Paper ID: https://doi.org/10.5194/nhess-2020-195-RC1, 2020

Paper Title: Integrated evaluation of water-related disasters using the analytical hierarchy process under land use change and climate change issues in Laos

We wish to thank you all for your constructive comments in this round of review. Your comments provide valuable insights to refine its contents and analysis. In this document, we try to address the issues raised as best as possible

 $\# 1^{st}$ referee

Line 19: a comma is essential	The comma has been added on line 19.
after country	
line 22: instead of 'can lead to'	We revised it as your comment.
you may change to 'can	
increase'	
It seems that the current version	We highly appreciate you for beneficial comments.
lacks of international	We agree with the referee comment. The additional
significance of this work.	references are important for our work. Therefore, the
Hence think they may consider	literature recommended have been added in the
the following works to	introduction section on
improve its readership.	• line 34-36
Furthermore, authors reviewed	
existing works but missed	In addition, based on Adnan's study (2020) on land
many in the area	use/land cover change and flood hazard on poverty in
https://royalsocietypublishing.	Bangladesh. At the end of their study, they argue that
org/doi/pdf/10.1098/rsos.1919	disorganized planning for land use is increasing flood
57	and poverty.
https://www.sciencedirect.com	• line 40-45
/science/article/pii/S22124209	
20312632	Shah (2020) simulates surface water under different
https://www.sciencedirect.com	climate change scenarios using a set of regional
/science/article/pii/S02648377	circulation model (RCM) and soil and water assessment
20305470	tool (SWAT) model for the mid-century (2040-2070) and
https://www.nature.com/article	the late century (2071-2100). The result of SWAT under
s/s41598-020-69233-2	future scenarios shows increase of steam flow for the mid
	to the late 21th century. However, the increase of steam
	flow for the mid-century was slightly higher compared

	with the late century due to the increase of temperature
	impact on snowfall and its accumulation.
	 line 83-88
	inic 83-88
	Yousefi (2020) produced a multi hazard risk map in a
	mountainous area using machine learning such as support
	vector machine, boosted regression tree, and generalized
	linear model to find the best model for each hazard.
This requires serious attention	This sentence was not clear. We revised it as follows.
Section 3.2: What do you	
mean by expressions in lines	The overland flow has two runoff processes, which are surface
108-109? Unclear	flow and subsurface flow, and these flows are connected by
	infiltration process.
	More detailed information is available from
	Phrakonkham(2019) as shown in the main text.
What was the resolution of	The DEM on the model is 1km x 1km made from the original
DEM and what	data with a spatial resolution 90 m x 90 m for the distributed
was the vertical accuracy of the	model. Shuttle Radar Topographic Mission (SRTM) Digital
model?	Elevation Map (DEM) was used in this study and based on the
	'The Shuttle Radar Topography Mission Data Validation and
	Applications Workshop, 2005' mentioned 6.2m as the absolute
	vertical accuracy.
Clarify Section 3.6.1 This	We agree with the referee comments about section 3.6.1 and
section requires	have revised this section more clearly as below:
describing the method clearly,	have revised and section more clearly as ociow.
how have you done this?	We propose a hazard index, which is adapted from the
now have you done this?	
	relationship between velocity and flood depth (Sally et al.,
	2008). The index is used for the identification of hazard area
	where most of adults are unable to stand in floodwater depth
	more than 1.5m and are unable to stand in flood water depth 0.5
	m and velocity 2 m/s (Russo et al., 2014; U.S. Department of
	the Interior, 1988). The index is scaled from zero to one, with
	zero representing the lowest hazard and one representing the
	highest hazard, and is divided into four categories from small to
	very high hazard. A top table of Figure 1 shows these categories

	for velocity and flooded depth. Here the categories for flood
	depth were shown as a case of velocity 0 m/s as one example in
	a middle table of Figure 1 and we obtained a relationship
	between flood depth and the hazard index on a bottom graph of
	Figure 1. This process providing to the hazard index was
	applied to the study area using velocity and flood depth by the
	numerical simulation.
Existing texts do not support	The text in line 174 has been changed to "we wanted to"
this Line 174: should be "we	
wanted to"	
Line 185: How they have been	We made the interview for all of experts of government offices
chosen? At	in the field of hazards and risks.
random? Was there any ethical	For the questionnaire we obtained ethical permission.
permission sought? What were	The main elements of questionnaire in this study are to
the main elements	understand weighted values on important aspects used in
of questionnaire?	making decision by experts for five criteria according to AHP
	process.
Discussion section is not	These sentences have been added to the discussion part to
properly reflecting what are	improve the section in the text:
you trying to	improve the section in the text.
achieve relative to your	Dankers and Feyen (2008) assessed the influence of climate
objective(s).	change to future flood hazard in Europe. They concluded that
	discharge from many rivers will increase on both magnitude
Specifically, analyse and	
interpret your findings	and frequency by the end of this century. However, a few
with the aid of theory, show	rivers will decrease discharge especially in the northeast
similarities, dissimilarities.	Europe region. Mirza et al (2011) indicated that climate
How your finding(s) differs	change will highly influence the monsoon precipitation and
from	will increase the frequency, magnitude and hazard of flood
theory? Existing works	in south Asia such as India, Bangladesh and Pakistan.
showed above may be of help.	Bouwer (2010) considered future precipitation and
	socioeconomic change such as land use and asset value, and
	obtained the damage cost as future flood risk. He concluded
	that the climate change will increase the damage cost of flood
	around 35 to 170% by 2040 in Netherland. Ciabatta (2016)
	investigated the impact on landslide in Italy using PRESSA

	between rainfall and soil moisture condition (Ponziani et al.,
	2012). Although all these studies are similar to our estimation
	for each hazard, the evaluation unified these hazards have
	been not carried out for future projection. AHP is useful to
	integrate the different hazard and successfully proposes the
	hazard map, which is easy for people to understand the local
	hazard, using values provided by decision makers.
Conclusion section is also	Some sentences have been added to the conclusion part to
need improvements. What are	explain the limitation and take-home messages of this work:
the limitations? What are the	
take-home message(s) of	There are some limitations of the AHP approach. The AHP
this work? Nothing is clear. As	approach supposes linear independence of alternatives and
it currently stands, conclusion	criteria. It is recommended for the future study to make a
section is sketchy and	comparison between AHP and other multi criteria decision
does not lead to useful	making approaches. AHP results are obtained from current
conclusion(s)	conditions and are not guaranteed in the future. Longer
	analysis from now in Lao PDR is necessary to predict more
	reliable future situation. In addition, a hazard map with this
	study resolution cannot explain it in smaller scale areas.
	DEM with higher resolution will be required for more
	understanding of local hazard.
Reduce number of maps in	Figure 5 to 7 have been moved to supplements.
the work, show only	
crucial ones and the rest can	
go into Sup Info	

The title seems to be long and less declarative. Changing to "Mapping" might be a good fit than "Evaluation" The abstract may be improved – highlighting generalization of results and limitations of this study approach	The title now been amended as suggestion. For the limitation of this study, we added it in the conclusion part and added the limitation briefly from the part as follows. The integrated hazard maps can pinpoint the dangerous area through the whole country and the map can be used as primarily data for selected future development area. There
	are some limitations of the AHP methodology, which supposes linear independence of alternatives and criteria The conclutions was added by the following sentences. There are some limitations of the AHP approach. AHP approach supposes linear independence of alternatives and criteria. It is recommended for the future study to make a comparison between AHP and other multi criteria decision making approach. Moreover, for modelling the hazard map in smaller area, topographic information should have higher resolution for better understanding the hazard by local people
Introduction may restructure – pushing the facts about the case study (national) a bit later, better say something at the very beginning about international facts as a motivation of this study	We agree with the referee about restructure of introduction. Therefore, we have added international facts in the beginning of introduction section as bellow: Now a day, natural disasters take a few thousand people life around the world and lose about a hundred billion USD every year (UNISDR, 2015). Additionally, Dilley (2005) has analyzed that about 700 million people and about 100 million people in the world are affected by at least two hazards and three or more hazards, respectively
It is understandable, the author is introducing the AHP as a method in the introduction; however, the objective comes very late. Here it may help to	The text in introductoin section now been amended as suggestion

be short, but specific to the research gap. Anyway, AHP related discussion are also part in the method section. In the methodology, it remain unclear –about sensitivity analysis. It was done or not! If	In this study we did not apply sensitivity analysis because parameters were calibrated by a trail and error method comparing with observation data
not why not? Under land use – only "forest and cropland" has been considered – is it because of data availability?	Reviewer's comment is right. We can considered only "forest and cropland" on land use according to the Laos national report (Laos national report, 2012)
AHP is a popular method for making expert judgement; however, it can be very complex and time consuming to communicate with the expert respondents; it might be interesting for the readers to learn from your experiences. Moreover, what are the criteria for being an expert for answering your AHP Matrix?	All experts for the questionnarire are working in the administrative divisions in field of our concerned hazards and risk and have experienced the disaster survey and the communication to local people.
Some of the discussion may help – why not other MCA approaches was considered like ANP	We explained why we choosed AHP method instead of other MCA methods, from line 101 to line 115 in the introduction section.
There are number of literatures has been already included – it might be relevant to look more on: - https://www.sciencedirect.com	 We appreciate you for benefitial information. New citations have now been updated to introduction section from line 79 to line 81 For instance, Asadzadeh (2014) used TOPSIS model to find the solution in urban and regional planning issues and evaluated for site selection of new towns.

/science/article/abs/pii/S22124 20915301023 - https://www.researchgate.net/p rofile/Asad_Asadzadeh/public ation/271065059_Assessing_S ite_Selection_of_New_Towns _Using_TOPSIS_Method_und er_Entropy_Logic_A_Case_st udy_New_Towns_of_Tehran_ Metropolitan_Region_TMR/li	• line 97 to line 100. For example, Asadzadeh (2015) used factor analysis with ANP (F'ANP) to construct a new set of parameters for earthquake resilience indicator.
nks/5655a88208ae4988a7b0de 9e.pdf	
The presentation of the results needs to be improved further. For example, the cartographic presentation e.g. color combination may rethink for better visualization of results. For example, following presentation of the whole study area map, it will be nice to see some high resolution map by zoom on some specific critical area for a close look on the output.	New figures for the critical areas have now been revised as referee suggestion.
The discussion might be highlighted about the combination experience of multiple data sources, what are the major challenges. So far you have been using open data and automated workflow!! How about transferability and	We appreciate too much for your suggestion. The text in discussion section has been revised to provide more detail our challenges. Ungaged areas have difficulty of analysis. Therefore, multiple open data sources were used in this study. Also poor observed data for disasters makes it difficult to calibrate and validate the results. It will be necessary to transfer qualitative

reproducibility of your	data to quantitative data. The proposed approach in this
proposed approach for	research is not directly transferable and reproduceable in
countries that are having	other countries that are having similar context because of the
similar context and challenges.	different in institutional and culture. Other countries can
	apply our proposed approach to produce their integrated
	hazard map but the weight priority of each hazard may
	depend on their expert judgements.
The conclusion may	The text in conclusion section is revised to summarize the
summarize the significant	significant results and contributions as follow:
results and contributions (i.e.	• The southern region has high and very high hazard
in bullet points).	areas comparing with the central region and the
	northern region. The Northern region has the lowest
	hazard area among three regions.
	• Total very high hazard area on the integrated hazard
	map with the anticipated change increases from
	3.2% for RCP 2.6 to 3.27% for RCP 4.5 and up to
	3.3% for RCP 8.5 in the near future (2010-2050)
	scenario. For the far future (2051-2099) scenario, the
	very high hazard area increases from 3.23% for RCP
	2.6 to 3.52% for RCP 4.5 and up to 3.71% for
	RCP8.5
	1