

1 The Impact of Drought on Soil Moisture Trends across

2 Brazilian Biomes

3 ¹Flavio Lopes Ribeiro, ²Mario Guevara, ²Alma Vázquez-Lule, ³Ana Paula Cunha, ³Marcelo Zeri,
4 ²Rodrigo Vargas

5

6 ¹University of Delaware, School of Public Policy and Administration, Disaster Research Center, Newark, DE,
7 USA

8 ²University of Delaware, Department of Plant and Soil Sciences, Newark, DE, USA

9 ³National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos,
10 SP, Brazil

11

12 *Correspondence to:* Flavio Lopes Ribeiro

13 **Abstract:** Over the past decade, Brazil has experienced severe droughts across its territory, with important
14 implications for soil moisture dynamics. Soil moisture variability has a direct impact on agriculture, water
15 security, and ecosystem services. Nevertheless, there is currently little information on how soil moisture across
16 different biomes respond to drought. In this study, we used satellite soil moisture data from the European Space
17 Agency, from 2009 to 2015, to analyze differences in soil moisture responses to drought for each biome of Brazil:
18 The Amazon, Atlantic Forest, Caatinga, Cerrado, Pampas and Pantanal. We found an overall soil moisture decline
19 of -0.5%/year ($p<0.01$) at the national level. At the biome-level, Caatinga presented the most severe soil moisture
20 decline (-4.4% per year); whereas Atlantic Forest and Cerrado biomes showed no significant trend. The Amazon
21 biome showed no trend but a sharp reduction of soil moisture from 2013 to 2015. In contrast, Pampas and Pantanal
22 presented a positive trend (1.6 and 4.3 %/year, respectively). This information provides insights for drought risk
23 reduction and soil conservation activities to minimize the impact of drought in the most vulnerable biomes.
24 Furthermore, improving our understanding of soil moisture trends during periods of drought is crucial to enhance
25 the national drought early warning system and develop customized strategies for adaptation to climate change in
26 each biome.

27

28 **1. Introduction**

29 Drought is a natural and human-induced hazard common to all climate zones in the world (Sheffield and Wood,
30 2008), generally referred to as a sustained occurrence of below average water availability due to precipitation
31 deficit and soil moisture decline (Magalhães, 2016). Precipitation deficit is the most studied driver of drought
32 (Mishra and Singh 2010; Smith 2013, Villarreal et al., 2016) and has been furthering several drought indicators
33 and models. However, precipitation-based indicators are limited in the assessment of social and environmental
34 responses to the lack of rain and therefore not suitable for evaluating the impacts of drought when used alone. On
35 the other hand, drought indicators based on soil moisture are not only key to understanding the physical
36 mechanisms of drought, but also useful for assessing how soil moisture decline can alter vegetation water
37 availability and, consequently, agricultural production and ecosystem services (Smith 2013; NWS 2008).

38 When soil moisture declines below critical water stress thresholds it reduces biomass production, soil respiration
39 and the overall soil carbon balance (Bot and Benites 2005; Vargas et al., 2018). Low carbon in soils (due to lower
40 biological activity) reduces its structural integrity and increases the risk of soil erosion, contributing to river silting,
41 ineffective runoff control, and loss of soil nutrients (Al-Kaisi and Rattan 2017). Soil moisture is also crucial for
42 addressing the negative impacts of climate change in water and land resources (Bossio 2017). Indeed, temporal
43 variability of soil moisture in a given biome is an important variable for the characterization of the local climate
44 (Legates et al. 2011) and a key indicator of changes in the biome's water cycle (Sheffield and Wood 2008; Rossato
45 et al. 2017).

46 In this study, we use satellite data from the European Space Agency (ESA) to analyze the impact of drought on
47 soil moisture across all Brazilian biomes: The Amazon, Atlantic Forest, Caatinga, Cerrado, Pampas and Pantanal.
48 Considering that each biome has distinct climate, soil and vegetation characteristics, we hypothesize that they
49 would respond differently to drought conditions (e.g., positive, negative or non-significant) and show up relevant
50 information for drought management at national and regional levels.

51 In Brazil, most of the work on drought management has been focused in the semiarid region, well-known for its
52 recurrent problems with droughts and water scarcity (Fig. 1) and where predominates the Caatinga biome.
53 However, droughts have been reported all over Brazil, affecting all other biomes as well. In the period selected
54 for this study (i.e., 2009 to 2015), there was a high number of municipalities declaring emergency and even public
55 calamity due to drought across the country (Cunha et al. 2019), but the impacts on soil moisture at national scale
56 and how each biome responds to drought are still unknown.

57

58 **Figure 1: The Caatinga biome (Pontes, 2012).**

59 Due to climate change, extreme events such as drought are expected to become more intense and recurrent in
60 some regions of Brazil. Therefore, integrating satellite soil moisture data into early warning systems could
61 contribute to more efficient drought risk management and promote data-driven climate change adaptation.
62 Nevertheless, studies on soil moisture variation have been conducted at a stand-scale due to challenges for
63 measurements across spatial and temporal scales (Legates et al. 2011; Novick et al 2016). As a consequence, the
64 lack of soil moisture information could lead to inaccurate assessment of drought conditions, underestimation of

65 drought impacts, and incomplete resilience and adaptation plans. As droughts become more frequent and intense,
66 it is important to enable monitoring of soil moisture trends and communicate the results at different levels (e.g.,
67 municipal, state, national, regional) and across different perspectives (e.g., environmental, social, and economic).
68 At present, the most reliable source of soil moisture information at large-scales (i.e., global-to-continental scales)
69 is satellite remote sensing (i.e., <https://smap.jpl.nasa.gov/>, <http://www.esa-soilmoisture-cci.org/>), which provides
70 soil moisture estimates for the first 0-5 cm of soil depth (Liu et al. 2011). Even though the first layer of soil is
71 expected to be very dynamic because of its interaction with the atmosphere and deeper layers still represent an
72 important water storage, especially in the Amazon and Cerrado biomes, soil moisture at the first 5cm is still a
73 good predictor of land and atmosphere interactions. Analyzing a shallow soil layer can provide key information
74 for the detection of soil aridity conditions that are directly related with the loss of soil biodiversity and, therefore,
75 with soil productivity. Thus, soil moisture at the surface is directly affected by drought conditions and could be
76 also used as an indicator (i.e., proxy) of the water contained at deeper layers. Since we cannot measure *in situ* soil
77 moisture at high spatial resolution due to logistical constraints (i.e., because is expensive or time consuming), we
78 propose the use of multiple satellite remote sensing sensors (e.g., from ESA or NASA) as an alternative to obtain
79 drought-relevant information on soil moisture at the national scale. The study period (2009 – 2015) was marked
80 by successive droughts across Brazil, registered and confirmed by different monitoring instruments such as the
81 Integrated Drought Index (IDI), which combines the Standardized Precipitation Index (SPI) and the Vegetation
82 Health Index (VHI) (Cunha et al., 2019) and Municipal Emergency Declarations all over the country.

83 The purpose of this study is showing the advantages and disadvantages of integrating satellite soil moisture
84 observations into drought monitoring across Brazil on a biome basis. We show the differential impact of drought
85 on the soil moisture of different biomes at a national scale (using Brazil as a case study).

86 One main limitation is that satellite measurements of soil moisture provide indirect estimates of soil moisture only
87 in the topsoil (eg., 0-5cm), and unfortunately do not provide a direct metric of soil water storage. While soil
88 moisture at the surface is a key indicator of soil and atmosphere interactions, topsoil moisture does not account
89 entirely for the water used by plants to grow. The capacity of plants to grow can be measured also with satellite
90 information in the form of primary productivity estimates (Li et al., 2019). Therefore, we also explore the
91 correspondence between satellite soil moisture and primary productivity trends for each biome in Brazil. Both soil
92 moisture and vegetation productivity are ecosystem variables directly affected by drought conditions.
93 Understanding how soil moisture and vegetation productivity on each biome is affected by drought conditions
94 from different perspectives (in our case superficial soil moisture) is crucial to assess their resilience. It is also
95 important to provide evidence-based orientations to drought mitigation and soil conservation plans.

96

97

98 **2. Methodology**

99 **2.1. Study area**

100 Brazil is the largest country in Latin America with a total area of 8,456,510 km², located between 05°10' N to
101 33°44' S (IBGE, 2017). The continental dimension of the country implies a complex spatial heterogeneity of
102 environmental conditions resulting in six main biomes: Amazon, Atlantic Forest, Caatinga, Cerrado, Pampas and
103 Pantanal (Fig. 3a).

104 *The Amazon* biome is mainly characterized by rainforest areas (Overbeck et al. 2015). It represents 49.5% of
105 Brazil's total area, or 4,196,943 km² (IBGE, 2019). It has an equatorial climate, with temperatures between 22°C
106 and 28°C and torrential rains distributed throughout the year. The geomorphology of the Amazon biome is quite
107 diverse, presenting plateaus, plains, and depressions. Soils are generally clayey, iron-rich and with high soil
108 organic carbon content. The Amazon biome is well known for its biodiversity and its large number of rivers and
109 water bodies, which account for the world's greatest surface green water reserves (IBGE 2004).

110 *The Atlantic Forest* biome covers 13% of the total area of Brazil (1,110,182 km²). It comprises an environmental
111 heterogeneity that incorporates high elevations, valleys, and plains. The Atlantic rainforest occupies the whole
112 continental Atlantic coast of Brazil. This biome has a subtropical climate in the south and a tropical climate in
113 central and northeast portions. The Atlantic rainforest is characterized by heavy rainfall influenced by the
114 proximity of the ocean and winds that blow inward over the continent (IBGE, 2004). Although it is just a small
115 fraction of the size of the Amazon rainforest, the Atlantic Forest still harbors a range of biological diversity
116 comparable to that of the Amazon biome (The Nature Conservancy, 2015), with high soil carbon reserves
117 (Guevara et al., 2018). The Atlantic Forest is recognized as the most degraded biome of Brazil with only 12% of
118 the original biome preserved (SECOM, 2012).

119 *Caatinga* is the driest biome of Brazil and comprises an area of 844,453 km² stretching over nine federal states
120 and covering nearly 10% of the total area of Brazil (IBGE, 2019). Semiarid climate is predominant across this
121 biome (BSh type) with an average annual rainfall below 800 mm (Alvares et al., 2013), but high temperatures
122 influence high potential evapotranspiration rates that exceed 2,500mm/year (Campos, 2006). Overall, the Caatinga
123 is characterized by reduced water availability and a very limited storage capacity of rivers, which are mainly
124 intermittent, with just a few exceptions that are perennial through streamflow regulating reservoirs during the dry
125 season (CENAD 2014). Caatinga soils are generally shallow (0-50 cm), with a bedrock that is commonly exposed
126 to the surface, limiting water infiltration processes and the recharge of local aquifers (Cirilo, 2008).

127 *The Cerrado* is the second largest biome of Brazil, characterized by large savannas (Overbeck, et al 2015) covering
128 2,036,448 km², and representing 23.3% of the country (IBGE, 2019). It extends from the central south of Brazil
129 until the north coastal strip, interposing between the Amazon, Pantanal, Atlantic Forest, and the Caatinga biomes
130 (IBGE, 2004). The dominant climate in the Cerrado is warm tropical sub-humid, with only two distinct seasons,
131 dry winters and wet summers with torrential rains (Overbeck et al. 2015). The annual precipitation in this region
132 varies between 600-2200 mm, where the bordering areas with the Caatinga are the driest and the bordering areas
133 with the Amazon rainforest the wettest. Soils are diverse and include a variety of dystrophic (low inherent fertility
134 and/or strongly weathered profile), acidic, and aluminum-rich conditions. Currently, the Cerrado hosts the largest
135 rural expansion in Brazil, resulting in environmental degradation, biodiversity loss, and soil erosion and limited
136 water availability. It is classified as the most endangered savannah on the planet and one of the 34 global hotspots
137 (Ioris, Irigaray and Girard 2014).

138 *The Pampas* biome is located at the extreme south of Brazil and covers 2.1% of Brazil's total area (176,496 km²).
139 It is mainly characterized by grasslands and shrublands (Overbeck et al. 2015). The region has a wet subtropical
140 climate, characterized by a rainy climate throughout the whole year, with hot summers and cold winters, where
141 temperatures fall below freezing (IBGE 2004). The Pampas comprises an environmental set of different lithology
142 types and productive soils (e.g., carbon-rich), mainly under flat and smooth undulating terrain surfaces.

143 Pantanal is the biome with the smallest territorial extension of Brazil, covering 1.8% (150.355 km²) of the
144 country's total area (IBGE, 2004). It is located at the left margin of the Paraguay River and shared by Brazil,
145 Bolivia and Paraguay.

146 *The Pantanal* is by a vast extent of poorly drained lowlands that experiences annual flooding from summer to fall
147 months (January–May) (Assine and Soares, 2004). The climate of the Pantanal is hot and humid during the
148 summer and cold and dry in winter (Ioris, Irigaray and Girard 2014). Precipitation varies from 1000-1400 mm per
149 year, and rains are predominant from November to April. Average annual temperature is 32°C, but the dry season
150 (May to October) has an average temperature of 21°C and it is not uncommon to have >100 days without rain
151 (Ioris, Irigaray and Girard 2014). In the last two decades, temperature in the Pantanal has consistently risen and
152 more humid than normal events as well as dryer than normal events have both increased (Marengo et al 2010).

153

154 **2.3. Environmental variability of Brazilian Biomes**

155 We used 1x1 km environmental gridded data to characterize the environment variability of the biomes. Data was
156 provided by worldgrids.org, an initiative of ISRIC – World Soil Information Institute. This dataset compiled
157 information from: 1) digital terrain analysis to represent topographic gradients, 2) gridded climatology products
158 (e.g., precipitation and temperature), 3) remote sensing imagery, to represent land cover and vegetation spatial
159 variability, and 4) legacy soil or rock type maps. We used 110 layers derived from this dataset. A list of all
160 available information contained in the worldgrids.org project is available at Reuter & Hengl (2012). We used
161 multivariate statistics in the form of principal component analysis (PCA) to linearly decompose the worldgrids.org
162 dataset and identify relationships among the major environmental characteristics of Brazilian biomes. PCA is an
163 analysis where a group of potentially correlated variables are decomposed in orthogonal space and therefore
164 uncorrelated principal components. PCA analysis is useful to reduce data dimensionality to avoid the potential
165 effects of statistical redundancy (multicollinearity) in further interpretations. Here, we use the PCA as an
166 exploratory technique to visualize/characterize/interpret the environmental variability of Brazil's biome and
167 assume that environmental differences in the biomes could support the hypothesis of different soil moisture
168 response to drought.

169

170 **2.4. Municipal emergency declarations due to drought across Brazil**

171 Municipal Emergency Declarations (MEDs) are administrative tools to inform the federal government that the
172 magnitude of the disaster has surpassed local public capacities to respond and manage the installed crisis. The
173 recognition of MEDs by the federal government is based on field visits (when possible) and technical analysis of
174 social, economic and climatological data that can support the petition. In the case of drought, data analysis is
175 generally based on, but not limited to, private agricultural losses, level of local reservoirs, and precipitation data
176 combined. Once the federal government recognizes that there is indeed a disaster, it establishes a legal situation
177 where federal funds can be used to assist the affected population and recover essential services disrupted by the
178 disaster (National Secretary of Civil Defense and Protection of Brazil 2017).

179 To determine drought distribution across the six Brazilian biomes, we retrieved official MEDs due to drought in
180 Brazil from 2009 to 2015. This information is public and can be accessed on the website of the Ministry of
181 National Integration of Brazil. First, we downloaded the historical series of MEDs in Brazil from 2009 to 2015.
182 Then, we isolated the municipalities who declared emergency or public calamity due to drought from all other

183 disasters. The last step was to cross this data with the boundaries of the six Brazilian biomes and discover the
184 intensity and distribution of drought in each biome during the study period.

185

186 **2.5. Soil Moisture and Primary Productivity Trends across Brazil**

187 To analyze soil moisture trends during a period of successive droughts (2009-2015) across Brazilian biomes, we
188 acquired remotely sensed soil moisture information from the European Space Agency (Liu et al. 2011). This soil
189 moisture product has a daily temporal coverage from 1978 to 2016 and a spatial resolution of 0.25 degrees (~27x27
190 km grids). To represent vegetation primary productivity we use estimates from the OCO-2-based SIF product
191 (GOSIF) and linear relationships between SIF (Solar-induced chlorophyll fluorescence) and GPP (gross primary
192 production) used by Li and Xiao (2019) to map GPP globally at a 0.05° spatial resolution and 8-day time step. We
193 calculated monthly averages from soil moisture and primary vegetation datasets for further statistical analysis
194 using only information between 2009 and 2015. All available information was harmonized into a geographical
195 information system using the same projection system and spatial integrity.

196

197 **2.6. Data Analysis**

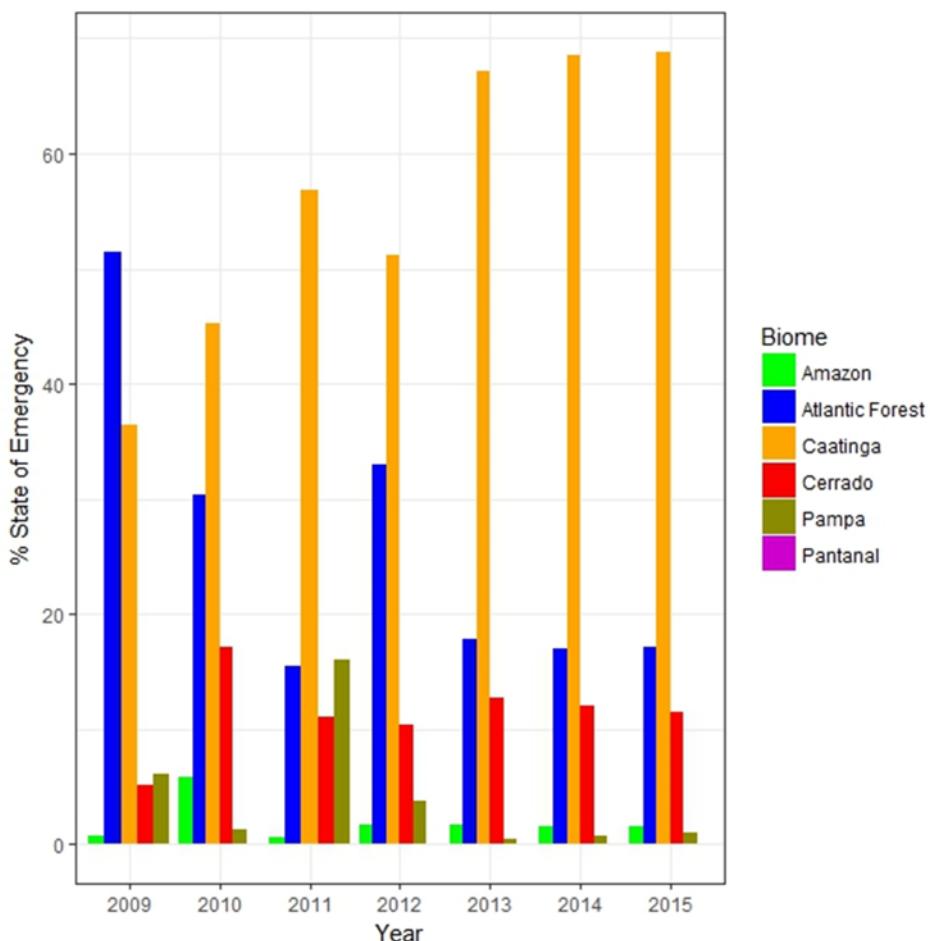
198 We based our statistical analysis in a regression matrix containing 10,000 representative random spatial locations
199 (e.g., latitude and longitude) across the biomes of Brazil (Fig. 3b) which were selected using standard re-sampling
200 techniques (i.e., bootstrapping). Over 30% of the area for every biome is represented in the random selection. We
201 randomize our statistical sampling with the ultimate goal of maximizing the accuracy of the results. We used a
202 representative sample for improving the visualization of points cloud and a better understanding of differences on
203 the five biomes in the statistical multivariate space. Finally, we extracted to these random points the environmental
204 data and the values of the available satellite soil moisture and primary productivity time series.

205 To detect trends on satellite soil moisture and primary productivity time series during the study period, we used
206 median based linear models calculated for each point with available satellite data. These non-parametric analyzes
207 are known as Theil – Sen regressions (Sen 1968; Theil 1992) with repeated medians (Siegel 1982). This method
208 uses a robust estimator for each point in time, where the slopes between it and the other points are calculated
209 (resulting n-1 slopes), and then the median and the significance of the trend are reported.

210 The satellite soil moisture source has intrinsic quality limitations across areas where vegetation has more water
211 than soil (McColl et al. 2017), including areas across the lower Amazon watershed, the Pantanal or the Pampas
212 biomes. For these areas we used the sparse points with available satellite soil moisture information and generated
213 predictions of soil moisture trends based on geostatistical analyses, such variogram fitting and Ordinary-Kriging
214 modeling. Ordinary-Kriging assumes that the target variable (soil moisture trends) is controlled by a random field
215 (main reason why we base our analysis in a random sampling strategy) and that shows a quantifiable level of
216 spatial structure and autocorrelation (Hiemstra et al. 2009). We performed an automatic variogram analysis to
217 assess the spatial structure and autocorrelation of satellite soil moisture records. For the variogram analysis we
218 computed the relationships between the distance of randomly distributed soil moisture observations and the
219 accumulated variance of their respective values. We used the aforementioned relationships to predict the satellite
220 soil moisture trend in areas where no data is available and also provided a spatial explicit measure of error
221 following a geostatistical framework (Hiemstra et al. 2009, Llamas et al., 2020). In contrast, the primary

222 productivity dataset used here has complete coverage across Brazil. We show both the interpolated maps of soil
223 moisture trends and the trend map of the primary productivity of vegetation.

224


225 **3. Results and Discussion**

226 **3.1. Drought in Brazil from 2009 to 2015**

227 This analysis of Municipal Emergency Declarations (MEDs) confirmed that the period from 2009 to 2015 was,
228 indeed, marked by successive droughts countrywide (Fig. 2). During this period, Brazil had a total of 12,508
229 declarations of emergency or public calamity due to drought all over its territory (Ministry of National Integration
230 of Brazil 2018), which affected directly 33 million people and caused economic losses around US\$ 6,5 billion
231 (EM-DAT 2018).

232 Proportionally, Caatinga is the biome with more MEDs per municipality, followed by the Atlantic Forest, Cerrado,
233 Pampas and the Amazon respectively (Fig. 2). The only biome with no MEDs due to drought during this period
234 is the Pantanal, which is a natural wetland that covers only 1.8% of the national territory (Overbeck et al. 2015).

235

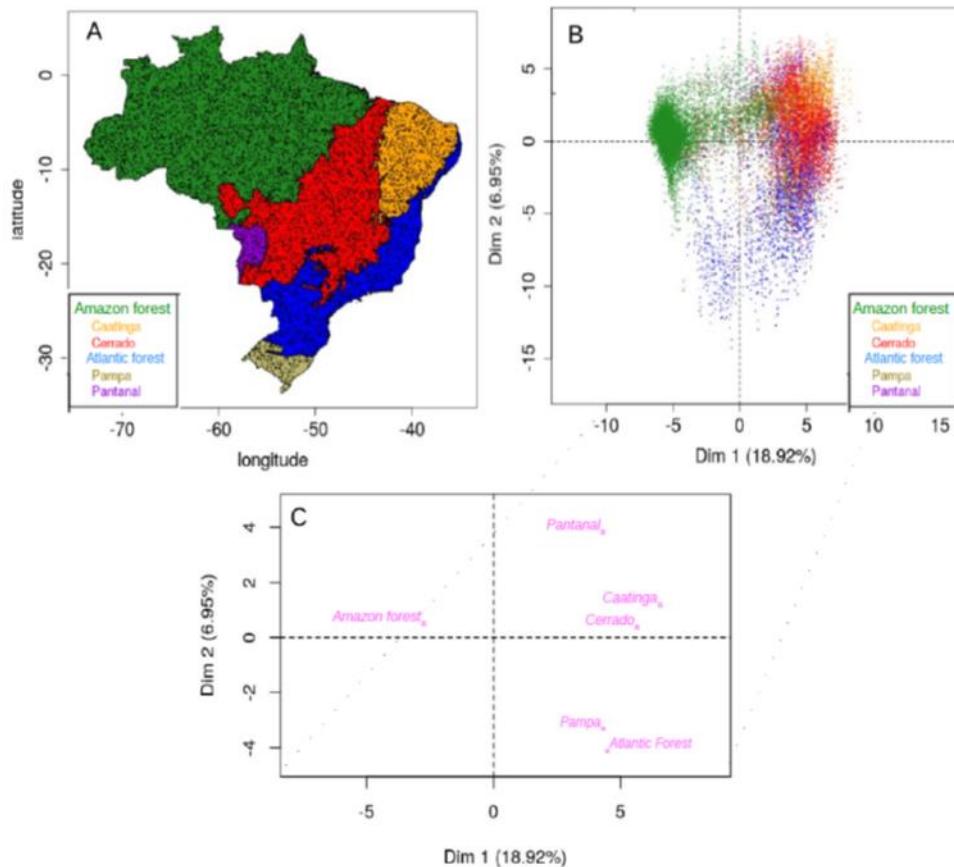
236

237 **Figure 2: Percentage of municipalities declaring emergency or public calamity due to drought in Brazil**
238 **from 2009 to 2015**

239

240 When considering climatological data from the Integrated Drought Index (IDI), which combines the Standardized
241 Precipitation Index (SPI) and the Vegetation Health Index (VHI), Cunha et al. (2019) discovered that since 1962,

242 when drought events started to be recorded in Brazil, only between 2012 and 2014 droughts occurred concurrently
243 in the six biomes of the country. The IDI also showed that the hydrological year of 2011/2012 (October 2011 to
244 September 2012) was the driest of the historical series, except in the South region, where the Pampas biome is
245 located. During the period of study (2009-2015), the most severe drought events occurred in the northeast region
246 (where the Caatinga predominates), in the central west region (where the Cerrado predominates), and in the
247 southeast region (where there is a mix of Cerrado and Atlantic Forest). Even though the climatological data from
248 the IDI show some inconsistencies with the MEDs per biome, in general terms, it reinforces that the study period
249 was marked by simultaneous droughts across all biomes of Brazil.

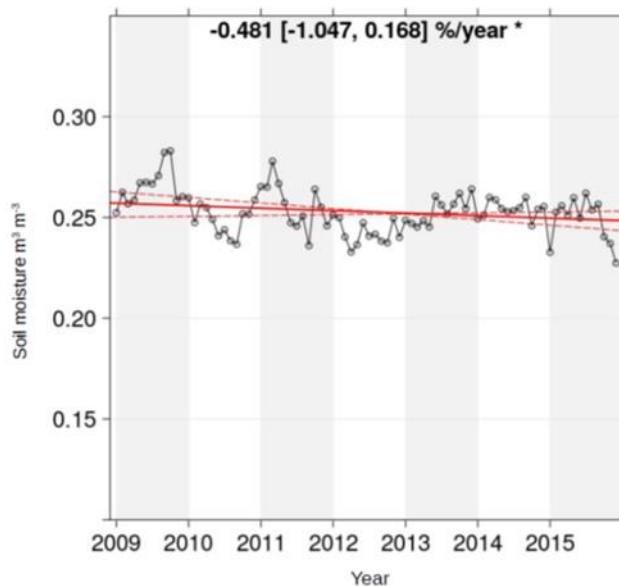

250

251 **3.2. Environmental gridded information of Brazilian Biomes**

252 The environmental characterization of Brazilian biomes showed a clear differentiation of three major groups (Fig.
253 3a and b). These results support the expectation that drought would have a differential impact on soil moisture
254 dynamics in each of the six biomes (see section 3.3). This expectation is supported because each biome shows
255 differences on the spatial configuration of environmental soil moisture drivers, as revealed by the PCA analysis
256 (Fig. 3b) as described below.

257 From the 110 environmental layers of information we used to represent the major environmental conditions across
258 Brazil (see list of available layers in <http://worldgrids.org/doku.php>), at least 50 principal components were
259 needed to capture >80% of total variance. The first and second component explained >25% of variability (Fig.
260 3b) and the variables that represented most of the variance in the first and second components were the digital
261 elevation model ($r=0.5$) and the topographic wetness index ($r=0.31$) respectively. These two variables are directly
262 related to the spatial variability of soil moisture dynamics as seen in other regional studies (Guevara and Vargas
263 2019). Across these principal components (i.e., PC1 and PC2), we found a clear separation of three major groups
264 of data in the statistical space (Fig. 3c). The Amazon biome forms the larger group of values, followed by another
265 group composed mainly by the Atlantic forest and the Pampas. The Caatinga and Cerrado biomes form a third
266 larger group and the remaining Pantanal show a close but independent variability (Fig. 3c). These groups are
267 located on different quadrants of the plane between the first two PCs (Fig. 3c). Thus, these differences could
268 influence soil moisture response in these major groups at the biome level.

269


270

271 **Figure 3: (a) The six biomes of Brazil. (b) Plane of the first and second PCAs showing the orthogonal and**
 272 **environmental variability of Brazil's biomes and (c) Clustering results showing the main values of each**
 273 **biome dataset and their proximity across the planet between PCAs one and two.**

274

275 **3.3. Drought assessment: Soil Moisture Trends Across Brazilian Biomes**

276 Our analysis of satellite soil moisture at national level showed a soil moisture decline of -0.5% per year ($p<0.1$)
 277 in Brazil from 2009 to 2015 (Fig. 4).

278

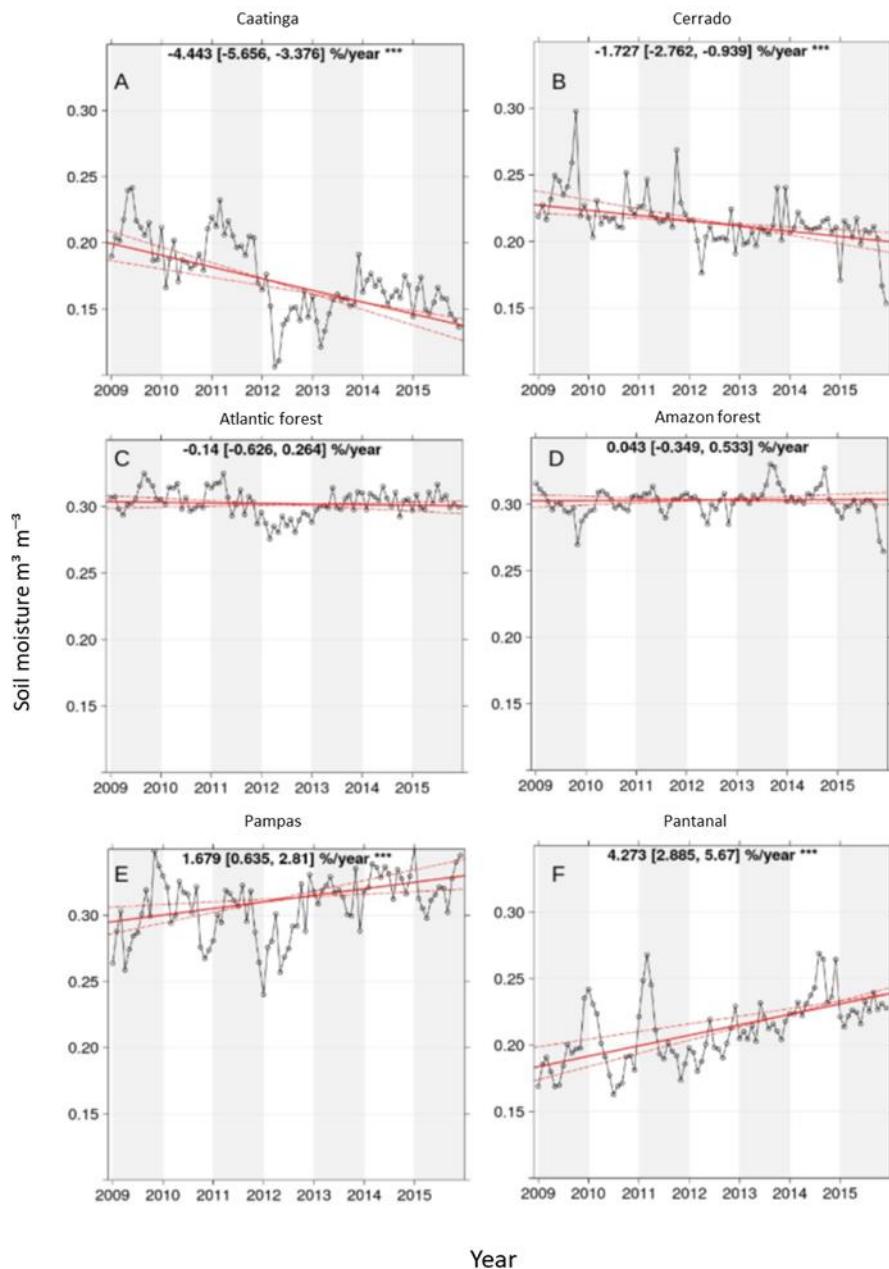
279

Figure 4: Brazil soil moisture trend from 2009 to 2015

280

281 When considering variations of soil moisture per biome, our data suggests that the largest soil moisture decline in
 282 Brazil was found in the Caatinga biome with a persistent negative trend (-4.4% in soil moisture per year ($p<0.001$))
 283 from 2009 to 2015 (Fig. 5a). In contrast, Amazon, Cerrado and Atlantic Forest biomes showed no significant trend
 284 on soil moisture. Pampas and Pantanal biomes showed a significant increase in soil moisture of 1.6% and 4.3%
 285 respectively per year ($p<0.001$) during the same period (Fig. 5e and f). Thus, the combination of environmental
 286 variables and satellite soil moisture records was able to identify drought dominated areas such as Caatinga and
 287 Cerrado from water-surplus dominated areas, such as Pantanal and Pampas. These results are also useful to prevent
 288 agricultural risk from water failure (decline or surplus) and monitor important ecosystem services of large and
 289 more inaccessible areas such as the Amazon forest and the Cerrado (Fig. 3).

290


291

292

293

294

295

296

297

298 **Figure 5: Soil moisture trends across Brazil. (a) Caatinga (n=921), (b) Cerrado (n=2410), (c) Atlantic Forest**
 299 **(n=1394), (d) Amazon (n=4819), (e) Pampas (n=231), and (f) Pantanal (n=179). The values in every graph**
 300 **show the slope percentages of changes. Red solid line showed the mean trend and red dashed lines show the**
 301 **standard deviation trend. *** (p<0.01)**

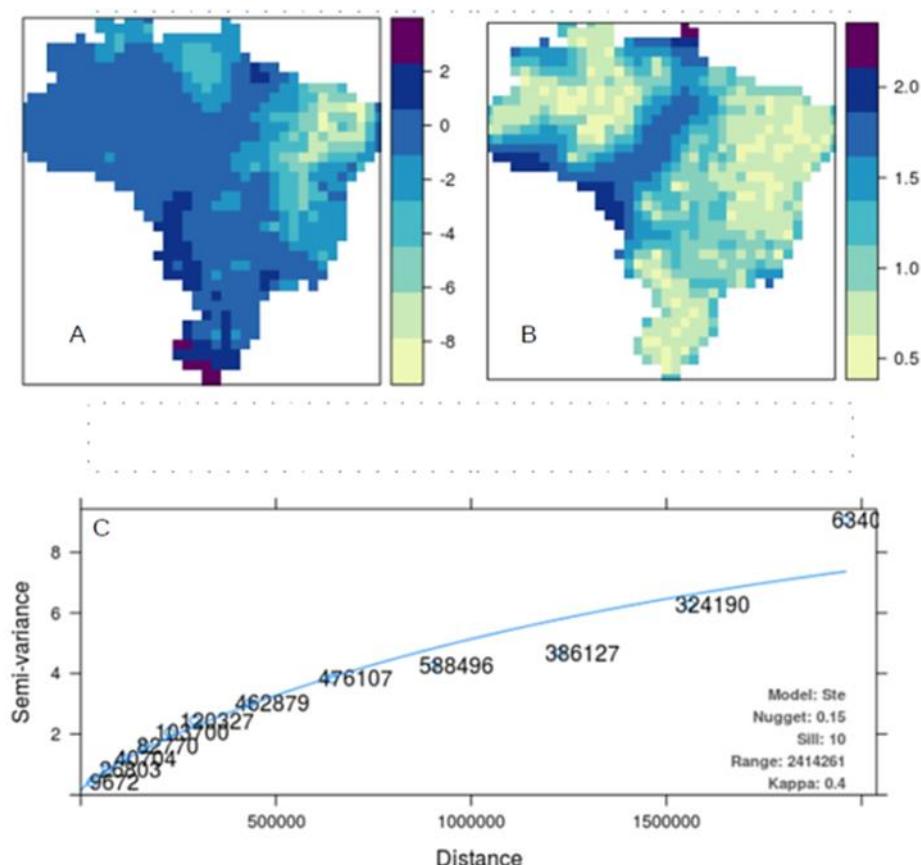
302

303 A closer analysis of satellite soil moisture trend in the Caatinga biome shows that this biome did not fully recover
 304 from an accentuated soil moisture decrease in 2012 (Fig. 5a). After 2012, there was a slight recovery of soil
 305 moisture in 2013, yet a negative trend remains in the following years, most likely because the below average
 306 annual precipitation from 2013 to 2015 (Cunha et al., 2019) coupled with human activities commonly found within
 307 the boundaries of this biome such as deforestation, unsustainable irrigation and water abstraction (Medeiros 2012;

308 Travassos and De Souza, 2014). As highlighted by Cunha et al. (2015) intense drought events can reduce the
309 vegetation resiliency, rendering plants to be more vulnerable to a recurring disturbance. Furthermore, the
310 vegetation can be durably affected by a drought, if the drought is preceded by another dry year that could
311 substantially reduce gross primary productivity and other ecosystem processes (Vargas, 2012).

312 Consistent with previous studies (Zeri et al. 2018) precipitation data indicates that the years 2011, 2012, 2014 and
313 2015 have been drier as compared to the previous decades. Marengo et al. (2017) also confirmed that, from 2012
314 to 2015, drought affected hundreds of cities and rural areas with devastating impacts on the agricultural production
315 and water supply. On the human activities side, data from the National Institute of Spatial Research (INPE, 2018)
316 reveals that 45% of the Caatinga biome is degraded and 7.2% of its soil is already exposed. In addition, the
317 Caatinga has been exposed to continuous land cover changes and less than 1% of the region is a strictly protected
318 area (Leal et al., 2005; Morim et al., 2013). Thus, our results: (a) provide insights to identify geographical areas
319 that could be preserved due to its capacity for providing blue and green water; and (b) could be part of a monitoring
320 system for optimizing the limited water inputs and supply in this semiarid ecosystem (i.e., for agricultural
321 planning).

322 Persistent and prolonged soil moisture decline could also negatively affect Caatinga's biodiversity, one of the
323 world's plant biodiversity centers (Leal et al. 2005). The vegetation and soils of the Caatinga are exposed to 8-10
324 dry months per year (Santos et al. 2014), and more than 90% of the Caatinga biome is non-forest vegetation. Just
325 ~20% of the biome has native vegetation, which is better adapted to support drought events and store higher
326 amounts of water (Santos et al. 2014; Overbeck et al. 2015). Tomasella et al. (2018) using NDVI values for high
327 density vegetation and bare soil showed that recurrent droughts are accelerating the degradation and desertification
328 processes in the Caatinga.


329 The combination of these regional factors together with the effect of teleconnections such as the ENSO (El Nino
330 Southern Oscillation) and other land atmosphere interactions (Kouadio et al. 2012) make the Caatinga biome in
331 Brazil the most vulnerable biome to the recurrent droughts and consequently, prolonged soil moisture deficit
332 condition. (Marengo et al. 2017).

333 Therefore, we highlight the need to include urgent actions such as reforestation and efficient use of underground
334 water into drought mitigation plans for this biome to reduce future soil moisture decline. It is noteworthy that
335 this biome is already presenting agricultural deficits and desertification areas due to natural and anthropogenic
336 phenomena (Nascimento and Alves 2008; Sheffield and Wood 2008; Medeiros, 2012; Travassos and De Souza
337 2014). As an example, while studying the desertification process in part of the Caatinga biome, D' Souza,
338 Fernandes and Barbosa (2008) found high levels of social, economic, and technological vulnerabilities which
339 could be directly associated with removal of the natural vegetation covering and forest fires for subsistence
340 agriculture. These human induced changes on soil moisture in the Caatinga are also related with the occurrence
341 of soil erosion and local desertification processes that influence low agricultural productivity due to diminish soil
342 moisture and quality of the soil (Nascimento and Alves 2008).

343 The Atlantic Forest biome didn't show significant positive or negative trends in soil moisture variation during the
344 studied period. It registered, however, the greatest ups and downs in soil moisture from 2009 to 2015, with high
345 peaks (2009, 2011 and 2013) followed by abrupt declines in a relatively short time period. After the most intense
346 period of soil moisture decline in the Atlantic Forest (2009-2012), this biome quickly bounced back to previous
347 levels of soil moisture, showing capacity to recover from intense soil moisture losses in less than 12 months.

348 The Amazon biome showed no significant trend of satellite soil moisture data during the analyzed period (Fig.
 349 4d), probably due to data limitations (i.e., data gaps) associated with lack of satellite-derived information (see
 350 Methods section). Field-based evidence collected by Anderson et al. (2018) showed a wide range of impacts of
 351 drought on the Amazon forest structure and functioning (e.g.: widespread tree mortality and increased
 352 susceptibility to wildfires) in 2016 after the 2015 drought, which affected approximately 46% of the Brazilian
 353 Amazon biome. However, considering the size and differences in topography in the Amazon biome, the eastern
 354 and western areas of the Amazon rainforest may respond differently to drought due to differences in climate
 355 conditions and therefore, different sensibility to soil moisture decline. The western portion of the Amazon biome
 356 shows higher soil moisture values (and potentially positive soil moisture trends) than the eastern region (Fig. 6a
 357 and b). This result is consistent with previous findings describing differences in drought response from east and
 358 west portions of this biome (Duffy et al. 2015), suggesting that soil moisture conservation plans and drought
 359 mitigation strategies in the Amazon biome should consider the heterogeneity of the region and the different soil
 360 moisture feedback from the east and west portions of this biome.

361

362

363 **Figure 6: Geostatistical analysis (Ordinary-Kriging with automatic variogram fitting) of satellite soil**
 364 **moisture across Brazil from 2009 to 2015. (a) The trend prediction of soil moisture 2009-2015. (b) The**
 365 **kriging variance (error map), (c) Variogram fitting parameters and spatial autocorrelation model (blue**
 366 **line) supporting the soil moisture prediction. The numbers around the blue line are the pairs of points**
 367 **available for the interpolation at a specific distance (x-axis)**

368

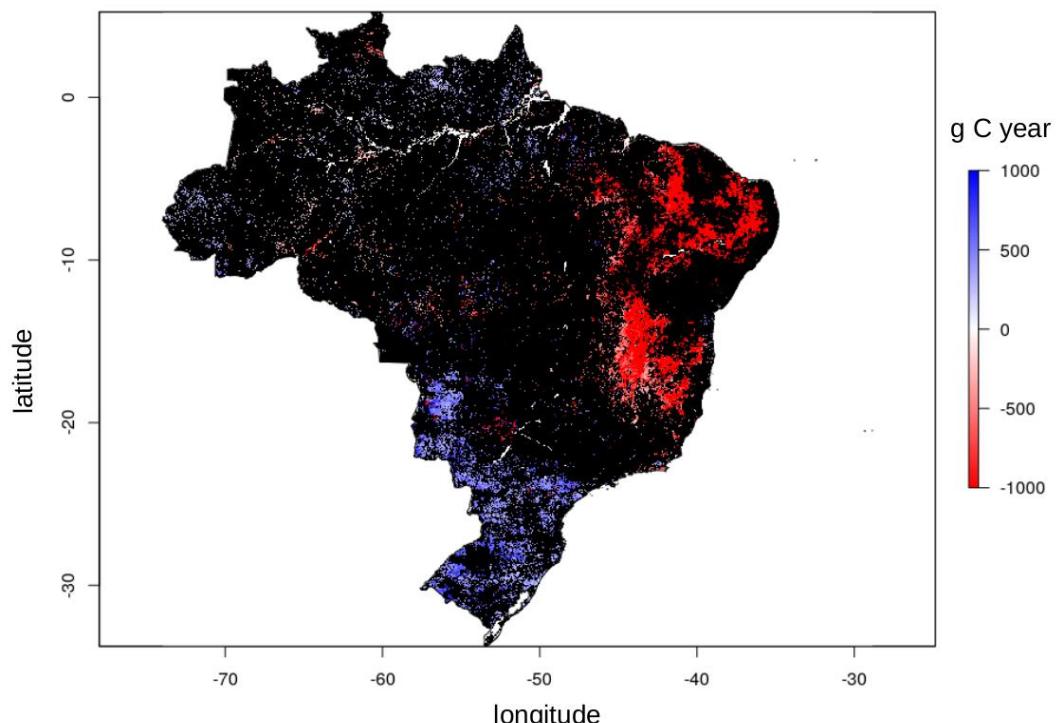
369 The Pampas biome showed a positive trend of ~1.6% per year ($p<0.001$) during the analyzed period (Fig. 5e), but
370 with three distinct periods. The year 2009 registered a recovery period of positive soil moisture trend followed by
371 a steady soil moisture decline until its lowest point in the beginning of 2012. Then, this biome started a consistent
372 recovery process surpassing previous values of soil moisture trend registered before 2013, showing great capacity
373 to recover soil moisture after periods of drought. Cunha et al. (2019) showed that in 2012 most of the south region
374 of Brazil presented drought conditions over an extensive area, with the highest intensity recorded in August 2012.
375 This intense drought affected the water supply in the rural properties and the agricultural and livestock production.
376 Even though the Pampas has more than 60% of its biome degraded, especially for cattle raising (Santos and Silva
377 2012), our data shows that it is gradually increasing soil moisture even during a period of successive droughts
378 across Brazil. Literature on soil moisture of the Pampas biome characterize this biome as highly vulnerable to
379 water and wind erosion (Roesch et al. 2009), making it susceptible to soil moisture decline (Duffy et al. 2015).
380 On the other hand, extended flat landscapes, like the Pampas, show low lateral water transport as a result of low
381 surface runoff and slow groundwater fluxes, making this biome more suitable to accumulate surface water for
382 long periods of time (Kuppel et al. 2015).

383 The Pantanal biome also showed a positive soil moisture trend of 4.3% per year ($p<0.001$) from 2009 to 2015, the
384 highest positive trend among all biomes. From 2009 to 2011, there were two extreme events characterized by
385 sudden soil moisture increase immediately followed by abrupt soil moisture declines. After these two extreme
386 events, a more stable and consistent positive soil moisture trend was registered from 2011 to 2014. Even though
387 there was a subtle decline in the soil moisture by the end of 2014, this biome kept an overall positive trend during
388 2015.

389 The Pantanal and the Pampas biomes are both sub-humid aeolian plains, which make them more susceptible to
390 experience flood events covering a significant fraction of the landscape for months or even years (Kuppel et al.
391 2015). Even though our data seems congruent with inundations registered in Pantanal in the beginning of 2011,
392 when soil moisture trend reached its highest point for the Pantanal biome during the studied period, it did not
393 capture a reduction of 81% of the total flooded area for the Pantanal biome in 2012, when there was a reduction
394 of 18% in annual precipitation (Moraes, Pereira and Cardozo 2013). In contrast, our data showed a consistent
395 positive trend throughout 2012, even though all months of the wet season in 2012 had a decrease in precipitation
396 ranging from -28.6% in the beginning towards -12.1% in the end of the wet season (Moraes et al. 2013). These
397 results suggest that, although the analyzed period is characterized by a sequence of dry spells across Brazil
398 (Marengo et al. 2017), some areas such as the Pantanal region, were able to accumulate soil moisture during that
399 time.

400 Detecting an increase in soil moisture does not mean that these biomes should receive less attention to drought
401 and soil conservation plans. From 2009 to 2015, the Pampas had always a representative municipality declaring
402 emergency due to drought and has constantly reported economic losses in the agricultural sector. The Pantanal,
403 during the same period, was not directly impacted by drought at the municipal level, but the highly positive soil
404 moisture trend deserves further understanding on how it impacts the local ecosystem, as well as agricultural
405 practices and cattle raising with the ultimate goal to improve food security across Brazil.

406 Our results support our main hypothesis as we have found evidence that each of the six Brazilian biomes registered
407 different soil moisture feedbacks to drought during the analyzed period (2009-2015). In practical terms, it means
408 that drought response and mitigation plans, as well as soil conservation strategies should consider both differences

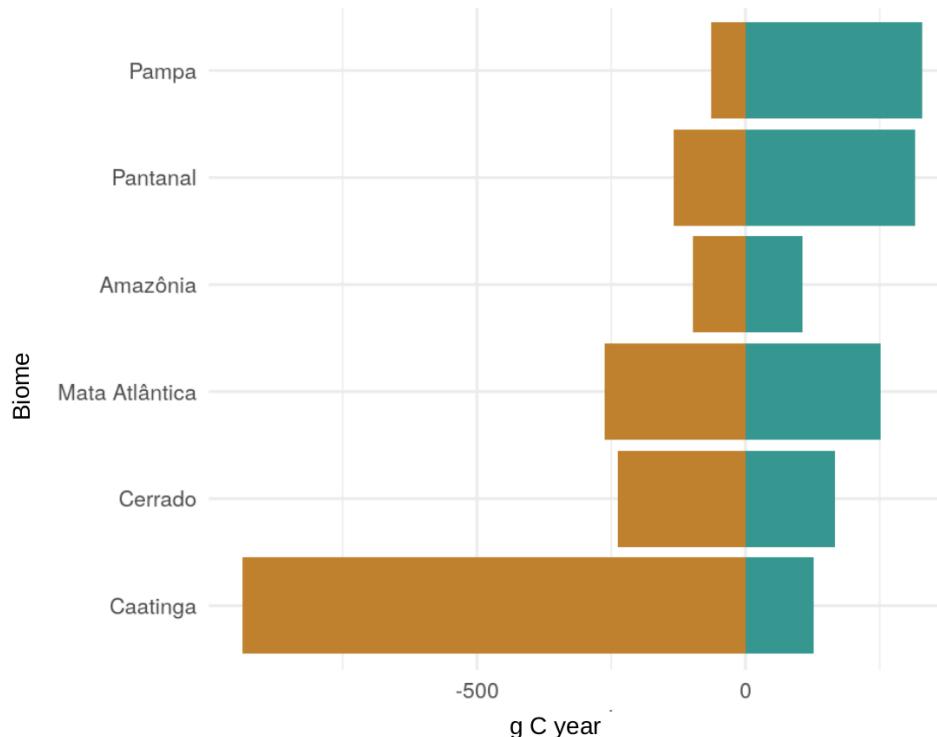

409 among and within each biome of Brazil and concentrate efforts and resources to preserve or recover the regions
410 with greater susceptibility to lose soil moisture during periods of drought. Confirming the value of satellite soil
411 moisture signals monitoring drought related patterns, we observe the similar trends of soil moisture and the
412 primary productivity of vegetation across Brazil.

413

414 **3.4. Primary productivity trends across Brazil**

415 We confirm the consistency of our results comparing trends of satellite soil moisture with trends calculated using
416 the primary productivity (or GPP) datasets. Our results show that all biomes experienced positive and negative
417 trends of vegetation productivity between the analyzed period of time (Fig. 7). We observe that the major surface
418 of negative trends of primary productivity of vegetation is across the Caatinga biome and its intersection with
419 both the Cerrado and Atlantic Forest biomes. Pampas and Pantanal are the biomes with higher surface of positive
420 primary productivity trends (Fig. 7).

421



422

423 **Fig. 7. Trends of primary productivity of vegetation based on the GOSIF dataset between 2009-2015. Areas**
424 **in black showed non-significant.**

425

426 These results are consistent with the soil moisture trends described on each biome (Fig. 5). Caatinga is the biome
427 with highest soil moisture decline and highest primary productivity decline. Cerrado and the Atlantic forest are
428 biomes also experiencing decline in soil moisture and primary productivity. In contrast, the Pampa and Pantanal
429 experienced an increase in soil moisture levels and increase in primary productivity rates (Fig. 8). Changes in
430 primary productivity across the Amazon forest were less evident or not significant. Our results support the use of
431 satellite soil moisture and primary productivity trends as accurate indicators of drought conditions across Brazilian
432 biomes.

433
434

435 **Fig. 8 Primary productivity trends across Brazilian biomes based in the GOSIF-GPP product across the**
436 **analyzed period of time (2009-2015).**

437

438 **4. Conclusion**

439 The results of this research reveal an important environmental vulnerability to drought across Brazil. From 2009
440 to 2015, there was a national decline of soil moisture with a rate of 0.5% year-1. Among all six biomes, Caatinga
441 presented the most severe soil moisture decline (-4.4% year-1), suggesting a need for immediate local soil and
442 water conservation activities. The Atlantic Forest and Cerrado biomes showed no significant soil moisture trends
443 but should be closely monitored for its importance to national food and water security and environmental balance.
444 The Amazon biome also showed no soil moisture trend but a sharp reduction of soil moisture from 2013 to 2015.
445 It is noteworthy that soil moisture from eastern and western portions of the Amazon biome may respond differently
446 to drought. The western portion of the Amazon biome shows potentially more positive soil moisture trends than
447 the eastern region. In contrast, the Pampas and the Pantanal biomes presented a positive soil moisture trend (1.6
448 and 4.3 % year-1, respectively), which should also be constantly monitored considering the susceptibility of these
449 biomes to floods.

450 These results are consistent with primary productivity trends (Fig. 8), supporting the effectiveness of satellite soil
451 moisture data to monitor drought impacts at a biome level. This study provides insights about the potential benefits
452 of integrating satellite soil moisture data into drought monitoring and early warning systems and soil conservation
453 plans at national and local levels.

454
455
456

457 Acknowledgments

458 FR acknowledges individual scholarship support from CNPq, Science without Boarders program, Brazilian
459 Federal Government. MG and AVL acknowledge individual fellowship support from CONACyT. RV
460 acknowledges support from the National Science Foundation CIF21 DIBBs (Grant #1724843).

461

462 References

463 Al-Kaisi, M., Rattan, L.: Conservation Agriculture Systems to Mitigate Climate Variability Effects on Soil Health,
464 in: Al-Kaisi, M. Lowery, B. (Eds). Soil Health and Intensification of Agroecosystems. Academic Press, 79-107,
465 doi.org/10.1016/B978-0-12-805317-1.00004-X, 2017.

466 Anderson, L. O., Ribeiro Neto, G., Cunha, A. P., Fonseca, M. G., Mendes de Moura, Y., Dalagnol, R., et al.
467 Vulnerability of Amazonian forests to repeated droughts. *Philos. Trans. R. Soc. B.* 373:20170411. doi:
468 10.1098/rstb.2017.0411, 2018

469 Assine, M.L., Soares, P.C.: Quaternary of the Pantanal, west-central Brazil. *Quatern Int* 114: 23–34, 2004.

470 Behling, H., Jeske-Pieruschka V., Schüler, L., Pillar, V.: Dinâmica dos campos no sul do Brasil durante o
471 Quaternário Tardio. In Pillar VD, Müller SC, Castilhos ZMS Jacques AVA (eds). *Campos Sulinos: Conservação*
472 e Uso Sustentável da Biodiversidade. Brasília: Ministério do Meio Ambiente, p. 13-25, 2009.

473 Bossio. D.: Soil Management – A Foundational Strategy for Conservation. The Nature Conservancy. Retrieved
474 from <https://global.nature.org/content/soil-management-a-foundational-strategy-for-conservation?src=social.nature.facebook.main>, 2017.

475

476 Bot, A., Benites, J.: The importance of soil organic matter: key to drought-resistant soil and sustained food
477 production. Rome: Food and Agriculture Organization of the United Nations, 2005.

478 Campos, J.N.: A gestão das águas e o desenvolvimento do Estado do Ceará: uma perspectiva histórica. T&C
479 Amazônia, Ano IV, Num. 9, 2006.

480 CENAD - Centro Nacional de Gerenciamento de Desastres: Anuário Brasileiro de Desastres Naturais. Brasília,
481 DF: Ministério da Integração Nacional and Secretaria Nacional de Proteção e Defesa Civil, 2014.

482 CEPED - Centro Universitário de Estudos e Pesquisas sobre Desastres: Atlas Brasileiro de Desastres Naturais
483 1991 a 2010: volume Brasil. Universidade Federal de Santa Catarina. Florianópolis, Brazil, 2012.

484 Cirilo, J. A.: Public Water Resources Policy for the semi-arid Region. *Estudos Avançados*, 22 (63), Revista USP,
485 Universidade de São Paulo, SP, 2008.

486 Cunha, A.P.M.A.; Zeri, M.; Deusdará Leal, K.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira,
487 R.M.; Barbosa, A.A.; Cunningham, C.; Cal Garcia, J.V.; Broedel, E.; Alvalá, R.; Ribeiro-Neto, G.: Extreme
488 Drought Events over Brazil from 2011 to 2019. *Atmosphere*, 10, 642, 2019.

489 Cunha, A. P. M. A., Alvalá, Regina C. S., Nobre, C. A., Carvalho, M. A.: Monitoring vegetative drought dynamics
490 in the Brazilian Semi-arid Region. *Agricultural and Forest Meteorology*. Vol 214-215, 494-505 p. 2015.

491 Cunha, A. P. M. A. ; Alvalá, R. C. dos S. ; Cuartas, L. A. ; Marengo, J. A. ; Marchezini, V. ; Leal, K. R. D. ;
492 Tomasella, J. ; Saito, S. M. ; Zeri, M. ; Munoz, V. A. ; Ribeiro-Neto, G. ; Seluchi, M. E. ; Cunningham, C. ; Costa,
493 L. C. O. ; Zhang, R. ; Moraes, O. L. L. . Brazilian Experience on the Development of Drought monitoring and
494 Impact Assessment Systems. United Nations Office for Disaster Risk Reduction - UNDRR, 2019 (Contributing
495 paper to Global Assessment Report on Disaster Risk Reduction - GAR 2019).

496 D' Souza, R., Fernandes, M.F., Barbosa, M.: Vulnerabilidades, semi-aridez e desertificação: cenários de riscos no
497 Cariri Paraibano. OKARA: Geografia em debate, v.2, n.2, p. 190-202, 2008.

498 Duffy, P. B., Brando, P., Asner, G. P., and Field, C. B.: Projections of future meteorological drought and wet
499 periods in the Amazon. *Proceedings of the National Academy of Sciences*, 112(43), 13172–13177.
500 <https://doi.org/10.1073/pnas.1421010112>, 2015

501 EM-DAT: The Emergency Events Database Université Catholique de Louvain (UCL) - CRED, D. Guha-Sapir.
 502 Retrieved from: www.emdat.be, Brussels, Belgium, 2018.

503 Florinsky, I.V. and Pankratov, A. N.: A universal spectral analytical method for digital terrain modeling, *Int J*
 504 *Geogr Inf Sci*, 30:12, 2506-2528, Doi: 10.1080/13658816.2016.1188932, 2016.

505 Guevara, M., Olmedo, G. F., Stell, E., Yigini, Y., Aguilar Duarte, Y., Arellano Hernández, C., Arévalo, G. E.,
 506 Arroyo-Cruz, C. E., Bolivar, A., Bunning, S., Bustamante Cañas, N., Cruz-Gaistardo, C. O., Davila, F., Dell
 507 Acqua, M., Encina, A., Figueroedo Tacona, H., Fontes, F., Hernández Herrera, J. A., Ibelles Navarro, A. R.,
 508 Loayza, V., Manueles, A. M., Mendoza Jara, F., Olivera, C., Osorio Hermosilla, R., Pereira, G., Prieto, P., Alexis
 509 Ramos, I., Rey Brina, J. C., Rivera, R., Rodríguez-Rodríguez, J., Roopnarine, R., Rosales Ibarra, A., Rosales
 510 Riveiro, K. A., Schulz, G. A., Spence, A., Vasques, G. M., Vargas, R. R., and Vargas, R.: No Silver Bullet for
 511 Digital Soil Mapping: Country-specific Soil Organic Carbon Estimates across Latin America, *Soil Discuss.*,
 512 <https://doi.org/10.5194/soil-2017-40>, in review, 2018.

513 Guevara, M. and Vargas, R. Downscaling satellite soil moisture using geomorphometry and machine learning.
 514 *PLoS one*, 14(9), 2019.

515 Hiemstra, P. H., Pebesma, E. J., Twenhöfel, C. J. W. and Heuvelink, G. B. M.: Real-time automatic interpolation
 516 of ambient gamma dose rates from the Dutch radioactivity monitoring network. *Comput. Geosci.*, 35(8), 1711–
 517 1721, doi:10.1016/j.cageo.2008.10.011, 2009.

518 Holden, J.: *Water Resources: An Integral Approach*. Routledge. New York, NY, 2014.

519 IBGE - Instituto Brasileiro de Geografia e Estatística: Mapa de Biomas e de Vegetação. Retrieved from
 520 <https://ww2.ibge.gov.br/home/presidencia/noticias/21052004biomashtml.shtml> (Accessed August 20, 2018),
 521 2004.

522 IBGE - Instituto Brasileiro de Geografia e Estatística: Pesquisas. Retrieved from
 523 <https://cidades.ibge.gov.br/pesquisas>, 2017.

524 IBGE - Instituto Brasileiro de Geografia e Estatística: Biomas e sistema costeiro-marinho do Brasil. Rio de Janeiro,
 525 2019.

526 INPE – National Institute of Spatial Research: INPE Nordeste mapeia desmatamento da Caatinga. Retrieved from
 527 http://www.inpe.br/noticias/noticia.php?Cod_Noticia=3895 (Accessed April 17, 2018), 2018.

528 Ioris, A. A. R., Irigaray, C. T., and Girard, P.: Institutional responses to climate change: opportunities and barriers
 529 for adaptation in the Pantanal and the Upper Paraguay River Basin. *Climatic Change*, 127(1), 139–151.
 530 <https://doi.org/10.1007/s10584-014-1134-z>, 2014.

531 Kouadio, Y. K., Servain, J., Machado, L. A. T., Lentini, C. A. D.: Heavy rainfall episodes in the eastern northeast
 532 brazil linked to large-scale ocean-atmosphere conditions in the tropical atlantic. *Adv Meteorol*,
 533 doi:<http://dx.doi.org/10.1155/2012/369567>, 2012.

534 Kuppel, S., Houspanossian, J., Noso, M. D., Jobbágy, E. G.: What does it take to flood the Pampas?: Lessons
 535 from a decade of strong hydrological fluctuations: Floods and the water cycle in the Pampas. *Water Resour Res*,
 536 51(4), 2937–2950. <https://doi.org/10.1002/2015WR016966>, 2015.

537 Leal, I. R., Da Silva, J. M. C., Tabarelli, M., Lacher, T. E. (2005) Changing the Course of Biodiversity
 538 Conservation in the Caatinga of Northeastern Brazil. *Conserv Biol*, 19(3), 701–706.
 539 <https://doi.org/10.1111/j.1523-1739.2005.00703.x>

540 Legates, D. R., Mahmood, R., Levia, D. F., DeLiberty, T. L., Quiring, S. M., Houser, C., and Nelson, F. E.: Soil
 541 moisture: A central and unifying theme in physical geography. *Prog Phys Geog*, 35(1), 65–86.
 542 <https://doi.org/10.1177/0309133310386514>, 2011.

543 Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jea, R. A. M., Wagner, W., van Dijk, A. I. J. M., McCabe, M. F.
 544 and Evans, J. P.: Developing an improved soil moisture dataset by blending passive and active microwave
 545 satellite-based retrievals. *Hydrol. Earth Syst. Sci.*, 15(2), 425–436, doi:10.5194/hess-15-425-2011, 2011.

546 Llamas, R.M., Guevara, M., Rorabaugh, D., Taufer, M. and Vargas, R. Spatial Gap-Filling of ESA CCI Satellite-
547 Derived Soil Moisture Based on Geostatistical Techniques and Multiple Regression. *Remote Sensing*, 12(4),
548 p.665, 2020.

549 Loon, A. F. V., Gleeson, T., Clark, J., Baldassarre, G. D., Teuling, A. J., Tallaksen, L. M., ... Wanders, N.:
550 Drought in the Anthropocene. *Nat Geosci*, 9, 3, 2016.

551 Magalhães, A.: Life and drought in Brazil. Drought in Brazil - Proactive Management and Policy, in: Wilhite, D.
552 (Ed.). Drought and Water Crisis. CRC Press. Boca Raton, FL, pp. 1- 19, 2016.

553 Marengo, J., Alves, L., Alvala, R., Cunha, A., Brito, S., Moraes, O.: Climatic characteristics of the 2010-2016
554 drought in the semiarid Northeast Brazil region. *Anais da Academia Brasileira de Ciências* (Annals of the
555 Brazilian Academy of Sciences), doi:10.1590/0001-3765201720170206, 2017.

556 Marengo, J., Tomasella, J., Alves, L., Soares, W., Rodriguez, D.: The drought of 2010 in the context of historical
557 droughts in the Amazon region. *Geophys Res Lett*, Vol. 38, L12703, doi:10.1029/2011GL047436, 2010.

558 McColl, K. A., Alemohammad, S. H., Akbar, R., Konings, A. G., Yueh, S. and Entekhabi, D.: The global
559 distribution and dynamics of surface soil moisture. *Nat. Geosci.*, 10(2), 100–104, doi:10.1038/ngeo2868, 2017.

560 Medeiros, R. M.: Análise Hidroclimático do Município de Cabaceiras, PB. *Revista Brasileira de Geografia Física*,
561 17, 2012.

562 Ministry of National Integration of Brazil: Reconhecimentos Realizados e Reconhecimentos Vigentes. Retrieved
563 from: <http://www.mi.gov.br/web/guest/reconhecimentos-realizados> (Accessed 24 March 2018), 2018.

564 Mishra, A. K., Singh, V. P.: A review of drought concepts. *J Hydrol*, 391(1- 2), 202-216.
565 doi:10.1016/j.jhydrol.2010.07.012, 2010.

566 Moraes, C., Pereira, G., Cardozo, F.: Avaliação da precipitação e sua influência sobre as áreas inundadas no
567 Pantanal. *Anais XVI Simpósio Brasileiro de Sensoriamento Remoto - SBSR*, INPE, Foz do Iguaçu, PR, Brasil,
568 2013.

569 Morim, R. L., Kolker, E., Liu, G., Liu, X., Cheng, S.: In praise of open research measures. *Nature* (498) 170,
570 <https://doi.org/10.1038/498170b>, 2013.

571 Nascimento, S., Alves, J.: Ecoclimatologia do Cariri Paraibano. *Revista Geográfica Acadêmica*, v.2, vol.3, 28-41,
572 2008.

573 National Secretary of Civil Defense and Protection of Brazil: Relatório de Gestão: Exercício 2016. Ministério da
574 Integração Nacional. Brasília-DF, Brazil, 2017.

575 Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., Phillips, R. P.: The increasing
576 importance of atmospheric demand for ecosystem water and carbon fluxes. *Nat Clim Change*, 6(11), 1023–1027.
577 <https://doi.org/10.1038/nclimate3114>, 2016

578 NWS - National Weather Service: Drought: Public Fact Sheet. National Oceanic and Atmospheric Administration,
579 2008.

580 Overbeck, G. E., Vélez-Martin, E., Scarano, F. R., Lewinsohn, T. M., Fonseca, C. R., Meyer, S. T., Pillar, V. D.:
581 Conservation in Brazil needs to include non-forest ecosystems. *Diversity Distrib*, 21(12), 1455–1460.
582 <https://doi.org/10.1111/ddi.12380>, 2015.

583 Pontes, A. The Caatinga Biome. Percentual de água por Bacia Hidrográfica varia de 18.6% a 96.7%. Das 15 bacias
584 apenas quatro estão em situação de segurança hídrica. Blog do Jose Carneiro,
585 <http://joseliocarneiro.blogspot.com/2012/11/percentual-de-agua-por-bacia.html>, 2012.

586 Reuter, H.I. & Hengl, T.: Global Soil Information Facilities-Component Worldgrids.org. EGU General Assembly
587 Conference Abstracts. Retrieved 9 September, 2018 from
588 https://www.researchgate.net/publication/233540147_Global_Soil_Information_Facilities-Component_Worldgrids_org, 2012.

590 Roesch, L. F., Vieira, F., Pereira, V., Schünemann, A. L., Teixeira, I., Senna, A. J., and Stefenon, V. M.: The
 591 Brazilian Pampa: A Fragile Biome. *Diversity*, 1(2), 182–198. <https://doi.org/10.3390/d1020182>, 2009.

592 Rossato, L., Marengo, J. A., Angelis, C. F. de, Pires, L. B. M., Mendiondo, E. M.: Impact of soil moisture over
 593 Palmer Drought Severity Index and its future projections in Brazil. *RBRH*, 22(0). <https://doi.org/10.1590/2318-0331.0117160045>, 2017.

595 Santos, M. G., Oliveira, M. T., Figueiredo, K. V., Falcão, H. M., Arruda, E. C. P., Almeida-Cortez, J., ...
 596 Antonino, A. C. D.: Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes? *Theor Exp Plant
 597 Phys*, 26(1), 83–99. <https://doi.org/10.1007/s40626-014-0008-0>, 2014.

598 Santos, S., Silva, L. G.: Mapeamento por imagens de sensoriamento remoto evidencia o bioma Pampa brasileiro
 599 sob ameaça. *Boletim de Geografia*, 29(2). <https://doi.org/10.4025/bolgeogr.v29i2.12366>, 2012.

600 SECOM- The Secretariat for Social Communication of the Presidency of Brazil: Biodiversity in Brazil. Secretariat
 601 for Social Communication of the Presidency of the Federative Republic of Brazil. United Nations Conference on
 602 Biological Diversity (COP11). Hyderabad, India, 2012.

603 Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's Tau. *J. Am. Stat. Assoc.*, 63(324), 1379,
 604 doi:10.2307/2285891, 1968

605 Sheffield, J., Wood, E. F.: Global Trends and Variability in Soil Moisture and Drought Characteristics, 1950–
 606 2000, from Observation-Driven Simulations of the Terrestrial Hydrologic Cycle. *J Climate*, 21(3), 432–458, 2008.

607 Siegel, A. F.: Robust Regression Using Repeated Medians. *Biometrika*, 69(1), 242, doi:10.2307/2335877, 1982.

608 Smith, K.: Hydrological Hazards. *Environmental Hazards - Assessing Risk and Reducing Disaster*, Routledge,
 609 337-370. New York: NY, 2013.

610 The Nature Conservancy: The Atlantic Forest harbors a range of biological diversity similar to that of the Amazon.
 611 The Nature Conservancy. Retrieved from:
 612 <https://www.nature.org/ourinitiatives/regions/latinamerica/brazil/placesweprotect/atlantic-forest.xml>, 2015.

613 Theil, H.: A Rank-Invariant Method of Linear and Polynomial Regression Analysis, in Henri Theil's
 614 Contributions to Economics and Econometrics, in: Raj, B. and Koert, J. (Eds) vol. 23, pp. 345–381, Springer
 615 Netherlands, Dordrecht. Retrieved from: http://www.springerlink.com/index/10.1007/978-94-011-2546-8_20,
 616 1992.

617 Tomasella J, et al. (2018) Desertification trends in the Northeast of Brazil over the period 2000–2016, *Int J Appl
 618 Earth Obs Geoinformation*, 73. 197–206.

619 Travassos, I. S., De Souza, B. I.: Os negócios da lenha: indústria, desmatamento e desertificação no Cariri
 620 paraibano. *GEOUSP: Espaço e Tempo* (Online), 18(2), 329. <https://doi.org/10.11606/issn.2179-0892.geousp.2014.84536>, 2014

622 Vargas, R. How a hurricane disturbance influences extreme CO₂ fluxes and variance in a tropical forest.
 623 *Environmental Research Letters*, 7(3), p.035704, 2012.

624 Vargas, R.; Collins, S.L.; Thomey, M.L.; Johnson, J.E.; Brown, R.F.; Natvig, D.O.; Friggins, M.T.: Precipitation
 625 variability and fire influence the temporal dynamics of soil CO₂ efflux in an arid grassland. *Global Change Biol*,
 626 18, 1401–1411, 2012.

627 Vargas, R., Sánchez-Cañete, P., Serrano-Ortiz, P., Curiel Yuste, J., Domingo, F., López-Ballesteros, A. and
 628 Oyonarte, C., 2018. Hot-moments of soil CO₂ efflux in a water-limited grassland. *Soil Systems*, 2(3), p.47, 2018.

629 Villarreal, S., Vargas, R., Yepez, E.A., Acosta, J.S., Castro, A., Escoto-Rodriguez, M., Lopez, E., Martínez-
 630 Osuna, J., Rodriguez, J.C., Smith, S.V. and Vivoni, E.R. Contrasting precipitation seasonality influences
 631 evapotranspiration dynamics in water-limited shrublands. *Journal of Geophysical Research: Biogeosciences*,
 632 121(2), pp.494-508, 2016.

633 Zeri, M., S. Alvalá, R., Carneiro, R., Cunha-Zeri, G., Costa, J., Rossato Spatafora, L., ... Marengo, J.: Tools for
634 Communicating Agricultural Drought over the Brazilian Semiarid Using the Soil Moisture Index. *Water*, 10(10),
635 1421. <https://doi.org/10.3390/w10101421>, 2018.

636

637