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Abstract. We investigate the depth–duration relationship of maximum rainfall over the whole of Germany based on 16

yrs of radar derived Quantitative Precipitation Estimates (namely, RADKLIM–YW, German Meteorological Service) with

a space–time resolution of 1 km2 and 5 min. Contrary to the long–term historic records that identified a smooth power law

scaling behaviour between the maximum rainfall depth and duration, our analysis revealed three distinct scaling regimes of

which boundaries are approximately 1 h and 1 d. Few extraordinary events dominate a wide range of durations and deviate5

to the usual power law. Furthermore, the shape of the depth–duration relationship varies with the sample size of randomly

selected radar pixels. A smooth scaling behaviour was identified when the sample size is small (e.g. 10 to 100), but the original

three distinct scaling regimes became more apparent as the sample size increases (e.g. 1 000 to 10 000). Lastly, a pixel wise

classification of the depth–duration relationship of the maximum rainfall at all individual pixels in Germany revealed three

distinguishable types of scaling behaviour, clearly determined by the temporal structure of the extreme rainfall events at a10

pixel. Thus, the relationship might change with longer time series and can be improved once available.

1 Introduction

Extreme rainfall poses significant threats to natural and anthropogenic systems (Papalexiou et al., 2016). The frequency and

magnitude of extreme rainfall are expected to increase in the future (Blanchet et al., 2016; Gado et al., 2017; García-Marín

et al., 2012; Ghanmi et al., 2016; Lee et al., 2016; Madsen et al., 2009; Marra and Morin, 2015; Marra et al., 2017; Overeem15

et al., 2009; Yang et al., 2016) especially at sub–daily timescales (Barbero et al., 2017; Fadhel et al., 2017; Guerreiro et al.,

2018; Westra et al., 2013, 2014) leading potentially to more urban and non-urban flash floods (Dao et al., 2020), riverine

floods, and landslides. A thorough understanding on magnitude, duration, and frequency of extreme rainfall is thus necessary

for efficient design, planning, and management of these systems, with many needing (sub–)hourly information especially.

Obstacles to identifying and investigating extremes and record rainfall events are their rare occurrence as well as the spa-20

tiotemporal resolution and coverage of rainfall information in general. Lengfeld et al. (2020) analysed the problems of rain

gauge observations, missing more than 50 % of the extreme rainfall events observed, with even more missed at higher tem-

poral resolutions. Remotely sensed precipitation products with high spatiotemporal resolution such as the ones provided by

radar, satellite or microwave link networks may solve this issue. For rainfall extremes, weather radar systems are seen to be

1



appropriate to capture the spatial variability and extreme events with limited spatial extent (Borga et al., 2008). However, most25

of the currently available radar QPE (quantitative precipitation estimates) data sets do not cover very long periods (Lengfeld

et al., 2020), while their high spatiotemporal resolution is superior to many other rainfall products. Radar products also have

well–known uncertainties, like variation of reflectivity with height, relating radar reflectivity to precipitation rates, clutter and

beam blocking. Therefore, their processing is subject to improvements, and reprocessing these data sets is necessary in order

to achieve homogeneous and consistent products that can be evaluated for rainfall characteristics over space and time.30

Probable maximum precipitation (PMP) is one way to define extreme rainfall. It is defined as the theoretically greatest depth

of precipitation for a given duration that is physically possible over a particular drainage basin at a particular time of year

(Ralph E. Huschke, 1959). One of the methods to estimate the PMP is the maximum rainfall envelope curve method, that plots

the depth (y)–duration (x) relationship of the record rainfall events observed across a large geographical boundary (e.g. entire

country or globe) on the log–log plane. The PMP is then derived as a straight line on the plot representing the upper boundary of35

the envelope containing all depth–duration relationships. This maximum rainfall envelope curve method was first proposed by

Jennings (1950), who showed that the depth of the extreme rainfall events observed across the globe is a power function of their

duration. Jennings discovered that this unique scaling behaviour holds at rainfall durations between 1 min through 24 months.

Paulhus (1965) showed that the same power law relationship holds after the addition of a new world rainfall record observed

at the island of La Réunion at the duration between 9 h and 8 d. The envelope for these extreme values can be expressed as:40

P = αDβ (1)

where P is the maximum precipitation (in mm) occurring in duration D (in h), the coefficient α (425 in Paulhus (1965))

represents the value at one hour of the depth–duration relationship plotted on the log–log plane, and the exponent β (0.47 in

Paulhus (1965)) is the parameter characterizing the scaling behaviour of the depth–duration relationship. The Spanish study

of Gonzalez and Bech (2017) updated the world envelope’s slope to 0.51, showing a remarkable stability. Multiple exponents45

describing the scaling property of extremes have been retrieved at various regions around the world (Commonwealth of Aus-

tralia, 2019; Gonzalez and Bech, 2017). Figure 1 shows the maximum rainfall–duration relationship identified by some of

these studies. All relationships reveal power law relationships, with exponents around 0.5 (Spanish and global estimate) and

0.2 (German) over a wide range of scales.

Several studies examined the validity of this universal scaling exponent. Galmarini et al. (2004) showed, based on the rainfall50

records observed at several stations in Canada, Australia, and La Réunion, that the single exponent scaling laws exist only for

single stations experiencing extremely high precipitation and that the deviation from a scaling law is caused by the intermittency

associated with a substantial number of zero precipitation intervals in data. They also showed that the scaling exponent β tend

to stay around 0.5 based on the stochastic simulation assuming a point rainfall process composed of the Weibull distributed

rainfall depth and a given temporal autocorrelation structure. Zhang et al. (2013) showed that the scaling exponent varies55

around 0.5, if the vertical moisture flux and rainfall can be modelled by a censored (or truncated) first–order autoregressive
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Figure 1. Scaling relationships of extreme (record) precipitation values for different durations based on worldwide data (World Meteorologi-

cal Organization, 1994; NWS, 2017; Gonzalez and Bech, 2017), Spanish rain gauge data (Gonzalez and Bech, 2017), and a regional analysis

of Eastern Germany (Dyck and Peschke, 1995)

process AR(1). However, these works showed the scaling behaviour of maximum rainfall at a single point location, and did not

investigate maxima observed at different spatial locations.

One of the main obstacles to identify the "true" scaling behaviour of maximum rainfall is that the most rainfall is measured

from sparse ground gauge networks (Dyck and Peschke, 1995; Papalexiou et al., 2016). Breña-Naranjo et al. (2015) used a60

satellite based rainfall product to identify the scaling behaviour of the maximum rainfall across the globe. They showed that

the maximum of the areal rainfall averaged over the ~20 km × ~20 km data grid has the scaling exponent of ~0.43 which

is similar to that of Jennings (1950). However, the coarse spatial resolution of the satellite data easily misses the small scale

rainfall variability that is closely associated with extreme values, thus the found extremes in the satellite data are lower than

expected (Cristiano et al., 2017; Fabry, 1996; Gires et al., 2014; Kim et al., 2019; Peleg et al., 2013, 2018).65

In this study, we analyse the rainfall depth–duration relationship for the whole of Germany based on 16 years of RAD-

KLIM–YW, a carefully reprocessed QPE radar product with 1 km–5 min space–time resolution. We want to answer the fol-

lowing questions regarding the scaling behaviour of the maximum rainfall: (1) Does the depth–duration relationship of German

extreme rainfall show scale invariant behaviour? If so or if not, what is the primary reason? (2) Does this relationship vary with

regard to the spatial sampling rate? (3) Does it provide any clue to modify the relationship currently applied in practice based70
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on sparse gauge networks? The answers to these questions would be especially intriguing because few studies have so far in-

vestigated the scaling behaviour of maximum rainfall based on such a high spatio–temporal resolution rainfall dataset recorded

over a long period and a large spatial extent as this study did.

2 Data and Methods

2.1 Data Description75

The German National Meteorological Service (DWD) is running a radar network (currently 17 C–band radars) for almost two

decades and is providing different rainfall data derived from it. Full coverage of Germany has not been reached until today,

however, all neighbouring countries contribute to the rainfall information and the extension of the network is ongoing. One QPE

from German radar data is a Radar Online Calibration called RADOLAN (German: RADar OnLine ANeichung), which com-

bines ground information of fallen precipitation (rain gauge data) with radar data. Since the quality enhancement of RADOLAN80

is ongoing without post–correcting previous data, the so–called radar climatology project of the DWD, RADolanKLIMatolo-

gie (RADKLIM, Winterrath et al., 2017) has consistently reanalysed the complete radar archive set since 2001 for improved

homogeneity despite the originally different processing algorithms. Compared to RADOLAN, RADKLIM has implemented

additional algorithms leading to consistently fewer radar artefacts, improved representation of orography as well as efficient

correction of range–dependent path–integrated attenuation at longer time scales (Kreklow et al., 2019). Whereas RADOLAN85

is not well suited for climatological applications with aggregated precipitation statistics, RADKLIM is a promising data set

for these climatological applications. The RADKLIM data is available in the following two formats with around 392 128 filled

pixels within the German border: 1) RADKLIM–RW is an hourly precipitation product resulting from radar based precipitation

estimates that are calibrated with ground stations (Winterrath et al., 2018a), which was validated by several studies, such as

Lengfeld et al. (2019) and 2) RADKLIM–YW (Winterrath et al., 2018b) is a 5 min product resulting from a correction/factoring90

of DWD’s 5 min product RADOLAN–RY (rainfall estimate after basic quality correction and refined z–R–relationship) with

the help of RADKLIM–RW on a sequential hourly base. The RADKLIM–YW version 2017.002 was used in this study due to

its high temporal resolution necessary for the analysis. It is already the third version, covering the years 2001 to 2018. Due to

comparison reasons with another study at our institute, only years 2001 to 2016 had been used for this study. The YW product

covers the area composed of 1100 x 900 pixels with the spatial resolution of 1 km (improved compared to former version of95

RADOLAN). Remaining weaknesses of RADKLIM (as outlined in Kreklow et al. (2019)) are the greater number of missing

values (compared below) compared to RADOLAN as well as negative bias causing an underestimation of high intensity rainfall

due to spatial averaging and rainfall–induced attenuation of the radar beam.

The data comprises 75.2 GB of compressed raw binary data (one layer for each time step) for 2001 to 2016, making 3.43

TB of unpacked data. Since not all raster pixels are with values (only around half of the values lay within the borders of100

Germany), the spatial data was converted to time series for quicker processing. The data contains missing values (NaN) of the

following two types: 1) NaNs due to changes and ongoing extension of the radar network. This mainly affects areas near the

border of Eastern, Northern, and Southern Germany. Some time series are, for example, only available from 2014 onwards.
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Figure 2. Results of NaN analyses of the QPE RADKLIM–YW from 2001–2016: (a) Spatial distribution of the proportion of NaNs (in %)

for each pixel, (b) Maximum intensity per time step of 5 min that need to be interpolated (= maximum intensity difference within one time

step to overcome). The German boundary is obtained from the GADM Global Administrative Database (Hijmans et al., 2018)

2) Some locations/raster pixels have NaNs potentially due to malfunction of the radar or general (radar) errors. Figure 2 (a)

shows the proportion of the NaNs of the time series developed for each of the pixels. The visible cones display the individual105

radar coverage, and the overlapping areas of the radar cones have a better data coverage than the areas without overlapping.

Additionally, Fig. 2 (b) shows the maximum rainfall differences between right before and after a data gap, calculated for a time

step of 5 min (Imputation bridge = Intensity difference/gap length). The red spots could mean a difference of greater than 180

mm h−1.

It is hard to handle NaNs in highly episodic geophysical events such as rainfall. Based on Fig. 2, we chose to not do any110

data interpolation, since the consequence of imputing potentially too high extreme values is more severe and uncertain for our

study than the missing of any extreme values.

2.2 Depth–Duration relationships

Maximum rainfall values for each duration τ between 2001–2016 were calculated with rolling sums applied over moving

windows using the R–package Rcpp–Roll (Ushey, 2018). Durations of up to 3 d were chosen for the analysis, with multiple115

steps for minutes and hours out of our interest for sub–hourly and sub–daily pattern. The records may include non–rainfall
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data and thus do not imply continuous precipitation for the period considered. Values were not aggregated spatially, since this

usually reduces the maximum intensity values (Cristiano et al., 2018).

First, the extreme values for each pixel and duration Mτ,pixel
max are calculated. Afterwards, the overall maxima for whole

Germany for each τ (M (τ)
max) is extracted from these calculated extreme values. Based on these results, the depth–duration120

relationships can be built for each pixel as well as for the whole of Germany.

2.3 K–Mean Clustering of Depth–Duration–Relationships

The depth–duration relationships (Mτ,pixel
max vs τ ) for each pixel derived from Sect. 2.2 are individually clustered with the

K–Mean clustering algorithm (Scott and Knott, 1974). "Erroneous" pixels (=having NaNs as resulting maxima) were excluded

from the cluster process in order to avoid disturbances. The data was rescaled to make the characteristics more comparable with125

each other. If the number of clusters is not predefined, it can be identified by drawing an elbow chart.For different numbers of

clusters K the measure of the variability of the observations within each cluster (Total within–cluster sum of squares, y–axis)

is calculated and the curve should bend like an elbow at the optimal value. Since the algorithm did not suggest a number of

clusters, we chose six clusters for a sufficiently detailed analysis since it gave consistent results when repeating the automatic

algorithm for several times (each time the algorithm clusters slightly differently).130

3 Results and discussion

3.1 Scaling behaviour of entire Germany

Figure 3 shows the maximum depth–duration relationship of the entire Germany that was derived from the QPE radar data

(dots). The same relationship based on ground gauge network (empty triangles) and the world records (filled triangles) are

shown for reference. The rain gauge based values clearly follow a scaling relationship with a slope that is different in compar-135

ison to world extremes. Radar based maxima for the shorter duration from 2001 to 2016 do not cover all sub–daily extremes

but exceed observed ones from the 1 d durations as well as for one sub–daily value. In Fig. 3, a “plateau” is visible between

around 35 min up to 18 h, indicating a “one event” effect at 35 min, potentially from an extreme rainfall event in this period.

Overall, a scaling behaviour can be observed at sub–hourly durations with a scaling component of around 0.65 even though

the maxima are observed rather randomly across the whole of Germany as indicated by the map showing the location of the140

maximum rainfall. This result implies that even though the location of extreme rainfall is different, the maximum rainfall may

exhibit smooth scaling behaviour if the rainfall generation mechanism is similar. As mentioned in the data quality description,

it is possible that these sub–hourly values do not represent the true extremes across Germany for 2001–2016 since radar–based

measurements at fine timescale (e.g., xx minutes) are highly sensitive to the averaging effects. Between 25 min and 16 h,

maximum values are calculated for a location at the border of Hesse state and Bavaria in August 25th 2006, which has not145

been documented in public news. The extreme event around September 30th, 2003 around Berlin comprised the maximum
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Table 1. Rainfall records for different duration from RADKLIM–YW for 2001–2016 with corresponding locations.

Duration Start Date Start Time (Time Zone: Berlin) Precipitation Sum (mm) Location (WG84)

5 min 2009–07–04 2:10 PM 40.94 48.50015° N, 9.35161° E

10 min 2006–07–07 9:30 AM 80.82 51.22436° N, 8.767699° E

15 min 2010–07–12 11:05 PM 105.61 52.79713° N, 12.39296° E

20 min 2002–07–30 5:15 PM 127.32 48.82225° N, 9.577044° E

25 min–16 h 2006–08–25 05:25 AM–1:25 PM 141.13–230.67 50.21148° N, 9.201292° E

18 h–1 d 2003–09–29 09:05 AM–03:05 PM 258.91–327.45 52.52761° N, 13.5271° E

1.5–2 d 2003–09–28 02:20–9:35 PM 471.67–503.66 52.52761° N, 13.5271° E

3 d 2001–04–08 06:50 AM 525.89 53.67822° N, 10.00056° E

Maxima of 25 min–16 h as well as from 18 h–2 d correspond to the same location and date and are thus summarized.

depth–duration relationship at the duration between 18 h and 2 d. The weak scaling behaviour existed in the regime at the 18 h

and 3 d duration with the scaling exponent of 0.20.

All maximum locations and the corresponding dates of occurrence are provided in Table 1.

3.2 Scaling behaviour of entire Germany for high–quantile rainfall150

High rainfall values are associated with especially great uncertainty when obtained from radar data. Thus, we also investigated

the scaling behaviour of high–quantile rainfall values. Figure 4 shows the maximum depth–duration relationship of several

quantiles: 0.99999 (fourth greatest pixel value), 0.9999 (39th greatest pixel value), 0.999 (392nd greatest pixel value), and 0.99

(3921st greatest pixel value). The “three phase regime” from radar maximum values remains relatively stable, however, the

“single event” effect between 50 min and 1 d is smoothed out, because the degree of inflections in the curve becomes weaker.155

Lower quantiles thus show a smoother curve rather than the 3–regime form.

Figure 5 shows the location of the 0.99999, 0.9999, 0.999, and 0.99 quantile rainfall. The colour of the circles represents the

different rainfall durations. It shows that the number of locations increases the lower the maximum rainfall quantile is. This

suggests the reduction of the influence of one single rainfall event on the depth–duration relationship causing inflection in the

curve.160

Additionally, from a certain degree of quantile (Fig. 5 (d)) the locations of maximum rainfall contributing to the develop-

ment of the rainfall–duration relationship seem to happen mainly in the wider Alpine region in South Germany. This suggests

that natural rainfall mechanisms are dominating the scaling relationship, such as regional characteristics and meteorological

conditions (e.g. orographic lifting or leewards effects). Naturally, one would assume that this heterogeneity of the meteorolog-

ical conditions and rainfall generating mechanisms will reflect regional characteristics and will exhibit some irregular scaling165

behaviour. Contrary to this conjecture, the curves in Fig. 4 (99.9 % and 99 %) show a quite smooth scaling behaviour.
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Figure 3. Overview of maximum rainfall records in Germany. Chart: Maximum depth–duration relationship of rainfall records based on QPE

RADKLIM–YW (data of this study) (blue dots), and as reference the relationships based on the German ground network (Rudolf and Rapp,

2003; DWA, 2015; DWD, 2020) (non–filled triangles) and the world records (World Meteorological Organization, 1994; NWS, 2017). Map:

Locations of rainfall maxima (based on QPE RADKLIM–YW) for the considered duration.
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Figure 4. Depth–duration relationships of rainfall values of whole Germany based on QPE RADKLIM–YW for 2001–2016 from maximum

values down to the 3921st greatest per duration.
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Figure 5. Locations of the 0.99999, 0.9999, 0.999, and 0.99 quantile rainfall with varying durations from 5 min to 3 d. Point colours represent

the corresponding rainfall duration, similar for each quantile. Different numbers of data points in panels a–d result from several data points

being at the same location.
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Figure 6. Spatial distribution of the maximum rainfall values retrieved from QPE RADKLIM–YW (2001–2016) for different durations (5

min to 3 days).

3.3 Spatial distribution of maximum rainfall

Figure 6 shows the spatial distribution of 5 min, 30 min, 1 h, 6 h, 1 d, and 3 d maximum rainfall over Germany. The red and

yellow spots that are spatially distributed in Fig. 6 (a) suggest that 5 min extreme rainfall can happen at any place in Germany.

Note that extreme rain occurred also outside the Alpine region at the southern edge of Germany, which suggests that fine–scale170

extreme rainfall is not necessarily governed by topography. The influence of fine–scale intense rainfall persists until the hourly

timescale as implied by the red and yellow hotspots that are similarly located in the maps of 5 min, 30 min, and 1 h. The

distribution of maxima significantly changes for the 6 h duration (Fig. 6(d)), and an interesting pattern emerges in the map of

1 d and 3 d duration. These maxima seem to be dominated by single events or single heavy rainfall occurrence. Especially the

2002 flooding in Saxony (mid eastern edge) with unprecedented longer heavy rainfall as well as one singular rainfall event in175

2014 (narrow aisle in the Northwestern area) are clearly visible in the maps.
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Figure 7. Depth–duration relationships of rain records for single pixels at rain gauge locations within state capitals of German federal states

3.4 Scaling behaviour at a single point

Figure 7 shows the maximum rainfall–duration relationship of the radar pixels at the major cities of Germany with a blue line as

reference to see the differences better. Except for Hamburg and Stuttgart, most cities exhibit slight (Hannover, Kiel, Magdeburg,

Potsdam, Schwerin, Wiesbaden) to considerable (the remaining cities) deviation from a single power law behaviour. This180

significant deviation is similar to what was identified by Galmarini et al. (2004) who found that the inflection of the curve is

inevitable because of the small (or zero) rainfall observations attached to the maximum rainfall event. Furthermore, Galmarini

et al. (2004) and Zhang et al. (2013) both showed that the maximum rainfall–duration relationship at a given point location

follows a smooth and simple power law if the rainfall process can be modelled with a set of simple stochastic processes. Our

results imply that natural rainfall processes might significantly deviate from this rather simple assumption, also the model185

framework is also based on very few time series of very different lengths and resolutions.
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3.5 Classification of maximum depth–duration relationship

The maximum depth–duration relationships for all pixels within Germany were clustered since Fig. 7 indicated that they might

show similar shapes. The k–mean clustering algorithm classified the depth–duration relationship into six categories revealing

different curve characteristics regarding the curve shapes. Figure 8 shows a categorical map of Germany representing each190

category with an individual colour. Additionally, depth–duration relationships at 100 randomly chosen grid elements from

each category are shown with the regression line from Category 5 as reference.

Pixels belonging to Category 1 have the highest rainfall intensities over all scales until 1 d and show a strong inflection

at around 1 h similar to the scaling curve for whole Germany (Fig. 3). The behaviour of the curve between 5 min and 1

h is associated with strong convective rainfall events of around 1 h within the corresponding pixel. Thus, these events are195

responsible for the high slope at the beginning part of the curve. Some curves also show another small inflection between 12

h and 1 d that might correspond to an inter storm arrival time over which another large event contributes to the positive slope

of the curve at duration from 1 d and longer, or simply contributes to the general high intensity of the whole event. Category 1

pixels can be identified as yellow hotspots in Fig. 8 that occur predominantly as smaller pixels in the midst of Category 2 (red)

and partly in Category 3 (light pink) pixel clusters. Category 2 pixels (red) have a similar curve shape as those in Category 1200

and always occur together with Category 1 pixels. The curve inflection begins around 30 min and the slope up to 3 d is a little

steeper than Category 1’s slope. This implies that unlike the hotspot locations, those locations experienced strong convective

patterns of a slightly shorter duration, but potentially longer event durations in general. Most likely, Category 1 (event centre)

and Category 2 (event boundary) pixels experience local convective events, which are forming in the summer months on warm

days with a moist atmosphere. Categories 3 and 4 can be generally associated to large scale events dominated by regional205

weather patterns. The three largest clusters in the map can be identified as intense frontal rainfall in August 2002 (Saxony,

large cluster in Eastern Germany), heavy downpours over Münster in July 2014 (narrow path in the Northwestern part) and

orographic rainfall in the Alpine region of southern Germany. In Category 3, curves show steep slopes up to one day that

abruptly end with super–daily duration. This category is contributing to the scales between 12 h and 3 d for the curve for whole

Germany (Fig. 3). The steep slope at sub–daily duration is because the pixels experienced intense convective storms, however,210

with lower intensity than Categories 1 and 2. Yet, for daily–scale duration they can experience significant amounts of rainfall.

Both Categories 4 and 5, which compose around 50 % of all pixels, show rough power law behaviour over all scales. Category

4 (dark blue) pixels are mainly at the outer borders of the described larger events as well as adjacent pixels of Categories 1

and 2. Thus, the curves have steep slopes because the corresponding pixels experienced great rainfall. Most pixels belong to

Category 5 (36 %), showing the smoothest scaling behaviour of all categories. Based on the data set, these regions/locations215

never have been hit by any ‘extreme’ extreme event that could have altered the power law behaviour of the depth–duration

relationship. The locations of these pixels indicate no spatial pattern and can be seen as a kind of background colour of the

map. The last Category 6 contains similar characteristics from Categories 1 to 3 and comprises another 30 % of all pixels.

This category represents pixels experiencing common types of convective events with short heavy rainfall sequences on the

sub–hourly scale, indicated by a relatively steep slope until 1 h compared to Categories 1 and 2. However, these pixels also220
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Figure 8. Resulting 6 groups after clustering the maximum depth–duration relationships of rainfall for all pixels. The left panel shows the

spatial distribution of the groups, distinguishable by colour. The corresponding curve shapes of 100 randomly selected radar pixels from each

group are displayed on the right side with the same colours as the map.
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experience longer rainfall sequences, thus showing an almost “three phase regime” as the overall curve for Germany with lower

values. The found clusters can be further summarized into three classes: Pixels that have experienced very heavy rainfall on

a sub–hourly scale ( Categories 1 and 2) exhibiting steep slopes at sub–hourly scale and mild slope for longer duration. The

second class experienced heavy rainfall sequences of up to 1 d (Categories 3 and 4). The third type shows power law behaviour

over all scales and can be mainly found in Category 5. Category 6 simultaneously shows characteristics of Classes 1 and 2.225

3.6 Sensitivity of scaling behaviour to ground gauge network density

An important message from Sect. (3.4) and Sect. (3.5) is that the depth–duration relationship at a given point varies location

by location based on the occurred rainstorms. This implies that the maximum depth–duration relationship over the entire study

area, which is fundamentally the process of the superposition of these various relationships and the picking up of the very

maximum values at each duration, may vary with regard to density and spatial formation of ground gauge networks (Sect.230

(3.5)). For this reason, we investigated how the depth–duration relationship would vary with regard to a different number of

sampling pixels. Figure 9 shows the result corresponding to the pixel sample size of 10, 100, 1 000, and 10 000. For each of the

cases, 30 ensembles of random pixel sampling were performed. For each of the plots, the maximum depth–duration relationship

based on all radar pixels (n = 392 128) was shown for reference. Clear and smooth scaling behaviours are identified when the

pixel sample size is 10 and 100, but the smooth scaling behaviours are lost when including more major rainfall events that235

formed the original maximum depth–duration relationship. This emphasizes that the number of rain gauges in a network is

extremely relevant in order to adequately capture rainfall extremes. Note, most scaling relationships of the past including

Jennings (1950) were based on the measurements of the ground gauge network. The station density was used as “best we could

get” and was not tested against a smaller set of stations, as obviously including all reliable extremes improves the relationship.

This might work for the Jennings curve as the global scale (space and time) can make up for the limited spatial resolution.240

Regional scaling, however, suffers from the limited spatial extent, which cannot be completely balanced by a denser network

or Radar data.

4 Conclusions

A thorough understanding on the scaling behaviour of the depth–duration relationship of extreme precipitation has been limited

because its high spatiotemporal variability cannot be fully captured by a measurement network composed of limited number245

of ground gauges. This study tried to overcome this limitation by using the radar Quantitative Precipitation Estimates (QPE)

rainfall product RADKLIM–YW. The radar QPE enabled clear identification and explanation of the characteristics of the

different scaling regimes of extreme rainfall depth–duration relationships. The maximum depth–duration relationship derived

from radar data did not show clear scaling behaviour compared to one based on gauge data from longer time series, but exhibited

a “three phase regime” with a high slope at the duration smaller than 1 h, a plateau at the duration between 1 h and 1 d, and a250

low slope at the duration greater than 1 day. The relationship was developed based on only a few extreme rainfall events, which

dominated the shape of the curve and this changed when examining quantiles of pixel maxima. The depth–duration relationship
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Figure 9. Dependency of maximum depth–duration relationship characteristic on underlying pixel sample size. The maximum rainfall values

are derived from (a) 10, (b) 100, (c) 1 000, and (d) 10 000 random pixels from all considered pixels (n=392 128) within Germany. For each

sample size, 30 ensembles are displayed and compared to the overall maximum curve from Fig. 3 and ?? (yellow top line in (a)–(d)).

of lower quantile rainfall (e.g. 99 percentile) showed a smooth scaling behaviour and the rainfall events contributing to the curve

sparsely occurred at various locations of Germany. This implies that the modest extreme rainfall events are less sensitive to the

random effects of a limited period (under sampling) and may even share common atmospheric conditions of rainfall generation255

regardless of pixel location in a limited region like Germany. The rainfall depth–duration relationship at a single radar pixel

did not show clear power law behaviour either. The shape of the curve was governed by the temporal structure of the extreme

rainfall events at the pixel location. The point wise clustering of depth–duration relationships revealed three classes of scaling

behaviour: a) Linear scaling over all durations, as well as inflections at b) one hour and c) one day, which shows the influence

of small convective pixels as well as large scale weather patterns on the depth–duration relationship. The scaling behaviour260

thus can be significantly different for each pixel because the rainfall characteristics for each pixel are very different as well.

Given that the extreme rainfall depth–duration relationship over a region is a process of overlapping the relationships observed
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at various pixel locations and picking up the highest rainfall values at each duration, the result implies that the depth–duration

relationship of extreme rainfall can significantly deviate from power law behaviour. With longer available time series of radar

in the future, the deviation can be further investigated and tested. Also, the known issue of rainfall extreme underestimation by265

RADKLIM–YW and the potential impact on the results need further evaluation.
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