ROC curve for 40 seconds time window and

random forest. 3-fold cross validation with mean as solid line and 95% confidence interval. Zoom into corner with circles illustrates TPR

and FPR values for different thresholds. Probability threshold for TPR rate of SF class > 0.9 is depicted.
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Figure 7. Confusion matrix and feature importance analysis of the optimized classifier for the Pizzo Cengalo data set. (a) Normalized

confusion matrix of final model test. The darker the colors, the higher the values. For an ideal classifier, all samples would be located on

the diagonal. (b) Eight most distinct features normalized to one. Dark columns mark spectral features (characteristics of signal in frequency

domain), light columns mark waveform features (characteristics of signal in time domain). Labels: spectral gyration radius (gamma2),

spectral centroid (gamma1), central frequency of the first quartile (Fquart1), variance of the normalized FFT (VarFFT), frequency at the

maximum of the FFT (FmaxFFT), frequency at spectrum centroid (FCentroid), energy of the last 2/3 of the autocorrelation function (INT2),

and the energy of the seismic signal in the frequency band of 1-3 Hz (ES[0]) Provost et al. (2017). (c) Pairplot of four most distinct features.

Per cell two features plotted against each other, except for diagonal. Diagonal shows univariate distribution of the feature. Colors mark

different event classes
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Figure 8. Automatic camera photos of slope failures in 2019. Photos from April show the avalanche deposits from the events classified as

slope failures of 4 April and 26 April. Photos from July and August show photos before and after the events of 16 July and 14 August. For

the 14 August event, no deposit is visible on the photos.
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Figure 9. Classifier tested on one day of data from Pizzo Cengalo in 2019 (July 16). (a) Waveform of one day, with data gap (orange area)

(b) label of each 40 seconds time window. (c) Waveform and (d) spectrogram with spectral power of a slope failure and (e) associated

classifications. (f) Noise event with (g) spectrogram and (h) associated classifications.
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Figure 10. Waveforms, spectrograms and spectra of all events classified as slope failure in 2019 at Pizzo Cengalo, as well as the missed slope

failure on August 14, 2019 (bottom left). White labels on spectrograms mark the type of event.

35



Figure 11. Scores for each class with different training and testing data sets. Labels on the y-axis show the data set(s) used for training before

the vertical bar, and the data set used for testing after the vertical bar.36




