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R1: This is an interesting and very well written paper. I have no objection to it being
published as submitted, but I would very much like to see the authors’ responses to my
comments.

Our response: Thank you. We appreciate you agreeing to review our paper. Please
see our responses to your comments below.

R1: The most interesting and novel part of the paper is the treatment of sampling
variability in extreme value estimation. Figure 2 is very informative. I have not seen a
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spectral analysis of Hs history before. It is interesting that filtering removed information
from time scales longer than three hours, despite the fact that the Gaussian filter half
powerpoint was one hour. The moving averages of course had side lobes. It might
be worthwhile to investigate more sophisticated digital filters. But the more interesting
question is what time scales are really represented in hindcast data that is reported
every hour but is based on three or six hour wind fields. Perhaps more work with
filtering the continuous measurement time series would help answer that question.

Our response: We want to start by pointing out that the one hour value for the Gaussian
filter was the standard deviation, meaning that it is expected to filter also longer time
scales, since the filter also “reaches” them beyond the one standard deviation. Com-
pared to moving averages or Fourier-filter, the Gaussian filter doesn’t have a equally
sharp, well defined, cut-off. This is why we also compared it to the moving average,
and ensured that the filter is functioning on time scales close to what Forristal et al.
(1996) recommended.

We fully agree that the issue of what time scales are actually represented (both in
modelled and measured data) is by no means obvious, nor solved in this paper. For
modelled data the use of the identical forcing with different intervals (i.e. every 15
minutes, every hour etc.) should probably be used, since using different products intro-
duces other sources of uncertainty. This would also give the opportunity to see which
filters (if any) can consolidate wave data generated with the different wind forcings.
Here a wide variety of more advance filters should be used (as you suggested).

The data used in our study can, unfortunately, not meet the needs of a more detailed
study into this subject, because of other sources of uncertainty. We therefore had to
limit ourselves to raising the subject up for discussion and making a first attempt at a
reasonable solution.

R1: Different users are interested in different time scales. Ship designers often want to
know the three hour sea state for use in model basins. Calculating extreme values of
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individual wave heights from shorter averaging times where Hs is not varying may be
more accurate. Would calculations of individual wave heights from the hindcast data
match those from thirty minute measurements (or chi-squared augmented hindcasts)?

Our response: Unless the lack of sampling variability is accounted for, then model and
measurement data probably doesn’t match for extreme values (as noted by Forristall et
al. 1996 and our Fig. 3c). For mean values they should match. If sampling variability is
properly accounted for, then also extreme statistics should match (assuming a perfect
model etc.), but to account for this perfectly may not be possible (see also the follow-
ing answer). The longer the averaging time, the less of an issue sampling variability
becomes, but using an assumption of stationarity for three hours could probably be a
large source of error, especially in sheltered areas and small basins. So you have to
choose your poison in many cases.

R1: The difference in return periods between the chi-squared and filtered analyses
deserves comment. If the chi-squared augmentation worked perfectly, wouldn’t they
be equal? Looking at Figure 3, it seems that the extreme wave height in the mea-
surements has a larger deviation from the smooth curve than most of the artificial
chi-squared data. That makes me think that the measurement is an outlier to the chi-
squared distribution. Why don’t you plot the variability of the measurements against a
chi-squared distribution to check that?

Our response: If the chi-squared augmentation AND the filtering were perfect, then the
results from the two data sets should agree. However, both are likely to be flawed,
and this is the reason we decided to include both approaches even though they make
the paper a bit more difficult to grasp. You are probably right that the maximum mea-
sured wave height is perhaps on the tail end of the distribution (which, to be fair, is not
surprising for an unexpectedly high measurement). Of course, even if the chi-squared
augmentation is perfect, it can only match the variability in an average sense (please
also note, that panel a) and b) are different storms, since neither hindcast covered
2019).
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As to plotting the variability of the measurements against a chi-squared distribution.
This is a very attractive idea, but it would require us to know the “true” underlying
significant wave height to relate the variation to that value (i.e. the measured values
needs to be normalized by the “true” values, otherwise we are just plotting the distri-
bution of the significant wave height, not the chi-squared distribution of the variation).
One attempt to find the “true” value is the filtered time series, but we know this is not
perfect. The other approach is to add variability to the model, but then we obviously
assume that the variability follows a certain form. The Hs-spectra in Fig. 2 are es-
sentially an attempt to visualize how well we are capturing the differences between the
“true”/modelled and the measured/chi-squared-aumented values, even though we can
never know both values in either pair.

R1: And finally, why do you think the hindcast of the recent storm was so bad?

Our response: We are not quite sure which storm this is referring to. If it refers to
Fig 5, then in out opinion the hindcast was not that bad, with a quite accurate timing,
although with a slight overestimation of the significant wave height. For the bias, the
most obvious culprit is the wind forcing. The HARMONIE wind product is known to
produce a positive bias in the modelled significant wave height. As to why this is, it is
probably a part of the more general problem of wave model development, namely that
we have to “tune to the mean” even though we are interested in the extremes. In other
words, the physics might change in extremely high winds.

We also want to point out that several aspects of the wave field were simulated cor-
rectly, as the wave period and wave direction time series (Fib 5 b & c) show. Lastly, the
accuracy of the ice product is normally also a possible source of error in this region,
but this was not the case during this mild winter.

NB

Dr Jani Särkkä informed us, that while the ERA-Interim had a resolution of 3 hours,
the downscaled product actually had a temporal resolution of 1 hours. Nonetheless,
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it is evident from the spectra in Fig. 2 that the WAM data doesn’t capture the same
temporal scales as WAM forced with a wind forcing with a native temporal resolution of
1 hour (compared to Fig. 5.1, page 39 in Björkqvist, 2020). We will correct this to the
text and amend the discussion to reflect what we stated above.

Interactive comment on Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-
2020-190, 2020.
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R2: The manuscript that the authors presented is overall well written and discuss an
interesting and imported issue of how to compare and combine model and observa-
tional data. Further the authors use this new combined dataset to investigate return
values of extreme significant wave heights in the northern Baltic Sea. I generally rec-
ommend this manuscript for publication after minor revision, I would like to encourage
the authors to address the following comments.

Our response: Thank you for taking the time to review our manuscript. It is greatly
appreciated. We have answered your questions and comments below.

C1

R2: Comments on the homogeneity of the new combined datasets.

The authors stated that they construct a time series of two hindcast simulation and one
observational dataset. To account for the different variability in the datasets they us-
ing a low pass filter for the observation and adding variability to the model data. They
analyse and discuss the different methods and the results. I would suggest that com-
bining datasets from different hindcasts, with different atmospheric forcing and different
temporal resolution should lead to some inhomogeneity. The authors stated that there
is some kind of trade-off between homogeneity and preserving the “true” wave field
when merging observations and model data. The manuscript would benefit to also dis-
cuss possible effects of combining different models datasets to the analysis of extreme
values.

Our response: We acknowledge that using two different data sets is not ideal. Our
original thought was to use the SWAN data set (1965-2005), and only fill up the five
years (2006-2010) with the WAM data set. Nonetheless, we chose to also repeat
the calculations with using WAM as the primary models since it quantifies (although
not perfectly) the effects of the temporal resolution of the wind forcing, the differences
between the models (different physical parameterizations), and data inhomogenities.

Using SWAN as the primary model is not expected to suffer fatally from inhomogenities
between model data, since WAM is only used for five years. The differences between
the data sets might therefore also be as much due to the difference in model data (even
if both models hypothetically would cover the period up to 2010), as to the inhomogen-
ities caused by combining two different data sets. We will add a discussion about this
issue to the revised manuscript.

R2: If correctly understand, the two data series marked with WAM and SWAN only
differ between the period 1979-2010 (30 out of 55 years). On one hand, the results of
the return period differ quite a bit (especially using the GEV), on the other hand, some
results seem to have almost no difference. Is there any explanation of these different

C2



outcomes? Could it be the one model dominates the distribution?

Our response: 30 out of 55 years is over half of the time, so the difference is expected
to be clearly visible if differences between the model data exists in the first place. We
think that the most important aspect here is how the modelled extremes compare to
the measured extremes. In essence, the modelled extremes are typically slightly lower
in the SWAN data (see Fig. 3c), meaning that the measured maximum is more of an
outlier when viewed against SWAN data (compared to if it’s viewed against the WAM
data).

Your observation that the GEV results differ most is important. The reason behind
this is that the more parameters we have, the more risk we have of “over fitting”. The
curvature of the GEV distribution is determined mostly by the lower annual maxima
(simply because there are more of them). A small change of the curvature can mean
a large difference at the tail, where the observed maxima exists. The more exactly
we fit the data (i.e. using more parameters), the more certain we have to be that the
data is both reliable and homogenious. We might conclude, that if there is issues with
data homogenity, the GEV/GDP distribution should be avoided because of the risks
mentioned above. We will mention this in the revised manuscript.

R2: Technical comments

There is a discrepancy between the time series plotted in Figure 5, the text in section
4.2 and the colour coding in Figure 6. Whereas it is described and visible in Figure
5 that the model overestimates the observations, the coloured squares in Figure 6
indicate higher wave height for the observations (orange (8-9m) square over yellow
(7-8m) area).

Our response: The discrepancy is because the time series in Fig. 5 is the original
WAM-HARMONIE hindcast. The maximum wave heights in Fig. 6, again, are taken
from the calibrated WAM-HARMONIE hindcast (the calibration is mentioned in the
manuscript on page 12, lines 2-4). The caption in Fig. 6 mentions that is uses the
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calibrated hindcast, but we will add information to the caption of Fig. 4 that this is the
uncalibrated hindcast.

We acknowledge that it can be slightly confusing for the reader, but Fig. 5 is meant
to show the performance of the model (and motivate the need for a calibration), while
Fig. 6 is meant to show the best possible estimate of the spatially distributed significant
wave height. We therefore feel that the both figures are well motivated in their current
form.

R2: Also, it is stated that large parts of the Bothnian Sea show a significant wave height
above 8m, but the orange to red area in Figure 6 is about a third to a quarter of the
Bothnian Sea area. On the other hand, it is stated that the maximum in the Bothnian
Bay is above 6m, which is confirmed by the image.

Our response: This is a language mistake. We meant to communicate that the area
where 8 m was exceeded is not small. We will correct the sentence to:

“Fig. 6 shows that the significant wave height exceeded 8 m in a wide area south of the
Bothnian Sea wave buoy, even reaching 9 m in the southernmost part of the basin.”

R2: The titles of the four panels in Figure 7 show two times “SWAN-X2” and two
times“SWAN-filtered”. If this is correct it is at least confusing for the reader as I would
expect filtered vs X2 and annual maxima vs POT. Also it is not mentioned which buoy
is represented in the Figure 7, Bothnian Sea buoy or Finngrundet buoy.

Our response: This is correct, since we use annual maxima and POT for both the fil-
tered and the X2 data, thus resulting in four different data sets. This means that for
a AM vs. POT comparison we can compare the left column to the right column, and
for a X2 vs filtered comparison we can compare the top row to the bottom row. We
agree that having several data sets makes it more difficult for the reader, but we felt it
was necessary to present the different options because of the significant differences
different methods had on the results. We tried to alleviate the possible confusion to
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consistently use crosses (x) for data with variability and circles (o) for data points with-
out variability. Unfortunately, we found no way to simplify this further without removing
essential information.

We will add the information that Fig. 7 shows data from from Bothnian Sea wave buoy.

R2: Finally, probably “:5(216)” are missing at the end of the DOI for reference Forristall
et al. 1994, DOI https://doi.org/10.1061/(ASCE)0733-950X(1996)122:5(216)

Our response: Thank you for pointing this out. We will correct it.

NB

Dr Jani Särkkä informed us, that while the ERA-Interim had a resolution of 3 hours,
the downscaled product actually had a temporal resolution of 1 hours. Nonetheless,
it is evident from the spectra in Fig. 2 that the WAM data doesn’t capture the same
temporal scales as WAM forced with a wind forcing with a native temporal resolution of
1 hour (compared to Fig. 5.1, page 39 in Björkqvist, 2020). We will correct this to the
text and amend the discussion to reflect what we stated above.

Interactive comment on Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-
2020-190, 2020.
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Editors comment: I am further asking you to extend the final discussion to the following issues. 
1) Your results show clearly that the four datasets produce quite different estimates for the return 
time of the peak swh value on January 1st and you suggest that the Gumbel and Exponential 
produce the best fit. Could you please explain better the objective criterion that you use for 
discarding the results of the GDP and the GEV? 

Our response: The processes involved with extreme value analysis are infamously subjective, and a 
visual analysis of the fit is often suggested  (e.g. Coles, 2001). There are obviously objective tests, 
such as the Kolmogorov-Smirnov test, but then the subjectivity is shifted to choosing a “proper” 
test. We could introduce an “objective” test that match our subjective interpretation, namely that a 
visual analysis how the distributions fits the most extreme values of the data set and the extremely 
long (even infinite) return period values given by the 95% confidence interval of the shape 
parameters of the GEV/GPD fits. 

Nonetheless, we feel that masking our subjective analysis with “objective” numbers would be 
highly misleading, since the test might behave differently with different data sets. In the end we 
think that the intended readership gets the best theoretical and practical benefits from the 
transparent analysis of our manuscript that weights the pros and cons of different options and 
solutions. 

The manuscript now clearly states both that the best-fit analysis was visual (clean manuscript page 
14, line 24 & page 18, line 11), and that the determination of the “most reliable” distribution was 
done subjectively (page 14, line 28). In addition, the detailed motivation for mistrusting the 
GEV/GPD-fits are stated on page 14, lines 17-23), and in section 6.3 (especially page 18, lines 12-
15 & lines 27-34).

Editors comment: 2) You produce a final estimate by averaging Gumbel and exponential. It is not 
actually clear to me which values you use for producing the 104 years (your final best estimate). 
What is the methodological basis of this average? how you estimate the corresponding 95% 
confidence range?

Our response: The values used to produce the final best estimate is defined on page 14, lines 28-30. 
However, will will also mark them in italics in Table 3 and refer to this on page 14 line 23).

There is no deeper methodological basis for this average. We would argue that the insights into how
to treat different types of data plays a bigger role in our study than arriving at a “final number”. 
That said, we felt we need to provide some estimate instead or merely drowning the reader in 
different results and numbers, and the average is simply meant to condense the different results into 
a single, actionable, return period. We feel that the manuscript is balanced in how these two 
opposing goals are presented.

The confidence intervals are also based on a simple average of the confidence intervals of the 
individual results (now explicitly mentioned on page 16, lines 3-6). This is simplistic, but was 
motivated by two reasons: 1) We are not aware of a single methodology to combine the confidence 
intervals of different type of distributions, although some kind of monte carlo method might have 
been a suitable alternative, 2) the results clearly showed that the confidence intervals of the fits 
were not very relevant for quantifying the uncertainties involved, since they were both smaller or 
larger than the variations between different methods and/or data sets. We therefore decided that it 
was far more relevant to include an extensive insight into the variation of the results.



Editors comment: 3) Usually, structural planning is interested mainly in assigning return times to 
selected thresholds, e.g. to 7, 8, 9 10 m swh. Could you produce a table to show the return period of 
selected thresholds according to the different datasets and methods? Could you discuss the 
implications of your results for these estimates?

Our response: We have added a Table 4 with return period estimate for wave height between 6 and 9
metres. The most important distinction is that we should always consider if we are calculating 
return periods for measured values (with sampling variability) or modelled values (without 
sampling variability). This is a more important consideration that which model data set was used. 
We have expanded the discussion to cover this aspect.
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Abstract. This paper presents how to account for the lack of sampling variability in model data when they are combined with

wave measurements. We addressed the dissimilarities between the types of data by either: i) low-pass filtering the observations

or ii) adding synthetic sampling variability to the model. Measurement–model times series combined with these methods

served as the basis for return period estimates of a high wave event in January 2019. During this storm northerly wind speeds

in the Baltic Sea rose to 32.5 m s−1 and an unprecedented significant wave height of 8.1 m was recorded in the Bothnian5

Sea sub-basin. Both methods successfully consolidated the combined time series but produced slightly different results: using

low-pass filtered observations gave lower estimates for the return period than using model data with added sampling variability.

Extremes in both types of data followed the same type of theoretical distributions, and our best estimate for the return period

was 104 years (95 % confidence 39–323 years). A similar wave event can potentially be more likely in the future climate, and

this aspect was discussed qualitatively.10

1 Introduction

We have two fundamental ways to get wave information. Models cover large areas, recreate past events, and quantify impacts of

future changes in forcing. Their major weakness is that they are not necessarily accurate enough for rare events, such as storms

(Cavaleri, 2009). Measurements, again, can provide a certain ground truth that is unmatched even by the best of models. But

point measurements can’t confidently represent large areas – neither can they be made in the past or in the future. For certain15

purposes remote sensing products combine the versatility of (numerical) models and the reliability of (in situ) observations

(e.g. Young et al., 2011; Salcedo-Castro et al., 2018). Often, however, models and measurements are used in combination;

typically a model is validated and calibrated with observations (e.g. Bidlot et al., 2002; Haiden et al., 2018) before being used

to extend limited measurements in time or space (e.g. Caires et al., 2006; Soomere et al., 2008; Breivik et al., 2013).

A lot, then, hinges on that instruments properly capture physical phenomena despite being limited by unavoidable sampling20

variability (Longuet-Higgins, 1952; Bitner-Gregersen and Magnusson, 2014). This uncertainty can be around 10 % in signifi-

cant wave heights measured by wave buoys (Donelan and Pierson, 1983), and Forristall et al. (1996) determined it to lead to a
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3–7 % bias when estimating 100 year wave heights. Also wave modellers have noted that their simulated extremes represent a

mean over a few hours – not a single 20–30 minute measurement (Bidlot et al., 2002; Aarnes et al., 2012; Breivik et al., 2013).

The statistical behaviour of extremes is also unknown. Extreme value analysis has a solid – but wide – theoretical framework

(e.g. Coles, 2001) leaving researchers to determine how to define extremes (e.g. Méndez et al., 2006; Orimolade et al., 2016)

and with what distribution to model them (e.g. Aarnes et al., 2012; Haakenstad et al., 2020). In addition, there is a globally5

uneven trend in significant wave heights (Hemer et al., 2013), with the decreasing ice cover being a dominant factor in high

latitudes (Stopa et al., 2016; Groll et al., 2017). All the aforementioned issues obscure estimates of how often to expect extreme

wave events during, for example, the next decade.

This study examines how to best combine measured and modelled data and how well this merged data set is suited to analyse

extremes. The specific focus is a record wave event that took place on 1 January 2019 in the seasonally ice-covered Baltic Sea.10

There exist no wave buoy data from the study location prior to 2011, but the observations were complemented by hindcasts

covering 1965–2013 (Björkqvist et al., 2018; Tuomi et al., 2019). We consolidated the data to a continuous time series using

two methods, both of which can be used universally. The return period of the wave event was then inferred from theoretical

distributions that were fitted to the combined measurement–model data.

The paper has the following structure. Observations and model data are described in Sect. 2, while methods for combining15

data and fitting distributions are presented in Sect. 3. An overview of the storm is provided in Sect. 4, before estimating the

return period of the wave event in Sect. 5. We discuss our results with respect to the current climate and a future declining ice

cover, and end by concluding our findings.

2 Data

2.1 Wave buoy observations20

Wave buoy data in the Bothian Sea were available from two sites. The Finnish Meteorological Institute (FMI) has moored a

wave buoy in the eastern part of the Bothnian Sea (61° 48’ N, 20° 14’ E, Fig. 1) at a depth of 120 m. The data covers 79 % of

the time 2011–2019, which is a high coverage considering that the wave buoy cannot measure during the ice season. The wave

buoy at Finngrundet (60° 54’ N, 18° 37’ E, Fig. 1) in the south-western part of the Bothnian Sea is operated by the Swedish

Meteorological and Hydrological Institute (SMHI). This buoy is moored at a depth of roughly 70 m about 10 km south-east of25

an underwater bank. Both wave buoys are Datawell Directional Waveriders. At the Bothnian Sea wave parameters were derived

from the wave spectra available every 30 minutes on the buoy’s memory card. The Finngrundet data for the storm duration

were extracted from SMHI’s open data portal (parameters available every hour).

The significant wave height was determined as Hs =Hm0
= 4
√
m0, where m0 is the integral of the wave spectrum. The

peak period, Tp, was determined as the argument maximum of the spectrum, and the directional parameters of mean direction30

at the spectral peak, θp, and the directional spreading was determined following e.g. Kuik et al. (1988).
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Figure 1. Storm track and sea level pressures (hPa) in the centre of the cyclone. The inset shows the Baltic Sea, the location of the wave

buoys, and the two main weather stations. The four smaller red circles mark four additional weather stations (from north to south): Tankar,

Stömmingbådan, Märket, and Utö.

2.2 Wave model data

Two existing Baltic Sea wave hindcasts complemented the Bothnian Sea wave buoy observations. The hindcast of Björkqvist

et al. (2018) covered 1965–2005; the data originate from the wave model SWAN (Simulating WAves Nearshore, Booij et al.,

1999) that was forced with the 6 h resolution BaltAn65+ wind product (Luhamaa et al., 2011). The hindcast of Tuomi et al.

(2019) covered 1978–2013 and originated from the wave model WAM (WAve Model, Komen et al., 1994) that was forced with5

winds from a downscaled ERA-Interim product having a 3
:
1 h resolution (Dee et al., 2011; Berg et al., 2013). Both hindcasts

accounted for the seasonal ice cover and their data were available every hour, which we interpolated to 30 minute values.

Björkqvist et al. (2018) validated the SWAN data set in the Bothnian Sea against observations from three wave buoys. The

bias of the significant wave height was −0.04 m (model underestimated) and the root-mean-square error (RMSE) was 0.30 m.

Tuomi et al. (2019) compared the WAM hindcast with altimeter data and determined a −0.21 m bias and 0.56 m RMSE for the10
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entire Baltic Sea. Although the WAM hindcast had an overall negative bias, the authors found that WAM slightly overestimated

the highest wave heights (over 4 m). We used 2011–2013 Bothnian Sea wave measurements and found that the WAM hindcast

of Tuomi et al. (2019) had a 0.03 m bias and a 0.36 m RMSE. Our comparison showed no overestimation of the highest wave

heights. Comparing the two hindcasts (WAM-SWAN), the bias and RMSE were 0.03 m and 0.33 m for the coinciding ice-free

time of 1979–2005. In summary, both hindcasts were sufficiently accurate for this study.5

For the duration of the storm only, we implemented a separate WAM wave hindcast forced with operational FMI-HARMONIE

winds. The model set-up, including the used wind forcing, was similar to that of the wave forecast model in the Copernicus

Marine Environment Monitoring Service (CMEMS) of the Baltic Monitoring and Forecasting Centres (BAL MFC) (see Tuomi

et al., 2017; Vähä-Piikkiö et al., 2019).

2.3 Meteorological data10

ECMWF’s operational model provided global meteorological data every six hours, with a horizontal grid resolution that was

aggregated to 0.1°. The track of the storm center between 28 December 2018, 00 UTC and 2 January 2019, 18 UTC was

determined from the mean sea level pressure using a minimum locating algorithm in predefined areas.

As a forcing for the storm wave hindcast (see Sect. 2.2), we extracted wind data from the high-resolution (2.5 km) weather

prediction system HARMONIE (HIRLAM-B, 2020) that is used to force the CMEMS operational
::::
BAL

:::::
MFC wave forecast.15

We used two types of remotely sensed winds that were available around the time of the storm. The high resolution, near

real-time, level-3 scatterometer wind product (Driesenaar et al., 2019) was downloaded from the CMEMS database, and the

level-2 Sentinel-1 Synthetic Aperture Radar (SAR) Ocean product (Vincent et al., 2020) was extracted from the Copernicus

Open Access Hub. The scatterometer wind speed is retrieved from level-2 wind vectors using the CMOD7 Geophysical Model

Function (Verhoef, 2018). The data are interpolated to a regular 12.5 km grid, and this method has shown a 0.04 m s−1 bias20

when validated against global buoy data (Verhoef and Stoffelen, 2018). In the Sentinel-1 product the wind field is retrieved

from a level-1 SAR image using the CMOD-IFR2 Geophysical Model Function with a priori wind direction information from

ECMWF’s atmospheric model (Mouche and Vincent, 2019). The wind speed is gridded to a 1 km resolution, and this product

has shown an average bias of −0.4 m s−1 when validated against buoy measurements and coastal stations around Ireland

(de Montera et al., 2019).25

Wind measurements from FMI’s weather stations north of the Bothnian Sea (Valassaaret) and the northern part of the Baltic

Proper (Bogskär) were used to quantify the maximum wind speed during the storm. The data were 10 minute averages, and the

measuring heights were 26 m and 31 m respectively. Data from four additional stations (Tankar, Stömmingbådan, Märket, and

Utö) were used to validate the HARMONIE winds and the remote sense product in Sect. 4.1. For the locations of all stations,

see Fig. 1.30
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3 Methods

3.1 Accounting for sampling variability

Wave buoy observations inherently include sampling variability associated with a stochastic process and this makes them

fundamentally different from modelled data. Normally the statistical variability adds only scatter, but it creates a bias for

extreme wave heights (Forristall et al., 1996). This bias can be though of as a survivorship bias in the more scattered data:5

the highest values stem from a positive statistical fluctuation, thus excluding negative variations from e.g. annual maxima. We

accounted for the sampling variability with two alternative methods.

3.1.1 Method 1: Filtering measurements

The first approach was to simply remove the random variability with a low-pass filter, for which Forristall et al. (1996) sug-

gested a 3 h smoothing time. We applied a 1 h standard deviation Gaussian filter, and 2 h and 3 h moving averages to the10

squared time series (H2
s ). The Gaussian filtered observations resolved similar time scales as the model data, and this filter was

therefore adopted for this study (Fig. 2). Nevertheless, the 3 h moving average had a similar performance.

Filtering the data reduced the yearly maxima, with the highest value dropping from 8.1 m to 7.0 m (Fig. 3 a and c).

Nevertheless, the filtering process removed information from time scales longer than 3 h (Fig. 2), and this 14 % reduction

might very well be too large. It is unlikely that the wave conditions in a small basin are stationary for 3 hours, making the15

smoothing time scale a trade off between preserving the true wave information and creating a homogeneous data set when

combined with model data.

3.1.2 Method 2: Adding variability to model data

The second approach preserved the original measurements but added random scatter to the model data by assuming that

synthetic samples of the wave field variance were χ2-distributed. In other words:20

m̂0

m0
∼ χ2

dof

dof
, (1)

where m̂0 denotes the sampled variance and dof denotes the degrees of freedom. Following Donelan and Pierson (1983) we

used the spectrum to calculate the degrees of freedom for the 8.1 m event (dof= 200), which was used throughout. This value

was probably too small for low wave conditions, but still matched the real scatter of the wave measurements overall (Fig. 2).

Also, it was unnecessary to model the scatter of small wave heights precisely, since the distributions were only fitted to the25

highest values, such as annual maxima.

The artificial samples varied around the deterministic model values, leading to an increase in annual maxima (Fig. 3 b–c).

Compared to the 7.2 m maximum in the original model data, the highest new maximum in a 100 realisation ensemble was 8.0

m (11 % increase), with the mean of the 100 new maxima being 7.6 m (6 % increase).
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Figure 2. A comparison between model data with added χ2
200 sampling variability and observations that have been low-pass filtered by

different methods. Hs(f) is the power spectrum of the significant wave height time series that has been multiplied by f3 to accentuate

shorter fluctuations. Data were from a coinciding ice-free period 28 May 2011 – 1 February 2012.

3.2 Combined measurement–model time series

We constructed 55-year time series at the Bothnian Sea wave buoy from the 2011–2019 wave buoy data, the 1965–2005 SWAN

hindcast, and the 1979–2013 WAM hindcast. Model data were used for 1965–2010 by choosing one hindcast as the primary

source of data and completing the time series using the other one. We then accounted for the difference in sampling variability

by either low-pass filtering the measurements (Sect. 3.1.1) or by adding synthetic χ2 sampling variability to the model data5

(Sect. 3.1.2).

The four resulting time series are denoted SWAN-χ2, SWAN-filtered, WAM-χ2, and WAM-filtered, according to the primary

wave hindcast and the method used to account for the sampling variability (Table 1). For the χ2 data sets the results were an

average of a 100 realisation ensemble.
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Figure 3. Short term variability removed from observations through low-pass filtering (a). Artificial χ2-distributed samples added to the

wave model data from the most severe storm in the hindcasts (b). In both instances annual maxima increase when calculated from data with

variability (c).

3.3 Fitting distributions and inferring return periods

Block maxima,X , can converge only to a member in the family of Generalised Extreme Value (GEV) distributions (e.g. Coles,

2001), having a CDF of:

G(X) =





exp

{
−
[
1+ ξ

(
X−µ
σ

)]− 1
ξ

}
, ξ 6= 0

exp
{
−exp

[
−
(
X−µ
σ

)]}
, ξ = 0,

(2)

where µ is the location parameter, σ is the scale parameter, and ξ is the shape parameter. A negative value of ξ means a5

thin-tailed distribution, and for ξ = 0 Eq. 2 equals the Gumbel distribution.

7



Table 1. The four different 55-year time series. First, either the SWAN or the WAM hindcast was used as the primary source of model data.

Second, two alternative methods to account for the difference in sampling variability between observations and model data were applied (see

Sect. 3.1). The data set with the added χ2 variability was a 100 realisation ensemble.

χ2 variability Observations

added to model low-pass filtered

(observations as is) (model data as is)

SWAN (1965–2005)

WAM (2006–2010) SWAN-χ2 SWAN-filtered

Buoy (2011–2019)

SWAN (1965–1978)

WAM (1979–2010) WAM-χ2 WAM-filtered

Buoy (2011–2019)

The second set of distributions were fitted to peak-over-threshold (POT) data, where the original data, x, was converted

to values exceeding a fixed threshold, u, i.e. y = x−u. The maximum values of y were chosen and a minimum distance of

24 h between two values was imposed to insure independence. These data can converge only towards a Generalised Pareto

Distribution (GPD) (e.g. Coles, 2001) with a CDF of:

H(y) =




1−

[
1+ ξ

(
y−µ
σ

)]− 1
ξ , ξ 6= 0

1− exp
(
−y−µσ

)
, ξ = 0,

(3)5

with the meaning of the parameters as for Eq. 2. For ξ = 0, H(y) equals the exponential distribution.

We fitted these theoretical distributions to our data using the Maximum Likelihood Method. In the POT method we used the

thresholds 4 m, 4.5 m, and 5 m, which correspond to the 99.5–99.9 percentiles in the combined data sets.

We inferred the return period by evaluating the CDF for the maximum storm wave height and calculating the return period

(RP) in years as (e.g. Holthuijsen, 2007):10

RP=





1

1−G(X)
, for annual maxima

T0
1−H(y)

, for POT data,

(4)

where T0 is the average time (in years) between two storms.
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For the Gumbel and exponential fits the 95 % confidence intervals were determined from the confidence limits of the CDF.

For the three-parameter distributions we used the 95 % confidence limits of the shape parameter ξ (Table 2) and the best

estimates of the other parameters.

4 Overview of the storm

4.1 Storm track and wind fields5

On 28 December 2018 the storm started to develop over the Atlantic ocean close to 40° northern latitudes (Fig. 1). During the

first couple of days the low pressure system deepened, then weakened, and finally split, with the northern part moving towards

Iceland. Near Iceland the cyclone started to deepen again and moved northeast towards northern Scandinavia. After reaching

the northern shore of Bay of Bothnia the storm center dove south and moved over Finland on 1 January 2019. When reaching

Estonia the storm had already weakened, eventually filling up after 3 January.10

On 1 January 2019, 21 UTC the weather station in the northern Bothnian Sea (Valassaaret, Fig. 1) measured a 29.1 m s−1

wind speed from roughly 35°. Although the prevailing wind direction is south-south-west, the strongest winds are usually from

northeast. The maximum in the entire Baltic Sea was observed 7 hours later at Bogskär, where northerly winds reached 32.5

m s−1. Remotely sensed winds were not available from the peak of the storm, but larger parts of the Baltic Sea were covered

in the evening before and the morning after the storm (Fig. 4).15

At 19 UTC on 1 January winds north of the Bothnian Sea were blowing 22–24 m s−1 (Fig. 4 a–b). The winds of the scat-

terometer and HARMONIE model products were almost identical, with both also agreeing with the coinciding measurements

from the three northernmost weather stations. We surmise that the discrepancy at the Utö station (just south of the Archipelago

Sea) was caused by the incomplete treatment of islands in the level-3 processing of the scatterometer product. Nonetheless,

this error seems local, as both products match the measured wind speed from Bogskär, located slightly west-southwest of Utö.20

At 05 UTC next morning the winds with a maximum intensity over 24 m s−1 had moved past the Bothnian Sea to the

northern Baltic Proper (Fig. 4 c–d). Although both SAR and HARMONIE show similar large-scale patterns, the wind speeds

from SAR are systematically lower. This is probably indicative of too weak SAR winds, since overall HARMONIE agrees

better with the coinciding weather station measurements. SAR’s slight underestimation of higher wind speeds in the Baltic Sea

is in line with a previous validation by Rikka et al. (2018).25

In summary, the modelled HARMONIE winds were in good accord with both the remote sensing products and weather sta-

tion data. The comparison also confirmed what was suggested by the in situ measurements, namely that the cyclone generated

strong winds along the entire Bothnian Sea when travelling south.

4.2 Waves during the storm

Prior to 2019 the highest significant wave height measured in the Bothian Sea was 6.5 m (in 26 December 2011). During the30

storm this value was exceeded for 3.5 hours with the significant wave height reaching a maximum of 8.1 m on 1 January

9



Figure 4. Wind speed U10 retrieved from a scatterometer and SAR (a and c, left) and modelled by HARMONIE (b and d, right) before

and after the storm. The overlaid squares correspond to in-situ measurements (from north to south): Tankar, Valassaaret, Strömmingsbäadan,

Märket, Utö, and Bogskär.
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Figure 5. The significant wave height (Hs), peak period (Tp) and mean direction at the spectral peak (θp) at the Bothnian Sea and Finngrundet

wave buoys. The WAM model hindcast is forced for HARMONIE with
::::::::::
HARMONIE

::::
using

:
a similar set-up as the CMEMS operational

::::
BAL

::::
MFC

::::
wave forecast.

:::
This

:::::
figure

:::::
shows

::
the

::::::
original

:::::::::::::
(non-calibrated)

::::::
hindcast.

:
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Figure 6. The maximum significant wave height for the January 2019 storm from the calibrated wave hindcast. The maximum measured

significant wave heights at the Bothnian Sea and Finngrundet wave buoys are shown by overlaid squares.

23:00 UTC (Fig. 5, a). This maximum wave height is equal to those measured during storms in the Baltic Proper main basin

(Björkqvist et al., 2017). The highest significant wave height at the Finngrundet wave buoy in the southern part of the basin

was 6.3 m. The waves in the southern part were lower during the growth phase, but both wave buoys measured similar wave

heights during the decay.

The 12 s maximum peak period at Finngrundet equalled that of the Bothnian Sea wave buoy during the height of the storm5

(Fig. 5 b). Nevertheless, during the relaxation of the storm the waves at Finngrundet were up to 2 s longer compared to the

Bothnian Sea buoy, which is explained by the difference in fetch. The wave direction at the Bothnian Sea wave buoy was

steady from the north, while being from north-north-east at Finngrundet (Fig. 5, c). This 20–30° difference was caused by

depth-induced wave refraction or the slanting fetch geometry in the basin (Holthuijsen, 1983).

Basin-wide wave fields from the storm were available from the HARMONIE-forced hindcast, which – while capturing the10

period and direction accurately – overestimated the significant wave height at both wave buoy locations (Fig. 5). A calibration

against Bothnian Sea and Finngrundet buoy observations from 1–3 January determined a 20 % positive model bias in the

significant wave height, which was corrected for in the entire Gulf of Bothnia model data. Fig. 6 shows that the significant wave

height exceeded 8 m in a large part
::::
wide

::::
area

:::::
south

:
of the Bothnian Sea

:::::
wave

::::
buoy, even reaching 9 m in the southernmost

12



Table 2. The shape parameters, ξ, of GEV and GPD fits to annual maxima an POT data, where GPD (4.0) denotes a u= 4.0 m threshold for

the POT. A negative value of ξ means a thin-tailed distribution. For a description of the data sets (e.g. WAM-χ2), see Table 1.

SWAN-χ2 SWAN-filtered

ξ 95 % conf. ξ 95 % conf.

GEV −0.11 (−0.24, 0.02) −0.16 (−0.30, −0.03)

GPD (4.0) −0.12 (−0.20,−0.04) −0.14 (−0.24, 0.04)

GPD (4.5) −0.07 (−0.20, 0.05) −0.10 (−0.27, 0.07)

GPD (5.0) −0.02 (−0.23, 0.19) −0.07 (−0.39, 0.25)

WAM-χ2 WAM-filtered

ξ 95 % conf. ξ 95 % conf.

GEV −0.08 (−0.22, 0.05) −0.11 (−0.25, 0.02)

GPD (4.0) −0.12 (−0.19, −0.05) −0.11 (−0.20, −0.01)

GPD (4.5) −0.08 (−0.19, 0.03) −0.03 (−0.19, 0.13)

GPD (5.0) 0.02 (−0.19, 0.22) 0.02 (−0.28, 0.33)

part of the basin. We consider these calibrated model results reliable, as they even capture the small scale features near the

Finngrundet buoy accurately. In the Bay of Bothnia (north of the Bothnian Sea, Fig. 1) the significant wave height exceeded 6

m, which is higher than the maximum value of 4.6 m that FMI’s wave buoy has measured in the middle part of the basin since

2012. Nevertheless, no wave buoy data were available from the Bay of Bothnia for the storm, and these modelled values are

therefore less reliable.5

Even though the coast of Bay of Bothnia – including the narrow passage to the Bothnian Sea – typically freeze already in

December (SMHI and FIMR, 1982), the sub-basin was almost ice-free on 1 January 2019. We still estimated that the waves

propagating from the Bay of Bothnia probably had none to little effect on the sea state at the Bothnian Sea wave buoy (see

Appendix A). On the other hand, the coasts of the Bothnian Sea are also frequently frozen in January. If this would have been

the case in 2019, the narrower fetch geometry would have lowered the maximum wave height.10

5 Estimating the return period

We now present results obtained from fitting the theoretical distributions of Sect. 3.3 to the data sets presented in Table 1. On

average the GEV and GPD distribution were thin-tailed (ξ < 0), with the WAM data sets resulting in slightly higher values for

the shape parameter ξ than the SWAN data (Table 2). Nonetheless, the 95 % confidence intervals typically contained ξ = 0.

The shape parameter of the GDP fit increased with higher thresholds, which indicated that the highest wave heights were better15

captured by an exponential type distribution (ξ ≈ 0). For the block maxima, the GEV shape parameter typically resembled that

13



of a GPD fit using the lowest threshold u= 4.0 m (with the exception of WAM-χ2).

Table 3 summarises the return periods estimated from the different distributions and data sets. We make four observations:

I) Fixing ξ = 0 vs. GEV/GPD: The negative shape parameters of the general distributions (GEV/GPD) resulted in longer re-

turn period estimates compared to the specific distributions (Gumbel/exponential). Increasing the threshold in the POT method5

resulted in shorter return periods when using the GPD distributions. In contrast, the exponential fits gave longer return periods

when the threshold was increased. For the highest threshold, u= 5.0 m, the results of the GPD’s were close to that of the

exponential distributions, which is consistent with ξ being near 0.

II) POT vs. Annual maxima: The results from POT data were most consistent with those from annual maxima when using

a threshold of 4.5 m (for χ2 data) or 4.0 m (for filtered data). This difference might be explained by the lower values in the10

filtered data, even though 4.5 m is in the 99.8 percentile for both data sets.

III) Filtered vs. χ2 data: Using filtered data lead to consistently shorter estimates for the return period compared to using

the χ2 data sets. This was the case for all distributions and both sources of model data (SWAN/WAM). When the specific

distributions were fit to filtered data, they gave return periods that were, on average, 64 years (44 %) shorter than for χ2 data.

For the general distributions this difference was 309 years (57 %).15

IV) SWAN vs. WAM hindcast: The general distributions were sensitive to the choice of primary model hindcast: a change

from SWAN to WAM reduced the estimates from the GEV/GPD’s by an average of 149 years (40 %). In contrast, the Gumbel

and exponential distribution were consistent between the different sources of model data, with a difference of only 6 years (7

%).

20

The GEV and GPD fits were heavily influenced by significant wave heights below roughly 5 m, thus representing the ex-

tremes less accurately than the Gumbel or exponential distributions (Fig. 7). This influence – seen as a downward curvature in

the fits of Fig. 7 – was more severe for the GEV compared to the GPD (u= 4.5 m). Also, fitting a GPD with a 4.0 m threshold

exacerbated the effect (not shown here, but figure available as supplementary material; also see Table 3).

In summary, the general distributions gave poor fits for the highest values, were sensitive to the choice of model data,25

and gave up to infinite return periods with the lower bound ξ-values (Table 3). These findings motivated us to discard the

GEV/GPD distributions. Fixing ξ = 0 was reasonable in the general frame work of extreme value theory, since this value was

typically included in the confidence intervals of the parameter (Table 2). Restricting ourselves to the Gumbel and exponential

distributions, the filtered data gave an average estimated return period of 72 years, with a 95 % confidence of (28, 224). The

similar
:
,
::::
while

:::
the

:::::::::
respective value using χ2 data was 136 years (50, 423), and the .

::::
The grand average using both types of data30

was 104 years (39, 323)
::::::
(average

:::
of

::
all

::::::::
italicised

::::::::::
distributions

::
in
:::::
Table

::
3).

Visually, the exponential distributions were good fits for the entire range of significant wave heights when using u=4.5 m

(Fig. 7). The annual maxima showed an "inverse S-shape", which was incompatible with all the theoretical distributions. One

reason for the better fit of the exponential distribution compared to the Gumbel distribution was probably the wastefulness of

block maxima: there are only 55 annual maxima, but 106 POT data points (SWAN-filtered, u=4.5 m).35
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Table 3. The estimated return period of the maximum significant wave height at the Bothnian Sea wave buoy during the storm using block

maxima and POT data. The notation GPD (4.0) means a u= 4.0 m threshold for the POT data.
::::::::::
Distributions

::::
used

::
for

:::
the

:::
best

:::::::
estimate

:::
and

::
for

:::
the

::::
return

::::::
periods

::
in

:::::
Table

:
4
::
are

::::::::
italicised. For a description of the data sets (e.g. WAM-χ2), see Table 1.

SWAN-χ2 SWAN-filtered

Return period (y) 95 % conf. (y) Return period (y) 95 % conf. (y)

Gumbel
::::::
Gumbel 116 (41,332) 55 (22,136)

Exponential (4.0)
:::::::::
Exponential

::::
(4.0) 69 (37,137) 44 (23,88)

Exponential (4.5)
:::::::::
Exponential

::::
(4.5) 136 (56,353) 82 (33,224)

Exponential (5.0)
:::::::::
Exponential

::::
(5.0) 235 (68,931) 117 (33,518)

GEV 647 (86,∞) 419 (60,∞)

GPD (4.0) 904 (72,∞) 349 (36,∞)

GPD (4.5) 485 (47,∞) 232 (28,∞)

GPD (5.0) 305 (35,∞) 184 (24,∞)

WAM-χ2 WAM-filtered

Return period (y) 95 % conf. (y) Return period (y) 95 % conf. (y)

Gumbel
::::::
Gumbel 120 (42,349) 52 (21,126)

Exponential (4.0)
:::::::::
Exponential

::::
(4.0) 58 (32,110) 40 (22,77)

Exponential (4.5)
:::::::::
Exponential

::::
(4.5) 114 (50,277) 84 (35,218)

Exponential (5.0)
:::::::::
Exponential

::::
(5.0) 239 (73,895) 101 (31,402)

GEV 378 (66,∞) 147 (39,79349)

GPD (4.0) 814 (75,∞) 159 (28,750836)

GPD (4.5) 426 (48,∞) 112 (22,7666949)

GPD (5.0) 204 (30,∞) 90 (20,∞)

All in all, we
:::::::::
subjectively

:
deemed the exponential fit with a threshold of u=4.5 m as the most reliable. Yet, the return period

from this distribution – when averaged using all data sets – was 104 years (44, 268), which is practically identical to 104 (39,

323) determined from the larger average (i.e. only fixing ξ =0 and nothing else). Picking this exact distribution would therefore

have been of little consequence.
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Figure 7. Fits to annual maxima and POT values
:::
from

:::
the

:::::::
Bothnian

::::
Sea

::::
wave

::::
buoy. Top panels: original observations and model values

with an added synthetic χ2-variability. Bottom panels: original model data and low-pass filtered observations. A single realisation of added

χ2-variability being close to averages of Table 3 has been chosen. Illustrations of other data combinations and thresholds are available as

supplementary material.

6 Discussion

6.1 Interpreting the results

The concept of a return period can be misleading. Correctly interpreted a 100 year return period equals a 1 % annual ex-

ceedance probability. Thus, the probability that an event with a 104 year (39, 323) return period actually occurs during the

next century is 62 % (27 %, 93 %) – assuming a constant climate. As widely recognised, confidence intervals are
:::::::
Further,5

::::::::::::::::::
Forristall et al. (1996)

:::
and

:::
this

:::::
paper

::::::
showed

::::
that

:::::::
ignoring

::::::::
sampling

::::::::
variability

:::
can

::::
lead

::
to

:::::::::::
contradictory

::::::
results

:::::::
between

::::::
studies

::::
using

::::::::
different

::::
types

:::
of

::::
data.

:::
As

::::
seen

::
in

:::::
Table

::
4,

::::::::::
determining

:::::
return

::::::
periods

:::
of

:
a
::::
fixed

:::::
wave

::::::
height

::::::
(instead

:::
of

:::::
return

:::::
levels

:::
for

:
a
::::
fixed

::::::
return

::::::
period)

::
is

::::::::
especially

::::::::
sensitive

::
to

:::
the

:::::::
presence

:::
of

::::::::
sampling

:::::::::
variability.

::::::::::
Specifically,

:::
the

::::::::
incidence

::
of

::
a
:::::
value

::::
with

:::::::
sampling

:::::::::
variability

::::::
should

:::
not

::
be

::::::::
evaluated

:::::::
against

:
a
::::
data

::
set

:::::::
without

::::::::
sampling

:::::::::
variability

::
(or

::::
vice

::::::
versa).

:
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Table 4.
:::
The

:::::::
estimated

:::::
return

:::::
period

::
at
:::

the
:::::::
Bothnian

::::
Sea

::::
wave

::::
buoy

:::
for

:::
the

::::::::
significant

::::
wave

:::::
height

::::
with

:::::::
sampling

::::::::
variability

::::
(Ĥs)

::::
and

::::::
without

:::::::
sampling

:::::::
variability

:::::
(Hs).

:::::::
Estimates

:::::
based

::
on

:::::::
averaging

::::::::::
distributions

:::
with

:::::
ξ = 0

::::::::
(italicised

:
in
:::::
Table

::
3).

:::
For

:
a
:::::::::
description

::
of

::
the

::::
data

:::
sets

:::
(e.g.

:::::::::
WAM-χ2),

:::
see

::::
Table

::
1.

:::
Ĥs :

6
:
m

:
7
:
m

:
8 m

:
9
:
m

::::::::
SWAN-χ2

:
4 y

::
22

:
y

:::
124 y

::
703

:
y

:::::::
WAM-χ2

:
4 y

::
21

:
y

:::
118 y

::
696

:
y

:::
Hs :

6
:
m

:
7
:
m

:
8 m

:
9
:
m

:::::::::::
SWAN-filtered

::
10

:
y

::
71

:
y

:::
523 y

::::
4002 y

:::::::::::
WAM-filtered

:
9 y

::
65

:
y

:::
502 y

::::
3935 y

:::::::::
Confidence

:::::::
intervals

:::
are

::::::
widely

:::::::::
recognised

::
to

::
be

:
an insufficient measure of uncertainty, especially since combining measure-

ments and model data has large possible sources of error. We
:::::::
therefore

::::::
settled

:::
for

:
a
::::::::
simplistic

::::::::
approach

:::
for

:::
our

:::::
"best

::::::::
estimate"

:::::::::
confidence

:::::::
intervals

::
as

:
a
:::::::
average

::
of

:::
the

::::::
values

::
in

::
the

:::::::::
individual

:::::::::::
distributions.

:::::::
Instead,

::
we

:::::::
focused

:::
on

::::
other

::::::
factors

:::
and

:
will now

discuss our estimates, and the related uncertainties, for the present and future climate.

6.2 Combining the data sets5

The ideal low-pass filter doesn’t exist. Therefore, a 3 h smoothing time also removes longer variations from the measurements

(Fig. 2), and these variations are most likely physically relevant. It seems like it would be better to preserve the original

observations and add χ2 variability to the model data. But if the model data match the (too aggressively) filtered buoy data, it

cannot be made fully compatible with the original observations by simply adding random scatter. A gentler filter preserves the

properties of the measured wave field better, but at the expense of a
::::
more

:
homogeneous measurement–model data set.10

By possibly filtering out parts of what made the event unique, the estimated return periods may consequently be biased low.

In the WAM-filtered data set the maximum significant wave height was actually 7.2 m, which was modelled by WAM on 15

November 2001 (Fig. 3) – the filtered measured maximum from 2019 was only 7.0 m. On the other hand, the return periods

from the χ2 data may be too long; the short term variations in the model data are inadequate even after the added scatter, thus

making all observed events seem rarer than they actually are.15

The different time resolution in the wind forcing between the SWAN hindcast (6 h) and the WAM hindcast (3
:
1
:
h) possibly

explain some of the differences between their results. The findings of Björkqvist (2020) suggest that a 1 h wind forcing can

capture most of the variability in the wave field (aside from random scatter).
:::::::::::
Nonetheless,

::::
Fig.

:
2
::::::::

indicates
::::
that

:::
the

::::::
WAM

:::::::
hindcast

:::::
partly

::::::
suffers

::::
from

:::
the

::
3
:
h

:::::::
temporal

:::::::::
resolution

::
of

:::
the

:::::::
original

:::::::::::
ERA-Interim

:::::
data,

::::
even

::::::
though

:::
the

:::::
wind

::::::::::
information

:::
was

::::::::::
downscaled

::
to

:
a
::
1 h

::::::::
resolution.

:
Studies using high temporal-resolution wind products are therefore needed to further study20

how to optimally combine wave observations and model data.
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:
It
::
is
::::::::
uncertain

::::
how

:::::
much

::
of

:::
the

::::::::::::
discrepancies

::
in

:::
the

:::::
return

::::::
period

::::::::
estimates

:::
are

::::::
caused

:::
by

:::::::::
differences

:::::::
between

:::
the

:::::::
SWAN

:::
and

:::::
WAM

::::::
model

::::
data

::::
sets,

:::
and

::::
how

:::::
much

::
is

::::::
caused

::
by

:::::::
possible

::::::
model

::::::
biasses

::::
with

::::::
respect

::
to
:::
the

:::::::::::
observations.

::
If
:::
the

:::::
latter

::
is

::::
more

:::::::::
important,

::::
then

:::::
using

:
a
::::::
single

::::::::
modelled

::::
time

:::::
series

:::::
might

:::::
mask

:::::::::::
uncertainties

::::::
related

::
to

:::
the

::::::
model

::::::::::
performance

:::::::
instead

::
of

::::::
solving

::::::
issues

::::::
related

:::
to

::::
data

::::::::::::
inhomogenity.

::::
The

::::::::
matching

::::::
return

:::::::
periods

::::::::
estimated

:::
in

:::::
Table

::
4

::::::::
indicates

:::
that

::::::::
possible

::::::::::::
inhomogenities

::::::::
between

:::
the

::::
two

::::::
model

::::
data

:::
sets

:::::::
(SWAN

::::
vs.

::::::
WAM)

:::::
were

:::
not

::
a

:::::
major

::::::
source

::
of

::::::::::
uncertainty

::
if
:::
the

::::::
shape5

::::::::
parameter

::::
was

::::
fixed

::
to

::::::
ξ = 0.

::::
Still,

::
as

::
a

::::::
general

::::::::::::::
recommendation

:::::::
different

::::::
model

::::
data

:::
sets

::::::
should

::::::::
probably

::
be

:::::::::
combined

::::
only

:
if
:::
it’s

::::::::
necessary

:::
for

::::::
filling

:::
data

:::::
gaps

:
–
::
as

:::::
done

::
in

:::
this

:::::
study.

:

6.3 In the present climate

The cyclone did not follow a typical path that induce south-westerly winds. Instead, it generated strong winds along the longer

north–south axis of the Bothnian Sea by approaching the Baltic Sea from the north. While the path isn’t unique, there are10

indications that the storm was rare. First, the Bogskär weather station recorded a 32.5 m s−1 10 minute average wind speed –

the highest value ever measured by FMI in the Baltic Sea. Second, new sea level minima were recorded at all four tide gauges

along the Finnish coast of the Bothnian Sea. These stations have been active for almost a century (since 1922, 1925, 1926, and

1933). Therefore, a return period much shorter than our lower bound estimate of roughly 40 years seems unlikely.

Extreme value theory states that if block maxima converge, then their distribution will be in the GEV family. But yearly15

blocks are not necessarily long enough for this to happen. Our highest annual maxima were separated from the rest of the data

(Fig. 7), possibly because the assumption of drawing from an identical distribution was violated. Then again, the stability of

these highest values are infamously poor. Be that as it may,
:
a
:::::
visual

:::::::
analysis

::::::::
indicates

:::
that

:
our extremes were modelled better

with the shape parameter fixed to ξ = 0 (Gumbel/exponential) than with the general fits (GEV/GPD). We considered the results

from the general fits to be unrealistic and back our opinion with a qualitative argument: a half-a-millennium return period is20

unlikely when the event was observed within nine years after measurements begun. Also, the 95 % confidence values of the

shape parameter, such as ξ =−0.24, modelled an infinite return period for a documented event.

Haakenstad et al. (2020) estimated 7–8 m 100 year significant wave heights near the Bothnian Sea wave buoy with a

Gumbel distribution (their Fig. 13 d), and Aarnes et al. (2012) found similar values using a GEV fit. These studies focused

on the northeast Atlantic, thus having a coarse (11 km) model resolution compared to Baltic Sea specific simulations (e.g.25

Björkqvist et al., 2018). Their results still agree with our Gumbel distribution’s 100 year value (roughly 7.5–8.0 m depending

on the data set; Fig. 7 a and c).

At first glance our GEV fit (419/647 year return period for a 7.0/8.1 m event; Fig. 7 a and c) contradicts the 100 year estimate

of Aarnes et al. (2012). Still, the 100 year significant wave height estimated from our GEV fit was roughly 6.7–7.5 m – again,

depending on the data – thus agreeing reasonably well with both Haakenstad et al. (2020) and Aarnes et al. (2012). Estimates of30

the return period of a rare event are more sensitive to the distribution tail compared to that of return levels (e.g. 100 year wave

heights). On the other hand, this means that a thorough return period analysis of a well documented event can give valuable

information about how plausible different tails of distributions are.
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:::
One

:::::::
possible

::::::
reason

:::
for

:::
the

:::::
more

::::::
erratic

:::::
nature

::
of

:::
the

:::::::::::::
GEV/GPD-fits

:::::
might

::
be

::::::
issues

::::
with

::::
data

::::::::::
homogenity;

:::
the

:::::::::
measured

::::::::
maximum

::::
will

::
be

::
a

:::::::
stronger

:::::
outlier

::
if
:::
the

::::::
model

:::
has

:
a
:::::::
negative

::::
bias.

:::::
This

::::::::
especially

::::::
affects

:::
the

::::::::::::::::::::
GEV/GPD-distributions,

:::::
since

::
the

::::::
shape

::
is

::::::
mostly

:::::::::
determined

:::
by

:::
the

:::::
larger

:::::::
amount

::
of

::::
less

:::::::
extreme

::::::
values,

::::::::
therefore

::::::::::
representing

::::::::
extremes

:::::
worse

:::::
(Fig.

:::
7).

:::
The

:::::
return

::::::
period

::::::::
estimates

::
of

:::::
Table

::
3

::::::
support

:::
this

::::::::::::
interpretation,

:::::
since

:::
the

::::::
SWAN

::::::
model

:::
had

::::::::
generally

:::::
lower

::::::
annual

:::::::
maxima

::::
(Fig.

:
3
:::
c).

:::::
When

:::::
fixing

::::::
ξ = 0,

:::
the

::::::
results

::::::
derived

::::
from

:::
the

::::::::
different

:::::
model

::::
data

::::
sets

::::::
(SWAN

:::
vs.

::::::
WAM)

:::::
were

::::::::
consistent

::::::
(Table5

::
4).

:::::
Thus,

:::
we

:::::::::
tentatively

::::::::
conclude

::::
that

:::::::::::
distributions

::::
with

:::::
fewer

:::::::::
parameters

::::::
should

:::
be

::::::::
preferred

::
if

:::
the

::::
data

::
is

:::
not

::::::::::
completely

::::::::::::
homogeneous.

6.4 In a future climate

No long term historical trend in Baltic Sea wave heights has been reliably documented. Rather, different studies using disparate

data of variable quality have gotten conflicting results (e.g. Broman et al., 2006; Zaitseva-Pärnaste et al., 2009; Räämet et al.,10

2010). Groll et al. (2017) did project an increase in median significant wave heights – but not extreme values – for 1961–2100.

The lack of a trend in annual maxima is consistent with our Bothnian Sea data, but only if observation uncertainty is accounted

for properly; ignoring the sampling variability creates a spurious 1.5 cm y−1 trend – an 80 cm increase over the 55 year time

series. This trend vanishes if the data are treated with either method outlined in this paper.

A pseudo-climate study by Mäll et al. (2020) reported an expanding area of extreme waves for past Baltic Sea cyclones under15

the RCP8.5 emission scenario. While the results were not conclusive, and included no north-to-south cyclones, it’s possible

that the 2019 storm could respond in a similar way. On a local scale, the strongest (predominantly north-easterly) winds in the

northern Bothnian Sea have been projected to shift anti-clockwise (Ruosteenoja et al., 2019). On a broader scale, the shrinking

Arctic ice cover (Boé et al., 2009; David et al., 2020) leads to a higher latent heat transport from an open and warmer ocean.

Still, we can only speculate how the likelihood or strength of storms resembling that of January 2019 could be affected by20

meteorological changes.

What is more certain is that the seasonal ice cover of the Baltic Sea is declining (e.g. Vihma and Haapala, 2009). In the

present climate the mean annual maximum ice extent covers the entire Bothnian Sea (SMHI and FIMR, 1982; Höglund et al.,

2017). The ice-free Bothnian Sea on 1 January 2019 corresponded to average conditions projected under RCP8.5, but a retreat

is projected also under the more moderate RCP4.5 scenario (Höglund et al., 2017). A declining ice cover will lead to longer25

fetches appearing more often. The maximum wave height in January 2019 was adequately model using only the wind speed

and the Bothnian Sea fetch (Appendix A), and growth-curves could therefore be used to quantify the response of the highest

waves in the Bothnian Sea to its declining seasonal ice cover.

7 Conclusions

We investigated methods to combine wave measurements (containing sampling variability) and wave model results (without30

sampling variability) to a coherent time series. This study was motivated by the need to compensate for insufficient measure-

ment data in order to more reliably estimate the return period of a wave event. The wave event in question caught our interest
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because it exceeded previously measured and simulated values in the Bothnian Sea sub-basin of the Baltic Sea. During the

storm the highest wind speed of 32.5 m s−1 was measured in the Baltic Proper main basin, and the maximum significant wave

height of 8.1 m was measured in the Bothnian Sea. Nonetheless, a hindcast specifically calibrated for the storm indicated that

the significant wave height reached 9 m in the southern Bothnian Sea (Fig. 6).

5

To estimate the return period of the event, we covered the time 1965–2019 with nine years of wave measurements and two

long-term wave model hindcasts, and combined them to two types of data:

1. without sampling variability (observations low-pass filtered, model values as is),

2. with sampling variability (synthetic variability added to model, observations as is).

The GEV and GPD distributions modelled unrealistically long return periods and were sensitive to the choice of wave hind-10

cast product,
:::::::
possibly

:::::::
because

:::
the

:::::::::
combined

::::
data

::
set

::::
was

:::
not

::::::::::
completely

:::::::::::
homogeneous. The highest significant wave heights

were best captured with a shape parameter close to ξ = 0, and we therefore used the Gumbel and exponential distributions to

estimate the return period of the storm wave event.

Both methods to account for the difference in sampling variability had their strengths and weaknesses, and it’s still uncertain

how to best combine modelled and measured wave height data. Averaging the results from both methods, we estimated that15

the return period was 104 years (95 % conf. 39–323 years). The estimate was 32 years longer (or shorter) if we only used data

with (or without) sampling variability.

Although the impact of meteorological changes in the Baltic Sea are uncertain, we surmise that the declining seasonal ice

cover will result in wave events of this magnitude becoming more frequent. Additional studies are required to confirm this

assertion and to quantify the effect of the retreating seasonal ice.20

In conclusion, we found that properly accounting for the lack of sampling variability in model data is crucial if they are

used for extreme value analysis in combination with in situ measurements. The different nature of modelled and measured

wave data is universal and should, in principle, be taken into account in all studies where they are combined. Nevertheless, the

uncertainty of the combination process remains large, further highlighting the value of long, homogeneous, observational time

series. Future studies on this topic should use waves that have been modelled using wind data with a high
:::::
native time-resolution,25

preferably no longer than 1 h.

Code and data availability. The wave time series for the Bothnian Sea wave buoy location can be accessed through the DOI: 10.5281/zen-

odo.3878948. The Finngrundet wave measurements are available from the SMHI open data portal (https://opendata-download-ocobs.smhi.se/explore/).

The remotely sensed data are available at Copernicus CMEMS data portal (https://marine.copernicus.eu/) and the Copernicus Open Access

Hub (https://scihub.copernicus.eu/). The distributions were fitted using the Machine learning and Statistical toolbox in MATLAB R2018b.30

The χ2-simulations were performed using the Machine learning and Statistical toolbox in MATLAB R2018b. The random number generator

was set to "default" to ensure reproducability.
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Appendix A: Role of waves propagating from the Bay of Bothnia

A1 Hypothetical ice mask in the wave model

We implemented the HARMONIE forced wave model with an hypothetical ice mask covering the entire Bay of Bothnian and

compared the results to the original hindcast. The modelled significant wave height and peak period at the Bothnian Sea wave

buoy was identical between the two model runs, suggesting that the waves propagating from the Bay of Bothnia to the Bothnian5

Sea play a negligible part in the Bothnian Sea south of the wave buoy.

A2 Fetch limited wave growth in the Bothnian Sea

The wind speed at a Valassaaret weather station between the Bothnian Sea and the Bay of Bothnia (Fig. 1) during the peak of

the storm (U > 25 m s−1) was 26.8 m s−1. A wind speed of U = 27 m s−1 is compatible with the measured wave spectrum at

the height of the storm (Fig. A1) when considering the equilibrium constant and the power-law transition frequency (Phillips,10

1958; Kahma, 1981; Kahma and Calkoen, 1992). The directional spreading at the spectral peak was 16° and we therefore

determined the 194 km northerly fetch as an average over a 30° sector.

A 27 m s−1 wind speed of would result in a peak period of 11 s (composite data set; Kahma and Calkoen, 1992). This

is in reasonable agreement with the measured value of 12 s. Assuming the aforementioned wind speed and fetch, the locally

generated significant wave height in the Bothnian Sea would have been 7.4 m. Although this is less than the measured value of15

8.1 m, it’s a fair match to the low-pass filtered maximum of 7.0 m.
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Figure A1. The wave spectrum measured with the Bothnian Sea wave buoy at the height of the storm (1 Jan 2019 23:00 UTC). The spectrum

has been scaled assuming a wind speed of U = 27 m s−1. The equilibrium level (dashed-dotted) and the saturation level (dashed) are also

shown.
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