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Abstract 9 
Vietnam is a major rice producer and much of the rice grown is concentrated in the Red River Delta (RRD) and 10 
the Mekong River Delta (MRD). While the two deltas are highly productive regions, they are vulnerable to 11 
natural hazards and the effects of human induced environmental change. To show that the processes and 12 
issues affecting food security are reinforcing, interdependent and operating at multiple scales, we used a 13 
systems-thinking approach to represent the major linkages between anthropogenic land-use and natural 14 
hazards and elaborate on how the drivers and environmental processes interact and influence rice growing 15 
area, rice yield and rice quality in the two deltas. On a local scale, demand for aquaculture and alternative 16 
crops, urban expansion, dike development, sand mining and groundwater extraction decrease rice production 17 
in the two deltas. Regionally, upstream dam construction impacts rice production in the two deltas despite 18 
being distally situated.  Separately, the localized natural hazards that have adversely affected rice production 19 
include droughts, floods and typhoons. Outbreaks of pests and diseases are also common. Climate change 20 
induced sea level rise is a global phenomenon that will affect agricultural productivity. Notably, anthropogenic 21 
developments meant to improve agricultural productivity or increase economic growth can create many 22 
unwanted environmental consequences such as an increase in flooding, saltwater intrusion and land 23 
subsidence, which in turn decreases rice production and quality. In addition, natural hazards may amplify the 24 
problems created by human activities. Our meta-analysis highlights the ways in which a systems-thinking 25 
approach can yield more nuanced perspectives to tackle “wicked” and interrelated environmental challenges. 26 
Given that deltas worldwide are globally significant for food production and are highly stressed and degraded, 27 
a systems-thinking approach can be applied to provide a holistic and contextualized overview of the threats 28 
faced in each location. 29 
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1. Introduction 39 
A delta is defined as a low-lying sedimentary landform located at the mouths of rivers. The mixing of 40 

fresh and saltwater in these sediment-rich land-ocean coastal zones provides fertile land for agricultural 41 
activities to support a large number of people. Besides agriculture, resources in deltas have also been tapped 42 
for fisheries, navigation, trade, forestry, fossil energy production and manufacturing. Unfortunately, deltas are 43 
highly vulnerable to a range of environmental hazards such as typhoons, floods, storm surges, tsunamis, 44 
coastal erosion and seasonal inundations (Syvitski and Saito, 2007). In addition, local human activities, land 45 
subsidence, water stresses and global sea level rise have exacerbated their environmental vulnerability (Day et 46 
al; 2016; Seto, 2011; Tessler et al. 2015). The threats faced by deltas are considered to be “wicked problems” 47 
with no easy solutions to counter them (DeFries and Nagendra, 2017).  48 

In this paper, we focus on the Red River Delta (RRD) and the Mekong River Delta (MRD) in Vietnam as these 49 
two deltas are highly populated hubs of agricultural production that are highly vulnerable to environmental 50 
hazards. We use a systems-thinking approach to illustrate some of the “wicked problems” present in the two 51 
deltas in Vietnam and the implications of these anthropogenic and natural hazard drivers on rice agriculture. 52 
Although a variety of crops is cultivated in Vietnam, we focus on rice as it is a staple food for the Vietnamese 53 
(Nguyen et al., 2019b; USDA, 2012) and it is also a key export crop. In 2019, Vietnam exported US$1.4 billion of 54 
rice and was the fourth largest rice exporter in the world contributing 6.6% of the world’s total rice exports 55 
(Workman, 2020). 56 

Many studies have investigated how Vietnam is affected by natural hazards or anthropogenic land-use change 57 
(cf. Howie, 2005; Minderhoud et al., 2018; Nguyen et al., 2019a; Vinh et al., 2014). Several studies go a step 58 
further to examine how changes in anthropogenic land-use have affected rice productivity. For example, 59 
higher prices and rising demand for aquaculture and non-rice products have incentivized farmers to shift away 60 
from rice monoculture to embrace non-rice crops (Hai, 2019; Morton, 2020). In addition, environmental 61 
threats such as worsening saltwater intrusion has limited rice production areas and forced many farmers to 62 
convert their now-unusable rice fields into shrimp ponds (Kotera et al., 2005; Nguyen et al., 2017) or turn to 63 
growing salt tolerant crops such as coconut, mango and sugar cane (Nguyen and Vo, 2017). Urban expansion is 64 
also another key factor that has reduced rice growing areas although agricultural intensification has kept rice 65 
yields high despite shrinking growing areas (Drebold, 2017; Morton, 2020).  66 

Meanwhile, the construction of high dikes to mitigate flooding in the Mekong Delta has facilitated triple 67 
cropping of rice and increased yields. However, these high dikes reduce the availability of fertile silt and force 68 
farmers to rely on costly agrochemicals to maintain yields (Chapman and Darby, 2016; Tran and Weger, 2018). 69 
Though there is substantial research on sand mining and upstream dam construction, these non-related 70 
anthropogenic factors are often not linked to agricultural productivity even though reduced sediment 71 
availability and increased channel erosion would have adverse implications on agricultural productivity (Binh et 72 
al., 2020; Park et al., 2020; Jordan et al., 2019) 73 

Besides land-use change, rice grown in the RRD and MRD are susceptible to damage from natural hazards such 74 
as typhoons, floods and droughts (Chan et al., 2012; 2015; Grosjean et al., 2016; Terry et al., 2012). Rice crops 75 
can be damaged by strong winds and flooding from heavy rain associated with a typhoon event. Rice damage 76 
is worse if the typhoon occurs during the vulnerable heading or harvesting periods (Masutomi et al., 2012). In 77 
addition, floods can also be caused by heavy monsoonal rains. Notably, moderate levels of freshwater flooding 78 
may be beneficial to agricultural production (Chapman et al., 2016). On the other hand, droughts while 79 
uncommon have caused millions in economic loss, particularly in the agriculture sector (Grosjean et al., 2016). 80 
The most recent 2015-2016 drought affected all the Mekong Delta provinces and caused up to US$360 million 81 
in damage, of which US$300 million was agriculture and aquaculture-related damage (Nguyen, 2017).  82 

Arias et al. (2019) conceptually integrated local and regional drivers of change to illustrate the factors 83 
contributing to environmental change in the Mekong floodplains. Similarly, Nguyen et al. (2019b) recognized 84 
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that there are various drivers of change associated with adapting to widespread salinity intrusion in the 85 
Mekong and Red River Deltas and these drivers are constantly interacting with and providing feedback to each 86 
other. On a more technical level, Chapman and Darby (2016) used system dynamics modelling to simulate the 87 
delays, feedbacks and tipping points between farmers’ socioeconomic status and the practice of double or 88 
triple cropping in An Giang province in the MRD. Building on the framework provided by these studies, we use 89 
systems-thinking to present an overarching picture of how anthropogenic and natural hazard drivers can 90 
interact to reinforce or diminish rice production. While many studies may have highlighted the links between 91 
the various drivers and rice production, we seek to integrate the different drivers of anthropogenic change and 92 
natural hazards to show their inter-related and interdependent nature and how the processes associated with 93 
each driver affects rice growing areas, rice production and rice quality in general.  94 

The use of systems-thinking is appropriate as the “wicked” environmental problems present in the deltas of 95 
Vietnam are caused by a range of interdependent anthropogenic and natural hazards drivers operating at 96 
multiple scales with no easily identifiable, predefined solutions. While interventions may be made to 97 
ameliorate problems, these interventions may create feedbacks and unanticipated outcomes (Rittel and 98 
Webber, 1973; DeFries and Nagendra, 2017). In addition, systems-thinking can be applied in a range of 99 
contexts and at multiple scales. Geist and Lambin (2002) and Lim et al. (2017) applied a system-dynamics 100 
approach to understand drivers of deforestation and forest degradation at the national and global scales while 101 
Ziegler et al. (2016) used a transdisciplinary learning approach to understand the role of environmental and 102 
cultural factors in driving the development of human diseases in Northeast Thailand at the landscape scale. 103 

Our aim is to use a literature review to develop flow diagrams to represent the major linkages between 104 
anthropogenic land-use factors and natural hazards and elaborate on how they interact and influence rice 105 
productivity in these two deltas. Due to the importance of Vietnam as a major rice producer and exporter in 106 
Southeast Asia, as well as the range of threats faced by the rice sector from natural hazards and anthropogenic 107 
land-use, we hope to show how the processes and issues affecting food security are not one dimensional and 108 
linear but in fact reinforcing and interdependent. Lastly, given that deltas worldwide are globally significant for 109 
food production and are highly stressed and degraded landscapes, we argue that a systems-thinking approach 110 
can be applied to provide a holistic and contextualized overview of the threats faced in each location. 111 

 2. Methods  112 

2.1. Study sites 113 
The Mekong River Delta (MRD) is the world’s third largest delta with a physical area of 4 million ha 114 

and it is the larger of the two deltas in Vietnam (Schneider and Asch, 2020; Figure 1). In 2018, the planted area 115 
for spring, autumn and winter paddies was 1,573.5 thousand ha, 2,336.5 thousand ha and 197.2 thousand ha 116 
respectively. In total, 4.1 million ha of rice was planted over the three planting seasons with 24,507 thousand 117 
tons of rice produced. The delta is home to 17.8 million people with many dependent on agriculture for their 118 
livelihoods. That 54% of Vietnam’s rice is grown in the MRD and most of it is exported overseas makes it 119 
strategically important for the Vietnamese economy and for global food security (Chapman et al., 2016; 120 
Cosslett and Cosslett, 2018; General Statistics Office of Vietnam, 2020). Up north, the Red River Delta (RRD) is 121 
the next largest with a physical delta area of 1.5 million ha (Figure 1; Schneider and Asch, 2020). In 2018, 1 122 
million ha of planted rice produced 6,296.1 thousand tons of rice, the equivalent of 14% of Vietnam’s total rice 123 
production (524.3 and 516.4 thousand ha of rice was planted in the spring and winter seasons respectively). 124 
Approximately 21.6 million people live in the RRD with many also dependent on agriculture (General Statistics 125 
Office of Vietnam, 2020).  126 

Soils in the MRD are highly variable with alluvial, acid sulphate and saline soils dominant. Most of the rice 127 
grows on the highly fertile alluvial soils which are found in only 30% of the delta (GRSP, 2013). Conversely, soils 128 
in the RRD consist of Holocene delta sediments. These Holocene delta sediments are relatively fine-grained 129 
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muds and sands, up to 30 m thick that are the product of rapid progradation during the Holocene high sea 130 
level stand (Mathers and Zalasiewicz, 1999). The Holocene sequence overlies coarse-grained Pleistocene 131 
sediments dominated by braided river and alluvial fan deposits formed during the last glacial low sea level 132 
stand. The Quaternary sediments are underlain by a >400 m thick layer of Neogene sedimentary rocks that are 133 
made up of conglomerate sandstone, clay and siltstone (Berg et al., 2007). 134 

Climatically, the MRD has a tropical monsoon climate with two distinct seasons, a dry season from December 135 
to April and a rainy season from May to November. It is generally warm year round with average temperatures 136 
in 2018 ranging from 26°C in December, January and Feb to 29°C in May. The annual rainfall is between 2,000 137 
to 2,400 mm (General Statistics Office, 2018; Kotera et al., 2008). Conversely, the RRD has a tropical monsoon 138 
climate with three seasons: (1) a hot and wet season from May to September, (2) a cool and dry season from 139 
October to January and (3) a cool and humid season from February to April. The hot and wet season is 140 
characterized by high temperatures and high rainfall, the cool and dry season has moderate to low 141 
temperatures and low rainfall while the cool and humid season has a low to moderate temperatures and low 142 
rainfall (Huong et al., 2013; Li et al., 2006). In 2018, the monthly average temperatures in the RRD ranged from 143 
17°C in Feb to 30°C in June. Average annual rainfall is between 1,300 to 1,800 mm (Li et al., 2016; General 144 
Statistics Office, 2018). Both deltas are low-lying with elevations ranging from 0.7 to 1.2 m above sea level 145 
(Binh et al., 2017). 146 

In the MRD, favorable environmental conditions with ample rainfall, tropical temperatures and fertile alluvial 147 
soils, coupled with an extensive dike and irrigation system, have facilitated the production of three rice crops 148 
annually: winter-spring, summer-autumn and autumn-winter (Table 1; Figure 2). In 2018, the summer-autumn 149 
crop was the largest (12,763.7 thousand tons), the winter-spring crop was the second largest (10,833.7 150 
thousand tons), followed by the autumn-winter crop (909.6 thousand tons) (General Statistics Office of 151 
Vietnam, 2020). Compared to the MRD, rice is planted bi-annually in the RRD, first, from February to June 152 
(spring crop) and a second time from July to October (autumn crop) (Table 1; Figure 3). The chilly winters 153 
preclude the cultivation of a third crop of rice. Approximately 3,507 thousand tons of rice were produced 154 
during the spring cropping season while 2,789.1 thousand tons were produced during the autumn season in 155 
2018 (General Statistics Office of Vietnam, 2020). 156 

2.2. Literature review and causal loop diagrams 157 
We conducted an online search on Scopus, Web of Science, Google, Google Scholar and individual 158 

journal databases to find articles related to the effects of anthropogenic land-use change and natural hazards 159 
on rice agricultural systems in the RRD and/or MRD. Articles related to the environmental impacts of these 160 
anthropogenic interventions and natural hazards were included as these tend to explain the environmental 161 
processes in detail. A range of literature sources including peer-reviewed journal articles, book chapters and 162 
scientific reports from non-governmental organizations were included. In addition, we reviewed the 163 
bibliographies of our articles to follow up with any other relevant literature that was not listed in our search. 164 
Since sea level rise would affect the viability of the two deltas as major rice producing regions (Mainuddin et 165 
al., 2006), we also included relevant articles on sea level rise.  166 

We obtained 126 articles through our literature search (cf. supplementary materials). Every article was 167 
considered to be a single case study and was read in detail by the lead author. Thereafter, the natural or 168 
anthropogenic drivers and/or the environmental process that would lead to a change in rice productivity 169 
directly or indirectly were identified. Adopting a systems-thinking approach, we constructed flow diagrams to 170 
identify and visualize the interconnections among the drivers of rice productivity in both deltas.  171 

We first developed causal links which describe how an anthropogenic driver would influence rice productivity 172 
either directly or through an environmental process. We also documented if each driver had an increasing or 173 
decreasing effect on an environmental process that could influence rice productivity by affecting rice growing 174 
area, rice yield or rice quality. This relationship is represented by an arrow which indicates the direction of 175 
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influence, from cause to effect. The polarity of the arrows (plus or minus) indicates whether the effect is 176 
increasing or decreasing (Lim et al., 2017). A plus sign indicates that a link has “positive polarity” and a minus 177 
sign indicates “negative polarity.” The polarity of the causal link between A and B is said to be positive when an 178 
increase/decrease in A causes B to increase/decrease. A causal link is negative when an increase/decrease in A 179 
causes B to decrease/increase (Newell and Watson, 2002). We constructed two flow diagrams - the first flow 180 
diagram describes how anthropogenic land-use drivers affect rice growing area, rice yield per hectare and rice 181 
quality in the MRD and RRD (Figure 4), while the second causal flow diagram describes how natural hazards in 182 
the MRD and RRD affect rice growing area, rice yield per hectare and rice quality (Figure 6). The references we 183 
used are found in the Supplementary Materials.  184 

3. Results 185 

3.1. Local anthropogenic drivers 186 

3.1.1. Aquaculture and alternative crops 187 
Both deltas face widespread salinity intrusion that threatens rice production. In the Mekong Delta, 188 

salinity intrusion is a naturally occurring phenomenon during the dry season. Tides from the South China Sea 189 
and the Gulf of Thailand bring saltwater inland and salinity intrudes up to 70-90 km inland as the length of sea 190 
dikes is limited. There are 1,500 km of sea and estuary dikes in RRD versus 450 km of sea dikes in the MRD (Le 191 
et al., 2018; Preston et al., 2003; Pilarcyzk and Nguyen, 2005). Thus, salinity intrusion extends up to 20 km 192 
from the main river in the RRD (Ca et al., 1994). As rice plants are unable to thrive in soils with soil salinities 193 
exceeding 4 g/L (Pham et al., 2018b), affected farmers have converted their paddy fields into aquaculture 194 
ponds to cultivate shrimp and fish instead. Other farmers have turned to planting salinity tolerant crops such 195 
as coconut, mango and sugarcane. In some cases, farmers have opted for a rice-aquaculture system whereby 196 
rice is planted in the wet season and fish/shrimp is cultivated in the dry season when soil salinities are high 197 
(Nguyen and Vo, 2017; Pham et al., 2017). 198 

Besides environmental factors, the greater profitability of fruits, vegetables, fish and shrimp also incentivise 199 
farmers to plant more non-rice crops. The income per hectare of rice was USD 146 compared to pomelo (USD 200 
16,844) and coconut (USD 1,484) (Hoang and Tran, 2019). Meanwhile, farmers who practise shrimp-rice 201 
rotational systems earned 50% more than those who had two rice crops (Morton, 2020; Schneider and Asch, 202 
2020). In addition, high demand for fruits and vegetables for export and from growing urban populations with 203 
greater affluence and knowledge about nutrition, also encouraged farmers to diversify from rice monoculture 204 
leading to possible declines in the overall rice growing area (Hai, 2019; Nguyen and Vo, 2017; Figure 4). 205 

Finally, government policies encouraging farmers to move away from growing rice also contributed to the 206 
planting of more non rice crops on paddy land. As a result, there is increased use of paddy land for non-rice 207 
crops, orchards, freshwater and brackish aquaculture (Van Kien et al., 2020). Using remote sensing to assess 208 
land use and land cover change in the Mekong Delta, Liu et al. (2020) found that aquaculture had become the 209 
second largest land use type following planted land. This was facilitated by government regulations, salt 210 
intrusion and higher profitability of aquaculture productions. In any case, even though farmers may have 211 
moved on from growing rice, many still continue to apply excessive amounts of pesticides on their crops 212 
(Normile, 2017; Figure 4) 213 

3.1.2. Urban expansion 214 
Rapid urbanization is accelerating the loss of agricultural land in both the Red River Delta and Mekong 215 

River Delta. In Hanoi, a major city in the Red River Delta, 1,420 ha of agricultural land was lost per year from 216 
2000-2007, equivalent to a yearly loss of 3%. By 2025, up to 450,000 ha of agricultural land are expected to be 217 
converted to urban land. Most of this land use conversion occurs in peri-urban areas 5-15 km from the city 218 
centre. The same peri-urban land is often used to grow food, flowers and livestock to supply food for the 219 
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urban population in Hanoi. However, this land is considered by local authorities to be land reserve for urban 220 
planning, instead of resources for food supply (Drebold, 2017; Pham et al., 2015). Most of this peri-urban 221 
agricultural land is often forcibly obtained with minimal compensation given to farmers and then sold to 222 
foreign developers (Drebold, 2017). Similar urban expansion is also occurring in Can Tho city in the Mekong 223 
Delta with corresponding losses of agricultural land (cf. Garschagen et al., 2011; Pham et al., 2010). A decline 224 
in agricultural land means a decline in rice growing areas as well (Figure 4).  225 

High land prices and a shrinking availability of arable land have forced farmers to practise agricultural 226 
intensification. In the RRD, rice production grew more than 25% from 2000-2011 without corresponding 227 
increases in rice growing areas due to intensified cropping practices involving the use of new high yielding rice 228 
varieties, irrigation during dry season and high inputs of agrochemicals (Drebold, 2017; Morton, 2020). The 229 
high pesticide use was reflected in a study in Nam Dinh province in the RRD where 8 out of 12 target pesticides 230 
were found in agricultural soils. In this study, frequently detected pesticides include isoprothiolane, 231 
chlorpyrifos and propiconazole and besides polluting the environment, the presence of high concentrations of 232 
pesticide residues also lowers the quality of rice sold for consumption (Braun et al., 2018; Figure 4).   233 

In general, pests such as the brown planthopper are naturally occurring and are not a threat at low densities. 234 
However, intensive rice production with high seeding densities and the use of susceptible varieties creates a 235 
constant supply of food which allows their numbers to balloon. This is exacerbated by the asynchronous 236 
planting which creates a continuous supply of rice plants throughout the year in the Mekong Delta. In addition, 237 
the over-use of nitrogen fertilizers increase the pests’ reproductive potential. Thirdly, the excessive use of 238 
pesticides also kills the natural enemies of pests such as spiders, ants, bees, beetles, dragonflies, frogs, lady 239 
bugs and wasps. Besides killing the natural predators of rice pests, the pests targeted by the pesticides may 240 
also become resistant to the pesticide. As a result, higher doses of the pesticide may be needed to kill them in 241 
future. For example, killing plant hoppers now requires a pesticide dose 500 times more than was needed in 242 
the past (Normile, 2013). The overuse of pesticide is due to a combination of factors such as insufficient 243 
knowledge of its proper use as well as aggressive marketing by agrochemical companies (Bottrell and Schoenly, 244 
2012; Normile, 2013; Sebesvari et al., 2011). The hashed lines in Figure 4 show that pesticide use may not 245 
necessarily reduce the incidence of pests and diseases if excessive volumes were applied. 246 

3.1.3. Dikes 247 
Wet season flooding is a naturally occurring phenomenon in the two deltas of Vietnam (Chan et al., 248 

2012; 2015). To facilitate the planting of rice during the wet season, flood prevention dikes were constructed 249 
to keep floodwaters out (Figure 5). The MRD has more than 13,000 km of flood prevention dikes; of which 250 
8,000 km are low dikes below two meters tall. These low dikes were mostly constructed before 2000 to delay 251 
the entry of floodwaters at the start of the monsoon season to allow two rice crops to be grown. A severe 252 
flood in 2000 provided the impetus for river dikes to be heightened to 3.5 m to completely keep floodwaters 253 
out. These high dikes have facilitated triple cropping in the MRD, particularly in Dong Thap and An Giang 254 
provinces (Chapman et al, 2016; Howie, 2005; Le et al., 2018; Triet et al., 2017). However, the presence of high 255 
dikes in the MRD has reduced the supply of fertile alluvium, increasing the need for artificial fertilizers and 256 
pesticides to maintain yields (Chapman et al., 2017; Figure 4).  257 

A study comparing sediment deposition in areas of high and low dikes in An Giang Province found that double 258 
cropping farmers who cultivate their crops in areas with low dikes have an average of 2.5 cm of sediment 259 
deposition. This deposition by floodwaters improved their average annual input efficiency by 0.3 tons of yield 260 
per ton of fertilizer. Conversely, triple cropping farmers had very little deposition, averaging 0.5 cm as the high 261 
dikes kept floodwaters out. Some deposition was found only if there had been a dike breach which also caused 262 
crop damage (Chapman et al., 2016). The value of flood deposits is reiterated by Manh et al. (2015)’s study 263 
which estimated that the annual deposition of sediment bound nutrient can naturally supply over half of the 264 
fertilizers needed for a season of rice crop. The provision of “free” fertilizers by the encroaching flood waters 265 
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benefits the less economically endowed farmers who must purchase artificial fertilizers to maintain yields 266 
(Chapman et al., 2017; Kondolf et al., 2018; Figure 4). 267 

However, poorly planned and/or maintained dikes are not only functionally ineffective against floodwaters or 268 
coastal surges, they may become an amplifier of destruction when their presence creates a false sense of 269 
security which results in intensive development of low lying areas (Mai et al., 2009; Tran et al., 2018). In 270 
addition, areas unprotected by dikes may be more vulnerable to flooding as the excess water has to flow 271 
somewhere. Using a GIS-linked numerical model, Le et al. (2007) confirmed that engineering structures in the 272 
MRD increased water levels and flow velocities in rivers and canals. This in turn increased the risk of flooding in 273 
both non-protected areas and protected areas (due to dike failure). Hashed lines were used in Figure 4 to 274 
show that dikes do not necessarily reduce flooding. 275 

Likewise, the RRD is also heavily diked with 3,000 km of river dikes (Figure 5) but unlike the MRD, high dikes 276 
are absent (Pilarcyzk and Nguyen, 2005). Besides river and flood control dikes, there are also sea dikes and 277 
salinization prevention dikes in both deltas to protect the area from salinity intrusion. There are 1,500 km of 278 
sea and estuary dikes in the RRD. In the MRD, there are 1,290 km of salinization prevention dikes and 450 km 279 
of sea dikes (Le et al., 2018; Pilarczyk and Nguen, 2005; Figure 4).  280 

3.1.4. Sand mining 281 
Sand mining is carried out on a large scale in the Mekong (Kondolf et al., 2018). Fueled by demand 282 

from reclamation, export and construction, 55.2 million tons of sediment were extracted from the Mekong 283 
main stem in Laos, Thailand, Cambodia and Vietnam from 2011 to 2012 (Bravard and Gaillot, 2013; Robert, 284 
2017).  A more recent analysis of bathymetric maps and the local refilling processes by Jordan et al. (2019) put 285 
the amount of sand extracted from the Mekong Delta in 2018 at 17.77 Mm3.  286 
 287 
Besides removing large quantities of riverbed sediments, sand mining operations have created numerous pits 288 
and pools. These pits and pools which can be up to 45 m deep then become sediment traps, trapping bedload 289 
from upstream reaches and preventing them from travelling downstream and contributing to the continued 290 
presence and growth of the delta. In addition, bed incision also occurs as the water is sediment starved. The 291 
down-cutting of river banks can propagate upstream and downstream from the extraction sites for many 292 
kilometers in turn affecting river ecosystems over a large area (Kondolf et al., 2018). This bank incision results 293 
in land loss which threatens rice growing areas (Figure 4). 294 

Aggressive sand mining also disrupts natural flooding. A recent study of riverine mining on flood frequency in 295 
the Long Xuyen Quadrangle (LXQ) in the Mekong Delta found that flood frequency had dropped by 7.8% from 296 
2005-2015. Water levels at local gauge stations also showed an overall decreasing trend indicating that the 297 
lowering of the riverbed had reduced the frequency of flooding. Disrupted flood regimes result in reduced 298 
volumes of water and sediments for agricultural production. In addition, floodwaters typically deposit fertile 299 
sediments while flushing the pesticides and fertilizers accumulated from intensive agricultural production. 300 
When the flood frequency decreases, the frequency at which farmlands benefit from these natural soil quality 301 
enhancement decreases. Consequently, soil fertility may decrease over time and lead to declines in rice yields 302 
unless artificial fertilizers are added (Park et al., 2020; Figure 4).  303 

While there are several studies on the diffuse, yet insidious nature of sand mining in the Mekong (cf. Bravard 304 
and Gaillot, 2013; Bruiner et al., 2014; Jordan et al., 2019; Kondolf et al., 2018; Park et al., 2020; Robert, 2017; 305 
Schmitt et al., 2017), the extent of sand mining in the Red River Delta is unclear as there is almost no research 306 
on this issue. We did however come across an article in a Vietnamese newspaper about rampant sand mining 307 
in the Red River and how mining operations have caused erosion in nearby villages (Chinh, 2018). Similar to 308 
the situation in the MRD, the authorities have turned a blind eye to this illegal business (Bravard and Gaillot, 309 
2013; Chinh, 2018).  310 
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3.1.5. Groundwater extraction 311 
Another example of an anthropogenic development creating other interrelated problems is that of 312 

groundwater extraction. While groundwater extraction has increased the availability of water for human 313 
activities, it has exacerbated land subsidence which has increased the severity and extent of saltwater 314 
intrusion and reduced the suitability of land for rice cultivation (Figure 4). Minderhoud et al. (2017) developed 315 
a 3D numerical groundwater flow model of the MRD surface and found that subsidence rates from 316 
groundwater extraction were between 1.1 and 2.5 cm/year. The model also showed that 25 years of 317 
groundwater extraction since 1991 had resulted in a cumulative average of 18 cm of subsidence with some 318 
hotspots recording over 30 cm of subsidence. Land subsidence from excessive groundwater extraction acts as 319 
a catalyst that increases vulnerability to saltwater intrusion and reduces the availability of land suitable for rice 320 
production. 321 

Moreover, rice crops become contaminated with arsenic when arsenic-rich groundwater used for non-322 
agricultural use is discharged into rivers and the river water is used for rice irrigation (Lan and Giao, 2017; 323 
Minderhoud et al., 2018). High arsenic concentrations in groundwater seem to be of natural origin. In the 324 
Mekong Delta, naturally occurring biochemical and hydrological processes cause As to be released from Fe 325 
oxides in rocks and sediments into groundwater reservoirs (Fendorf et al., 2010). In addition, deep 326 
groundwater extraction causes interbedded clays to compact and expel water containing dissolved As (Erban 327 
et al., 2013). Crop quality is reduced when the arsenic enriched water is deposited on topsoils and absorbed by 328 
rice plants during growth (Rahman and Hasegawa, 2011; Figure 4). 329 

Similarly, prevalence of groundwater extraction is also high in the Red River Delta. Approximately 70% of the 330 
population living in the RRD access water from Holocene and Pleistocene aquifers (Berg et al., 2007; Winkel et 331 
al., 2011). Groundwater in the Red River Delta is also contaminated with high levels of As due to reductive 332 
dissolution of As from iron oxyhydroxides in buried sediment (Berg et al., 2007; Luu, 2019). Berg et al. (2007) 333 
sampled 196 tubewells randomly over a 700 km2 area in the Red River Delta and the concentrations of As in 334 
groundwater ranged from 1 to 3050 µg/L with an average of 159 µg/L. Separately, Winkel et al. (2011) 335 
collected 512 water samples from private wells in the Red River floodplain and found As concentrations 336 
varying from <0.1 to 810 µg/L with 27% of the samples exceeding the WHO guideline value of 10 µg/L. The 337 
high concentrations of As reduce the quality of rice harvested in the RRD if As gets into soils and river waters 338 
indirectly through the usage of As enriched groundwater (Figure 4). In a study on As accumulation in white rice 339 
from the Red River Region in Vietnam, Phuong et al. (1999) reported As values of between 0.03 to 0.47 µg g-1 d. 340 
wt with the mean value at 0.21 µg g-1 d. wt. The mean value was higher than the mean value reported for Thai 341 
rice (0.14 µg g-1 d. wt; range: 0.01 to 0.39 µg g-1) (Meharg et al., 2009). 342 

Lastly, although high As concentrations in groundwater is common in in the RRD (cf. Berg et al., 2007; Luu, 343 
2019; Pham et al., 2018a; Winkel et al., 2011), there is no research on (groundwater induced) land subsidence 344 
in the Red River Delta. Thus, the magnitude of land subsidence in the delta is uncertain and should be an area 345 
for future research. 346 

3.2. Regional anthropogenic drivers 347 

3.2.1. Upstream dams 348 
The Mekong River originates in the Tibetean Plateau and flows through China, Myanmar, Laos, 349 

Thailand, Cambodia and southern Vietnam. To meet growing demands for electricity, many small and large 350 
scale hydropower projects have been commissioned in each country to take advantage of this supposedly 351 
green and clean source of energy (Nhan and Cao, 2019; Manh et al., 2015). A total of 241 dams have been 352 
completed in the entire Mekong Basin with another 29 under construction. A further 91 is currently being 353 
planned. These 361 dams consist of 176 hydropower dams and 185 irrigation dams.  Of the 364 dams in the 354 
Mekong, 20 are in Vietnamese territory (WLE Mekong CGIAR, 2020a). Conversely, the Red River originates in 355 
Yunnan province in China and flows towards northern Vietnam. It is less heavily dammed with a total of 105 356 
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dams in China and Vietnam. There are 25 hydropower dams, 3 multi-purpose dams and 9 irrigation dams in 357 
the Red River Basin in Vietnam (Vinh et al., 2014; WLE Mekong CGIAR, 2020b).  While there are no dams in the 358 
Mekong River Delta or the Red River Delta due to its relatively flat elevation, upstream dam development 359 
influences downstream regions in many ways with the environmental impacts extending far beyond the dam 360 
itself (Kondolf et al., 2014).  361 

Firstly, a substantial amount of coarse sand, gravel and suspended sediment is impounded in reservoirs behind 362 
the dams instead of being transported downstream. This diminished sediment load may aggravate erosion 363 
downstream from the dam (Nhan and Cao, 2019; Figure 4). Using a network model, under a “definitive future” 364 
scenario of 38 new dams, the cumulative sediment reduction in the Mekong Delta would be 51%. Conversely, 365 
under full build-up of 133 new dams, only 4% of the pre-dam sediment load will reach the Delta (Kondolf et al., 366 
2014). Manh et al. (2015) also reached similar conclusions with a quasi-2D hydrodynamic model of suspended 367 
sediment dynamics. Floodplain sedimentation would decrease by about 21 to 96% while sediment load 368 
supplied to the sea at the river will diminish by 14 to 95% with the extreme values representing full dam build-369 
up. Even if dam construction was limited to the river tributaries instead of the main stem, the cumulative 370 
sediment trapped could be as high as 68% meaning that only about 32% of the sediment load would reach the 371 
Mekong River delta (Kondolf et al., 2014).  372 

Indeed, Binh et al. (2020) found that the suspended sediment loads in the MRD had decreased by 74.1% in 373 
2012-2015 primarily due to six mainstream dams in the Lancang cascade in China. In particular, the Manwan 374 
and Dachaoshan dams contributed to 32% of the reduction. In addition, from 2014-2017, the average incision 375 
rate of the Tien River in the MRD was three times higher than the previously recorded value. Sand mining was 376 
responsible for a max of 14.8% of the annual riverbed incision while the remainder was caused by hydropower 377 
dams upstream.  378 

The deleterious impacts of dams on sediment loads can also be found in the Red River Delta in spite of the 379 
smaller number of dams. While the Hoa Binh dam is located on a tributary of the Red River in Vietnam, its 380 
large size has influenced suspended sediment distribution in the lower Red River Basin. For example, an 381 
analysis of the suspended sediment concentration over a 50 year period from 1960 to 2010 showed that yearly 382 
suspended sediment flux had dropped by 61% at Son Tay near Hanoi (Vinh et al., 2014). Similarly, Duc et al. 383 
(2012) calculated that the suspended sediment budget at Son Tay and Hanoi Hydrological monitoring stations 384 
was reduced by 56% after the Hoa Binh Dam became operational in 1989. The reduction in sediment loads at 385 
the Red River Delta would likewise have a similar impact on delta size and rice growing areas. 386 

Besides a change in sediment loads, dams also alter stream discharge and water levels with concurrent effects 387 
on water supplies (not shown in Figure 4). When water levels are high during the rainy season, dams can be 388 
used to impound the excess water in the reservoir behind. During dry season when water levels are lower, the 389 
dams can release water downstream. In doing so, dams increase dry season discharge and decrease wet 390 
season discharge. The modification of seasonal water flows is problematic as changes in natural flow patterns, 391 
such as higher flows in dry season and lower flows in wet season would affect rice production as rice growing 392 
calendars are currently linked to the natural fluctuations of high and low flows (Robert, 2017). Hence, changes 393 
in water levels due to anthropogenic interventions may create unfavorable conditions for crop growth if 394 
planting calendars remain unchanged. In addition, lowered water levels during dry seasons due to upstream 395 
water impoundment can also lead to increased saltwater intrusion and create unfavorable growing conditions 396 
for rice farmers.  397 

3.3. Local natural hazard drivers 398 

3.3.1. Drought 399 
Droughts do not result solely from a lack of rainfall; they can also result from changes in the arrival of rains and 400 
the length of the wet season (Adamson and Bird, 2010; Lassa et al., 2016). Vietnam was affected by droughts 401 
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in 1997-1998, 2002-2003, 2009-2010 and most recently in 2015-2016. The 2015-2016 drought was the most 402 
severe in 90 years (Grosjean et al., 2016). All thirteen provinces in the Mekong Delta were affected by the 2015 403 
drought. Besides a lack of water for irrigation, the drought caused saltwater to intrude up to 70 km inland. 404 
Cumulatively, the drought and accompanying saltwater intrusion damaged 400,000 ha of rice crops including 405 
50,000 ha of paddy in Kieng Giang and Ca Mau provinces in the MRD (Grosjean et al., 2016; Nguyen, 2017). 406 
Although there is no research on how droughts and salinity intrusion have affected rice quality in Vietnam, 407 
research from elsewhere has shown that water shortages and salt stress induces physiochemical alterations 408 
which affect the rice grains produced (Pandey et al., 2014; Razzaq et al., 2019; Figure 6).  409 

Compared to the MRD, there is not much research or reports on droughts in the Red River Delta. The UNW-410 
DPC (2014) reported that the RRD experienced droughts from the end of 1998 to April 1999 which affected 411 
86,140 ha of rice. Another drought occurred from January to February 2004 with the water level of the Red 412 
River at the lowest in 40 years. Low water levels were also reported in 2010, however drought conditions and 413 
saltwater intrusion were more severe in the MRD (Overland, 2010). The effect of droughts on rice agriculture –414 
reduced yields from a lack of water and salinity intrusion would also be similar in the RRD. 415 

3.3.2. Freshwater flooding 416 
Ranked as the second most severe natural hazard after typhoons, freshwater floods are caused by 417 

overflowing rivers, heavy monsoonal rains or associated with heavy rain from typhoons (Chan et al., 2012; 418 
2015; Hung et al., 2012; McElwee et al., 2017). Theoretically, flooding reduces rice growing areas but it is 419 
simplistic to assume that flooded fields result in immediate loss of rice crops. A study by Kotera et al. (2005) in 420 
the RRD showed that the type of rice, stage of rice growth, lengths and depths of submergence were factors 421 
that influence the survival rates of rice crops. For example, the local variety Moc Tuyen was less resilient to 422 
submergence than the two other genetically improved high yielding varieties. In terms of growth stage, rice 423 
plants at the tillering stage are more likely to succumb to submergence than those at the vegetative stage. 424 
Plants fully submerged for short durations (two days) also had lower chances of survival than those that were 425 
partially submerged in floodwaters for longer durations (up to eight days). As such the effect of flooding on 426 
rice growing areas is uncertain as other factors that affect crop mortality include the type of rice grown, the 427 
stage of rice growth as well as the depth and length of submergence in floodwaters (Figure 6).  428 

Although severe flooding can disrupt agricultural activities, moderate levels of freshwater flooding bring 429 
benefits to (rural) farmers (EEPSEA, 2011). Floodwaters from rivers improve agricultural productivity by 430 
depositing nutrient rich flood sediments on agricultural soils (Chapman et al., 2016). In addition, floods wash 431 
away contaminants, purify and recharge aquifers, kill pests and mitigate saltwater intrusion (EEPSEA, 2011; 432 
Hoang et al., 2018; Figure 6). Aquatic resources such as fish, crabs and snails also come in with the floodwaters 433 
which local farmers can collect to supplement their incomes. Besides growing rice, it is also possible to 434 
cultivate vegetables, fish, prawns and ducks in the flooded fields (Nguyen and James, 2013). Towards the end 435 
of the flooding season and the start of the rice cultivation season, floodwaters provide the water needed to 436 
start growing rice (Hoa et al., 2008).  437 

While there are investments in flood prevention measures with the construction and upgrading of river dikes, 438 
the construction and dredging of reservoirs and drainage canals as well as the raising of roads and 439 
embankments, recent floods have caused substantial agricultural losses as current measures have proved to 440 
be inadequate (Hoa et al., 2008; Pilarczyk and Nguyen, 2005). In 2018, 39,000 ha of rice in the RRD was 441 
inundated by heavy rains and floods triggered by Typhoon Son Tinh (VNA, 2018a). Similarly, due to a lack of 442 
embankments and/or poor construction and maintenance of existing embankments, more than 2,000 ha of 443 
rice were lost during the annual floods in 2018. An Giang province was the worst affected, losing 1,270 ha of 444 
rice (VNA, 2018b).  445 
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3.3.3. Typhoons 446 
Typhoons are the most severe natural hazard that affects Vietnam. When a typhoon occurs, affected 447 

areas are exposed to strong winds of up to 50 m/s and up to 300 mm of rainfall in a day. As the rainy season in 448 
Vietnam coincides with the typhoon season, widespread flooding can be expected from heavy rain and 449 
overflowing rivers (CCFSC, 2005; Mai et al., 2009; Nguyen et al., 2019a). Storm surges can also occur when high 450 
winds pushing on the ocean’s surface is combined with the effect of low pressure in the center of a typhoon 451 
(Takagi et al., 2013). Imamura and Dang (1997)’s study of typhoon disasters in Vietnam since 1950 found that 452 
half of the 450 typhoons recorded during the study period were accompanied by a storm surge of over 1 m 453 
and 11% were over 2.5 m high. In the Red River Delta, Quynh et al. (1998) found that the maximum storm 454 
surge is usually between 1 to 1.5 m above mean sea level. In short, rice production will be adversely affected 455 
by strong winds and widespread flooding from heavy precipitation and storm surges in the event of a typhoon. 456 
Saltwater flooding may reduce the rice growing areas as rice is not adapted to withstand prolonged 457 
submergence and/or saline conditions. Additionally, strong winds damage rice plants with both effects 458 
contributing to a reduction in rice yields (Figure 6).   459 

Although a stronger typhoon usually bring higher wind speeds, more rainfall, larger waves and higher storm 460 
surges (Larson et al., 2014), the quantity of agricultural losses depends on factors such as landfall location(s) 461 
and whether the typhoon occurs during the vulnerable heading or harvesting periods (Masutomi et al., 2012). 462 
For example, Typhoon Mirinae (2016) which made landfall in Nam Dinh as a tropical storm damaged or 463 
submerged 225,216 ha of rice. Meanwhile Typhoon Nesat (2011) which made landfall in Hai Phong with a 464 
similar intensity caused only 3,500 ha of rice damage. Conversely, Typhoon Kalmai (2014) which made landfall 465 
in Quang Ninh as a slightly stronger category 1 storm caused 20,000 ha of rice damage (Nhân Dân, 2014; 466 
United Nations Vietnam, 2016; Viêt Nam News, 2011).  467 

An average of five to six typhoons affects Vietnam between June and November every year (Larson et al., 2014; 468 
Nguyen et al., 2007). Typhoon activity shifts from the north to the South as the year progresses. Therefore, 469 
peak activity in the north and southern part of Vietnam is in August and November respectively (Imamura and 470 
Dang, 1997). We reviewed the Digital Typhoon Database and found 303 typhoons that came within 500 km of 471 
Vietnam’s coastline from 1995 to 2018. 29 cyclones made their initial landfall in the Red River Delta while only 472 
four cyclones made landfall in the Mekong Delta during the study period – one each in 1973, 1996, 1997 and 473 
2006 (Unpublished results). Although the MRD is less prone to typhoons, the two of the most recent typhoons 474 
caused significant damage despite each being classified as a tropical storm upon landfall. Typhoon Linda (1997) 475 
caused some 349,232 ha of rice to be submerged while Typhoon Durian (2006) damaged 6,978 ha of 476 
agricultural land (International Federation of Red Cross and Red Crescent Societies, 2006; UN Department of 477 
Humanitarian Affairs, 1997).  478 

Lastly, typhoons may not necessarily be bad all the time. Darby et al. (2016) combined suspended sediment 479 
load data from the Mekong River with hydrological model simulations to examine the role of typhoons in 480 
transporting suspended sediments and found that one-third (32%) of the suspended sediment reaching the 481 
delta is delivered by runoff generated by rainfall associated with typhoons. When a typhoon affects areas 482 
upstream, the land receives higher than usual levels of rainfall which may trigger landslides. This sediment can 483 
be transferred into rivers and delivered downstream. While the role of tropical typhoons in sediment 484 
mobilization is unclear given the lack of research in this area, such findings have important implications for the 485 
MRD as sand mining and upstream dams have caused sharp declines in fluvial sediment loads with 486 
corresponding impacts on channel incision and flood frequencies (Brunier et al., 2014; Rubin et al., 2015; Park 487 
et al., 2020).  488 

3.3.4. Pests and diseases 489 
Examples of pests that occur in rice fields of Vietnam include the brown planthopper (BPH, 490 

Nilaparvata Lugens Stål), white backed planthopper (WBPH, Sogatella furcifera Horvath) and small brown 491 
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planthopper (SBPH, Laodelphax striatellus Fallen). These planthoppers not only damage plants by ingesting its 492 
sap, they also transmit pathogenic viruses that kill the plants.  The BPH is a vector for the rice grassy stunt virus 493 
(RGSV) and the rice ragged stunt virus (RRSV); the WBH transmits the southern rice black streak dwarf virus 494 
while the SBH vectors the rice stripe virus (RSV) and the rice black streaked dwarf virus (RBSDV) (Bottrell and 495 
Schoenly, 2012; Matsukawa-Nakata et al., 2019). Other pests that affect rice include parasitic worms called 496 
nematodes. Root nematodes that affect deepwater and irrigated rice fields in the MRD include 497 
Hirschmanniella oryzae (rice root nematode), Hirschmanniella murcronata and Meloidogyne graminicola (rice 498 
root knot nematode). Stem nematodes like the Ditylenchus angustus infect floating, deepwater and rainfed 499 
lowland rice in the MRD (Nguyen and Prot, 1995). Other significant pests of rice in Vietnam include rice leaf 500 
folders, rice thrips and stem borers (Sebesvari et al., 2011). Meanwhile, common rice diseases include bacterial 501 
leaf blight, bakanae, black rot of grain, brown spot, leaf yellowing disease, neck blast, rice blast disease, root 502 
rot, sheath blight, sheath rot and stem rot (Pinnschmid et al., 1995; Sebesvari et al., 2011; Trung et al., 1995; 503 
Kim et al., 1995).  504 

Between 2005 and 2008, rice production in the Mekong Delta was severely reduced by outbreaks of brown 505 
planthopper and the associated virulent diseases. The problem was particularly severe in An Giang, Dong Thap 506 
and Tien Giang provinces with more than 50% of the cultivated areas affected (Berg and Tam, 2012). In 2009, 507 
the Southern rice black streaked dwarf virus affected 19 provinces in North Vietnam including those in the Red 508 
River Delta. More than 80% of the rice fields in Nam Dinh, Nghe An, Quang Ninh and Thai Binh provinces were 509 
infested and yield was non-existent (Hoang et al., 2011). In short, an increase in pest and/or disease outbreaks 510 
will likely cause a reduction in rice yield (Figure 6). 511 

3.4. Global natural hazard driver 512 

3.4.1. Sea level rise (SLR) 513 
Besides creating new environmental challenges, pre-existing threats to rice production and food 514 

security will be exacerbated by climate change. One of the effects of climate change includes rising sea levels. 515 
Globally, The IPCC has projected sea levels to rise from a rate of 3.2 mm/year from 1993 to 2010 to as much as 516 
10 mm/year or more by 2010 (Church et al., 2013). This may result in a 0.98 m increase in sea level by 2100 517 
(Lassa et al., 2016). To quantify sea level rise locally, observations at tide gauges across Vietnam have recorded 518 
an average yearly increase of 3.3 mm from 1993-2014 (Hens et al., 2018). SLR may also increase the risk of 519 
storm surges (Hanh and Furukawa, 2007). In the Red River Delta, Neumann et al. (2015) found that sea level 520 
rise through 2050 could reduce the recurrence interval of the current 100 year storm surge with a 5 m height 521 
to once every 49 years. Inadequately constructed and poorly maintained dikes and embankments may be 522 
breached resulting in saltwater flooding which will damage rice growing areas and other properties (Hanh and 523 
Furukawa, 2007; Figure 6).  524 

Rising sea levels coupled with accelerated coastal subsidence caused by excessive groundwater extraction will 525 
cause large portions of the low lying RRD and MRD to be inundated and flooded (Allison et al., 2017). This 526 
facilitates the infiltration of saltwater into groundwater aquifers and this may increase salinity gradients in the 527 
MRD and RRD. In particular, salinity intrusion will worsen during the dry season. Approximately 1.8 million ha 528 
in the MRD are already affected by dry season salinity of which 1.3 million ha are affected by salinity levels 529 
above 5 g/L (Lassa et al., 2016). This area is predicted to increase to 2.2 million ha with rising sea levels. 530 
Meanwhile, in the northeast part of the RRD, the 1% salinity contour has migrated landwards by 4 to 10 km 531 
(Hanh and Furukawa, 2007). Increased soil salinization leads to a loss of land available for rice production 532 
(Figure 6). Though there are already sea dikes and saline water intrusion slices in both the MRD and RRD to 533 
reduce incursions of seawater (Braun et al., 2018; Tuong et al, 2003), they may be inadequate if they are not 534 
well maintained and upgraded. 535 
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4. Discussion 536 

4.1. Untangling complexity 537 
Relevant information on the different drivers and environmental processes affecting rice production 538 

in Vietnam are fragmented in a range of academic and non-academic sources (Bosch et al., 2007) making it 539 
difficult for policymakers and managers to have a good overview of the reinforcing and interdependent 540 
processes and issues affecting food security in Vietnam. Using a systems-thinking approach, we amalgamated 541 
the various drivers and created flow diagrams to consider how rice productivity can be positively or negatively 542 
impacted by the various drivers and environmental processes (Figures 4, 6). Rice growing areas are negatively 543 
affected by the expansion of aquaculture and alternative crops and urban expansion. But with agricultural 544 
intensification facilitated by high agrochemical inputs, it was possible to maximize rice yields in spite of a 545 
smaller growing area. However excessive agrochemical use affects rice quality and may have an opposite 546 
effect on the prevalence of pests and diseases. Next, anthropogenic developments meant to improve 547 
agricultural productivity or increase economic growth can create many unwanted environmental 548 
consequences. Dikes keep floodwaters and salt intrusion out but there is a reduction in fertile silt deposits. 549 
Sand mining increases channel erosion and reduce the frequency of natural freshwater flooding. Similar to 550 
sand mining, upstream dams affect sediment accumulation as sediments are trapped in reservoirs upstream 551 
but the impacts of  upstream dams extend over a larger geographical area. Lastly, groundwater extraction 552 
causes land subsidence, saltwater intrusion and arsenic contamination with negative feedbacks on rice 553 
growing areas and the quality of rice produced.  554 

Natural hazards not only affect rice quality and quantity but may also amplify some the problems created by 555 
human activities – for instance, typhoons and sea level rise may induce saltwater flooding and aggravate 556 
salinity intrusion. Conversely, droughts also worsen the extent of salinity intrusion but due to a lack of fresh 557 
water. Overall, a substantial reduction in sediment from sand mining and upstream dams, coupled with the 558 
process of land subsidence from groundwater extraction and rising sea levels will potentially reduce rice 559 
growing areas in future. Besides sea level rise, climate change may also exacerbate the effects of natural 560 
hazards by increasing the frequency and severity of natural disasters (cf. Hausfather et al., 2017; Grosjean et 561 
al., 2016; Terry et al., 2012). As such, the problems such as excessive saltwater flooding and saltwater intrusion 562 
may intensify. 563 

The use of flow diagrams provides a visual overview of the key anthropogenic drivers and natural hazards that 564 
affect rice production but we caution that Red River Delta and the Mekong River Delta are vast and diverse 565 
regions and there are differences in the ways each delta is affected by natural hazards and anthropogenic 566 
drivers. For example, high dikes and the associated problem of sediment exclusion are a problem unique to the 567 
Mekong Delta (Chapman et al., 2017). Next, compared to the Mekong, the Red River has substantially fewer 568 
dams (361 vs 105).  In addition, typhoons are less common in the Mekong Delta and droughts occur less 569 
frequently in the Red River Delta.  570 

Within each delta, typhoons tend to affect coastal provinces more than those further inland. Similarly, arsenic 571 
contamination and saltwater intrusion is not an issue everywhere across the two deltas. A comparison study of 572 
arsenic pollution in the Mekong and Red River Deltas showed that groundwater arsenic concentrations ranged 573 
from 1-845 µg/L in the MRD and from 1-3050 µg/L in the RRD. Hotspots with high arsenic concentrations were 574 
likely due to local geogenic conditions (Berg et al., 2007). For salinity intrusion, Kotera et al. (2005) measured 575 
salinity concentrations in river and canal water across four Mekong Delta provinces and showed that the 576 
salinity levels ranged from 0.6 to 14.4 g/L while a localized study in the Nam Dinh province in the RRD showed 577 
that salt concentration in river water was higher at the river mouth than in upstream locations. Hence, given 578 
the possibility of spatial variations within a large landscape, it is important for local conditions to be taken into 579 
consideration. 580 
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One limitation of our study is that it was not possible to include all the problems that can potentially affect rice 581 
cultivation in our flow diagrams. We acknowledge issues related to industrial pollution, which may reduce rice 582 
quality and rice productivity (Khai and Yabe, 2012; 2013; Huong et al., 2008). In spite of this, our study 583 
presents the major issues that are common in both deltas and describes how the issues and processes 584 
affecting rice production are interrelated and may operate at different scales. Additionally, a systems-thinking 585 
approach has allowed the multitude of drivers and environmental processes affecting rice production to be 586 
visualized and mapped in a manner that is easy to understand. As ameliorating problems require policymakers 587 
and managers to have a good grasp of the different factors and processes present, a method that considers all 588 
the different drivers and possible unintended consequences from the outset can avoid oversimplifying a 589 
problem and assuming a straightforward solution can be found (DeFries and Nagendra, 2007). For example, to 590 
solve the problem of a shrinking delta, the effects of (high) dikes, sand mining, upstream dams and 591 
groundwater extraction have to be considered. While typhoons may provide some fluvial sediment to offset a 592 
shrinking delta (Darby et al., 2016), the sediment load provided may not be sufficient to offset sediment loss 593 
from sand mining and upstream dams. 594 

4.2. Adaptation and soft solutions 595 
Recognizing the environmental challenges limiting agricultural production, farmers in both deltas 596 

have adapted and improvised. Instead of accepting their fate, farmers overcome high soil salinities by 597 
implementing measures such as replacing rice with salinity tolerant crops, transiting to shrimp aquaculture, or 598 
turning to rice-shrimp farming whereby rice is grown in the wet season and shrimp is cultivated in the dry 599 
season. For those unable to switch from rice monoculture, farmers have sought to grow rice on higher ground, 600 
shift crop calendars or dig additional ditches to drain saltwater and store freshwater. In addition, to prevent 601 
water storage ponds from becoming contaminated with saltwater, canvas sheets are placed on the soil surface 602 
to create a protective barrier (Tran et al., 2019; Nguyen et al., 2012). Similarly, farmers in peri-urban areas who 603 
are faced with shrinking agricultural lands have turned to practicing agricultural intensification and/or 604 
switched to planting high value crops such as fruits and vegetables (Morton, 2020; van den Berg et al., 2003). 605 
In short, farmers are constantly experimenting, learning and sharing knowledge and experiences with other 606 
farmers to come up with solutions for overcoming environmental limitations (Tran et al., 2019; Nguyen et al., 607 
2012).  608 

Unfortunately, adaptations are not successful all the time. For example, the widespread conversion of paddy 609 
fields to shrimp ponds will increase soil salinity and reduce the availability of freshwater. Over time, neighbors 610 
who have not switched to aquaculture may be unable to plant rice and would have to seek alternative 611 
livelihoods (Nguyen et al., 2012).  In addition, rice-shrimp systems are not problem free as well. Leigh et al. 612 
(2017) found that environmental conditions in rice-shrimp systems were suboptimal and contributed to low 613 
yields and survival. Water temperature and salinity tended to be too high in the dry season and dissolved 614 
oxygen too low, causing most shrimps to die. For rice, the high soil salinity caused by having the aquaculture 615 
pond was a major limitation – in their study, only three out of 18 ponds produced a harvestable rice crop.  616 

Apart from farmer-led initiatives related to crop and land use change, integrated pest management (IPM) 617 
should also be adopted to reduce the use of pesticides to rid pests. Farmers who practise IPM use a 618 
combination of pest resistant cultivars, fertilizer management and agronomic practices to increase the effects 619 
of predators and other naturally occurring biological control agents. For example, farmers can grow flowers, 620 
okra and beans along their paddy fields to attract bees and wasps that infest planthopper pests’ eggs. With 621 
more natural predators around, pesticides are only used when necessary (Bottrell and Schoenly, 2012; Normile, 622 
2013). Alternatively, rice-fish farming and duck-rice systems can also be implemented to provide a more 623 
economically and ecologically sustainable alternative to intensive rice monoculture (Berg and Tam, 2012; Men 624 
et al., 2002).  625 
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In rice-fish farming, farmers use minimal pesticide as it kills the fish and the natural predators of rice pests. 626 
Instead, fish help to control pests and fish droppings keep the soil fertile. Upon maturity, the fish can be sold 627 
to increase the farmer’s income by up to 30% (Berg et al., 2017; Bosma et al., 2012). Ducks can also be reared 628 
in immature rice fields. Besides providing food, the ducks serve as biological controls for insects and weeds. 629 
Their droppings fertilize the soils and their movement aerates the water to benefit the rice plants (Men et al., 630 
1999; 2002). Men et al. (2002) showed that a duck-rice system in Can Tho province in the Mekong eliminated 631 
the use of pesticides, halved the use of fertilizers and the additional income from the sale of ducks increased 632 
farmers’ incomes by 50 to 150%. Overall, the higher incomes and ecosystem services provided by the fish or 633 
ducks, coupled with reduced agrochemical use benefit farmers.  634 

Increasingly, there are calls to move away from three to two rice crops a year in the MRD. Instead of planting a 635 
third crop, floodwaters are allowed to enter the fields to replenish soil nutrients, wash away contaminants, kill 636 
pests and mitigate salinity intrusion. Fish, crabs and snails that arrive with the floodwaters can be collected for 637 
additional income. Triple cropping of rice provides only a single ecosystem service which is marketable rice. On 638 
the other hand, the integration of rice cropping with natural flooding creates a series of positive feedback 639 
mechanisms and ecosystem services that include providing natural pest control and facilitating nutrient cycling 640 
(Nikula, 2018; Tong, 2017).  However, a study by Tran and Weger (2018) in An Giang province revealed that 641 
despite official encouragement to move away from triple cropping, most farmers have largely ignored the 642 
directive as they preferred to earn money from the additional rice crop. In addition, many of them felt that the 643 
benefits of flooding the land were minimal as upstream dams have drastically reduced fertile sediment and 644 
fish. Evidently, farmers are willing to make changes to their farming practices only if it benefits them.  645 

To mitigate “wicked” environmental challenges, there is a need for holistic land use planning and soft 646 
measures (eg. implementing crop and land use change) on top of hard engineering structures. Previously, 647 
management options to increase agricultural productivity and mitigate the threats posed by natural hazards 648 
were largely characterized by hard options such as the construction of dikes, sea walls and sluice gates. These 649 
were typically top-down projects spearheaded by the local government (Neumann et al., 2015; Smajgl et al., 650 
2015). While highly visible engineering structures are easily constructed and generally effective, unwanted side 651 
effects may be created. For example, flooding and sediment exclusion were some problems that were 652 
inadvertently created due to the presence of high dikes. In the long term, (costly) maintenance is needed to 653 
maintain the functionality of engineered structures (Hoang et al., 2018; Neumann et al., 2015). In addition, 654 
during the pre-construction phase, natural vegetation may be cleared (Geist and Lambin, 2002). Adopting a 655 
systems-thinking approach would allow policymakers and managers to situate the range of mitigation 656 
measures within broader environmental processes. In doing so, a clearer view of the possibilities and 657 
challenges present in an era of widespread anthropogenic development and changing climates is provided. 658 

5. Conclusions 659 
The focus of this paper is on the impacts of land use patterns and natural hazards on rice agriculture 660 

in the Mekong and Red River Deltas in Vietnam. While we focused on rice agriculture, these two deltas, like 661 
many other deltas worldwide, are also major production hubs for fruits and vegetables (Day et al., 2016; Nhan 662 
and Cao, 2019). Hence, the natural hazards and anthropogenic factors listed will have an effect on other 663 
agricultural produce as well.  664 

A key finding is that demand for aquaculture and alternative crops and urban expansion has diminished rice 665 
growing areas. The problem of shrinking agricultural land is ameliorated by agricultural intensification which 666 
has increased land efficiency. However, widespread agrochemical use causes land and water pollution and 667 
reduces crop quality. In addition, anthropogenic developments such as dike construction can improve 668 
agricultural productivity but also create unintended environmental problems. Even human activities that are 669 
unrelated to agriculture such as sand mining, groundwater extraction and dam construction can reduce rice 670 
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productivity.  In addition, natural hazards not only affect rice quality and quantity but may also amplify some 671 
of the problems created by human activities – for instance, typhoons and sea level rise may induce saltwater 672 
flooding and worsen salinity intrusion. In the future, climate change may exacerbate the effects of natural 673 
hazards by increasing the frequency and severity of natural disasters. Therefore, the problems associated with 674 
some of the natural hazards such as excessive saltwater flooding and saltwater intrusion may be more 675 
frequent and possibly worse. In sum, the processes and issues affecting food security are multidimensional and 676 
interdependent and we used a systems-thinking approach to develop a visual representation of the ways in 677 
which anthropogenic land-use factors and natural hazards can affect rice quantity and quality in the MRD and 678 
the RRD in Vietnam. We have also sought to define whether the anthropogenic or natural hazard driver was a 679 
local, regional or global driver to highlight the scale at which each driver operates.  680 

Our review focuses on food security in Vietnam’s two deltas but can be applied to other contexts. The 681 
problems present in the two deltas in Vietnam are hardly unique. Across the world, deltas are global food 682 
production hubs that support large populations. Nearly half a billion people live in deltaic regions. Similar to 683 
the Mekong and Red River Delta, large tracts of deltaic wetlands in other countries have been reclaimed for 684 
agriculture, aquaculture, urban and industrial land use. Resultantly, many deltas suffer from flooding, 685 
retreating shorelines due to upstream dams, pollution problems and increasing land subsidence due to 686 
groundwater and mineral extraction. With climate change, rising sea levels will further threaten the viability of 687 
the deltaic landform (Chan et al., 2012; 2015; Day et al., 2016; Giosan et al., 2014; Syvitski et al., 2009).  688 

Given that river deltas worldwide are highly stressed and degraded, a systems-thinking approach can provide a 689 
holistic overview of the “wicked problems” faced in each location and how the various environmental 690 
processes interact with each other. Although our study has focused on rice agriculture in the two deltas in 691 
Vietnam, the application of a systems-thinking approach to evaluate other pertinent phenomena in deltas 692 
elsewhere is a useful tool for understanding how human activities, natural hazards and climate change have 693 
compromised deltaic sustainability.  694 
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Table 1259 
Table 1. Rice planting, growing and harvesting periods in the Mekong River Delta and the Red River Delta in 1260 
Vietnam. 1261 

 Planting Harvesting  
Mekong River Delta Onset Peak End Onset Peak End Growing period 
Winter-spring 1 Nov 30 Nov 30 Dec 15 Feb 25 Mar 30 Apr 115 – 120 days 
Summer-autumn 15 Mar 15 Apr 15 May 20 Jun 20 Jul 25 Aug 95 – 100 days 
Autumn-winter 30 Jun 20 Jul 20 Aug 5 Oct 25 Oct 30 Nov 95- 100 days 
Red River Delta Onset Peak End Onset Peak End Growing period 
Spring 25 Jan 10 Feb 25 Feb 5 Jun 15 Jun 25 Jun 115 - 130 days 
Autumn 15 Jun 1 Jul 20 Jul 5 Oct 25 Oct 10 Nov 105 - 110 days 
 1262 

Figures 1263 

 1264 

Figure 1. Distribution of rice growing areas in the Red River Delta (RRD) in northern Vietnam and the Mekong 1265 
River Delta (MRD) in southern Vietnam. Rice growing extents were obtained from Nelson and Gumma (2015). 1266 
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 1270 

Figure 2. Climograph for the Mekong River Delta annotated with the winter-spring, summer-autumn and 1271 
autumn-winter growing seasons. The colour gradient (from faded to dark) represents planting, growing and 1272 
harvesting times for each crop. Precipitation and temperature data were taken from the Statistical Yearbook of 1273 
Vietnam 2018 (General Statistics Office, 2018).  1274 

 1275 

Figure 3. Climograph for the Red River Delta annotated with the spring and autumn growing seasons. The 1276 
colour gradient represents planting, growing and harvesting times for each crop. Precipitation and 1277 
temperature data were taken from the Statistical Yearbook of Vietnam 2018 (General Statistics Office, 2018). 1278 
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 1279 

Figure 4. Flow diagram showing the key anthropogenic drivers that affect rice production in the two mega-1280 
deltas of Vietnam. The drivers are classified as a local driver if it occurs in the two mega-deltas. Regional 1281 
drivers are those that occur further away from the two mega-deltas, but within the Asian region. A plus (+) sign 1282 
indicates that an increase/decrease in A causes B to increase/decrease. A negative (-) sign indicates an 1283 
increase/decrease in A causes B to decrease/increase. Hashed lines with “+/-“ are used when outcomes are 1284 
unclear. For example, dikes reduce flooding but poorly maintained or planned dikes increase flooding instead. 1285 
In additions, dikes may potentially cause flooding in unprotected areas. Agrochemical use may reduce the 1286 
incidence of pests and diseases but the over-use of chemicals can lead to pesticide resistance which may 1287 
increase outbreaks of pests and diseases. 1288 

 1289 

 1290 

 1291 

 1292 

 1293 

 1294 

 1295 

 1296 

 1297 



 
 

30 
 

 1298 

Figure 5. Example of a river dike for flood control in Nam Dinh province in the Red River Delta.  1299 
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 1300 

Figure 6. Flow diagram showing the natural hazards that affect rice production in the two mega-deltas of 1301 
Vietnam.  Local drivers refer to natural hazards that occur within the two mega-deltas. Although sea level rise 1302 
has implications on a local scale, it is considered a global driver as it occurs on a global scale. The effect of 1303 
flooding on rice growing areas is uncertain as other factors that affect crop mortality include the type of rice 1304 
grown, the stage of rice growth as well as the depth and length of submergence in floodwaters.  1305 
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